JP2020170605A - Negative electrode mixture layer - Google Patents

Negative electrode mixture layer Download PDF

Info

Publication number
JP2020170605A
JP2020170605A JP2019070244A JP2019070244A JP2020170605A JP 2020170605 A JP2020170605 A JP 2020170605A JP 2019070244 A JP2019070244 A JP 2019070244A JP 2019070244 A JP2019070244 A JP 2019070244A JP 2020170605 A JP2020170605 A JP 2020170605A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode mixture
solid electrolyte
solid
porous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019070244A
Other languages
Japanese (ja)
Other versions
JP7107880B2 (en
Inventor
悟志 若杉
Satoshi Wakasugi
悟志 若杉
吉田 淳
Atsushi Yoshida
淳 吉田
山口 裕之
Hiroyuki Yamaguchi
裕之 山口
中野 秀之
Hideyuki Nakano
秀之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2019070244A priority Critical patent/JP7107880B2/en
Publication of JP2020170605A publication Critical patent/JP2020170605A/en
Application granted granted Critical
Publication of JP7107880B2 publication Critical patent/JP7107880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a negative electrode mixture layer for an all-solid lithium ion secondary battery, which can suppress the increase in the binding pressure of a battery when charging it, and which is low in battery resistance.SOLUTION: A negative electrode mixture layer for an all-solid lithium ion secondary battery comprises porous silicon particles as a negative electrode active material, and a sulfide-based solid electrolyte. The porous silicon particles are each a silicon fine particle-binding body having a three-dimensional cancellous structure and continuous pores. The porous silicon particles have a porosity of 12-51%. The rate of contact of the porous silicon particles and the sulfide-based solid electrolyte is 20-44%.SELECTED DRAWING: Figure 2

Description

本開示は、負極合材層に関する。 The present disclosure relates to a negative electrode mixture layer.

近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。
全固体電池の中でも全固体リチウムイオン電池は、リチウムイオンの移動を伴う電池反応を利用するためエネルギー密度が高いという点、また、正極と負極の間に介在する電解質として、有機溶媒を含む電解液に替えて固体電解質を用いるという点で注目されている。
With the rapid spread of information-related devices such as personal computers, video cameras and mobile phones, and communication devices in recent years, the development of batteries used as their power sources has been emphasized. In addition, the automobile industry and the like are also developing high-output and high-capacity batteries for electric vehicles or hybrid vehicles.
Among all-solid-state batteries, all-solid-state lithium-ion batteries have a high energy density because they utilize a battery reaction that involves the movement of lithium ions, and an electrolyte solution containing an organic solvent as an electrolyte interposed between the positive electrode and the negative electrode. It is attracting attention in that it uses a solid electrolyte instead of.

特許文献1には、高容量と良好なサイクル特性を実現するリチウムイオン電池用の負極材料として、シリコン微粒子が接合してなり、連続した空隙を有する三次元網目構造を有し、平均空隙率が15〜93%である多孔質シリコン粒子が開示されている。 In Patent Document 1, as a negative electrode material for a lithium ion battery that realizes high capacity and good cycle characteristics, it has a three-dimensional network structure in which silicon fine particles are bonded and has continuous voids, and has an average porosity. Porous silicon particles, which are 15-93%, are disclosed.

特許文献2には、高いセル体積エネルギー密度と優れた容量維持率とを両立する全固体電池を得ることを目的として、硫化物固体電解質と負極活物質とを有する全固体電池用の負極であって、前記負極活物質はSi又はSnを含有する炭素材料を有する複合粒子であり、前記Si又はSnの粒子径が94nm以下、且つ、前記負極活物質の粒子径が15μm以下であり、前記負極の空隙率が5%〜30%である全固体電池用負極が開示されている。 Patent Document 2 describes a negative electrode for an all-solid-state battery having a sulfide solid electrolyte and a negative electrode active material for the purpose of obtaining an all-solid-state battery having both a high cell volume energy density and an excellent capacity retention rate. The negative electrode active material is a composite particle having a carbon material containing Si or Sn, the particle size of the Si or Sn is 94 nm or less, and the particle size of the negative electrode active material is 15 μm or less, and the negative electrode is used. A negative electrode for an all-solid-state battery having a void ratio of 5% to 30% is disclosed.

特許文献3には、負極合材内の空隙率Vが43%以上54%以下であることを特徴とする、全固体リチウムイオン二次電池の製造方法が開示されている。 Patent Document 3 discloses a method for manufacturing an all-solid-state lithium ion secondary battery, wherein the porosity V in the negative electrode mixture is 43% or more and 54% or less.

特開2013−203626号公報Japanese Unexamined Patent Publication No. 2013-203626 特開2017−054720号公報JP-A-2017-054720 特開2018−181702号公報Japanese Unexamined Patent Publication No. 2018-181702

従来の全固体リチウムイオン二次電池は、充電時の電池の拘束圧が高く、電池の抵抗が高いという問題がある。
本開示は、上記実情に鑑み、充電時の電池の拘束圧の増加を抑制し、電池の抵抗が低い全固体リチウムイオン二次電池用の負極合材層を提供することを目的とする。
The conventional all-solid-state lithium-ion secondary battery has a problem that the binding pressure of the battery at the time of charging is high and the resistance of the battery is high.
In view of the above circumstances, it is an object of the present disclosure to provide a negative electrode mixture layer for an all-solid-state lithium ion secondary battery, which suppresses an increase in the restraining pressure of the battery during charging and has a low battery resistance.

本開示は、負極活物質として多孔質シリコン粒子と、硫化物系固体電解質と、を含む全固体リチウムイオン二次電池用の負極合材層であって、
前記多孔質シリコン粒子は、複数のシリコン微粒子の接合体であり、連続した空隙を有する三次元網目構造を有し、
前記多孔質シリコン粒子の空隙率が12%〜51%であり、
前記多孔質シリコン粒子と前記硫化物系固体電解質の接触率が20%〜44%であることを特徴とする負極合材層を提供する。
The present disclosure is a negative electrode mixture layer for an all-solid-state lithium ion secondary battery containing porous silicon particles as a negative electrode active material and a sulfide-based solid electrolyte.
The porous silicon particles are a conjugate of a plurality of silicon fine particles, and have a three-dimensional network structure having continuous voids.
The porosity of the porous silicon particles is 12% to 51%.
Provided is a negative electrode mixture layer characterized in that the contact ratio between the porous silicon particles and the sulfide-based solid electrolyte is 20% to 44%.

本開示は、充電時の電池の拘束圧の増加を抑制し、電池の抵抗が低い全固体リチウムイオン二次電池用の負極合材層を提供することができる。 The present disclosure can provide a negative electrode mixture layer for an all-solid-state lithium ion secondary battery, which suppresses an increase in the restraining pressure of the battery during charging and has a low battery resistance.

本開示の全固体リチウムイオン二次電池の一例を示す断面模式図である。It is sectional drawing which shows an example of the all-solid-state lithium ion secondary battery of this disclosure. 実施例1の多孔質シリコン粒子の断面のSEM画像である。6 is an SEM image of a cross section of the porous silicon particles of Example 1.

本開示は、負極活物質として多孔質シリコン粒子と、硫化物系固体電解質と、を含む全固体リチウムイオン二次電池用の負極合材層であって、
前記多孔質シリコン粒子は、複数のシリコン微粒子の接合体であり、連続した空隙を有する三次元網目構造を有し、
前記多孔質シリコン粒子の空隙率が12%〜51%であり、
前記多孔質シリコン粒子と前記硫化物系固体電解質の接触率が20%〜44%であることを特徴とする負極合材層を提供する。
The present disclosure is a negative electrode mixture layer for an all-solid-state lithium ion secondary battery containing porous silicon particles as a negative electrode active material and a sulfide-based solid electrolyte.
The porous silicon particles are a conjugate of a plurality of silicon fine particles, and have a three-dimensional network structure having continuous voids.
The porosity of the porous silicon particles is 12% to 51%.
Provided is a negative electrode mixture layer characterized in that the contact ratio between the porous silicon particles and the sulfide-based solid electrolyte is 20% to 44%.

