JP2020169600A - Cooling system for engine - Google Patents
Cooling system for engine Download PDFInfo
- Publication number
- JP2020169600A JP2020169600A JP2019071060A JP2019071060A JP2020169600A JP 2020169600 A JP2020169600 A JP 2020169600A JP 2019071060 A JP2019071060 A JP 2019071060A JP 2019071060 A JP2019071060 A JP 2019071060A JP 2020169600 A JP2020169600 A JP 2020169600A
- Authority
- JP
- Japan
- Prior art keywords
- engine
- combustion
- temperature
- passage
- combustion chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3035—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
- F02D41/3041—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
ここに開示された技術は、エンジンの冷却システムに関する技術分野に属する。 The technology disclosed herein belongs to the technical field relating to engine cooling systems.
従来より、空燃比が理論空燃比よりもリーンな混合気を燃焼させるリーン燃焼と、空燃比が該理論空燃比近傍の混合気を燃焼させるストイキ燃焼とを実行するエンジンに設けられる冷却システムが知られている。 Conventionally, a cooling system provided in an engine that executes lean combustion in which an air-fuel ratio is leaner than the theoretical air-fuel ratio and stoichiometric combustion in which an air-fuel ratio is burned in the vicinity of the stoichiometric air-fuel ratio is known. Has been done.
例えば、特許文献1には、エンジンヘッドの排気側を流れる冷却水の温度を調整するエンジン水温調整装置と、エンジン水温調整装置を操作する制御装置とを備え、制御装置は、内燃機関がリーン燃焼を実行する場合は、エンジンヘッドを通過した冷却水の温度が第1温度域に入るようにエンジン水温調整装置を操作し、内燃機関がストイキモードで運転する場合は、エンジンヘッドを通過した冷却水の温度が第1温度域よりも低温の第2温度域に入るようにエンジン水温調整装置を操作するように構成されている、冷却システムが開示されている。
For example,
ところで、リーン燃焼とストイキ燃焼とを切り替え可能なエンジンでは、燃費向上の観点から、出来る限りリーン燃焼を行うことが好ましい。リーン燃焼を実現するためには、燃焼室の壁温を高い時状態に保つ必要がある。 By the way, in an engine capable of switching between lean combustion and stoichiometric combustion, it is preferable to perform lean combustion as much as possible from the viewpoint of improving fuel efficiency. In order to realize lean combustion, it is necessary to keep the wall temperature of the combustion chamber at a high state.
しかし、リーン燃焼は燃焼温度が低いため、燃焼室の壁温が低下しやすい。燃焼室の壁温が下がると、燃焼室の壁温をリーン燃焼が可能な温度に再度上昇させるために、ストイキ燃焼への切り換えが必要になる。 However, since the combustion temperature of lean combustion is low, the wall temperature of the combustion chamber tends to decrease. When the wall temperature of the combustion chamber drops, it is necessary to switch to stoichiometric combustion in order to raise the wall temperature of the combustion chamber to a temperature at which lean combustion is possible again.
特許文献1記載の冷却システムでは、ストイキ燃焼時のエンジン冷却液の温度の目標値が、リーン燃焼時のエンジン冷却液の温度の目標値に比べて低いため、ストイキ燃焼時のエンジンヘッドの温度も、リーン燃焼時のエンジンヘッドの温度に比べて低くなる。このため、燃焼室の壁温をリーン燃焼が可能な温度まで再度上昇させることが困難になる。
In the cooling system described in
これに対して、本願発明者らは、リーン燃焼時とストイキ燃焼時とで同じ目標温度を設定することを見出した。しかし、ストイキ燃焼は、リーン燃焼と比較してかなり燃焼温度が高く、目標温度を揃えた結果、目標温度をオーバーシュートしてしまうおそれがある。目標温度をオーバーシュートした状態でストイキ燃焼が実行されてしまうと、ノッキング等の異常燃焼を促進してしまう。 On the other hand, the inventors of the present application have found that the same target temperature is set during lean combustion and during stoichiometric combustion. However, stoichiometric combustion has a considerably higher combustion temperature than lean combustion, and as a result of aligning the target temperatures, there is a risk of overshooting the target temperature. If stoichiometric combustion is executed in a state where the target temperature is overshooted, abnormal combustion such as knocking is promoted.
ここに開示された技術は、斯かる点に鑑みてなされたものであり、その目的とするところは、燃焼室の壁温の低下により、リーン燃焼からストイキ燃焼への切り換えが発生したとしても、ストイキ燃焼からリーン燃焼への切り換えを早期にかつ安定的に可能な冷却システムを提供することにある。 The technology disclosed here has been made in view of these points, and its purpose is to switch from lean combustion to stoichiometric combustion due to a decrease in the wall temperature of the combustion chamber. The purpose is to provide a cooling system that enables early and stable switching from stoichiometric combustion to lean combustion.
前記課題を解決するために、ここに開示された技術では、空燃比が理論空燃比よりもリーンな混合気を燃焼させるリーン燃焼と、空燃比が該理論空燃比の混合気を燃焼させるストイキ燃焼とを切り替え可能なエンジンの冷却システムを対象として、エンジン冷却液を供給するポンプと、前記エンジンのシリンダボアを冷却するためにエンジン冷却液が流通するボア通路と、前記エンジンのシリンダヘッドに設けられ、該シリンダヘッドの燃焼室近傍の壁部を冷却するためにエンジン冷却液が流通するヘッド通路と、前記ボア通路を通って、前記ヘッド通路を通った後、エンジン冷却液を冷却させるラジエータを経由して、前記ポンプにエンジン冷却液を流入させる第1通路と、前記ボア通路を通って、前記ヘッド通路を通った後、前記ラジエータを迂回して前記ポンプにエンジン冷却液を流入させる第2通路と、エンジン冷却液の液温を取得する液温取得部と、開き状態と閉じ状態とが切り替えられるオン/オフ式の弁で構成され、前記ポンプに還流するエンジン冷却液の流量を調整する流量調整弁と、前記流量調整弁を作動制御する制御部とを備え、前記エンジンは、検出又は推定される前記燃焼室の壁部の温度に基づいて、前記リーン燃焼と前記ストイキ燃焼とが切り替えられるエンジンであり、前記制御部は、前記リーン燃焼と前記ストイキ燃焼とで同じ目標温度を設定するとともに、該目標温度と前記液温取得部の検出結果との差分に応じて、前記ポンプに還流するエンジン冷却液の流量を調整するように前記流量調整弁に制御信号を出力し、さらに前記制御部は、前記ストイキ燃焼時の方が、前記リーン燃焼時に比べて前記流量調整弁の開き状態の時間が長くなるように、該流量調整弁に制御信号を出力する、という構成とした。 In order to solve the above problems, in the technique disclosed here, lean combustion in which an air-fuel ratio is leaner than the theoretical air-fuel ratio and stoichiometric combustion in which the air-fuel ratio burns the air-fuel ratio is stoichiometric. A pump that supplies engine coolant, a bore passage through which engine coolant flows to cool the cylinder bore of the engine, and a cylinder head of the engine are provided for an engine cooling system that can switch between the two. Through the head passage through which the engine coolant flows to cool the wall portion in the vicinity of the combustion chamber of the cylinder head, the bore passage, the head passage, and then the radiator that cools the engine coolant. A first passage for the engine coolant to flow into the pump, and a second passage for the engine coolant to flow into the pump by bypassing the radiator after passing through the head passage through the bore passage. It is composed of a liquid temperature acquisition unit that acquires the liquid temperature of the engine coolant and an on / off type valve that can switch between the open state and the closed state, and adjusts the flow rate of the engine coolant that returns to the pump. The engine includes a valve and a control unit that controls the operation of the flow control valve, and the engine switches between lean combustion and stoichiometric combustion based on a detected or estimated temperature of a wall portion of the combustion chamber. The control unit sets the same target temperature for the lean combustion and the stoichiometric combustion, and the engine returns to the pump according to the difference between the target temperature and the detection result of the liquid temperature acquisition unit. A control signal is output to the flow control valve so as to adjust the flow rate of the coolant, and the control unit has a longer time in the open state of the flow control valve during the stoichiometric combustion than during the lean combustion. The control signal is output to the flow control valve so that the length becomes longer.
この構成によると、制御部は、リーン燃焼とストイキ燃焼とで同じ目標温度を設定するため、燃焼室の壁温が低下して、リーン燃焼からストイキ燃焼に切り替わったとしても、燃焼室の壁温をリーン燃焼が可能な温度まで早急に上昇させることができる。また、ストイキ燃焼時の方が、リーン燃焼時よりも流量調整弁のオン状態の時間が長いため、ストイキ燃焼時の方が、リーン燃焼時よりもエンジン冷却液の還流量が多くなる。これにより、ストイキ燃焼時には、燃焼室の壁部を適切に冷却して、燃焼室の壁温が上がり過ぎることを抑制することができる。さらに、リーン燃焼時には、燃焼室の壁温を出来る限り高い状態に保つことができる。 According to this configuration, the control unit sets the same target temperature for lean combustion and stoichiometric combustion, so even if the wall temperature of the combustion chamber drops and the lean combustion is switched to stoichiometric combustion, the wall temperature of the combustion chamber Can be quickly raised to a temperature at which lean combustion is possible. Further, since the flow rate adjusting valve is on for a longer time in the stoichiometric combustion than in the lean combustion, the recirculation amount of the engine coolant is larger in the stoichiometric combustion than in the lean combustion. As a result, it is possible to appropriately cool the wall portion of the combustion chamber during stoichiometric combustion and prevent the wall temperature of the combustion chamber from rising too high. Further, during lean combustion, the wall temperature of the combustion chamber can be kept as high as possible.
したがって、燃焼室の壁温の低下により、リーン燃焼からストイキ燃焼への切り換えが発生したとしても、ストイキ燃焼からリーン燃焼への切り換えを早期にかつ安定的に可能なる。 Therefore, even if a switch from lean combustion to stoichiometric combustion occurs due to a decrease in the wall temperature of the combustion chamber, the switch from stoichiometric combustion to lean combustion can be performed quickly and stably.
前記エンジンの冷却システムにおいて、前記液温取得部は、前記ヘッド通路を流通するエンジン冷却液の液温を取得するように配設されている、という構成でもよい。 In the cooling system of the engine, the liquid temperature acquisition unit may be arranged so as to acquire the liquid temperature of the engine coolant flowing through the head passage.
