JP2020169910A - Laser type gas analyzer - Google Patents

Laser type gas analyzer Download PDF

Info

Publication number
JP2020169910A
JP2020169910A JP2019071772A JP2019071772A JP2020169910A JP 2020169910 A JP2020169910 A JP 2020169910A JP 2019071772 A JP2019071772 A JP 2019071772A JP 2019071772 A JP2019071772 A JP 2019071772A JP 2020169910 A JP2020169910 A JP 2020169910A
Authority
JP
Japan
Prior art keywords
unit
light emitting
laser
solenoid valve
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019071772A
Other languages
Japanese (ja)
Other versions
JP7229523B2 (en
Inventor
昌明 石倉
Masaaki Ishikura
昌明 石倉
川島 伸治
Shinji Kawashima
伸治 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2019071772A priority Critical patent/JP7229523B2/en
Publication of JP2020169910A publication Critical patent/JP2020169910A/en
Application granted granted Critical
Publication of JP7229523B2 publication Critical patent/JP7229523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a laser type gas analyzer with which the permeability of an optical path is not degraded by soot, etc., even when used for long hours.SOLUTION: The present invention pertains to a laser type gas analyzer. A high-pressure tank is filled with blast gas, and an optical path tube is inserted between a light-emission window or a light-receiving window and a measurement object space. Furthermore, the tip of a blast tube (on measurement object space side) communicates with the optical path tube, and a connecting port to which the high-pressure tank is attachable/removal is provided at the rear end of the blast tube. An electromagnetic valve is provided between the connecting port and the blast tube, and an opening/closing control unit for controlling the opening/closing of the electromagnetic valve is further provided. The opening/closing control unit concurrently uses the permeability of laser from the light-emitting part to the light-receiving part and control by a timer.SELECTED DRAWING: Figure 2

Description

本発明は、レーザー式ガス分析装置に関し、特に、取付フランジ内部の塵埃の堆積を防止したレーザー式ガス分析装置に関するものである。 The present invention relates to a laser gas analyzer, and more particularly to a laser gas analyzer that prevents dust from accumulating inside a mounting flange.

図5は、煙道(測定対象空間)に対してレーザーガス分析装置を適用した例を示し、図6はその発光側を立体図として示したものであり、例えばUS特許第9244003号公報の内容をより模式化して表したものである。 FIG. 5 shows an example in which a laser gas analyzer is applied to a flue (measurement target space), and FIG. 6 shows a three-dimensional view of the light emitting side thereof. For example, the contents of US Pat. No. 9,294,003 Is a more schematic representation of.

発光部100から出射されたレーザー光は、発光窓110を介して測定対象空間である煙道30に出射され、煙道30を通過したレーザー光は受光窓210を介して受光部200に受光される。ここで、発光部100、受光部200と前記測定対象空間である煙道30は前記発光窓110、受光窓210で仕切られている。 The laser light emitted from the light emitting unit 100 is emitted to the flue 30 which is the measurement target space through the light emitting window 110, and the laser light passing through the flue 30 is received by the light receiving unit 200 through the light receiving window 210. To. Here, the light emitting unit 100, the light receiving unit 200, and the flue 30, which is the measurement target space, are partitioned by the light emitting window 110 and the light receiving window 210.

前記発光部100の発光窓110の煙道30側に取付フランジ41aが設けられ、当該取付フランジ41aと発光窓110の間に、後述するパージガスの接続口131が設けられる。他方、煙道30からは所定の高さの立上げ管42が連通しており、当該立上げ管42の先端に前記取付フランジ41aに対応する固定フランジ41bが設けられて設置台40を構成している。当該固定フランジ41bに対して前記取付フランジ41aが固定され、これによって、前記発光部100が煙道30の設置台40に固定されることになる。 A mounting flange 41a is provided on the flue 30 side of the light emitting window 110 of the light emitting unit 100, and a purge gas connection port 131 described later is provided between the mounting flange 41a and the light emitting window 110. On the other hand, a riser pipe 42 having a predetermined height communicates with the flue 30, and a fixed flange 41b corresponding to the mounting flange 41a is provided at the tip of the riser pipe 42 to form an installation base 40. ing. The mounting flange 41a is fixed to the fixed flange 41b, whereby the light emitting portion 100 is fixed to the installation base 40 of the flue 30.