全固体リチウムイオン二次電池の高エネルギー密度を実現するためには高容量なSi材料を負極活物質として用いる必要がある。
負極活物質として、通常のダイヤモンド構造のSi材料を用いた場合、全固体リチウムイオン二次電池の充放電を繰り返すと電極内部にクラックが発生し電池の寿命が著しく低下すること、及び、全固体リチウムイオン二次電池の充電状態では拘束部品に極めて大きな応力がかかるため剛性の高い拘束構造が必要となること等の問題が発生する。
例えば、充電反応として、ダイヤモンド構造のSi粒子にLiイオンが挿入されると、Si粒子の結晶構造内にLiイオンが取り込まれる。このときSiの結晶格子が大きくなり、Si粒子が膨張する。
In order to realize a high energy density of an all-solid-state lithium-ion secondary battery, it is necessary to use a high-capacity Si material as a negative electrode active material.
When a normal diamond-structured Si material is used as the negative electrode active material, repeated charging and discharging of the all-solid-state lithium-ion secondary battery causes cracks inside the electrode, which significantly shortens the battery life and is all-solid-state. In the charged state of the lithium ion secondary battery, an extremely large stress is applied to the restraint parts, which causes problems such as the need for a highly rigid restraint structure.
For example, when Li ions are inserted into Si particles having a diamond structure as a charging reaction, Li ions are incorporated into the crystal structure of the Si particles. At this time, the crystal lattice of Si becomes large and the Si particles expand.

本研究者らは、内部に空隙を有する多孔質シリコン粒子を負極活物質として用いることにより、シリコン微粒子が多孔質シリコン粒子内で膨張し、負極の膨張を抑制することができることを見出した。
また、本研究者らは、多孔質シリコン粒子と硫化物系固体電解質との接触率を高くすることにより、負極の膨張をより抑制し、全固体リチウムイオン二次電池の抵抗をより低減することができることを見出した。
負極の膨張をより抑制することができるのは、多孔質シリコン粒子と硫化物系固体電解質との接触率を高くすることにより、負極内の多孔質シリコン粒子に均一にLiが挿入されるためと推定される。
また、全固体リチウムイオン二次電池の抵抗をより低減することができるのは、多孔質シリコン粒子と硫化物系固体電解質との接触率を高くすることにより、イオン伝導経路が多くなり、Liイオンの多孔質シリコン粒子と硫化物系固体電解質の間の移動が阻害されにくいためと推定される。
The present researchers have found that by using porous silicon particles having voids inside as a negative electrode active material, the silicon fine particles expand in the porous silicon particles and the expansion of the negative electrode can be suppressed.
In addition, by increasing the contact rate between the porous silicon particles and the sulfide-based solid electrolyte, the researchers will further suppress the expansion of the negative electrode and further reduce the resistance of the all-solid-state lithium-ion secondary battery. I found that I could do it.
The reason why the expansion of the negative electrode can be further suppressed is that Li is uniformly inserted into the porous silicon particles in the negative electrode by increasing the contact rate between the porous silicon particles and the sulfide-based solid electrolyte. Presumed.
In addition, the resistance of the all-solid-state lithium-ion secondary battery can be further reduced by increasing the contact rate between the porous silicon particles and the sulfide-based solid electrolyte, thereby increasing the number of ion conduction paths and Li ions. It is presumed that this is because the movement between the porous silicon particles and the sulfide-based solid electrolyte is not easily hindered.

[負極合材層]
負極合材層は、負極合材からなり、負極合材は、負極活物質として多孔質シリコン粒子と、硫化物系固体電解質と、を含み、必要に応じ、さらに、導電材、及びバインダー等を含む。
[Negative electrode mixture layer]
The negative electrode mixture layer is made of a negative electrode mixture, and the negative electrode mixture contains porous silicon particles as a negative electrode active material and a sulfide-based solid electrolyte, and if necessary, further contains a conductive material, a binder, and the like. Including.

多孔質シリコン粒子は、複数のシリコン微粒子の接合体であり、連続した空隙を有する三次元網目構造を有する。
多孔質シリコン粒子の作製方法は、例えば、以下の方法が挙げられる。
[1−1]
まず、所定量のシリコン微粒子と金属LiをAr雰囲気下にて混合してLiSi前駆体を得る。
[1−2]
LiSi前駆体をAr雰囲気下のガラス反応器内にて所定の温度のエタノールと120分反応させた後、吸引濾過にて液体1と固体反応物1を分離する。
[1−3]
得られた固体反応物1を大気雰囲気下のガラス反応器内にて酢酸と60分反応させた後、吸引濾過にて液体2と固体反応物2を分離する。
[1−4]
固体反応物2を100℃で2時間真空乾燥して多孔質シリコン粒子を得る。
Porous silicon particles are a conjugate of a plurality of silicon fine particles, and have a three-dimensional network structure having continuous voids.
Examples of the method for producing the porous silicon particles include the following methods.
[1-1]
First, a predetermined amount of silicon fine particles and metallic Li are mixed in an Ar atmosphere to obtain a LiSi precursor.
[1-2]
The LiSi precursor is reacted with ethanol at a predetermined temperature in a glass reactor under an Ar atmosphere for 120 minutes, and then the liquid 1 and the solid reaction product 1 are separated by suction filtration.
[1-3]
The obtained solid reaction product 1 is reacted with acetic acid in a glass reactor in an air atmosphere for 60 minutes, and then the liquid 2 and the solid reaction product 2 are separated by suction filtration.
[1-4]
The solid reaction product 2 is vacuum dried at 100 ° C. for 2 hours to obtain porous silicon particles.

多孔質シリコン粒子は空隙率が12%〜51%である。
多孔質シリコン粒子中の空隙率の算出方法は、特に限定されないが、例えば、多孔質シリコン粒子の断面の走査型電子顕微鏡(SEM)画像を観測して算出してもよい。
多孔質シリコン粒子の空隙率は、例えば、上記手順[1−2]において、エタノールの温度を0℃〜25℃の範囲で変動させることにより制御することができる。
The porous silicon particles have a porosity of 12% to 51%.
The method for calculating the porosity in the porous silicon particles is not particularly limited, and for example, it may be calculated by observing a scanning electron microscope (SEM) image of a cross section of the porous silicon particles.
The porosity of the porous silicon particles can be controlled, for example, by varying the temperature of ethanol in the range of 0 ° C. to 25 ° C. in the above procedure [1-2].

多孔質シリコン粒子の平均粒径(D50)は、例えば50nm以上100μm以下であってもよく、100nm以上30μm以下であってもよい。
シリコン微粒子の平均粒径(D50)は、例えば2nm〜10μmであってもよく、5nm〜5μmであってもよい。
The average particle size (D50) of the porous silicon particles may be, for example, 50 nm or more and 100 μm or less, or 100 nm or more and 30 μm or less.
The average particle size (D50) of the silicon fine particles may be, for example, 2 nm to 10 μm, or 5 nm to 5 μm.