すなわち、シリンダヘッドの燃焼室側の壁部は、ピストンが圧縮上死点に位置しているときでも燃焼室を形成する部分であるため、ヘッド通路のエンジン冷却液の液温は燃焼室の壁温を精度良く反映している。このため、目標温度に到達するまでの流量調整弁の制御を精度良く行うことができる。これにより、ストイキ燃焼からリーン燃焼への切り換えをより安定的に行うことができる。 That is, since the wall portion of the cylinder head on the combustion chamber side forms the combustion chamber even when the piston is located at the compression top dead center, the temperature of the engine coolant in the head passage is the wall of the combustion chamber. It accurately reflects the temperature. Therefore, it is possible to accurately control the flow rate adjusting valve until the target temperature is reached. As a result, switching from stoichiometric combustion to lean combustion can be performed more stably.
前記エンジンの冷却システムにおいて、前記エンジンは、該エンジンの運転状態が、エンジン負荷及びエンジン回転数に基づいて設定される所定のリーン燃焼領域であるときには、前記リーン燃焼を実行し、エンジン負荷及びエンジン回転数に基づいて設定される所定のストイキ燃焼領域であるときには、前記ストイキ燃焼を実行するように構成されており、前記リーン燃焼領域におけるエンジン負荷の範囲及びエンジン回転数の範囲と、前記ストイキ燃焼領域におけるエンジン負荷の範囲及びエンジン回転数の範囲とは重複している、という構成とした。 In the cooling system of the engine, the engine executes the lean combustion when the operating state of the engine is a predetermined lean combustion region set based on the engine load and the engine speed, and the engine load and the engine. When the predetermined stoichiometric combustion region is set based on the rotation speed, the stoichiometric combustion is executed, and the range of the engine load and the range of the engine rotation speed in the lean combustion region and the stoichiometric combustion The configuration is such that the range of engine load and the range of engine speed in the region overlap.
この構成によると、同じエンジン負荷の範囲及び同じエンジン回転数であっても、検出又は推定される燃焼室の壁温に基づいて、リーン燃焼とストイキ燃焼とが切り替えられることになる。このため、燃焼室の壁温の低下により、リーン燃焼からストイキ燃焼への切り換えが発生したとしても、早期にストイキ燃焼からリーン燃焼への切り換えを可能にするという効果をより適切に発揮することができる。 According to this configuration, lean combustion and stoichiometric combustion can be switched based on the detected or estimated wall temperature of the combustion chamber even in the same engine load range and the same engine speed. Therefore, even if a switch from lean combustion to stoichiometric combustion occurs due to a decrease in the wall temperature of the combustion chamber, the effect of enabling early switching from stoichiometric combustion to lean combustion can be more appropriately exhibited. it can.
前記エンジンの冷却システムにおいて、前記エンジンは、前記燃焼室に臨みかつ該燃焼室内の混合気に点火する点火プラグを有し、前記リーン燃焼及び前記ストイキ燃焼における前記エンジンの燃焼方式は、燃料と吸気との混合気を前記点火プラグにより火花点火させた後、燃料と吸気との混合気を圧縮自着火させる部分圧縮自己着火方式である、という構成でもよい。 In the cooling system of the engine, the engine has a spark plug that faces the combustion chamber and ignites the air-fuel mixture in the combustion chamber, and the combustion method of the engine in the lean combustion and the stoichiometric combustion is fuel and intake air. A partial compression self-ignition method may be used in which the air-fuel mixture is spark-ignited by the spark plug and then the air-fuel mixture of the fuel and the intake air is compressed and self-ignited.
この構成によると、部分圧縮自己着火方式を採用することで、リーン燃焼とストイキ燃焼とをどちらも安定させることができる。これにより、燃焼室の壁部への伝熱を安定させることができ、リーン燃焼時には、燃焼室の壁温を出来る限り高い状態に保つことができる一方、ストイキ燃焼時には、燃焼室の壁温を早期に上昇させることができる。 According to this configuration, by adopting the partial compression self-ignition method, both lean combustion and stoichiometric combustion can be stabilized. As a result, heat transfer to the wall of the combustion chamber can be stabilized, and the wall temperature of the combustion chamber can be kept as high as possible during lean combustion, while the wall temperature of the combustion chamber can be kept as high as possible during stoichiometric combustion. It can be raised early.
以上説明したように、ここに開示された技術によると、リーン燃焼とストイキ燃焼とで同じ目標温度を設定するため、燃焼室の壁温が低下して、リーン燃焼からストイキ燃焼に切り替わったとしても、燃焼室の壁温をリーン燃焼が可能な温度まで早急に上昇させることができる。また、ストイキ燃焼時の方が、リーン燃焼時よりもエンジン冷却液の還流量が多くなるため、ストイキ燃焼時には、燃焼室の壁部を適切に冷却して、燃焼室の壁温が上がり過ぎることを抑制することができる。したがって、燃焼室の壁温の低下により、リーン燃焼からストイキ燃焼への切り換えが発生したとしても、ストイキ燃焼からリーン燃焼への切り換えを早期にかつ安定的に行うことができる。 As explained above, according to the technology disclosed here, since the same target temperature is set for lean combustion and stoichiometric combustion, even if the wall temperature of the combustion chamber drops and lean combustion is switched to stoichiometric combustion. , The wall temperature of the combustion chamber can be quickly raised to a temperature at which lean combustion is possible. In addition, since the amount of recirculation of the engine coolant is larger during stoichiometric combustion than during lean combustion, the walls of the combustion chamber are appropriately cooled during stoichiometric combustion, and the wall temperature of the combustion chamber rises too much. Can be suppressed. Therefore, even if a switch from lean combustion to stoichiometric combustion occurs due to a decrease in the wall temperature of the combustion chamber, the switch from stoichiometric combustion to lean combustion can be performed quickly and stably.
以下、例示的な実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, exemplary embodiments will be described in detail with reference to the drawings.
図1には、本実施形態に係る冷却システム60(図3参照)が適用された過給機付エンジン1(以下、単にエンジン1という)の構成を示す。エンジン1は、燃焼室17が吸気行程、圧縮行程、膨張行程及び排気行程を繰り返すことにより運転する4ストロークエンジンである。エンジン1は、四輪の車両(ここでは、自動車)に搭載される。エンジン1が運転することによって、車両は走行する。エンジン1の燃料は、この構成例においてはガソリンを主成分とする液体燃料である。
FIG. 1 shows the configuration of an
(エンジンの構成)
エンジン1は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを有するエンジン本体10を備えている。エンジン本体10は、シリンダブロック12の内部に複数の気筒11(シリンダボア)が形成された多気筒エンジンである。図1では、一つの気筒11のみを示す。エンジン本体10の他の気筒11は、図1の紙面に垂直な方向に並んでいる。
(Engine configuration)
The