上記のように煙道30に発光部100が取り付けられた状態で、パージガスの接続口131に別途用意されたパージガスのタンクを接続し、前記立上げ管42に常時50〜100L/min程度のパージガスを流して、前記発光部100の窓110を清浄に保つようにしている。この構成は、受光部200の窓210の測定対象空間側にも設けられ、受光部200の窓210も清浄に保つようになっている。 With the light emitting unit 100 attached to the flue 30 as described above, a separately prepared purge gas tank is connected to the purge gas connection port 131, and the purge gas of about 50 to 100 L / min is always connected to the riser pipe 42. To keep the window 110 of the light emitting unit 100 clean. This configuration is also provided on the measurement target space side of the window 210 of the light receiving unit 200, and the window 210 of the light receiving unit 200 is also kept clean.

US特許第9244003号公報US Patent No. 9244003

前記のように、発光窓110の測定対象空間側、受光窓210の測定対象空間側に常時50〜100L/min程度のパージガスを流すことで、前記発光窓110、受光窓210に対する粉塵の付着を低減し、受光強度の低下を抑制している。 As described above, by constantly flowing a purge gas of about 50 to 100 L / min on the measurement target space side of the light emitting window 110 and the measurement target space side of the light receiving window 210, dust adheres to the light emitting window 110 and the light receiving window 210. It is reduced and the decrease in light receiving intensity is suppressed.

しかしながら、都市ゴミ焼却施設のように種々の種類の焼却物がある場合、煙道には測定対象ガスの他に吸着性の高い共存ガスや水分、塵埃等も含まれる。このため、煙道内の流速によっては、光路となる前記設置台40の前記立上げ管42の内部に粉塵が堆積し、光路管が閉塞していくことにより受光部200で受光されるレーザー光の強度が低下して測定値にS/N比の低下を引起すことになる。 However, when there are various types of incinerated materials such as urban waste incineration facilities, the flue contains coexisting gas with high adsorptivity, moisture, dust, etc. in addition to the gas to be measured. Therefore, depending on the flow velocity in the flue, dust is accumulated inside the riser tube 42 of the installation table 40 which is an optical path, and the optical path tube is blocked, so that the laser light received by the light receiving unit 200 is received. The intensity will decrease, causing a decrease in the S / N ratio in the measured value.

上記パージガスを流す方法は短時間のプロセスの運用については有効であるが、長時間の運用では前記立上げ管42付近の内部に塵埃が堆積して閉塞する現象が見られ、十分とはいえないのが現状である。 The method of flowing the purge gas is effective for the operation of the process for a short time, but it cannot be said that it is sufficient because the phenomenon of dust accumulating and blocking the inside of the vicinity of the riser pipe 42 is observed in the operation for a long time. is the current situation.

本発明は、上記従来の事情に鑑みて提案されたものであって、長時間の運用であっても光路が確保できるレーザー式ガス分析装置を提供するものである。 The present invention has been proposed in view of the above-mentioned conventional circumstances, and provides a laser gas analyzer capable of securing an optical path even in long-term operation.

本発明は、発光窓を介して測定空間に照射するレーザーを出射する発光部と、前記測定対象空間を通過したレーザーを受光窓を介して受光する受光部とを備えるレーザー式ガス分析装置において、以下の高圧タンク、光路管、ブラスト管、電磁弁、開閉制御ユニットより構成される。 The present invention relates to a laser gas analyzer including a light emitting unit that emits a laser that irradiates a measurement space through a light emitting window and a light receiving unit that receives a laser that has passed through the measurement target space through a light receiving window. It consists of the following high-pressure tank, optical path tube, blast tube, solenoid valve, and open / close control unit.

前記高圧タンクにはブラストガスが充填され、光路管が前記発光窓または受光窓と測定対象空間の間に挿入される。更に、ブラスト管の先端(測定対象空間側)が前記光路管に連通し、当該ブラスト管の後端に前記高圧タンクを着脱可能な接続口を設ける。前記接続口とブラスト管の間には電磁弁が設けられ、更に前記電磁弁を開閉制御する開閉制御ユニットが設けられる。 The high-pressure tank is filled with blast gas, and an optical path tube is inserted between the light emitting window or the light receiving window and the measurement target space. Further, the tip of the blast tube (on the measurement target space side) communicates with the optical path tube, and a connection port to which the high pressure tank can be attached and detached is provided at the rear end of the blast tube. A solenoid valve is provided between the connection port and the blast pipe, and an opening / closing control unit for controlling the opening / closing of the solenoid valve is further provided.