硫化物系固体電解質としては、例えば、LiS−P、LiS−SiS、LiX−LiS−SiS、LiX−LiS−P、LiX−LiO−LiS−P、LiX−LiS−P、LiX−LiPO−P、及びLiPS等が挙げられる。なお、上記「LiS−P」の記載は、LiSおよびPを含む原料組成物を用いてなる材料を意味し、他の記載についても同様である。また、上記LiXの「X」は、ハロゲン元素を示す。上記LiXを含む原料組成物中にLiXは1種又は2種以上含まれていてもよい。LiXが2種以上含まれる場合、2種以上の混合比率は特に限定されるものではない。
負極合材層における硫化物系固体電解質の含有量は、負極合材層の負極活物質、硫化物系固体電解質、導電材、及びバインダーの総質量を100質量%としたとき、1〜80質量%であってもよい。
硫化物系固体電解質の形状は、取扱い性が良いという観点から粒子状であることが好ましい。
Examples of the sulfide-based solid electrolyte include Li 2 S-P 2 S 5 , Li 2 S-SiS 2 , LiX-Li 2 S-SiS 2 , LiX-Li 2 S-P 2 S 5 , LiX-Li 2. Examples thereof include O-Li 2 SP 2 S 5 , LiX-Li 2 S-P 2 O 5 , LiX-Li 3 PO 4- P 2 S 5 , Li 3 PS 4 , and the like. The above description of "Li 2 SP 2 S 5 " means a material made of a raw material composition containing Li 2 S and P 2 S 5, and the same applies to other descriptions. Further, "X" of the above LiX indicates a halogen element. The raw material composition containing LiX may contain one or more LiX. When two or more types of LiX are contained, the mixing ratio of the two or more types is not particularly limited.
The content of the sulfide-based solid electrolyte in the negative electrode mixture layer is 1 to 80 mass when the total mass of the negative electrode active material, the sulfide-based solid electrolyte, the conductive material, and the binder in the negative electrode mixture layer is 100% by mass. May be%.
The shape of the sulfide-based solid electrolyte is preferably particulate from the viewpoint of good handleability.

負極合材層に含まれる導電材は、例えば、炭素材料、金属粒子が挙げられる。炭素材料としては、例えば、アセチレンブラック(AB)、ケッチェンブラック(KB)等の粒子状炭素材料、炭素繊維、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の繊維状炭素材料が挙げられる。CNT及びCNFは、気相法炭素繊維(VGCF)であってもよい。金属粒子としては、Ni、Cu、Fe、SUSなどが挙げられる。
負極合材層の負極活物質、硫化物系固体電解質、導電材、及びバインダーの総質量を100質量%としたとき、当該負極合材層中に含まれる導電材の含有割合は、0.1質量%〜10質量%であってもよい。
Examples of the conductive material contained in the negative electrode mixture layer include a carbon material and metal particles. Examples of the carbon material include particulate carbon materials such as acetylene black (AB) and Ketjen black (KB), and fibrous carbon materials such as carbon fibers, carbon nanotubes (CNT), and carbon nanofibers (CNF). .. The CNTs and CNFs may be vapor phase carbon fibers (VGCF). Examples of the metal particles include Ni, Cu, Fe, and SUS.
When the total mass of the negative electrode active material, the sulfide-based solid electrolyte, the conductive material, and the binder of the negative electrode mixture layer is 100% by mass, the content ratio of the conductive material contained in the negative electrode mixture layer is 0.1. It may be 10% by mass by mass.

負極合材層中の多孔質シリコン粒子と硫化物系固体電解質の接触率は20%〜44%である。
多孔質シリコン粒子と硫化物系固体電解質の接触率は負極合材層の断面のSEM画像を観測して、下記式(1)に従って算出してもよい。なお、下記式(1)において接触面積の単位はいずれも[μm]である。
式(1)
多孔質シリコン粒子と硫化物系固体電解質の接触率[%]=[多孔質シリコン粒子と硫化物系固体電解質との接触面積÷(多孔質シリコン粒子と硫化物系固体電解質との接触面積+多孔質シリコン粒子と導電材との接触面積+多孔質シリコン粒子と多孔質シリコン粒子との接触面積)]×100
多孔質シリコン粒子と硫化物系固体電解質の接触率は、例えば、負極合材層中の導電材の量を変動させることにより制御することができる。
The contact rate between the porous silicon particles and the sulfide-based solid electrolyte in the negative electrode mixture layer is 20% to 44%.
The contact ratio between the porous silicon particles and the sulfide-based solid electrolyte may be calculated according to the following formula (1) by observing the SEM image of the cross section of the negative electrode mixture layer. In the following formula (1), the unit of contact area is [μm 2 ].
Equation (1)
Contact rate between porous silicon particles and sulfide-based solid electrolyte [%] = [Contact area between porous silicon particles and sulfide-based solid electrolyte ÷ (contact area between porous silicon particles and sulfide-based solid electrolyte + porous Contact area between quality silicon particles and conductive material + Contact area between porous silicon particles and porous silicon particles)] x 100
The contact rate between the porous silicon particles and the sulfide-based solid electrolyte can be controlled, for example, by varying the amount of the conductive material in the negative electrode mixture layer.

負極合材層に含まれるバインダーは、例えばブタジエンゴム、水素化ブタジエンゴム、スチレンブタジエンゴム(SBR)、水素化スチレンブタジエンゴム、ニトリルブタジエンゴム、水素化ニトリルブタジエンゴム、エチレンプロピレンゴム等のゴム系バインダー、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン−ポリヘキサフルオロプロピレン共重合体(PVDF−HFP)、ポリテトラフルオロエチレン、フッ素ゴム等のフッ化物系バインダー、ポリエチレン、ポリプロピレン、ポリスチレンなどポリオレフィン系の熱可塑性樹脂、ポリイミド、ポリアミドイミドなどのイミド系樹脂、ポリアミドなどのアミド系樹脂、ポリメチルアクリレート、ポリエチルアクリレートなどのアクリル系樹脂、ポリメチルメタクリレート、ポリエチルメタクリラートなどのメタクリル系樹脂が挙げられる。
負極合材層の負極活物質、硫化物系固体電解質、導電材、及びバインダーの総質量を100質量%としたとき、当該負極合材層中に含まれるバインダーの含有割合は、0.1質量%〜10質量%であってもよい。
The binder contained in the negative electrode mixture layer is a rubber-based binder such as butadiene rubber, hydride butadiene rubber, styrene butadiene rubber (SBR), hydride styrene butadiene rubber, nitrile butadiene rubber, hydride nitrile butadiene rubber, and ethylene propylene rubber. , Polyvinylidene fluoride (PVDF), polyvinylidene fluoride-polyhexafluoropropylene copolymer (PVDF-HFP), fluoride-based binders such as polytetrafluoroethylene and fluororubber, polyolefin-based thermoplastics such as polyethylene, polypropylene and polystyrene. Examples thereof include imide-based resins such as resins, polyimides and polyamideimides, amide-based resins such as polyamides, acrylic resins such as polymethylacrylate and polyethylacrylate, and methacrylic resins such as polymethylmethacrylate and polyethylmethacrylate.
When the total mass of the negative electrode active material, the sulfide-based solid electrolyte, the conductive material, and the binder of the negative electrode mixture layer is 100% by mass, the content ratio of the binder contained in the negative electrode mixture layer is 0.1 mass. It may be% to 10% by mass.