各気筒11内には、ピストン3が摺動自在に内挿されている。ピストン3は、コネクティングロッド14を介してクランクシャフト15に連結されている。ピストン3は、気筒11及びシリンダヘッド13と共に燃焼室17を区画する。具体的には、ピストン3は燃焼室17の底壁部を構成し、気筒11は燃焼室17の側壁部を構成し、シリンダヘッド13の気筒11側の壁部13a(以下、ヘッド壁部13aという)は、燃焼室17の天井部を構成する。尚、「燃焼室」は、ピストン3が圧縮上死点に至ったときの空間の意味に限定されない。「燃焼室」の語は広義で用いる場合がある。つまり、「燃焼室」は、ピストン3の位置に関わらず、ピストン3、気筒11及びシリンダヘッド13によって形成される空間を意味する場合がある。
A
シリンダブロック12における各気筒11の周囲には、ブロック側ウォータジャケットが設けられている。ブロック側ウォータジャケットには、気筒11を冷却するエンジン冷却液が流通している。つまり、ブロック側ウォータジャケットは、気筒11(シリンダボア)を冷却するためにエンジン冷却液が流通するボア通路63を構成する。本実施形態では、図2に示すように、ボア通路63には、ウォータジャケットスペーサ12aが配置されている。ウォータジャケットスペーサ12aにより、エンジン冷却液を、気筒11に出来る限り近い領域に流通させることができるとともに、エンジン冷却液を不図示のヒータコア等に送るための通路に適宜分岐させることができるようになっている。
A block-side water jacket is provided around each
エンジン冷却液は、ボア通路63を通った後、シリンダヘッド13内に設けられたヘッド側ウォータジャケットに流入する。図2に示すように、ヘッド側ウォータジャケットは、燃焼室17の直上及び後述の排気ポート19の周囲に形成されている。つまり、ヘッド側ウォータジャケットは、シリンダヘッド12の燃焼室17近傍の部分、特に、ヘッド壁部13aを冷却するためにエンジン冷却液が流通するヘッド通路64を構成する。詳しくは後述するが、ヘッド通路64を通過したエンジン冷却液は、ラジエータ通路65及びラジエータ迂回通路66に分岐する。
After passing through the
シリンダヘッド13には、気筒11毎に、吸気ポート18が形成されている。吸気ポート18は、燃焼室17に連通している。吸気ポート18には、吸気弁21が配設されている。吸気弁21は、燃焼室17と吸気ポート18との間を開閉する。吸気弁21は、動弁機構によって、所定のタイミングで開閉する。動弁機構は、バルブタイミング及び/又はバルブリフトを可変にする可変動弁機構とすればよい。本実施形態では、可変動弁機構は、吸気電動S−VT(Sequential-Valve Timing)23(図4参照)を有している。吸気電動S−VT23は、吸気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、吸気弁21の開時期及び閉時期は、連続的に変化する。尚、吸気動弁機構は、電動S−VTに代えて、油圧式のS−VTを有していてもよい。
An
シリンダヘッド13には、気筒11毎に、排気ポート19が形成されている。排気ポート19は、燃焼室17に連通している。排気ポート19には、排気弁22が配設されている。排気弁22は、燃焼室17と排気ポート19との間を開閉する。排気弁22は動弁機構によって、所定のタイミングで開閉する。この動弁機構は、バルブタイミング及び/又はバルブリフトを可変にする可変動弁機構とすればよい。本実施形態では、可変動弁機構は、排気電動S−VT24(図4参照)を有している。排気電動S−VT24は、排気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、排気弁22の開時期及び閉時期は、連続的に変化する。尚、排気動弁機構は、電動S−VTに代えて、油圧式のS−VTを有していてもよい。
An
シリンダヘッド13には、気筒11毎に、気筒11内に燃料を直接噴射するインジェクタ6が取り付けられている。インジェクタ6は、その噴口が燃焼室17の天井部の中央部分(厳密には、中央よりも僅かに排気側の部分)から、その燃焼室17内に臨むように配設されている。インジェクタ6は、エンジン本体10の運転状態に応じた量の燃料を、エンジン本体10の運転状態に応じて設定された噴射タイミングで燃焼室17内に直接噴射する。
An
シリンダヘッド13には、気筒11毎に、点火プラグ25が取り付けられている。点火プラグ25は、燃焼室17の中の混合気に強制的に点火をする。点火プラグ25は、本実施形態では、吸気側に配設されている。点火プラグ25の電極は、燃焼室17の中に臨んでかつ、燃焼室17の天井部の付近に位置している。尚、点火プラグ25は、排気側に配置されていてもよい。また、点火プラグ25を気筒11の中心軸上に配置する一方、インジェクタ6を、気筒11の中心軸よりも吸気側又は排気側に配設してよい。
A
本実施形態において、エンジン本体10の幾何学的圧縮比は、13以上30以下に設定されている。後述するようにエンジン1は、該エンジン1の暖機後の全運転領域において、燃料と吸気との混合気を点火プラグ25により火花点火させるSI(Spark Ignition)燃焼と、燃料と吸気との混合気を圧縮自着火させるCI(Compression Ignition)燃焼とを組み合わせたSPCCI(Spark Controlled Compression Ignition)燃焼を行う。SPCCI燃焼は、SI燃焼による発熱と圧力上昇とを利用して、CI燃焼をコントロールする。エンジン1の幾何学的圧縮比は、レギュラー仕様(燃料のオクタン価が91程度)においては、14〜17とし、ハイオク仕様(燃料のオクタン価が96程度)においては、15〜18としてもよい。
In the present embodiment, the geometric compression ratio of the
エンジン本体10の一側面には吸気通路40が接続されている。吸気通路40は、各気筒11の吸気ポート18に連通している。吸気通路40は、燃焼室17に導入する吸気が流れる通路である。
An
吸気通路40の上流端近傍には、新気を濾過するエアクリーナー41が配設されている。吸気通路40の下流端近傍には、サージタンク42が配設されている。サージタンク42よりも下流の吸気通路40は、気筒11毎に分岐する独立通路を構成している。独立通路の下流端が、各気筒11の吸気ポート18に接続されている。
An
吸気通路40におけるエアクリーナー41とサージタンク42との間には、スロットル弁43が配設されている。スロットル弁43は、弁の開度を調整することによって、燃焼室17の中への新気の導入量を調整するよう構成されている。
A
吸気通路40には、スロットル弁43の下流に、機械式過給機44(以下、単に過給機44という)のコンプレッサが配設された過給側通路40aが設けられている。過給機44は、燃焼室17に導入する吸気を過給するよう構成されている。本実施形態において、過給機44は、エンジン本体10によって駆動される過給機である。過給機44は、例えばリショルム式としてもよい。過給機44の構成は特に限定されない。過給機44は、ルーツ式、ベーン式、又は遠心式であってもよい。
The
過給機44とエンジン本体10との間には、電磁クラッチ45が介設している。電磁クラッチ45は、過給機44とエンジン本体10との間で、エンジン本体10から過給機44へ駆動力を伝達したり、該駆動力の伝達を遮断したりする。後述するように、ECU100が電磁クラッチ45の遮断及び接続を切り替えることによって、過給機44は駆動状態と非駆動状態とが切り替わる。つまり、電磁クラッチ45は、過給機44の駆動と非駆動とを切り換えるクラッチである。このエンジン1は、過給機44が、燃焼室17に導入する吸気を過給することと、過給機44が、燃焼室17に導入する吸気を過給しないこととを切り替えることができるよう構成されている。
An electromagnetic clutch 45 is interposed between the
過給側通路40aにおける過給機44の直下流には、インタークーラー46が配設されている。インタークーラー46は、過給機44において圧縮された吸気を冷却するよう構成されている。本実施形態において、インタークーラー46は液冷式である。図示は省略しているが、本実施形態では、インタークーラー46には、エンジン冷却液とは別のインタークーラー冷却液が流通する独立した冷却通路が接続されている。該冷却通路には電動ポンプが設けられており、該電動ポンプによりインタークーラー冷却液が当該冷却通路を循環する。
An
吸気通路40には、バイパス通路47が接続されている。バイパス通路47は、過給機44及びインタークーラー46をバイパスするよう、吸気通路40における過給機44の上流側の部分とインタークーラー46の下流側の部分とを接続する。バイパス通路47には、該バイパス通路47を開閉するエアバイパス弁48が配設されている。
A
過給機44を非駆動状態にしたとき(つまり、電磁クラッチ45を遮断したとき)には、エアバイパス弁48を開き状態(オン状態)にする。これにより、吸気通路40を流れるガスは、過給機44をバイパスして、エンジン1の燃焼室17に導入される。エンジン1は、非過給、つまり自然吸気の状態で運転する。
When the
過給機44をオン状態(すなわち、電磁クラッチ45を接続状態)にすると、エンジン1は過給状態で運転する。ECU100は、過給機44がオン状態のときに、エアバイパス弁48の開度を調整する、過給機44を通過したガスの一部は、バイパス通路47を通って過給機44の上流に逆流する。ECU100がエアバイパス弁48の開度を調整すると、燃焼室17に導入するガスの過給圧が変わる。尚、過給時とは、サージタンク42内の圧力が大気圧を超える時をいい、非過給時とは、サージタンク42内の圧力が大気圧以下になる時をいう、と定義してもよい。
When the
エンジン本体10の他側面には、排気通路50が接続されている。排気通路50は、各気筒11の排気ポート19に連通している。排気通路50は、燃焼室17から排出された排気が流れる通路である。排気通路50の上流部分は、詳細な図示は省略するが、気筒11毎に分岐する独立通路を構成している。独立通路の上流端が、各気筒11の排気ポート19に接続されている。
An
排気通路50には、複数の触媒コンバーターを有する排気ガス浄化システムが配設されている。上流の触媒コンバーターは、図示は省略するが、エンジンルーム内に配設されている。上流の触媒コンバーターは、三元触媒511と、GPF(Gasoline Particulate Filter)512とを有している。下流の触媒コンバーターは、エンジンルーム外に配設されている。下流の触媒コンバーターは、三元触媒513を有している。尚、排気ガス浄化システムは、図例の構成に限定されるものではない。例えば、GPFは省略してもよい。また、触媒コンバーターは、三元触媒を有するものに限定されない。さらに、三元触媒及びGPFの並び順は、適宜変更してもよい。
An exhaust gas purification system having a plurality of catalytic converters is arranged in the
吸気通路40と排気通路50との間には、外部EGRシステムを構成するEGR通路52が接続されている。EGR通路52は、排気の一部を吸気通路40に還流させるための通路である。EGR通路52の上流端は、排気通路50における上流の触媒コンバーターと下流の触媒コンバーターとの間に接続されている。EGR通路52の下流端は、吸気通路40における過給機44の上流に接続されている。EGR通路52を流れる排気(以下、EGRガスという)は、吸気通路40に導入される時には、バイパス通路47のエアバイパス弁48を通らずに、吸気通路40における過給機44の上流に入る。
An
EGR通路52には、液冷式のEGRクーラー53が配設されている。EGRクーラー53は、EGR通路52を通るEGRガスを冷却する。図示は省略しているが、本実施形態では、EGRクーラー53には、ボア通路63から分岐した通路を通ったエンジン冷却液が流入する。EGR通路52には、EGR弁54が配設されている。EGR弁54は、EGR通路52を流れるEGRガスの流量を調整するよう構成されている。EGR弁54の開度を調整することによって、冷却したEGRガスの還流量を調整することができる。EGR弁54は、オン/オフ式弁で構成されていてもよく、開度を連続的に変化させることが可能な弁で構成されていてもよい。
A liquid-cooled
(エンジンの冷却システム)