前記開閉制御ユニットとしては、前記電磁弁を所定間隔毎に所定時間開くタイマーを用いることができる。また、発光部から受光部へのレーザーの透過率を演算する演算部を設けて前記開閉制御ユニットが前記透過率に応じて所定時間開く構成とすることもできる。更に、前記タイマーによる制御と透過率に基づく制御を併用してもよい。 As the opening / closing control unit, a timer that opens the solenoid valve at predetermined intervals for a predetermined time can be used. Further, it is also possible to provide a calculation unit for calculating the transmittance of the laser from the light emitting unit to the light receiving unit so that the open / close control unit opens for a predetermined time according to the transmittance. Further, the control by the timer and the control based on the transmittance may be used together.

上記構成によって、必要に応じてブラストガスを設置台の立上げ管の内部に噴出することができるので、付着した粉塵を効率よく吹き飛ばすことができ、長期の使用にも耐えることになる。特に、光路管の透過率に基づく電磁弁の制御と、タイマーに基づく電磁弁の制御を併用するのが効果的である。 With the above configuration, the blast gas can be ejected into the start-up pipe of the installation stand as needed, so that the adhering dust can be efficiently blown off, and it can withstand long-term use. In particular, it is effective to use both the solenoid valve control based on the transmittance of the optical path tube and the solenoid valve control based on the timer.

本発明全体の斜視図である。It is a perspective view of the whole invention. 本発明の分解斜視図である。It is an exploded perspective view of this invention. 本発明の制御ユニットを示すブロック図である。It is a block diagram which shows the control unit of this invention. 本発明によるブラスト制御を説明する図である。It is a figure explaining the blast control by this invention. 従来のレーザー式ガス分析装置の概念図である。It is a conceptual diagram of the conventional laser type gas analyzer. 図5の発光側を示す立体図である。It is a three-dimensional view which shows the light emitting side of FIG.

図1は本発明全体の斜視図であり、図2はその分解斜視図である。尚、発光側と受光側は対称構造であるので、図1、図2では発光側についての構造のみを示している。 FIG. 1 is a perspective view of the entire invention, and FIG. 2 is an exploded perspective view thereof. Since the light emitting side and the light receiving side have a symmetrical structure, only the structure of the light emitting side is shown in FIGS. 1 and 2.

前記したように、発光部100の発光窓110の煙道30側に前記取付フランジ41aが設けられ、煙道30の立上げ管42の後端には、当該取付フランジ41aに符合した固定フランジ41bが設けられている。 As described above, the mounting flange 41a is provided on the flue 30 side of the light emitting window 110 of the light emitting unit 100, and the fixed flange 41b corresponding to the mounting flange 41a is provided at the rear end of the rising pipe 42 of the flue 30. Is provided.

一方、ブラスターユニット300は以下の構成となっている。 On the other hand, the blaster unit 300 has the following configuration.

所定長さの光路管50の後端(発光部側、受光部側)には前記取付フランジ41aに符合するフランジ51aが、また、先端(煙道側)には前記固定フランジ41bに符合するフランジ51bが設けられる。前記光路管50に連通してブラスト管52の先端が、前記光路管50の軸方向に対して鋭角に、かつ前記フランジ51b側に連通され、当該ブラスト管52の後端には、電磁弁54を介して圧縮タンク60の接続口55が設けられた構成となっている。 The rear end (light emitting portion side, light receiving portion side) of the optical path tube 50 having a predetermined length has a flange 51a that matches the mounting flange 41a, and the tip (flue side) has a flange that matches the fixed flange 41b. 51b is provided. The tip of the blast tube 52 communicates with the optical path tube 50 at an acute angle with respect to the axial direction of the optical path tube 50 and communicates with the flange 51b side, and the solenoid valve 54 is attached to the rear end of the blast tube 52. The connection port 55 of the compression tank 60 is provided via the connection port 55.