[全固体リチウムイオン二次電池]
本開示の負極合材層は、全固体リチウムイオン二次電池の負極に用いられる。
本開示の全固体リチウムイオン二次電池は、正極と、負極と、当該正極及び当該負極の間に配置される固体電解質層と、を有することを特徴とする。
図1は、本開示の全固体リチウムイオン二次電池の一例を示す断面模式図である。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。
図1に示すように、全固体リチウムイオン二次電池100は、正極合材層12及び正極集電体14を含む正極16と、負極合材層13及び負極集電体15を含む負極17と、正極16と負極17の間に配置される固体電解質層11を備える。
[All-solid-state lithium-ion secondary battery]
The negative electrode mixture layer of the present disclosure is used for the negative electrode of an all-solid-state lithium ion secondary battery.
The all-solid-state lithium ion secondary battery of the present disclosure is characterized by having a positive electrode, a negative electrode, and a solid electrolyte layer arranged between the positive electrode and the negative electrode.
FIG. 1 is a schematic cross-sectional view showing an example of the all-solid-state lithium ion secondary battery of the present disclosure. In the drawings attached to the present specification, the scale, aspect ratio, etc. are appropriately changed from those of the actual product and exaggerated for the convenience of illustration and comprehension.
As shown in FIG. 1, the all-solid-state lithium ion secondary battery 100 includes a positive electrode 16 including a positive electrode mixture layer 12 and a positive electrode current collector 14, and a negative electrode 17 including a negative electrode mixture layer 13 and a negative electrode current collector 15. A solid electrolyte layer 11 is provided between the positive electrode 16 and the negative electrode 17.

[正極]
正極は、少なくとも正極合材層を含み、必要に応じて正極集電体を含む。
正極合材層は、正極合材からなり、正極合材は、正極活物質を含み、任意成分として、固体電解質、導電材、及び、バインダー等が含まれていてもよい。
[Positive electrode]
The positive electrode includes at least a positive electrode mixture layer and, if necessary, a positive electrode current collector.
The positive electrode mixture layer is made of a positive electrode mixture, and the positive electrode mixture contains a positive electrode active material, and may contain a solid electrolyte, a conductive material, a binder, and the like as optional components.

正極活物質の種類については特に制限はなく、例えば、一般式Li(Mは遷移金属元素であり、x=0.02〜2.2、y=1〜2、z=1.4〜4)で表される正極活物質を挙げることができる。上記一般式において、Mは、Co、Mn、Ni、V、FeおよびSiからなる群から選択される少なくとも一種が挙げられ、Co、NiおよびMnからなる群から選択される少なくとも一種であってよい。このような正極活物質としては、具体的には、LiCoO、LiMnO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3、LiMn、Li(Ni0.5Mn1.5)O、LiFeSiO、LiMnSiO等を挙げることができる。
また、上記一般式Li以外の正極活物質としては、チタン酸リチウム(例えばLiTi12)、リン酸金属リチウム(LiFePO、LiMnPO、LiCoPO、LiNiPO)、遷移金属酸化物(V、MoO)、TiS、LiCoN、Si、SiO、LiSiO、LiSiO、及びリチウム貯蔵性金属間化合物(例えばMgSn、MgGe、MgSb、CuSb)等を挙げることができる。
正極活物質の形状は特に限定されるものではないが、粒子状であってもよい。
正極活物質の表面には、Liイオン伝導性酸化物を含有するコート層が形成されていても良い。正極活物質と、固体電解質との反応を抑制できるからである。
Liイオン伝導性酸化物としては、例えば、LiNbO、LiTi12、及びLiPO等が挙げられる。
正極合材層における正極活物質の含有量は、特に限定されないが、例えば10質量%〜100質量%の範囲内であってもよい。
正極合材層に用いられる固体電解質は、後述する固体電解質層に用いられる固体電解質と同様のものが挙げられる。正極合材層中の固体電解質の含有割合は特に限定されるものではない。
No particular limitation is imposed on the kind of the positive electrode active material, for example, the general formula Li x M y O z (M is a transition metal element, x = 0.02~2.2, y = 1~2 , z = 1 The positive electrode active material represented by .4 to 4) can be mentioned. In the above general formula, M is at least one selected from the group consisting of Co, Mn, Ni, V, Fe and Si, and may be at least one selected from the group consisting of Co, Ni and Mn. .. Specific examples of such positive electrode active materials include LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , and Li (Ni 0). .5 Mn 1.5 ) O 4 , Li 2 FeSiO 4 , Li 2 MnSiO 4 and the like can be mentioned.
As the positive electrode active material other than the above-mentioned general formula Li x M y O z, the lithium titanate (for example, Li 4 Ti 5 O 12), phosphoric acid metal lithium (LiFePO 4, LiMnPO 4, LiCoPO 4, LiNiPO 4), Transition metal oxides (V 2 O 5 , MoO 3 ), TiS 2 , LiCoN, Si, SiO 2 , Li 2 SiO 3 , Li 4 SiO 4 , and lithium storable metal compounds (eg Mg 2 Sn, Mg 2 Ge) , Mg 2 Sb, Cu 3 Sb) and the like.
The shape of the positive electrode active material is not particularly limited, but may be in the form of particles.
A coat layer containing a Li ion conductive oxide may be formed on the surface of the positive electrode active material. This is because the reaction between the positive electrode active material and the solid electrolyte can be suppressed.
Examples of the Li ion conductive oxide include LiNbO 3 , Li 4 Ti 5 O 12 , Li 3 PO 4 , and the like.
The content of the positive electrode active material in the positive electrode mixture layer is not particularly limited, but may be in the range of, for example, 10% by mass to 100% by mass.
Examples of the solid electrolyte used for the positive electrode mixture layer include the same solid electrolytes used for the solid electrolyte layer described later. The content ratio of the solid electrolyte in the positive electrode mixture layer is not particularly limited.

導電材としては、上述した負極合材に用いられる導電材と同様のものが挙げられる。正極合材層における導電材の含有量は特に限定されるものではない。 Examples of the conductive material include the same conductive materials as those used for the negative electrode mixture described above. The content of the conductive material in the positive electrode mixture layer is not particularly limited.

バインダーとしては、上述した負極合材に用いられるバインダーと同様のものが挙げられる。正極合材層におけるバインダーの含有量は特に限定されるものではない。 Examples of the binder include the same binders used for the above-mentioned negative electrode mixture. The content of the binder in the positive electrode mixture layer is not particularly limited.

正極合材層の厚みについては特に限定されるものではない。 The thickness of the positive electrode mixture layer is not particularly limited.

正極合材層は、従来公知の方法で形成することができる。
例えば、正極活物質、及びバインダーを溶媒中に投入し、これらを撹拌することにより、正極合材層用スラリーを作製し、当該スラリーを正極集電体等の支持体の一面上に塗布して乾燥させることにより、正極合材層が得られる。
溶媒は、例えば酢酸ブチル、酪酸ブチル、ヘプタン、及びN−メチル−2−ピロリドン等が挙げられる。
正極集電体等の支持体の一面上に正極合材層用スラリーを塗布する方法は、特に限定されず、ドクターブレード法、メタルマスク印刷法、静電塗布法、ディップコート法、スプレーコート法、ロールコート法、グラビアコート法、及びスクリーン印刷法等が挙げられる。
また、正極合材層の形成方法の別の方法として、正極活物質及び必要に応じ他の成分を含む正極合材の粉末を加圧成形することにより正極合材層を形成してもよい。
The positive electrode mixture layer can be formed by a conventionally known method.
For example, a positive electrode active material and a binder are put into a solvent, and these are stirred to prepare a slurry for a positive electrode mixture layer, and the slurry is applied on one surface of a support such as a positive electrode current collector. By drying, a positive electrode mixture layer is obtained.
Examples of the solvent include butyl acetate, butyl butyrate, heptane, N-methyl-2-pyrrolidone and the like.
The method of applying the slurry for the positive electrode mixture layer on one surface of a support such as a positive electrode current collector is not particularly limited, and is a doctor blade method, a metal mask printing method, an electrostatic coating method, a dip coating method, and a spray coating method. , Roll coating method, gravure coating method, screen printing method and the like.
Further, as another method of forming the positive electrode mixture layer, the positive electrode mixture layer may be formed by pressure molding the powder of the positive electrode mixture containing the positive electrode active material and, if necessary, other components.