次に、エンジン1の冷却システム60について説明する。図3に示すように、エンジン1の冷却システム60は、エンジン冷却液を供給するポンプ61と、ポンプ61からエンジン本体10のボア通路63に流入させる入口通路62と、ボア通路63及びヘッド通路64と、ボア通路63を通って、ヘッド通路64を通った後、エンジン冷却液を冷却させるラジエータ70を経由してポンプ61に流入するラジエータ通路65(第1通路)と、ボア通路63を通って、ヘッド通路64を通った後、ラジエータ70を迂回してポンプ61にエンジン冷却液を流入させるラジエータ迂回通路66(第2通路)とを有する。
(Engine cooling system)
Next, the
ポンプ61は、エンジン本体10のクランクシャフト15に連動して駆動される機械式のポンプである。第1ポンプ61の吐出口は、入口通路62に接続されている。ポンプ61には、入口通路62に吐出するエンジン冷却液の液温を検出する第1液温センサSW4が設けられている。ポンプ61からのエンジン冷却液の吐出量は、エンジン回転数とポンプ61へのエンジン冷却液の還流量とにより変動する。尚、第1液温センサSW4は、入口通路62を流通するエンジン冷却液の液温を検出するように配置されていてもよい。
The
入口通路62は、ポンプ61の吐出口とボア通路63の入口とを連通する。ポンプ61から吐出されたエンジン冷却液が、ボア通路63全体を流通するように、入口通路62は、ボア通路63のうち、気筒列方向における一端側でかつ気筒11の筒軸方向におけるシリンダヘッド13とは反対側の端部と接続されている。
The
ボア通路63は、前述したように、各気筒11の周囲を囲むように設けられている。ボア通路63の出口は、ボア通路63のうち、気筒列方向における他端側でかつ前記筒軸方向におけるシリンダヘッド13側の端部に設けられている。
As described above, the
ヘッド通路64は、前述したように、燃焼室17の直上及び排気ポート19の周囲に形成されている。ヘッド通路64の入口は、ボア通路63の出口と同様に、気筒列方向における他端側に設けられる一方、ヘッド通路64の出口は気筒列方向における一端側に設けられている。ヘッド通路64の出口近傍には、該ヘッド通路64を流通するエンジン冷却液の液温を検出する第2液温センサSW5が侵入している。第2液温センサSW5は、エンジン本体10と熱交換した直後のエンジン冷却液の液温を取得するセンサであり、第2液温センサSW5の検出結果は、基本的には、エンジン冷却液の液温が最も高くなる位置における、該エンジン冷却液の液温を示す。
As described above, the
ラジエータ通路65は、ヘッド通路64の下流端から分岐している。ラジエータ通路65におけるラジエータ70とポンプ61との間には、サーモスタット弁80が配置されている。サーモスタット弁80は、電気式のサーモスタット弁で構成されている。具体的には、サーモスタット弁80は、一般的なサーモスタット弁に電熱線を内蔵させた弁である。サーモスタット弁80は、無通電時には、エンジン冷却液の液温が、所定液温以上であるときに、その温度に応じて開くように構成されているが、電熱線に電流を流すことで、エンジン冷却液の液温が所定液温未満のときでも開くことができるようになっている。つまり、無通電時には、所定液温でサーモスタット弁80が開くことにより、ラジエータ通路65内のエンジン冷却液の液温を所定液温付近にすることができる一方、通電時には、所定液温未満の所望の液温でサーモスタット弁80が開くことにより、ラジエータ通路65内のエンジン冷却液の液温を所望の液温にすることができる。尚、本実施形態において、所定液温は後述する第1所定壁温よりも高い95℃程度に設定されている。
The
ラジエータ迂回通路66も、ラジエータ通路65と同様に、ヘッド通路64の下流端から分岐している。ラジエータ迂回通路66の途中には、流量調整弁90が配置されている。流量調整弁90は、一定開度の開き状態と、全閉の閉じ状態との間で切り替えられるオン/オフ式の弁である。流量調整弁90は、オン状態のときに一定開度の開き状態となり、オフ状態のときに全閉の閉じ状態となる。流量調整弁90は、開き状態の時間及び閉じ状態の時間を調整することで、より詳しくは、単位時間当たりの開き状態及び閉じ状態の割合(以下、デューティ比という)を調整することで、ラジエータ迂回通路66を通るエンジン冷却液の流量を調整する。尚、流量調整弁90は、オン状態のときに閉じ状態となり、オフ状態のときに開き状態となる弁でもよい。
The
詳しくは後述するが、流量調整弁90のデューティ比は、第2液温センサSW5の検出結果及びエンジン1の燃焼形式に基づいて制御される。
As will be described in detail later, the duty ratio of the flow
(エンジンの制御系)
エンジン1の制御装置は、エンジン1を運転するためのECU(Engine Control Unit)100を備えている。ECU100は、周知のマイクロコンピュータをベースとするコントローラーであって、図4に示すように、プログラムを実行する中央演算処理装置(Central Processing Unit:CPU)101と、例えばRAM(Random Access Memory)やROM(Read Only Memory)により構成されてプログラム及びデータを格納するメモリ102と、電気信号の入出力をする入出力バス103と、を備えている。ECU100は、制御部の一例である。
(Engine control system)
The control device of the
ECU100には、図1、図3、及び図4に示すように、各種のセンサSW1〜SW7が接続されている。センサSW1〜SW7は、検知信号をECU100に出力する。センサには、以下のセンサが含まれる。
As shown in FIGS. 1, 3, and 4, various sensors SW1 to SW7 are connected to the
すなわち、吸気通路40におけるエアクリーナー41の下流に配置されかつ吸気通路40を流れる新気の流量を検知するエアフローセンサSW1、サージタンク42に取り付けられかつ燃焼室17に供給される吸気の温度を検知する吸気温度センサSW2、排気通路50に配置されかつ燃焼室17から排出した排気ガスの温度を検知する排気温度センサSW3、ポンプ61に取り付けられかつボア通路63に流入するエンジン冷却液の液温を検出する第1液温センサSW4、エンジン本体10のシリンダヘッド13に取り付けられかつヘッド通路64を流通するエンジン冷却液の液温を検出する第2液温センサSW5、エンジン本体10に取り付けられかつクランクシャフト15の回転角を検知するクランク角センサSW6、アクセルペダル機構に取り付けられかつアクセルペダルの操作量に対応したアクセル開度を検知するアクセル開度センサSW7である。
That is, the air flow sensor SW1 located downstream of the
ECU100は、これらの検出信号に基づいて、エンジン本体10の運転状態を判断するとともに、各デバイスの制御量を計算する。ECU100は、計算をした制御量に係る制御信号を、インジェクタ6、点火プラグ25、吸気電動S−VT23、排気電動S−VT24、スロットル弁43、過給機44の電磁クラッチ45、エアバイパス弁48、EGR弁54、サーモスタット弁80、及び流量調整弁90に出力する。
Based on these detection signals, the
例えば、ECU100は、クランク角センサSW6の検出信号に基づいてエンジン本体10のエンジン回転数を算出する。ECU100は、アクセル開度センサSW7の検出信号に基づいてエンジン本体10のエンジン負荷を算出する。
For example, the
また、ECU100は、算出されたエンジン回転数とエンジン負荷とに基づいてエンジン1の運転領域を読み込んだ後、燃焼室17の壁部の目標温度を設定する。
Further, the
また、ECU100は、設定された目標温度に基づいて、入口通路61に吐出すべきエンジン冷却液の液温である入口目標液温を設定する。
Further, the
また、ECU100は、エンジン本体10の運転状態(主に、エンジン負荷及びエンジン回転数)と予め設定したマップとに基づいて目標EGR率(つまり、燃焼室17の中の全ガスに対するEGRガスの比率)を設定する。そして、ECU100は、目標EGR率とアクセル開度センサSW7の検知信号に基づく吸入空気量とに基づき目標EGRガス量を決定するとともに、EGR弁54の開度を調整することにより、燃焼室17の中に導入する外部EGRガス量が目標EGRガス量となるようにフィードバック制御を行う。
Further, the
(エンジンの運転領域)
図5は、エンジン1の制御に係るマップを例示している。マップは、ECU100のメモリ102に予め記憶されている。マップは、三種類のマップ501、マップ502、及びマップ503を含んでいる。ECU100は、燃焼室17の壁温に応じて、三種類のマップ501,502,503の中から選択したマップを、エンジン1の制御に用いる。三種類のマップ501,502,503の選択については後述する。
(Engine operating area)
FIG. 5 illustrates a map related to the control of the
第1マップ501は、エンジン1の温間時のマップである。第2マップ502は、エンジン1の、いわば半暖機時のマップである。第3マップ503は、エンジン1の冷間時のマップである。エンジン1の暖機状態は、第2液温センサSW2の検出結果に基づいて判断される。
The
各マップ501、502、503は、エンジン1のエンジン負荷及びエンジン回転数によって規定されている。第1マップ501は、エンジン負荷の高低及びエンジン回転数の高低に対し、大別して三つの領域に分かれる。具体的には、三つの領域は、アイドル運転を含みかつ、低回転及び中回転の領域に広がる低負荷領域A1、低負荷領域A1よりもエンジン負荷が高い中高負荷領域A2、A3、A4、及び低負荷領域A1、中高負荷領域A2、A3、A4よりもエンジン回転数の高い高回転領域A5である。中高負荷領域A2、A3、A4は、中負荷領域A2と、中負荷領域A2よりもエンジン負荷が高い高負荷中回転領域A3と、高負荷中回転領域A3よりもエンジン回転数の低い高負荷低回転領域A4とに分かれる。
Each
第2マップ502は、大別して二つの領域に分かれる。具体的に、二つの領域は、低中回転領域B1、B2、B3、及び低中回転領域B1、B2、B3よりも回転数の高い高回転領域B4である。低中回転領域B1、B2、B3は、前記低負荷領域A1及び中負荷領域A2に相当する低中負荷領域B1と、高負荷中回転領域B2と、高負荷低回転領域B3とに分かれる。
The
第3マップ503は、複数の領域に分かれておらず、一つの領域C1のみを有している。
The
ここで、低回転領域、中回転領域、及び高回転領域はそれぞれ、エンジン1の全運転領域を回転数方向に、低回転領域、中回転領域、及び高回転領域の略三等分にしたときの、低回転領域、中回転領域、及び高回転領域としてもよい。図5の例では、第1回転数N1未満を低回転、第2回転数N2以上を高回転、第1回転数N1以上かつ第2回転数N2未満を中回転としている。第1回転数N1は、例えば1200rpm程度、第2回転数N2は、例えば4000rpm程度としてもよい。
Here, the low rotation region, the medium rotation region, and the high rotation region are when the entire operation region of the
また、低負荷領域は、軽負荷の運転状態を含む領域、高負荷領域は、全開負荷の運転状態を含む領域、中負荷は、低負荷領域と高負荷領域との間の領域としてもよい。また、低負荷領域、中負荷領域、及び高負荷領域はそれぞれ、エンジン1の全運転領域を負荷方向に、低負荷領域、中負荷領域、及び高負荷領域の略三等分にしたときの、低負荷領域、中負荷領域、及び高負荷領域としてもよい。
Further, the low load region may be a region including a light load operating state, the high load region may be a region including a fully open load operating state, and the medium load may be a region between the low load region and the high load region. Further, in the low load region, the medium load region, and the high load region, when the entire operating region of the