上記のように構成されたブラスターユニット300を前記取付フランジ41aと設置台40の固定フランジ41bの間に挿入し、取付フランジ41aとフランジ51a、固定フランジ41bとフランジ51bを固定する。これによって、発光部100(受光部200)と煙道30の設置台40との間にブラスターユニット300が固定されたことになり、更に、前記接続口55に窒素ガスあるいは計装空気の圧縮タンク60を接続する。 The blaster unit 300 configured as described above is inserted between the mounting flange 41a and the fixing flange 41b of the installation base 40 to fix the mounting flange 41a and the flange 51a and the fixing flange 41b and the flange 51b. As a result, the blaster unit 300 is fixed between the light emitting unit 100 (light receiving unit 200) and the installation base 40 of the flue 30, and further, a compression tank for nitrogen gas or instrumentation air is connected to the connection port 55. Connect 60.

上記構成により、前記電磁弁54を開けることによって、前記光路管50の前記煙道30への開口部付近に堆積した塵埃を吹き飛ばすことができることになる。 With the above configuration, by opening the solenoid valve 54, it is possible to blow off the dust accumulated near the opening of the optical path tube 50 to the flue 30.

図3は、前記電磁弁54の開閉を制御するための制御回路を示すブロック図である。 FIG. 3 is a block diagram showing a control circuit for controlling the opening and closing of the solenoid valve 54.

発光部100の発光制御部141より数十〜数百Hz程度の鋸波に数十〜百kHz程度の正弦波を重畳した駆動電流が発光モジュール142に印加され前記発光窓110より波長可変レーザーが発光される。当該レーザーは測定対象空間(煙道30)を透過後受光部200の受光モジュール242で受光され、光電変換されて演算部241に入力される。演算部241では、主として前記測定対象空間での測定対象ガスの濃度が演算されるが、本発明では前記濃度の演算に加えて、透過率、すなわち、発光モジュール142から発光した光の強度に対して受光モジュール242で受光された光の強度(受光強度/発光強度)がどの位になっているかも演算する。 A drive current in which a sawtooth wave of about several tens to several hundreds Hz is superimposed on a sawtooth wave of about several tens to several hundreds Hz is applied to the light emitting module 142 from the light emission control unit 141 of the light emitting unit 100, and a tunable laser is emitted from the light emitting window 110. It emits light. After passing through the measurement target space (flue 30), the laser is received by the light receiving module 242 of the light receiving unit 200, photoelectrically converted, and input to the calculation unit 241. The calculation unit 241 mainly calculates the concentration of the measurement target gas in the measurement target space, but in the present invention, in addition to the calculation of the concentration, the transmittance, that is, the intensity of the light emitted from the light emitting module 142. The intensity of the light received by the light receiving module 242 (light receiving intensity / light emitting intensity) is also calculated.

このようにして得られた発光強度に対する受光強度の割合はブラスト制御部243に入力され、ここで前記受光強度/発光強度が所定の閾値(例えば10%)以下である場合には、当該ブラスト制御部243が、発光側および受光側の電磁弁54を所定時間開くようになっている。これによって、前記透過率に応じた電磁弁54の開閉制御が可能となる。 The ratio of the light receiving intensity to the light emitting intensity thus obtained is input to the blast control unit 243, and when the light receiving intensity / light emitting intensity is equal to or less than a predetermined threshold value (for example, 10%), the blast control is performed. The unit 243 opens the solenoid valves 54 on the light emitting side and the light receiving side for a predetermined time. This makes it possible to control the opening and closing of the solenoid valve 54 according to the transmittance.

また、本発明ではタイマー245の出力をブラスト制御部243に入力して、所定時間間隔ごとに電磁弁54の開閉をすることもできる構成となっている。当該タイマー245による制御は単独で用いてもよいが、後述するように、前期透過率に基づく制御と併用するのが好ましい。 Further, in the present invention, the output of the timer 245 can be input to the blast control unit 243 to open and close the solenoid valve 54 at predetermined time intervals. The control by the timer 245 may be used alone, but as will be described later, it is preferable to use it in combination with the control based on the early transmittance.

図4は、上記の上記制御の様子を示すものである。図4(a)は同図(b)に示すようにタイマー245を用いて60分おきに前記ブラスターユニットの電磁弁54を開いた場合のレーザー光の透過率を示すものである。60分おきのブラストでは煤等が光路に堆積することでかなりの透過率の低い部分が生じている。この状態でガス濃度の測定を継続すると、S/N比の低下を引き起こし、極端に高い、あるいは低い濃度をノイズとして提示する測定結果が現れるおそれがあることになる。 FIG. 4 shows the state of the above control. FIG. 4A shows the transmittance of laser light when the solenoid valve 54 of the blaster unit is opened every 60 minutes using a timer 245 as shown in FIG. 4B. In the blast every 60 minutes, soot and the like are deposited in the optical path, so that a portion having a considerably low transmittance is generated. If the measurement of the gas concentration is continued in this state, the S / N ratio may be lowered, and a measurement result showing an extremely high or low concentration as noise may appear.