正極集電体は、全固体リチウムイオン二次電池の集電体として使用可能な公知の金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、及びInからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。
正極集電体の形態は特に限定されるものではなく、箔状、メッシュ状等、種々の形態とすることができる。
As the positive electrode current collector, a known metal that can be used as a current collector for an all-solid-state lithium ion secondary battery can be used. Such metals include one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Metallic materials can be exemplified.
The form of the positive electrode current collector is not particularly limited, and various forms such as a foil shape and a mesh shape can be used.

正極の全体としての形状は特に限定されるものではないが、シート状であってもよい。この場合、正極の全体としての厚みは特に限定されるものではなく、目的とする性能に応じて、適宜決定すればよい。 The shape of the positive electrode as a whole is not particularly limited, but it may be in the form of a sheet. In this case, the thickness of the positive electrode as a whole is not particularly limited, and may be appropriately determined according to the desired performance.

[固体電解質層]
固体電解質層は、少なくとも固体電解質を含む。
[Solid electrolyte layer]
The solid electrolyte layer contains at least a solid electrolyte.

固体電解質は、硫化物系固体電解質、及び酸化物系固体電解質等が挙げられる。
硫化物系固体電解質としては、上述した負極合材に用いられる硫化物系固体電解質と同様のものが挙げられる。
酸化物系固体電解質としては、例えばLi6.25LaZrAl0.2512、LiPO、及びLi3+xPO4−x(LiPON)等が挙げられる。
Examples of the solid electrolyte include sulfide-based solid electrolytes and oxide-based solid electrolytes.
Examples of the sulfide-based solid electrolyte include the same sulfide-based solid electrolytes used in the above-mentioned negative electrode mixture.
Examples of the oxide-based solid electrolyte include Li 6.25 La 3 Zr 2 Al 0.25 O 12 , Li 3 PO 4 , Li 3 + x PO 4-x N x (LiPON), and the like.

固体電解質の形状は、取扱い性が良いという観点から粒子状であることが好ましい。
また、固体電解質の粒子の平均粒径(D50)は、特に限定されないが、下限が0.5μm以上であることが好ましく、上限が2μm以下であることが好ましい。
固体電解質は、1種単独で、又は2種以上のものを用いることができる。また、2種以上の固体電解質を用いる場合、2種以上の固体電解質を混合してもよい。
The shape of the solid electrolyte is preferably particulate from the viewpoint of good handleability.
The average particle size (D50) of the particles of the solid electrolyte is not particularly limited, but the lower limit is preferably 0.5 μm or more, and the upper limit is preferably 2 μm or less.
As the solid electrolyte, one kind alone or two or more kinds can be used. When two or more kinds of solid electrolytes are used, two or more kinds of solid electrolytes may be mixed.

本開示において、粒子の平均粒径は、特記しない限り、レーザー回折・散乱式粒子径分布測定により測定される体積基準のメディアン径(D50)の値である。また、本開示においてメディアン径(D50)とは、粒子の粒径を小さい順に並べた場合に、粒子の累積体積が全体の体積の半分(50%)となる径(体積平均径)である。 In the present disclosure, the average particle size of the particles is a volume-based median diameter (D50) value measured by laser diffraction / scattering type particle size distribution measurement, unless otherwise specified. Further, in the present disclosure, the median diameter (D50) is a diameter (volume average diameter) at which the cumulative volume of the particles is half (50%) of the total volume when the particles are arranged in ascending order.

固体電解質層中の固体電解質の含有割合は、特に限定されるものではない。 The content ratio of the solid electrolyte in the solid electrolyte layer is not particularly limited.

固体電解質層には、可塑性を発現させる等の観点から、固体電解質同士を結着させるバインダーを含有させることもできる。そのようなバインダーとしては、上述した正極に含有させることが可能なバインダー等を例示することができる。ただし、電池の高出力化を図り易くするために、固体電解質の過度の凝集を防止し且つ均一に分散された固体電解質を有する固体電解質層を形成可能にする等の観点から、固体電解質層に含有させるバインダーは5.0質量%以下とすることが好ましい。 The solid electrolyte layer may also contain a binder that binds the solid electrolytes to each other from the viewpoint of exhibiting plasticity and the like. As such a binder, a binder or the like that can be contained in the above-mentioned positive electrode can be exemplified. However, in order to facilitate high output of the battery, the solid electrolyte layer may be used from the viewpoint of preventing excessive aggregation of the solid electrolyte and making it possible to form a solid electrolyte layer having a uniformly dispersed solid electrolyte. The binder to be contained is preferably 5.0% by mass or less.

固体電解質層の厚みは、電池の構成によって適宜調整され、特に限定されるものではなく、通常0.1μm以上1mm以下である。
固体電解質層の形成方法は、例えば、固体電解質、及び必要に応じ他の成分を含む固体電解質層の材料の粉末を加圧成形することにより固体電解質層を形成してもよい。
The thickness of the solid electrolyte layer is appropriately adjusted depending on the configuration of the battery, and is not particularly limited, and is usually 0.1 μm or more and 1 mm or less.
As a method for forming the solid electrolyte layer, for example, the solid electrolyte layer may be formed by pressure molding a powder of the material of the solid electrolyte layer containing the solid electrolyte and, if necessary, other components.

[負極]
負極は、少なくとも負極合材層を含み、必要に応じて負極集電体を含む。
負極合材層は、上述した負極合材からなる。
[Negative electrode]
The negative electrode includes at least a negative electrode mixture layer and, if necessary, a negative electrode current collector.
The negative electrode mixture layer is made of the above-mentioned negative electrode mixture.

負極合材層を形成する方法としては、特に限定されないが、負極活物質、硫化物系固体電解質、及び必要に応じ導電材、バインダー等の他の成分を含む負極合材の粉末を加圧成形する方法等が挙げられる。 The method for forming the negative electrode mixture layer is not particularly limited, but the powder of the negative electrode mixture containing the negative electrode active material, the sulfide-based solid electrolyte, and if necessary, other components such as a conductive material and a binder is pressure-molded. The method of doing this can be mentioned.

負極集電体としては、上記正極集電体として用いられる金属と同様の金属を用いることができる。
負極集電体の形態は特に限定されるものではなく、箔状、メッシュ状等、種々の形態とすることができる。
As the negative electrode current collector, a metal similar to the metal used as the positive electrode current collector can be used.
The form of the negative electrode current collector is not particularly limited, and various forms such as a foil shape and a mesh shape can be used.

負極の全体としての形状は特に限定されるものではないが、シート状であってもよい。この場合、負極の全体としての厚みは特に限定されるものではなく、目的とする性能に応じて、適宜決定すればよい。 The shape of the negative electrode as a whole is not particularly limited, but it may be in the form of a sheet. In this case, the thickness of the negative electrode as a whole is not particularly limited, and may be appropriately determined according to the desired performance.

全固体リチウムイオン二次電池は、必要に応じ、正極、負極、及び、固体電解質層を収容する外装体を備える。
外装体の形状としては、特に限定されないが、ラミネート型等を挙げることができる。
外装体の材質は、電解質に安定なものであれば特に限定されないが、ポリプロピレン、ポリエチレン、及び、アクリル樹脂等の樹脂等が挙げられる。
The all-solid-state lithium-ion secondary battery includes, if necessary, a positive electrode, a negative electrode, and an exterior body that houses the solid electrolyte layer.
The shape of the exterior body is not particularly limited, and examples thereof include a laminated type.
The material of the exterior body is not particularly limited as long as it is stable to the electrolyte, and examples thereof include resins such as polypropylene, polyethylene, and acrylic resin.

全固体リチウムイオン二次電池の形状としては、例えば、コイン型、ラミネート型、円筒型、及び角型等を挙げることができる。 Examples of the shape of the all-solid-state lithium ion secondary battery include a coin type, a laminated type, a cylindrical type, and a square type.