図5のマップ501,502,503は、それぞれ、各領域における混合気の状態及び燃焼形態を示している。エンジン1は、低負荷領域A1、中負荷領域A2、高負荷中回転領域A3、及び高負荷低回転領域A4、並びに、低中負荷領域B1、高負荷中回転領域B2、及び高負荷低回転領域B3において、SPCCI燃焼を行う。エンジン1は、それ以外の領域、具体的には、高回転領域A5、高回転領域B4、及び領域C1においては、SI燃焼を行う。
本実施形態に係るエンジン1は、図5に示すように、SPCCI燃焼を行う運転領域において、空燃比が理論空燃比よりも大きい(空気過剰率λ>1)混合気を燃焼させるリーン燃焼と、空燃比が該理論空燃比近傍(空気過剰率λ≦1)の混合気を燃焼させるストイキ燃焼とを実行するように構成されている。具体的には、エンジン1は、低負荷領域A1において、リーン燃焼を実行する一方、中負荷領域A2、高負荷中回転領域A3、及び高負荷低回転領域A4、並びに、低中負荷領域B1、高負荷中回転領域B2、及び高負荷低回転領域B3において、ストイキ燃焼を行う。以下、リーン燃焼とストイキ燃焼について詳細に説明する。
As shown in FIG. 5, the
(リーン燃焼)
ECU100は、エンジン1の運転領域が低負荷領域A1であるときには、リーン燃焼を実行させるよう、各種デバイスに制御信号を出力する。
(Lean combustion)
When the operating region of the
ECU100は、エンジン1の燃費性能を向上させるために、燃焼室17の中にEGRガスを導入させる。具体的には、ECU100は、吸気電動S−VT23及び排気電動S−VT24を制御して、排気上死点付近において、吸気弁21及び排気弁22の両方を開弁するポジティブオーバーラップ期間を設ける。燃焼室17から吸気ポート18及び排気ポート19に排出した排気ガスの一部は、燃焼室17の中に再導入される。燃焼室17の中に熱い排気ガスを導入するため、燃焼室17の中の温度が高くなる。SPCCI燃焼の安定化に有利になる。尚、吸気電動S−VT23及び排気電動S−VT24を、吸気弁21及び排気弁22の両方を閉弁するネガティブオーバーラップ期間を設けるように制御してもよい。
The
ECU100は、吸気行程中に、燃料を複数回、燃焼室17内に噴射するようにインジェクタ6を制御する。複数回の燃料噴射と、燃焼室17内のスワール流とによって、混合気は成層化する。
The
燃焼室17の中央部における混合気の燃料濃度は、外周部の燃料濃度よりも濃い。具体的に、中央部の混合気のA/Fは、20以上30以下であり、外周部の混合気のA/Fは、35以上である。尚、空燃比の値は、点火時における空燃比の値であり、以下の説明においても同じである。点火プラグ25に近い混合気のA/Fを20以上30以下にすることにより、SI燃焼時のRawNOxの発生を抑制することができる。また、外周部の混合気のA/Fを35以上にすることで、CI燃焼が安定化する。
The fuel concentration of the air-fuel mixture in the central portion of the
燃焼室17内に形成される混合気の空燃比(A/F)は、燃焼室17の全体において理論空燃比(A/F=14.7)よりもリーンである。具体的には、燃焼室17の全体において、混合気のA/Fは25〜31である。これにより、RawNOxの発生を抑制することができ、排出ガス性能を向上させることができる。
The air-fuel ratio (A / F) of the air-fuel mixture formed in the
ECU100は、燃料噴射の終了後、圧縮上死点前の所定のタイミングで、燃焼室17の中央部の混合気に点火をするように、点火プラグ25を制御する。点火タイミングは、圧縮行程の終期としてもよい。圧縮行程の終期は、圧縮行程を、初期、中期、及び終期に三等分したときの終期としてもよい。
The
前述したように、中央部の混合気は燃料濃度が相対的に高いため、着火性が向上するとともに、火炎伝播によるSI燃焼が安定化する。SI燃焼が安定化することによって、適切なタイミングで、CI燃焼が開始する。SPCCI燃焼において、CI燃焼のコントロール性が向上する。また、混合気のA/Fを理論空燃比よりもリーンにしてSPCCI燃焼を行うことによって、エンジン1の燃費性能を向上させることができる。尚、低負荷領域A1は、後述のレイヤ3に対応する。レイヤ3は、低負荷運転領域まで広がっているとともに、最低負荷運転状態を含んでいる。
As described above, since the fuel concentration of the air-fuel mixture in the central portion is relatively high, the ignitability is improved and SI combustion due to flame propagation is stabilized. By stabilizing SI combustion, CI combustion starts at an appropriate timing. In SPCCI combustion, the controllability of CI combustion is improved. Further, the fuel efficiency of the
(ストイキ燃焼)
ECU100は、エンジン1の運転領域が、温間時の中高負荷領域A2〜A4、並びに、半暖機時の低中回転領域B1〜B3であるときには、ストイキ燃焼を実行させるよう、各種デバイスに制御信号を出力する。
(Stoiki combustion)
The
ECU100は、燃焼室17の中にEGRガスを導入させる。具体的には、ECU100は、吸気電動S−VT23及び排気電動S−VT24を制御して、排気上死点付近において、吸気弁21及び排気弁22の両方を開弁するポジティブオーバーラップ期間を設ける。内部EGRガスが、燃焼室17の中に導入される。また、ECU100は、EGR通路52を通じて、EGRクーラー53によって冷却した排気ガスを、燃焼室17の中に導入するように、EGR弁54の開度を調整する。つまり、内部EGRガスに比べて温度が低い外部EGRガスを、燃焼室17の中に導入する。ECU100は、エンジン1の負荷が高まるに従いEGRガスの量を減らすように、EGR弁54の開度を調整する。ECU100は、全開負荷において、内部EGRガス及び外部EGRガスを含むEGRガスを、ゼロにしてもよい。
The
ストイキ燃焼時には、混合気の空燃比(A/F)は、燃焼室17の全体において理論空燃比(A/F≒14.7)である。このときは、三元触媒511、513が、燃焼室17から排出された排出ガスを浄化することによって、エンジン1の排出ガス性能は良好になる。混合気のA/Fは、三元触媒の浄化ウインドウの中に収まるようにすればよい。混合気の空気過剰率λは、1.0±0.2としてもよい。尚、エンジン1が、全開負荷(つまり、最高負荷)を含む高負荷中回転領域A3において運転しているときには、混合気のA/Fは、燃焼室17の全体において理論空燃比又は理論空燃比よりもリッチにしてもよい(つまり、混合気の空気過剰率λは、λ≦1)。
At the time of stoichiometric combustion, the air-fuel ratio (A / F) of the air-fuel mixture is the theoretical air-fuel ratio (A / F≈14.7) in the
燃焼室17内にEGRガスを導入しているため、燃焼室17の中の全ガスと燃料との重量比であるG/Fは理論空燃比よりもリーンになる。混合気のG/Fは18以上にしてもよい。こうすることで、いわゆるノッキングの発生を回避するようにしている。G/Fは18以上30以下において設定してもよい。
Since the EGR gas is introduced into the
ECU100は、エンジン1の負荷が中負荷であるときには、吸気行程中に、複数回の燃料噴射を行うように、インジェクタ6を制御する。インジェクタ6による燃料噴射は、第一噴射を吸気行程の前半に行い、第二噴射を吸気行程の後半に行うようにしてもよい。
When the load of the
ECU100は、エンジン1の負荷が高負荷であるときには、吸気行程において燃料を噴射するように、インジェクタ6を制御する。
The
ECU100は、燃料の噴射後、圧縮上死点付近の所定のタイミングで混合気に点火をするように、点火プラグ25を制御する。点火プラグ25による点火は、エンジン1の負荷が中負荷であるときには、圧縮上死点前に点火を行ってもよい。点火プラグ25による点火は、エンジン1の負荷が高負荷であるときには、圧縮上死点後に点火を行ってもよい。
The
混合気のA/Fを理論空燃比にしてSPCCI燃焼を行うことによって、三元触媒511、513を利用して、燃焼室17から排出された排出ガスを浄化することができる。また、EGRガスを燃焼室17に導入して混合気を希釈化することによって、エンジン1の燃費性能が向上する。尚、エンジン1の温間時の中高負荷領域A2、A3、A4、並びに、エンジン1の半暖機時の低中回転領域B1、B2、B3は、後述するレイヤ2に対応する。レイヤ2は、高負荷領域まで広がっているとともに、最高負荷運転状態を含んでいる。
By performing SPCCI combustion with the A / F of the air-fuel mixture as the stoichiometric air-fuel ratio, the exhaust gas discharged from the
(マップのレイヤの選択)
図5に示すエンジン1のマップ501、502、503は、図6に示すように、レイヤ1、レイヤ2及びレイヤ3の三つのレイヤの組み合わせによって構成されている。
(Selection of map layer)
As shown in FIG. 6, the
レイヤ1は、ベースとなるレイヤである。レイヤ1は、エンジン1の運転領域の全体に広がる。レイヤ1は、第三マップ503の全体に相当する。
レイヤ2は、レイヤ1の上に重なるレイヤである。レイヤ2は、エンジン1の運転領域の一部に相当する。具体的にレイヤ2は、第二マップ502の低中回転領域B1、B2、B3に相当する。
Layer 2 is a layer that overlaps
レイヤ3は、レイヤ2の上に重なるレイヤである。レイヤ3は、第一マップ501の低負荷領域A1に相当する。
レイヤ1、レイヤ2及びレイヤ3は、主に、燃焼室17の壁温(特にヘッド壁部13aの壁温)に応じて選択される。
具体的には、燃焼室17の壁温が第1所定壁温(例えば80℃)以上でありかつ吸気温が第1所定吸気温(例えば50℃)以上であるときには、レイヤ1とレイヤ2とレイヤ3とが選択され、これらレイヤ1、レイヤ2及びレイヤ3を重ねることにより第一マップ501が構成される。第一マップ501における低負荷領域A1は、そこにおいて最上位のレイヤ3が有効になり、中高負荷領域A2、A3、A4は、そこにおいて最上位のレイヤ2が有効になり、高回転領域A5は、レイヤ1が有効になる。このように、本実施形態では、リーン燃焼領域(低負荷領域A1)におけるエンジン負荷の範囲及びエンジン回転数の範囲と、ストイキ燃焼領域(低中負荷領域B1)におけるエンジン負荷の範囲及びエンジン回転数の範囲とは重複している。
Specifically, when the wall temperature of the
燃焼室17の壁温が第1所定壁温未満でかつ第2所定壁温(例えば30℃)以上であるとともに、吸気温が第1所定吸気温未満でかつ第2所定吸気温(例えば25℃)以上であるときには、ときには、レイヤ1とレイヤ2とが選択される。これらレイヤ1及びレイヤ2を重ねることにより第二マップ502が構成される。第二マップ502における低中回転領域B1、B2、B3は、そこにおいて最上位のレイヤ2が有効になり、高回転領域B4は、レイヤ1が有効になる。
The wall temperature of the
燃焼室17の壁温が第2所定壁温未満でありかつ吸気温が第2所定吸気温未満であるときには、レイヤ1のみが選択されて、第三マップ503が構成される。
When the wall temperature of the
尚、燃焼室17の壁温は、例えば、第2液温センサSW5によって計測されるエンジン冷却液の液温によって代用してもよい。また、エンジン冷却液の液温や、その他の計測信号に基づいて、燃焼室17の壁温を推定してもよい。また、吸気温は、例えば、サージタンク42内の温度を計測する吸気温度センサSW2によって計測することができる。また、各種の計測信号に基づいて、燃焼室17の中に導入される吸気温を推定してもよい。