図4(a)の急激に透過率が下がる間隔を考慮して前記同様、タイマーで等時間間隔でのブラストをしようとすると、例えば図4(c)に示すように、10分おき程度になるが、これではあまりにブラストガスの無駄が多くなる。 In consideration of the interval at which the transmittance drops sharply in FIG. 4 (a), if the timer tries to blast at equal time intervals as described above, it will be about every 10 minutes, for example, as shown in FIG. 4 (c). However, this wastes too much blast gas.

図4(d)は、60分に一度は前記電磁弁54を開くが、それに加えて前記演算部241で得られた透過率が10%を下回ったときに前記電磁弁電磁弁54を開けるようにした場合を示すものである。 FIG. 4D shows that the solenoid valve 54 is opened once every 60 minutes, and in addition, the solenoid valve solenoid valve 54 is opened when the transmittance obtained by the calculation unit 241 is less than 10%. It shows the case of.

これによって、効率的な堆積物の除去をすることが期待できることになる。 This can be expected to result in efficient sediment removal.

以上説明したように、付着した粉塵を効率よく吹き飛ばすことができ、長期の使用にも耐えることになる。 As described above, the adhering dust can be efficiently blown off, and it can withstand long-term use.

30 煙道
40 設置台
41a 取付フランジ
41b 固定フランジ
42 立上げ管
50 光路管
51a、51b フランジ
52 ブラスト管
54 電磁弁
55 接続口
60 圧縮タンク
100 発光部
110 発光窓
131 接続口
141 発光制御部
142 発光モジュール
200 受光部
210 受光窓
300 ブラスターユニット
241 演算部
242 受光モジュール
243 ブラスト制御部
245 タイマー
30 Smoke path 40 Installation stand 41a Mounting flange 41b Fixed flange 42 Rise pipe 50 Optical path pipe 51a, 51b Flange 52 Blast pipe 54 Solenoid valve 55 Connection port 60 Compression tank 100 Light emitting unit 110 Light emitting window 131 Connection port 141 Light emitting control unit 142 Module 200 Light receiving unit 210 Light receiving window 300 Blaster unit 241 Calculation unit 242 Light receiving module 243 Blast control unit 245 Timer

Claims (4)

発光窓を介して測定空間に照射するレーザーを出射する発光部と、前記測定対象空間を通過したレーザーを受光窓を介して受光する受光部とを備えるレーザー式ガス分析装置において、
ブラストガスが充填された高圧タンクと、
前記発光窓または受光窓と測定対象空間の間に挿入された光路管と、
先端が前記光路管に連通し、後端に前記高圧タンクを着脱可能な接続口を設けたブラスト管と、
前記高圧タンンクと接続口との間に設けられた電磁弁と、
前記電磁弁の開閉制御をする開閉制御ユニットと
を備えたことを特徴とするレーザー式ガス分析装置。
In a laser gas analyzer including a light emitting unit that emits a laser that irradiates a measurement space through a light emitting window and a light receiving unit that receives a laser that has passed through the measurement target space through a light receiving window.
A high-pressure tank filled with blast gas and
An optical path tube inserted between the light emitting window or the light receiving window and the measurement target space,
A blast tube whose tip communicates with the optical path tube and whose rear end is provided with a connection port to which the high-pressure tank can be attached and detached.
A solenoid valve provided between the high-pressure tank and the connection port,
A laser gas analyzer comprising an opening / closing control unit for controlling the opening / closing of the solenoid valve.
前記開閉制御ユニットが、前記電磁弁を所定間隔毎に所定時間開くタイマーを備えた請求項1に記載のレーザー式ガス分析装置。 The laser gas analyzer according to claim 1, wherein the opening / closing control unit includes a timer that opens the solenoid valve at predetermined intervals for a predetermined time. 前記開閉制御ユニットが、
発光部から受光部へのレーザーの透過率を演算する演算部と、
前記演算部が所定の閾値以下の透過率を示したときに前記電磁弁を所定時間開く制御部とを備えた請求項1に記載のレーザー式ガス分析装置。
The open / close control unit
An arithmetic unit that calculates the transmittance of the laser from the light emitting unit to the light receiving unit,
The laser gas analyzer according to claim 1, further comprising a control unit that opens the solenoid valve for a predetermined time when the calculation unit exhibits a transmittance below a predetermined threshold value.
前記開閉制御ユニットが、
発光部から受光部へのレーザーの透過率を演算する演算部と、
前記演算部が所定の閾値以下の透過率を示したときに前記電磁弁を所定時間開く制御部と、
前記電磁弁を所定間隔毎に所定時間開くタイマーと
を備えた請求項1に記載のレーザー式ガス分析装置。
The open / close control unit
An arithmetic unit that calculates the transmittance of the laser from the light emitting unit to the light receiving unit,
A control unit that opens the solenoid valve for a predetermined time when the calculation unit exhibits a transmittance below a predetermined threshold value.
The laser gas analyzer according to claim 1, further comprising a timer that opens the solenoid valve at predetermined intervals for a predetermined time.
JP2019071772A 2019-04-04 2019-04-04 laser gas analyzer Active JP7229523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019071772A JP7229523B2 (en) 2019-04-04 2019-04-04 laser gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071772A JP7229523B2 (en) 2019-04-04 2019-04-04 laser gas analyzer