本開示の全固体リチウムイオン二次電池の製造方法は、例えば、まず、固体電解質材料の粉末を加圧成形することにより固体電解質層を形成する。そして、固体電解質層の一面上で正極合材の粉末を加圧成形することにより正極合材層を得る。その後、固体電解質層の正極合材層を形成した面とは反対側の面上で負極合材の粉末を加圧成形することにより負極合材層を得る。そして、得られた正極合材層−固体電解質層−負極合材層接合体に必要に応じて集電体を取り付けることにより全固体リチウムイオン二次電池としてもよい。
この場合、固体電解質材料の粉末、正極合材の粉末、及び負極合材の粉末を加圧成形する際のプレス圧は、通常1MPa以上600MPa以下程度である。
加圧方法としては、特に制限されないが、例えば、平板プレス、又はロールプレス等を用いて圧力を付加するプレス法等が挙げられる。
全固体リチウムイオン二次電池の製造は、系内の水分をできるだけ除去した状態で行うとよい。例えば、各製造工程において、系内を減圧すること、系内を不活性ガス等の水分を実質的に含まないガスで置換すること等が有効と考えられる。
In the method for producing an all-solid-state lithium-ion secondary battery of the present disclosure, for example, first, a solid electrolyte layer is formed by pressure molding a powder of a solid electrolyte material. Then, the positive electrode mixture layer is obtained by pressure molding the positive electrode mixture powder on one surface of the solid electrolyte layer. Then, the negative electrode mixture layer is obtained by pressure molding the powder of the negative electrode mixture on the surface of the solid electrolyte layer opposite to the surface on which the positive electrode mixture layer is formed. Then, an all-solid-state lithium ion secondary battery may be obtained by attaching a current collector to the obtained positive electrode mixture layer-solid electrolyte layer-negative electrode mixture layer joint body as needed.
In this case, the press pressure when the powder of the solid electrolyte material, the powder of the positive electrode mixture, and the powder of the negative electrode mixture are pressure-molded is usually about 1 MPa or more and 600 MPa or less.
The pressurizing method is not particularly limited, and examples thereof include a pressing method in which pressure is applied using a flat plate press, a roll press, or the like.
The all-solid-state lithium-ion secondary battery should be manufactured in a state where the water content in the system is removed as much as possible. For example, in each manufacturing process, it is considered effective to reduce the pressure in the system and to replace the inside of the system with a gas that does not substantially contain water such as an inert gas.

(実施例1)
[1]多孔質シリコン粒子の作製
[1−1]
シリコン微粒子(高純度化学、粒径5μm)0.65gと金属Li(本城金属)0.60gをAr雰囲気下にてメノウ乳鉢で混合してLiSi前駆体を得た。
(Example 1)
[1] Preparation of Porous Silicon Particles [1-1]
0.65 g of silicon fine particles (high-purity chemistry, particle size 5 μm) and 0.60 g of metal Li (Honjo Metal) were mixed in an agate mortar under an Ar atmosphere to obtain a LiSi precursor.

[1−2]
LiSi前駆体1.0gをAr雰囲気下のガラス反応器内にて0℃のエタノール250ml(ナカライテスク)と120分反応させた後、吸引濾過にて液体1と固体反応物1を分離した。
[1-2]
After reacting 1.0 g of the LiSi precursor with 250 ml of ethanol (Nacalai Tesque) at 0 ° C. for 120 minutes in a glass reactor under an Ar atmosphere, the liquid 1 and the solid reaction product 1 were separated by suction filtration.

[1−3]
得られた0.5gの固体反応物1を大気雰囲気下のガラス反応器内にて酢酸50ml(ナカライテスク)と60分反応させた後、吸引濾過にて液体2と固体反応物2を分離した。
[1-3]
The obtained 0.5 g of the solid reaction product 1 was reacted with 50 ml of acetic acid (Nacalai Tesque) in a glass reactor under an air atmosphere for 60 minutes, and then the liquid 2 and the solid reaction product 2 were separated by suction filtration. ..

[1−4]
固体反応物2を100℃で2時間真空乾燥して多孔質シリコン粒子のナノシートを得た。
[1-4]
The solid reaction product 2 was vacuum dried at 100 ° C. for 2 hours to obtain nanosheets of porous silicon particles.

[多孔質シリコン粒子の断面観察(空隙率)
多孔質シリコン粒子に対してイオンミリングによる断面加工を施して、多孔質シリコン粒子の断面を二次電子顕微鏡で観察した。
図2は、実施例1の多孔質シリコン粒子の断面の走査型電子顕微鏡(SEM)画像である。
得られた観察像から、多孔質シリコン粒子中のシリコン(Si)と空隙とを白部と灰部で2値化した上で、多孔質シリコン粒子中の空隙率を算出した。結果を表1に示す。
[Cross-section observation of porous silicon particles (porosity)
The porous silicon particles were subjected to cross-section processing by ion milling, and the cross-section of the porous silicon particles was observed with a secondary electron microscope.
FIG. 2 is a scanning electron microscope (SEM) image of a cross section of the porous silicon particles of Example 1.
From the obtained observation image, the porosity in the porous silicon particles was calculated after binarizing the silicon (Si) and the voids in the porous silicon particles in the white part and the ash part. The results are shown in Table 1.

[2]硫化物系固体電解質の合成
LiS(フルウチ化学)0.550gとP(アルドリッチ)0.887gとLiI(日宝化学)0.285gとLiBr(高純度化学)0.277gを秤量し、メノウ乳鉢で5分混合し、その後n−ヘプタン(脱水グレード、関東化学)を4g入れ、遊星型ボールミルを用い40時間メカニカルミリングすることで硫化物系固体電解質を得た。
[2] Synthesis of sulfide-based solid electrolytes Li 2 S (Furuuchi Chemistry) 0.550 g, P 2 S 5 (Aldrich) 0.887 g, LiI (Nippoh Chemicals) 0.285 g and LiBr (High Purity Chemistry) 0. 277 g was weighed, mixed in a Menou dairy pot for 5 minutes, then 4 g of n-heptane (dehydrated grade, Kanto Chemical Co., Inc.) was added, and mechanical milling was performed for 40 hours using a planetary ball mill to obtain a sulfide-based solid electrolyte.

[3]全固体リチウムイオン二次電池の作製
[3−1]正極合材
正極活物質にLiNi1/3Co1/3Mn1/3(日亜化学工業)を使用した。
正極活物質にはLiNbOの表面処理を施した。この正極活物質を1.5g、導電材としてVGCF(昭和電工)を0.023g、上記硫化物系固体電解質を0.239g、バインダーとしてPVdF(クレハ)を0.011g、溶媒として酪酸ブチル(キシダ化学)を0.8g秤量し、超音波ホモジナイザー(SMT社製UH−50)を用いて混合したものを正極合材とした。
[3] Preparation of all-solid-state lithium-ion secondary battery [3-1] Positive electrode mixture LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Nichia Corporation) was used as the positive electrode active material.
The positive electrode active material was surface-treated with LiNbO 3 . 1.5 g of this positive electrode active material, 0.023 g of VGCF (Showa Denko) as a conductive material, 0.239 g of the sulfide-based solid electrolyte, 0.011 g of PVdF (Kureha) as a binder, and butyl butyrate (xida) as a solvent. (Chemistry) was weighed in 0.8 g and mixed with an ultrasonic homogenizer (UH-50 manufactured by SMT) to prepare a positive electrode mixture.