The wall temperature of the
SPCCI燃焼におけるCI燃焼は、燃焼室17の外周部から中央部において行われるため、燃焼室17の中央部の温度の影響を受ける。燃焼室17の中央部の温度が低いと、CI燃焼が不安定になってしまう。燃焼室17の中央部の温度は、燃焼室17に導入される吸気の温度に依存する。つまり、吸気温度が高いときに、燃焼室17の中央部の温度は高くなり、吸気温度が低いときに、燃焼室17の中央部の温度は低くなる。
Since CI combustion in SPCCI combustion is performed from the outer peripheral portion to the central portion of the
燃焼室17の壁温が第2所定壁温未満でかつ吸気温度が第2所定吸気温未満のときには、SPCCI燃焼を安定して行うことができない。そこで、SI燃焼を実行するレイヤ1のみが選択され、ECU100は、第三マップ503に基づいて、エンジン1を運転する。全ての運転領域において、エンジン1がSI燃焼を行うことにより、燃焼安定性を確保することができる。
When the wall temperature of the
燃焼室17の壁温が第2所定壁温以上でかつ、吸気温度が第2所定吸気温以上のときには、略理論空燃比(つまり、λ≒1)の混合気を、安定してSPCCI燃焼させることができる。そこで、レイヤ1に加えて、レイヤ2が選択され、ECU100は、第二マップ502に基づいて、エンジン1を運転する。エンジン1が、一部の運転領域においてSPCCI燃焼を行うことにより、エンジン1の燃費性能が向上する。
When the wall temperature of the
燃焼室17の壁温が第1所定壁温以上でかつ、吸気温度が第1所定吸気温以上のときには、理論空燃比よりもリーンな混合気を、安定してSPCCI燃焼させることができる。そこで、レイヤ1及びレイヤ2に加えて、レイヤ3が選択され、ECU10は、第一マップ501に基づいて、エンジン1を運転する。エンジン1が、一部の運転領域においてリーン混合気をSPCCI燃焼させることにより、エンジン1の燃費性能が、さらに向上する。
When the wall temperature of the
図7は、ECU100によりレイヤが選択される処理動作に関するフローチャートを示す。
FIG. 7 shows a flowchart relating to a processing operation in which a layer is selected by the
まず、ステップS11において、ECU100は、各センサSW1〜SW7からの検出信号を読み込む。
First, in step S11, the
次のステップS12では、ECU100は、燃焼室17の壁温が第2所定温度以上でかつ吸気温が第2所定吸気温以上であるか否かを判定する。ECU100は、燃焼室17の壁温が第2所定温度以上でかつ吸気温が第2所定吸気温以上であるYESのときには、ステップS13に進む一方で、燃焼室17の壁温が第2所定温度未満であるか、又は吸気温が第2所定吸気温未満であるであるNOのときには、ステップS14に進む。
In the next step S12, the
次のステップS13では、ECU100は、燃焼室17の壁温が第1所定温度以上でかつ吸気温が第1所定吸気温以上であるか否かを判定する。ECU100は、燃焼室17の壁温が第1所定温度以上でかつ吸気温が第1所定吸気温以上であるYESのときには、ステップS16に進む一方で、燃焼室17の壁温が第1所定温度未満であるか、又は吸気温が第1所定吸気温未満であるであるNOのときには、ステップS15に進む。
In the next step S13, the
前記ステップS14では、ECU100はレイヤ1のみを選択する。ECU100は、第三マップ503に基づいてエンジン1を運転する。ステップS14の後は、リターンする。
In step S14, the
前記ステップS15では、ECU100は、レイヤ1とレイヤ2とを選択する。ECU100は、第二マップ502に基づいてエンジン1を運転する。ステップS15の後は、リターンする。
In step S15, the
前記ステップS16では、ECU100は、レイヤ1とレイヤ2とレイヤ3とを選択する。ECU100は、第一マップ501に基づいて、エンジン1を運転する。ステップS16の後は、リターンする。
In step S16, the
(冷却システムの制御)
ここで、エンジン1の燃費向上の観点からは、エンジン1の運転領域を出来る限り低負荷領域A1にして、リーン燃焼を実行することが望ましい。
(Control of cooling system)
Here, from the viewpoint of improving the fuel efficiency of the
前述したように、リーン燃焼は、少なくとも燃焼室17内の温度、すなわち燃焼室17の壁温を第1所定壁温以上にする必要がある。このため、リーン燃焼を維持するためには、燃焼室17の壁温を第1所定壁温以上に維持する必要がある。
As described above, in lean combustion, it is necessary to make at least the temperature in the
しかしながら、リーン燃焼は燃焼温度が低いため、燃焼室17の壁温が低下しやすい。燃焼室17の壁温が低下すると、燃焼室17の壁温をリーン燃焼が可能な温度に再度上昇させるために、ストイキ燃焼への切り換えが必要になる。尚、本実施形態では、図6に示すように、レイヤがレイヤ3からレイヤ2に切り替わって、自動的にリーン燃焼がストイキ燃焼に切り替わるようになっている。
However, since the combustion temperature of lean combustion is low, the wall temperature of the
リーン燃焼からストイキ燃焼へ切り替えられた後、リーン燃焼を早期に復帰させるには、ストイキ燃焼時に出来る限り効率的に燃焼室17の壁温を上昇させる必要がある。
In order to restore lean combustion at an early stage after switching from lean combustion to stoichiometric combustion, it is necessary to raise the wall temperature of the
そこで、本実施形態では、ECU100は、燃焼室17の壁温の目標温度を、リーン燃焼とストイキ燃焼とで同じ温度、具体的には、第1所定壁温よりも高い温度である特定温度に設定するようにした。また、ECU100は、目標温度(特定温度)と第2液温センサSW2が検出する第2検出液温との温度差に応じて、ラジエータ迂回通路66を通ってポンプ61に還流するエンジン冷却液の流量を調整するようにした。より具体的には、ECU100は、該温度差が大きいほど、ラジエータ迂回通路66を通ってポンプ61に還流するエンジン冷却液の流量が少なくなるように、流量調整弁90に制御信号を出力するようにした。また、ECU100は、サーモスタット弁80を無通電状態にするようにした。尚、特定温度は、例えば、105℃である。特定温度は、エンジン1の仕様により適宜変更される。仮に特定温度を90℃程度に設定するのであれば、ECU100は、サーモスタット弁80を通電状態にする。
Therefore, in the present embodiment, the
これによると、リーン燃焼とストイキ燃焼とで目標温度が同じ特定温度に設定されるため、燃焼室17の壁温が低下して、リーン燃焼からストイキ燃焼に切り替わったとしても、燃焼室17の壁温をリーン燃焼が可能な温度まで早急に上昇させることができる。また、サーモスタット弁80が無通電状態であるとともに、目標温度と第2検出液温との温度差が大きいほどポンプ61に還流する冷却液の流量が少なくなるため、該温度差が大きいうちは、エンジン冷却液はボア通路63やヘッド通路64に留まりやすくになる。これにより、ボア通路63やヘッド通路64のエンジン冷却液が過熱されて、燃焼室17の壁部が高温の状態になる。この結果、燃焼室17の壁温を早急に上昇させることができる。
According to this, since the target temperature is set to the same specific temperature for lean combustion and stoichiometric combustion, even if the wall temperature of the
ここで、ストイキ燃焼時には、燃焼室17の壁温をリーン燃焼が可能な温度まで早急に上昇させることが好ましいが、ストイキ燃焼時は壁温が上がりやすいため、燃焼室17の壁温が特定温度を超えて上昇してしまう可能性がある。燃焼室17の壁温が上がり過ぎると、ノッキング等の異常燃焼が発生することがある。一方で、リーン燃焼時は、燃焼室17の壁温を出来る限り高い状態に維持することが望ましい。このため、本実施形態では、ECU100は、目標温度(特定温度)と第2検出液温との温度差が同じであっても、ストイキ燃焼時の方が、リーン燃焼時に比べて流量調整弁90のオン状態の時間、すなわち開弁期間が長くなるように、流量調整弁90に制御信号を出力するようにした。
Here, it is preferable to quickly raise the wall temperature of the
図8には、流量調整弁90の、リーン燃焼時における開弁期間とストイキ燃焼時における開弁期間とを示す。上図はリーン燃焼時における流量調整弁90の制御モード(以下、第1モードという)の開弁期間を示し、下図は、ストイキ燃焼時における流量調整弁90の制御モード(以下、第2モードという)の開弁期間を示す。
FIG. 8 shows the valve opening period of the flow
図8に示すように、ストイキ燃焼時における単位時間T当たりのオン状態の時間t2は、リーン燃焼時における単位時間T当たりのオン状態の時間t1に比べて長い。つまり、ECU100は、ストイキ燃焼時の方が、リーン燃焼時と比べて、デューティ比が大きくなるように、流量調整弁90に制御信号を出力する。これにより、ストイキ燃焼時には、リーン燃焼時に比べて、単位時間T当たりにおけるラジエータ迂回通路66のエンジン冷却液の流量が増加する。この結果、ストイキ燃焼時には、燃焼室17の壁温が過剰に上昇するのを抑制することができる一方、リーン燃焼時には、燃焼室17の壁温を出来る限り高い状態に保つことができる。尚、第2検出液温(すなわち燃焼室17の壁温)がリーン燃焼可能な温度であるにも関わらず、ストイキ燃焼である状態とは、吸気温度が第1所定吸気温以上になっていない場合などをいう。
As shown in FIG. 8, the on-state time t2 per unit time T during stoichiometric combustion is longer than the on-state time t1 per unit time T during lean combustion. That is, the
図9には、リーン燃焼時(すなわち第1モード)におけるラジエータ迂回通路66のエンジン冷却液の流量と、ストイキ燃焼時(すなわち第2モード)におけるラジエータ迂回通路66のエンジン冷却液の流量とを示す。横軸は、目標温度(特定温度)と第2検出液温との温度差であり、縦軸は、ラジエータ迂回通路66のエンジン冷却液の流量である。
FIG. 9 shows the flow rate of the engine coolant in the
図9に示すように、目標温度と第2検出液温との温度差が同じであっても、第2モードの方が第1モードと比較して、ラジエータ迂回通路66のエンジン冷却液の流量が大きい。これは、前述したように、第2モードの方が第1モードに比較して、デューティ比を大きくしているためである。本実施形態では、目標温度と第2検出液温との温度差が大きいほど、ラジエータ迂回通路66の流量が小さくなる。これにより、ストイキ燃焼からリーン燃焼への切り換えを早急に行うことができる。また、ストイキ燃焼時には、特に、目標温度と第2検出液温との温度差が小さいとき燃焼室17の壁温が上がり過ぎることを抑制することができる。