Publications (2)

Publication Number Publication Date
JP2020169910A true JP2020169910A (en) 2020-10-15
JP7229523B2 JP7229523B2 (en) 2023-02-28

Family

ID=72747142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071772A Active JP7229523B2 (en) 2019-04-04 2019-04-04 laser gas analyzer

Country Status (1)

Country Link
JP (1) JP7229523B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125848A (en) * 2004-10-26 2006-05-18 Takuma Co Ltd Laser type analyzer
JP2011038877A (en) * 2009-08-10 2011-02-24 Nippon Steel Engineering Co Ltd Laser type gas analysis device and method
US20120236323A1 (en) * 2009-12-04 2012-09-20 Siemens Aktiengesellschaft Method for Determining the Optical Measurement Path Length in a Duct Gas Monitoring System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125848A (en) * 2004-10-26 2006-05-18 Takuma Co Ltd Laser type analyzer
JP2011038877A (en) * 2009-08-10 2011-02-24 Nippon Steel Engineering Co Ltd Laser type gas analysis device and method
US20120236323A1 (en) * 2009-12-04 2012-09-20 Siemens Aktiengesellschaft Method for Determining the Optical Measurement Path Length in a Duct Gas Monitoring System

Also Published As

Publication number Publication date
JP7229523B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
CN101201315B (en) Probe
AU2010255496B2 (en) Gas detector apparatus
US7034702B2 (en) Optical smoke detector and method of cleaning
US10933362B2 (en) Pulse-jet valve performance monitoring system and method
WO2008035170A3 (en) Method and apparatus for optimizing high fgr rate combustion with laser-based diagnostic technology
JP2020169910A (en) Laser type gas analyzer
WO2005079230A3 (en) Method and apparatus for operating a laser in an extinction-type optical particle detector
AU2007241503B2 (en) Oil leakage detector
WO2005068944A3 (en) Coriolis mass flow sensor with optical vibration detectors
JP2006010697A (en) Method for preventing condensation in gas sensor structure
JP2006234568A (en) Gas measuring device
CN208829322U (en) Fluid sterilizing unit
JP2010096471A (en) Air shower device
JP2010267244A (en) Gas alarm
JP3404223B2 (en) air purifier
NO20050053L (en) Seal Assembly
US10283337B2 (en) Microparticle composition analyzing apparatus
CN112204382B (en) Agglutination state monitoring sensor
JP2005199198A (en) Method for controlling exhaust gas treatment facility
CN105904088A (en) Vacuum laser aluminum alloy welding smoke dust removal system
JP2010046105A (en) Cooker
JP2016051361A (en) Light extinction type smoke sensor
JPS639845A (en) Method and device for corpuscle detection
KR20200026378A (en) Apparatus for measuring concentration of dust
RU2005108648A (en) SYSTEM OF AUTOMATIC CONTROL AND SAFETY OF THE BOILER UNIT ON GAS STOVE GAS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R150 Certificate of patent or registration of utility model

Ref document number: 7229523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150