[3−2]負極合材
負極活物質に[1]で合成した多孔質シリコン粒子のナノシート1.0g、導電材としてVGCF(昭和電工)を0.04g、上記硫化物系固体電解質0.776g、バインダーとしてPVdF(クレハ)0.02g、溶媒として酪酸ブチル(キシダ化学)1.7gを秤量し、超音波ホモジナイザー(SMT社製UH−50)を用いて混合したものを負極合材とした。
[3-2] Negative electrode mixture 1.0 g of nanosheet of porous silicon particles synthesized in [1] as negative electrode active material, 0.04 g of VGCF (Showa Denko) as conductive material, 0.776 g of the sulfide-based solid electrolyte. , 0.02 g of PVdF (Kureha) as a binder and 1.7 g of butyl butyrate (Kishida Chemical) as a solvent were weighed and mixed using an ultrasonic homogenizer (UH-50 manufactured by SMT) to prepare a negative electrode mixture.

[3−3]固体電解質層
1cmのセラミックス製の型に硫化物系固体電解質を0.065g秤量し、1ton/cmでプレスし固体電解質層を作製した。
[3-3] Solid Electrolyte Layer 0.065 g of a sulfide-based solid electrolyte was weighed in a 1 cm 2 ceramic mold and pressed at 1 ton / cm 2 to prepare a solid electrolyte layer.

[3−4]
固体電解質層の片側に正極合材0.018gを配置し、1ton/cmでプレスして正極合材層を作製した。その逆側に負極合材0.0054gを配置し、4ton/cmでプレスすることで負極合材層を作製し、正極集電体にアルミ箔を、負極集電体に銅箔を用いて、全固体リチウムイオン二次電池を得た。
[3-4]
0.018 g of the positive electrode mixture was placed on one side of the solid electrolyte layer and pressed at 1 ton / cm 2 to prepare a positive electrode mixture layer. A negative electrode mixture layer of 0.0054 g is placed on the opposite side and pressed at 4 ton / cm 2 , and an aluminum foil is used for the positive electrode current collector and a copper foil is used for the negative electrode current collector. , An all-solid-state lithium-ion secondary battery was obtained.

[負極合材層の断面観察(多孔質シリコン粒子と硫化物系固体電解質との接触率)
負極合材層に対してイオンミリングによる断面加工を施して、負極合材層の断面を二次電子顕微鏡で観察した。
得られた観察像から、負極合材層中の多孔質シリコン粒子と硫化物系固体電解質と導電材を3値化した上で、多孔質シリコン粒子と硫化物系固体電解質との接触率を上述した式(1)を用いて算出した。結果を表1に示す。
[Cross-sectional observation of the negative electrode mixture layer (contact rate between porous silicon particles and sulfide-based solid electrolyte)
The negative electrode mixture layer was subjected to cross-section processing by ion milling, and the cross section of the negative electrode mixture layer was observed with a secondary electron microscope.
From the obtained observation image, the porous silicon particles in the negative electrode mixture layer, the sulfide-based solid electrolyte, and the conductive material were ternaryized, and then the contact rate between the porous silicon particles and the sulfide-based solid electrolyte was determined as described above. It was calculated using the above equation (1). The results are shown in Table 1.

[拘束圧]
初回充電として、全固体リチウムイオン二次電池を0.245mAで4.35VまでCC−CV充電した。
初回充電において、全固体リチウムイオン二次電池の拘束圧をモニタリングし、後述する比較例1の全固体リチウムイオン二次電池の拘束圧を基準として、比較例1の全固体リチウムイオン二次電池の拘束圧に対する実施例1の全固体リチウムイオン二次電池の初回充電時の拘束圧の比を算出した。後述する実施例2〜3及び比較例2〜3の全固体リチウムイオン二次電池の初回充電時の拘束圧についても後述する比較例1の全固体リチウムイオン二次電池の拘束圧に対する比を算出した。結果を表1に示す。
[Restriction pressure]
As the initial charge, the all-solid-state lithium-ion secondary battery was CC-CV charged at 0.245 mA to 4.35 V.
In the initial charging, the confining pressure of the all-solid-state lithium-ion secondary battery is monitored, and the confining pressure of the all-solid-state lithium-ion secondary battery of Comparative Example 1 described later is used as a reference for the all-solid-state lithium-ion secondary battery of Comparative Example 1. The ratio of the restraint pressure to the restraint pressure at the time of initial charging of the all-solid-state lithium ion secondary battery of Example 1 was calculated. Regarding the restraint pressure at the time of initial charging of the all-solid-state lithium ion secondary batteries of Examples 2 to 3 and Comparative Examples 2 to 3 described later, the ratio to the restraint pressure of the all-solid-state lithium ion secondary battery of Comparative Example 1 described later is calculated. did. The results are shown in Table 1.

[全固体リチウムイオン二次電池の内部抵抗]
初回充電後、全固体リチウムイオン二次電池を0.245mAで3.0VまでCC−CV放電を行った。
その後、全固体リチウムイオン二次電池を3.7Vの電圧まで0.245mAにて充電を行った後、7.35mAを5秒間流し、電圧の変化から全固体リチウムイオン二次電池の内部抵抗を測定した。
後述する比較例1の全固体リチウムイオン二次電池の内部抵抗を基準として、比較例1の全固体リチウムイオン二次電池の内部抵抗に対する実施例1の全固体リチウムイオン二次電池の内部抵抗の比を算出した。後述する実施例2〜3及び比較例2〜3の全固体リチウムイオン二次電池の内部抵抗についても後述する比較例1の全固体リチウムイオン二次電池の内部抵抗に対する比を算出した。結果を表1に示す。
[Internal resistance of all-solid-state lithium-ion secondary battery]
After the initial charge, the all-solid-state lithium-ion secondary battery was CC-CV discharged to 3.0 V at 0.245 mA.
After that, the all-solid-state lithium-ion secondary battery was charged to a voltage of 3.7 V at 0.245 mA, and then 7.35 mA was passed for 5 seconds to reduce the internal resistance of the all-solid-state lithium-ion secondary battery from the change in voltage. It was measured.
Based on the internal resistance of the all-solid-state lithium-ion secondary battery of Comparative Example 1 described later, the internal resistance of the all-solid-state lithium-ion secondary battery of Example 1 with respect to the internal resistance of the all-solid-state lithium-ion secondary battery of Comparative Example 1 The ratio was calculated. The ratio of the internal resistance of the all-solid-state lithium-ion secondary battery of Examples 2 to 3 and Comparative Examples 2 to 3 described later to the internal resistance of the all-solid-state lithium-ion secondary battery of Comparative Example 1 described later was calculated. The results are shown in Table 1.

(実施例2)
実施例1の手順[1−2]においてエタノールの温度を15℃とした以外は、実施例1と同様の手順にて全固体リチウムイオン二次電池を作製し、全固体リチウムイオン二次電池の評価を行った。
(Example 2)
An all-solid-state lithium-ion secondary battery was prepared in the same procedure as in Example 1 except that the temperature of ethanol was set to 15 ° C. in the procedure [1-2] of Example 1, and the all-solid-state lithium ion secondary battery was prepared. Evaluation was performed.

(実施例3)
実施例1の手順[1−2]においてエタノールの温度を25℃とした以外は、実施例1と同様の手順にて全固体リチウムイオン二次電池を作製し、全固体リチウムイオン二次電池の評価を行った。
(Example 3)
An all-solid-state lithium-ion secondary battery was prepared in the same procedure as in Example 1 except that the ethanol temperature was set to 25 ° C. in the procedure [1-2] of Example 1, and the all-solid-state lithium ion secondary battery was prepared. Evaluation was performed.

(比較例1)
実施例1の手順[3−2]においてVGCFを0.12gとした以外は、実施例1と同様の手順にて全固体リチウムイオン二次電池を作製し、全固体リチウムイオン二次電池の評価を行った。
(Comparative Example 1)
An all-solid-state lithium-ion secondary battery was prepared in the same procedure as in Example 1 except that the VGCF was 0.12 g in the procedure [3-2] of Example 1, and the all-solid-state lithium-ion secondary battery was evaluated. Was done.