As shown in FIG. 9, even if the temperature difference between the target temperature and the second detection liquid temperature is the same, the flow rate of the engine coolant in the
尚、本実施形態では、目標温度と第2検出液温との温度差が大きいほど、ラジエータ迂回通路66を通るエンジン冷却液の流量を連続的に小さくしているが、例えば、ラジエータ迂回通路66の流量を3段階に分けて、目標温度と第2検出液温との温度差が大きい方が、該温度差が小さいときと比較して、ラジエータ迂回通路66の流量が小さくなるようにしてもよい。また、リーン燃焼領域及びストイキ燃焼領域において、エンジン負荷が大きいほど、又は、エンジン回転数が大きいほど、ラジエータ迂回通路66を通ってポンプ61に還流するエンジン冷却液の流量が大きくなるようにしてもよい。
In the present embodiment, the larger the temperature difference between the target temperature and the second detection liquid temperature, the smaller the flow rate of the engine coolant passing through the
図10のフローチャートは、流量制御時におけるECU100の処理動作を示す。尚、図10に示すフローチャートにおいて、エンジン負荷及びエンジン回転数は、リーン燃焼が可能な範囲に属している。
The flowchart of FIG. 10 shows the processing operation of the
まず、ステップS21において、ECU100は、各センサSW1〜SW7からの検出信号を読み込む。
First, in step S21, the
次のステップS22では、ECU100は目標温度を設定する。このステップS22において、ECU100は特定温度を目標温度に設定する。
In the next step S22, the
次のステップS23では、ECU100は、サーモスタット弁80を無通電状態にする。
In the next step S23, the
次のステップS24では、ECU100は、リーン燃焼領域であるか否かを判定する。より具体的には、ECU100は、燃焼室17の壁温(第2検出液温)が第1所定壁温以上でかつ吸気温が第1所定吸気温以上であるか否かを判定する。ECU100は、リーン燃焼領域に属しているYESのときにはステップS25に進む一方で、リーン燃焼領域に属していない、より具体的には、レイヤ2のストイキ燃焼領域であるNOときにはステップS26に進む。
In the next step S24, the
前記ステップS25では、ECU100は流量制御弁90を第1モードで作動させる。ステップS25の後はステップS27に進む。
In step S25, the
前記ステップS26では、ECU100は流量制御弁90を第2モードで作動させる。ステップS25の後はステップS27に進む。
In step S26, the
前記ステップS27では、ECU100は、目標温度と第2液温センサSW5により検出された第2検出液温との温度差ΔTaを算出する。
In step S27, the
次のステップS28では、ECU100は、前記ステップS27で算出した温度差ΔTaに基づいて、ラジエータ迂回通路のエンジン冷却液の流量を算出する。
In the next step S28, the
続くステップS29では、ECU100は、ラジエータ迂回通路のエンジン冷却液の流量が、前記ステップS28で算出した流量になるように、流量調整弁90のデューティ比を設定して、流量調整弁90に制御信号を出力する。ステップS29の後はリターンする。
In the following step S29, the
したがって、本実施形態によると、エンジン冷却液を供給するポンプ61と、エンジン1の気筒11を冷却するためにエンジン冷却液が流通するボア通路63と、エンジン1のシリンダヘッド13に設けられ、該シリンダヘッド13のヘッド壁部13aを冷却するためにエンジン冷却液が流通するヘッド通路64と、ボア通路63を通って、ヘッド通路64を通った後、エンジン冷却液を冷却させるラジエータ70を経由して、ポンプ61にエンジン冷却液を流入させるラジエータ通路65と、ボア通路63を通って、ヘッド通路64を通った後、ラジエータ70を迂回してポンプ61にエンジン冷却液を流入させるラジエータ迂回通路66と、エンジン冷却液の液温を取得する液温取得部(第2液温センサSW5)と、ポンプ61に還流するエンジン冷却液の流量を調整する流量調整弁90と、流量調整弁90を作動制御するECU100とを備え、エンジン1は、検出又は推定される燃焼室17の壁部の温度に基づいて、リーン燃焼とストイキ燃焼とが切り替えられるエンジンであり、ECU100は、リーン燃焼とストイキ燃焼とで同じ目標温度を設定するとともに、該目標温度と前記液温取得部の検出結果との温度差に応じて、ポンプ61に還流するエンジン冷却液の流量を調整するように流量調整弁90に制御信号を出力し、さらにECU100は、ストイキ燃焼時の方が、リーン燃焼時に比べて流量調整弁90のオン状態の時間が長くなるように、該流量調整弁90に制御信号を出力する。これによると、ECU100は、リーン燃焼とストイキ燃焼とで同じ目標温度を設定するため、燃焼室17の壁温が低下して、リーン燃焼からストイキ燃焼に切り替わったとしても、燃焼室17の壁温をリーン燃焼が可能な温度まで早急に上昇させることができる。
Therefore, according to the present embodiment, the
また、ストイキ燃焼時には、燃焼室17の壁温が過剰に上昇すること(特に、目標温度を超えてしまうこと)を抑制することができる一方、リーン燃焼時には、燃焼室17の壁温を出来る限り高い状態に保つことができる。
Further, during stoichiometric combustion, it is possible to prevent the wall temperature of the
したがって、燃焼室17の壁温の低下により、リーン燃焼からストイキ燃焼への切り換えが発生したとしても、ストイキ燃焼からリーン燃焼への切り換えを早期にかつ安定的に行うことができる。
Therefore, even if a switch from lean combustion to stoichiometric combustion occurs due to a decrease in the wall temperature of the
また、本実施形態では、ECU100は、目標温度と液温取得部(第2液温センサSW5)の検出結果との温度差が大きいほど、ポンプ61に還流するエンジン冷却液の流量が小さくなるように、流量調整弁90に制御信号を出力する。これにより、燃焼室17の壁温が低下して、リーン燃焼からストイキ燃焼に切り替わったとしても、燃焼室17の壁温をリーン燃焼が可能な温度までより早急に上昇させることができる。さらに、ストイキ燃焼時には、特に、目標温度とエンジン冷却液との温度差が小さいときに、燃焼室17の壁温が上がり過ぎることを抑制することができる。この結果、ストイキ燃焼からリーン燃焼への切り換えをより早期にかつより安定的に行うことができる。
Further, in the present embodiment, in the
また、本実施形態では、冷却システム60による冷却効果に加えて、ストイキ燃焼時にEGRガスを導入することで、燃焼を緩慢にすることができる。これにより、ノッキング等の異常燃焼を抑制することができる。この結果、ストイキ燃焼からリーン燃焼への切り換えをより安定的に行うことができる。
Further, in the present embodiment, in addition to the cooling effect of the
また、本実施形態では、冷却システム60による冷却効果に加えて、リーン燃焼時に内部EGRガスを燃焼室17に導入することで、燃焼室17の壁温を出来る限り高い状態に保つことができる。これにより、リーン燃焼可能なエンジン負荷及びエンジン回転数の時には、出来る限りリーン燃焼を実行することができ、燃費を向上させることができる。
Further, in the present embodiment, in addition to the cooling effect of the
ここに開示された技術は、前記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。 The technique disclosed herein is not limited to the above-described embodiment, and can be substituted within a range that does not deviate from the gist of the claims.
例えば、前述の実施形態では、ラジエータ通路65に配置する温調装置は電気式のサーモスタット弁80であったが、これに限らず、電磁式の弁で構成してもよい。
For example, in the above-described embodiment, the temperature control device arranged in the
また、前述の実施形態では、燃焼室17の壁部の温度を第2液温センサSW5の検出結果から推定していた。これに限らず、燃焼室17の壁部の温度を直接検出するセンサを設けてもよい。
Further, in the above-described embodiment, the temperature of the wall portion of the
また、前述の実施形態では、第2液温センサSW5はヘッド通路64のエンジン冷却液の液温を検出していたが、これに限らず、ボア通路63のエンジン冷却液の液温を検出するように構成されていてもよい。気筒11も燃焼室17の壁部を構成しているため、ボア通路63のエンジン冷却液の液温も燃焼室17の壁部の温度を反映していると言える。このため、ボア通路63のエンジン冷却液の液温に基づいて、流量調整弁90を作動制御しても、燃焼室の壁温を早期に上昇させて、早期にストイキ燃焼からリーン燃焼への切り換えを可能にすることができる。
Further, in the above-described embodiment, the second liquid temperature sensor SW5 detects the liquid temperature of the engine coolant in the
前述の実施形態は単なる例示に過ぎず、本開示の範囲を限定的に解釈してはならない。本開示の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本開示の範囲内のものである。 The above embodiments are merely examples, and the scope of the present disclosure should not be construed in a limited manner. The scope of the present disclosure is defined by the scope of claims, and all modifications and changes belonging to the equivalent scope of the scope of claims are within the scope of the present disclosure.
ここに開示された技術は、空燃比が理論空燃比よりも大きい混合気を燃焼させるリーン燃焼と、空燃比が該理論空燃比近傍の混合気を燃焼させるストイキ燃焼とを切り替え可能なエンジンの冷却システムとして有用である。 The technology disclosed herein is engine cooling that can switch between lean combustion, which burns an air-fuel ratio larger than the stoichiometric air-fuel ratio, and stoichiometric combustion, which burns an air-fuel ratio near the stoichiometric air-fuel ratio. It is useful as a system.