(比較例2)
実施例1の手順[3−2]においてVGCFを0.12gとし、それ以外は実施例2と同様の手順にて全固体リチウムイオン二次電池を作製し、全固体リチウムイオン二次電池の評価を行った。
(Comparative Example 2)
In the procedure [3-2] of Example 1, the VGCF was 0.12 g, and an all-solid-state lithium ion secondary battery was prepared in the same procedure as in Example 2 except for that, and the evaluation of the all-solid-state lithium ion secondary battery was performed. Was done.

(比較例3)
実施例1の手順[3−2]においてVGCFを0.12gとし、それ以外は実施例3と同様の手順にて全固体リチウムイオン二次電池を作製し、全固体リチウムイオン二次電池の評価を行った。
(Comparative Example 3)
In the procedure [3-2] of Example 1, the VGCF was 0.12 g, and an all-solid-state lithium ion secondary battery was prepared in the same procedure as in Example 3 except for that, and the evaluation of the all-solid-state lithium ion secondary battery was performed. Was done.

表1に示すように、多孔質シリコン粒子の空隙率が12%〜51%であり、多孔質シリコン粒子と硫化物系固体電解質の接触率が20%〜44%である負極合材層を用いた全固体リチウムイオン二次電池であれば、拘束圧と内部抵抗を低減することができることが実証された。 As shown in Table 1, a negative electrode mixture layer is used in which the void ratio of the porous silicon particles is 12% to 51% and the contact ratio between the porous silicon particles and the sulfide-based solid electrolyte is 20% to 44%. It has been demonstrated that the all-solid-state lithium-ion secondary battery can reduce the confining pressure and internal resistance.

11 固体電解質層
12 正極合材層
13 負極合材層
14 正極集電体
15 負極集電体
16 正極
17 負極
100 全固体リチウムイオン二次電池
11 Solid electrolyte layer 12 Positive electrode mixture layer 13 Negative electrode mixture layer 14 Positive electrode current collector 15 Negative electrode current collector 16 Positive electrode 17 Negative electrode 100 All-solid-state lithium ion secondary battery

Claims (1)

負極活物質として多孔質シリコン粒子と、硫化物系固体電解質と、を含む全固体リチウムイオン二次電池用の負極合材層であって、
前記多孔質シリコン粒子は、複数のシリコン微粒子の接合体であり、連続した空隙を有する三次元網目構造を有し、
前記多孔質シリコン粒子の空隙率が12%〜51%であり、
前記多孔質シリコン粒子と前記硫化物系固体電解質の接触率が20%〜44%であることを特徴とする負極合材層。
A negative electrode mixture layer for an all-solid-state lithium-ion secondary battery containing porous silicon particles as a negative electrode active material and a sulfide-based solid electrolyte.
The porous silicon particles are a conjugate of a plurality of silicon fine particles, and have a three-dimensional network structure having continuous voids.
The porosity of the porous silicon particles is 12% to 51%.
A negative electrode mixture layer characterized in that the contact ratio between the porous silicon particles and the sulfide-based solid electrolyte is 20% to 44%.
JP2019070244A 2019-04-01 2019-04-01 Negative electrode mixture layer Active JP7107880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019070244A JP7107880B2 (en) 2019-04-01 2019-04-01 Negative electrode mixture layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019070244A JP7107880B2 (en) 2019-04-01 2019-04-01 Negative electrode mixture layer

Publications (2)

Publication Number Publication Date
JP2020170605A true JP2020170605A (en) 2020-10-15
JP7107880B2 JP7107880B2 (en) 2022-07-27

Family

ID=72745465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019070244A Active JP7107880B2 (en) 2019-04-01 2019-04-01 Negative electrode mixture layer

Country Status (1)

Country Link
JP (1) JP7107880B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176759A1 (en) * 2020-03-03 2021-09-10 パナソニックIpマネジメント株式会社 Electrode material and battery
WO2023002759A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance and battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082125A (en) * 2010-09-17 2012-04-26 Furukawa Electric Co Ltd:The Porous silicon particle and method for manufacturing the same
JP2013069416A (en) * 2011-09-20 2013-04-18 Idemitsu Kosan Co Ltd Negative electrode mixture and all-solid lithium-ion battery using the same
CN103199221A (en) * 2012-01-10 2013-07-10 苏州宝时得电动工具有限公司 Cathode material, cathode, cell with the cathode, and preparation method of the cathode material
JP2014035987A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
JP2015049991A (en) * 2013-08-30 2015-03-16 出光興産株式会社 Method for manufacturing negative electrode mixture
JP2017054720A (en) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 Negative electrode for all-solid battery
CN107240688A (en) * 2017-06-15 2017-10-10 山东大学 A kind of silicium cathode material of sulfenyl solid electrolyte cladding and preparation method thereof
JP2018181702A (en) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 Method for manufacturing all-solid lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082125A (en) * 2010-09-17 2012-04-26 Furukawa Electric Co Ltd:The Porous silicon particle and method for manufacturing the same
JP2013069416A (en) * 2011-09-20 2013-04-18 Idemitsu Kosan Co Ltd Negative electrode mixture and all-solid lithium-ion battery using the same
CN103199221A (en) * 2012-01-10 2013-07-10 苏州宝时得电动工具有限公司 Cathode material, cathode, cell with the cathode, and preparation method of the cathode material
JP2014035987A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
JP2015049991A (en) * 2013-08-30 2015-03-16 出光興産株式会社 Method for manufacturing negative electrode mixture
JP2017054720A (en) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 Negative electrode for all-solid battery
JP2018181702A (en) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 Method for manufacturing all-solid lithium ion secondary battery
CN107240688A (en) * 2017-06-15 2017-10-10 山东大学 A kind of silicium cathode material of sulfenyl solid electrolyte cladding and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176759A1 (en) * 2020-03-03 2021-09-10 パナソニックIpマネジメント株式会社 Electrode material and battery
WO2023002759A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance and battery

Also Published As

Publication number Publication date
JP7107880B2 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
KR102104009B1 (en) Lithium solid battery
JP6946836B2 (en) Lithium solid-state battery and manufacturing method of lithium solid-state battery
US11018374B2 (en) All-solid-state battery
JP2017054720A (en) Negative electrode for all-solid battery
JP2015005398A (en) Positive electrode for all-solid lithium ion battery
JP6973189B2 (en) All solid state battery
JP2020035607A (en) Lithium niobate and manufacturing method thereof
JPWO2018193992A1 (en) All-solid-state lithium-ion secondary battery
JP2021051866A (en) All-solid battery
JP2020087783A (en) Negative electrode
KR20240045188A (en) All solid state battery and method for producing all solid state battery
JP7107880B2 (en) Negative electrode mixture layer
JP2020035608A (en) Manufacturing method of positive electrode layer
WO2020241691A1 (en) All-solid-state battery and method for producing same
US11476504B2 (en) All-solid-state battery
JP2020053156A (en) Method for manufacturing compositive active material particles
JP2020119811A (en) Negative electrode layer
KR20220136146A (en) All solid state battery
CN111063886B (en) Sulfide all-solid-state battery
KR102562412B1 (en) All solid state battery
KR102564614B1 (en) All solid state battery
JP6992710B2 (en) A composite solid electrolyte layer, a method for manufacturing the same, and a method for manufacturing an all-solid-state battery.
JP7276218B2 (en) Negative electrode active material and battery
JP6954224B2 (en) Manufacturing method of all-solid-state battery
JP2020080213A (en) Negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220714

R151 Written notification of patent or utility model registration

Ref document number: 7107880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151