1 エンジン
11 気筒(シリンダボア)
13 シリンダヘッド
13a ヘッド壁部(シリンダヘッドの燃焼室近傍の部分、燃焼室の壁部)
60 冷却システム
61 ポンプ
63 ボア通路
64 ヘッド通路
65 ラジエータ通路(第1通路)
66 ラジエータ迂回通路(第2通路)
70 ラジエータ
90 流量調整弁(流量調整装置)
100 ECU(制御部)
SW5 第2液温センサ(液温取得部)
1
13
60
66 Radiator detour passage (second passage)
70
100 ECU (control unit)
SW5 2nd liquid temperature sensor (liquid temperature acquisition unit)
Claims (4)
エンジン冷却液を供給するポンプと、
前記エンジンのシリンダボアを冷却するためにエンジン冷却液が流通するボア通路と、
前記エンジンのシリンダヘッドに設けられ、該シリンダヘッドの燃焼室近傍の壁部を冷却するためにエンジン冷却液が流通するヘッド通路と、
前記ボア通路を通って、前記ヘッド通路を通った後、エンジン冷却液を冷却させるラジエータを経由して、前記ポンプにエンジン冷却液を流入させる第1通路と、
前記ボア通路を通って、前記ヘッド通路を通った後、前記ラジエータを迂回して前記ポンプにエンジン冷却液を流入させる第2通路と、
エンジン冷却液の液温を取得する液温取得部と、
開き状態と閉じ状態とが切り替えられるオン/オフ式の弁で構成され、前記ポンプに還流するエンジン冷却液の流量を調整する流量調整弁と、
前記流量調整弁を作動制御する制御部とを備え、
前記エンジンは、検出又は推定される前記燃焼室の壁部の温度に基づいて、前記リーン燃焼と前記ストイキ燃焼とが切り替えられるエンジンであり、
前記制御部は、前記リーン燃焼と前記ストイキ燃焼とで同じ目標温度を設定するとともに、該目標温度と前記液温取得部の検出結果との差分に応じて、前記ポンプに還流するエンジン冷却液の流量を調整するように前記流量調整弁に制御信号を出力し、
さらに前記制御部は、前記ストイキ燃焼時の方が、前記リーン燃焼時に比べて前記流量調整弁の開き状態の時間が長くなるように、該流量調整弁に制御信号を出力することを特徴とするエンジンの冷却システム。 It is an engine cooling system that can switch between lean combustion that burns an air-fuel ratio leaner than the stoichiometric air-fuel ratio and stoichiometric combustion that burns an air-fuel ratio leaner than the stoichiometric air-fuel ratio.
The pump that supplies the engine coolant and
A bore passage through which engine coolant flows to cool the cylinder bore of the engine, and
A head passage provided in the cylinder head of the engine and through which an engine coolant flows to cool a wall portion in the vicinity of the combustion chamber of the cylinder head.
A first passage through which the engine coolant flows into the pump via a radiator that cools the engine coolant after passing through the bore passage and the head passage.
A second passage that bypasses the radiator and allows the engine coolant to flow into the pump after passing through the bore passage and the head passage.
A liquid temperature acquisition unit that acquires the temperature of the engine coolant,
It consists of an on / off valve that can be switched between open and closed states, and a flow control valve that adjusts the flow rate of the engine coolant that returns to the pump.
A control unit that controls the operation of the flow rate adjusting valve is provided.
The engine is an engine that can switch between the lean combustion and the stoichiometric combustion based on the detected or estimated temperature of the wall portion of the combustion chamber.
The control unit sets the same target temperature for the lean combustion and the stoichiometric combustion, and the engine coolant that returns to the pump according to the difference between the target temperature and the detection result of the liquid temperature acquisition unit. A control signal is output to the flow rate adjusting valve so as to adjust the flow rate,
Further, the control unit is characterized in that a control signal is output to the flow rate adjusting valve so that the open state time of the flow rate adjusting valve is longer during the stoichiometric combustion than during the lean combustion. Engine cooling system.
前記液温取得部は、前記ヘッド通路を流通するエンジン冷却液の液温を取得するように配設されていることを特徴とするエンジンの冷却システム。 In the engine cooling system according to claim 1,
The engine cooling system is characterized in that the liquid temperature acquisition unit is arranged so as to acquire the liquid temperature of the engine coolant flowing through the head passage.
前記エンジンは、該エンジンの運転状態が、エンジン負荷及びエンジン回転数に基づいて設定される所定のリーン燃焼領域であるときには、前記リーン燃焼を実行し、エンジン負荷及びエンジン回転数に基づいて設定される所定のストイキ燃焼領域であるときには、前記ストイキ燃焼を実行するように構成されており、
前記リーン燃焼領域におけるエンジン負荷の範囲及びエンジン回転数の範囲と、前記ストイキ燃焼領域におけるエンジン負荷の範囲及びエンジン回転数の範囲とは重複していることを特徴とするエンジンの冷却システム。 In the engine cooling system according to claim 1 or 2.
When the operating state of the engine is a predetermined lean combustion region set based on the engine load and the engine speed, the engine executes the lean combustion and is set based on the engine load and the engine speed. When it is in a predetermined stoichiometric combustion region, it is configured to execute the stoichiometric combustion.
An engine cooling system characterized in that the range of engine load and engine speed in the lean combustion region and the range of engine load and engine speed in the stoichiometric combustion region overlap.
前記エンジンは、前記燃焼室に臨みかつ該燃焼室内の混合気に点火する点火プラグを有し、
前記リーン燃焼及び前記ストイキ燃焼における前記エンジンの燃焼方式は、燃料と吸気との混合気を前記点火プラグにより火花点火させた後、燃料と吸気との混合気を圧縮自着火させる部分圧縮自己着火方式であることを特徴とするエンジンの冷却システム。 In the engine cooling system according to any one of claims 1 to 3.
The engine has a spark plug that faces the combustion chamber and ignites the air-fuel mixture in the combustion chamber.
The combustion method of the engine in the lean combustion and the stoichiometric combustion is a partial compression self-ignition method in which a mixture of fuel and intake air is spark-ignited by the spark plug and then the mixture of fuel and intake air is compressed and self-ignited. An engine cooling system characterized by being.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019071060A JP7226031B2 (en) | 2019-04-03 | 2019-04-03 | engine cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019071060A JP7226031B2 (en) | 2019-04-03 | 2019-04-03 | engine cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020169600A true JP2020169600A (en) | 2020-10-15 |
JP7226031B2 JP7226031B2 (en) | 2023-02-21 |
Family
ID=72745773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019071060A Active JP7226031B2 (en) | 2019-04-03 | 2019-04-03 | engine cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7226031B2 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05231148A (en) * | 1992-02-19 | 1993-09-07 | Honda Motor Co Ltd | Cooling system controller for engine |
JPH0783052A (en) * | 1992-12-15 | 1995-03-28 | Nippon Soken Inc | Cooling device for internal combustion engine |
JP2007071145A (en) * | 2005-09-08 | 2007-03-22 | Toyota Motor Corp | Cooling device of internal combustion engine |
JP2010216411A (en) * | 2009-03-18 | 2010-09-30 | Mazda Motor Corp | Engine cooling device |
JP2012117389A (en) * | 2010-11-29 | 2012-06-21 | Mitsubishi Motors Corp | Cooling control device of engine |
JP2013108398A (en) * | 2011-11-18 | 2013-06-06 | Aisin Seiki Co Ltd | Engine cooling system |
JP2014009668A (en) * | 2012-07-03 | 2014-01-20 | Toyota Motor Corp | Cooling controller of internal combustion engine |
JP2017180110A (en) * | 2016-03-28 | 2017-10-05 | トヨタ自動車株式会社 | Internal combustion engine |
US20180306097A1 (en) * | 2017-04-21 | 2018-10-25 | GM Global Technology Operations LLC | Coolant control systems and methods to prevent over temperature |
JP2019039352A (en) * | 2017-08-24 | 2019-03-14 | マツダ株式会社 | Control device for compression ignition engine |
-
2019
- 2019-04-03 JP JP2019071060A patent/JP7226031B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05231148A (en) * | 1992-02-19 | 1993-09-07 | Honda Motor Co Ltd | Cooling system controller for engine |
JPH0783052A (en) * | 1992-12-15 | 1995-03-28 | Nippon Soken Inc | Cooling device for internal combustion engine |
JP2007071145A (en) * | 2005-09-08 | 2007-03-22 | Toyota Motor Corp | Cooling device of internal combustion engine |
JP2010216411A (en) * | 2009-03-18 | 2010-09-30 | Mazda Motor Corp | Engine cooling device |
JP2012117389A (en) * | 2010-11-29 | 2012-06-21 | Mitsubishi Motors Corp | Cooling control device of engine |
JP2013108398A (en) * | 2011-11-18 | 2013-06-06 | Aisin Seiki Co Ltd | Engine cooling system |
JP2014009668A (en) * | 2012-07-03 | 2014-01-20 | Toyota Motor Corp | Cooling controller of internal combustion engine |
JP2017180110A (en) * | 2016-03-28 | 2017-10-05 | トヨタ自動車株式会社 | Internal combustion engine |
US20180306097A1 (en) * | 2017-04-21 | 2018-10-25 | GM Global Technology Operations LLC | Coolant control systems and methods to prevent over temperature |
JP2019039352A (en) * | 2017-08-24 | 2019-03-14 | マツダ株式会社 | Control device for compression ignition engine |
Also Published As
Publication number | Publication date |
---|---|
JP7226031B2 (en) | 2023-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10837377B2 (en) | Method of implementing control logic of compression ignition engine | |
JP7250249B2 (en) | Abnormality determination method and abnormality determination system for differential pressure sensor | |
US10767577B2 (en) | Method of implementing control logic of compression-ignition engine | |
JP7044052B2 (en) | Engine intake temperature controller | |
US10760519B2 (en) | Control device of compression-ignition engine | |
JP6406417B1 (en) | Turbocharged engine | |
JP7044053B2 (en) | Intake temperature control device for engine with supercharger | |
JP7225790B2 (en) | Compression ignition engine with supercharger | |
JP7172577B2 (en) | Intake air temperature control device for supercharged engine | |
JP7226030B2 (en) | engine cooling system | |
JP7230648B2 (en) | engine cooling system | |
JP7250250B2 (en) | Engine control method and control system | |
JP7226032B2 (en) | engine cooling system | |
JP7226031B2 (en) | engine cooling system | |
JP7226033B2 (en) | engine cooling system | |
JP6992738B2 (en) | Engine intake temperature controller | |
JP6962310B2 (en) | Control device for engine with supercharger | |
JP2019203431A (en) | Method of designing control logic of compression ignition type engine | |
JP2019203429A (en) | Method of designing control logic of compression ignition type engine | |
US10982610B2 (en) | Engine controller | |
JP7247873B2 (en) | engine controller | |
JP7234749B2 (en) | CONTROL DEVICE AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE | |
JP2021088944A (en) | Engine control device | |
JP2019203430A (en) | Method of designing control logic of compression ignition type engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230123 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7226031 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |