JP2020169370A - Method for melting steel scrap in electric furnace - Google Patents

Method for melting steel scrap in electric furnace Download PDF

Info

Publication number
JP2020169370A
JP2020169370A JP2019072573A JP2019072573A JP2020169370A JP 2020169370 A JP2020169370 A JP 2020169370A JP 2019072573 A JP2019072573 A JP 2019072573A JP 2019072573 A JP2019072573 A JP 2019072573A JP 2020169370 A JP2020169370 A JP 2020169370A
Authority
JP
Japan
Prior art keywords
steel scrap
oxygen
steel
electric furnace
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019072573A
Other languages
Japanese (ja)
Other versions
JP7255326B2 (en
Inventor
玄一郎 加藤
Genichiro Kato
玄一郎 加藤
良太 間内
Ryota Manai
良太 間内
輝昭 平沼
Teruaki Hiranuma
輝昭 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2019072573A priority Critical patent/JP7255326B2/en
Publication of JP2020169370A publication Critical patent/JP2020169370A/en
Application granted granted Critical
Publication of JP7255326B2 publication Critical patent/JP7255326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

To provide a melting method for improving yield while securing operation stability by controlling gas blowing accuracy when melting steel scrap is melted in an electric furnace.SOLUTION: In a steel scrap melting method, steel scrap is charged into an electric furnace and melted, and oxygen is blown by a lance inserted into the electric furnace to adjust element components while stirring, thereby obtaining molten alloy steel. The steel scrap is charged into the electric furnace together with a metal oxide, heated up, and then blown with an inert gas.SELECTED DRAWING: Figure 2

Description

本発明は、電気炉による鉄鋼スクラップの溶解方法に関し、特に、電気炉の内部にガス吹精を行って攪拌しつつ元素成分を調整し合金溶鋼を得る鉄鋼スクラップ溶解の方法に関する。 The present invention relates to a method for melting steel scrap by an electric furnace, and more particularly to a method for melting steel scrap to obtain alloy molten steel by adjusting elemental components while stirring by gas blowing inside the electric furnace.

鉱山から採掘される鉄鉱石から高炉によって溶鋼を得る一方で、鉄鋼スクラップを溶解して不純物成分を取り除き溶鋼を得る方法が広く行われている。かかる鉄鋼スクラップ溶解は、鉄鋼材料のリサイクルを考慮する上で非常に重要な技術である。例えば、アーク炉のような電気炉に鉄鋼スクラップとともに生石灰などの造滓材を装入しこれを溶解する。このとき、炉内下部にあるガスパイプ、若しくは、炉内に挿入されるランスから酸素などの所定のガスを吹き込んでガス吹精を行って溶鋼を攪拌する。その一方で、メタル−スラグ反応により、溶鋼中のリン(P)、その他の不純物成分を酸化除去し、併せて、炭素(C)濃度の調整が行われる。最後に、炉体を傾斜させて、溶鋼上部のスラグを分離し、その下部の溶鋼だけを取り出す。 While molten steel is obtained from iron ore mined from a mine by a blast furnace, a method of melting steel scrap to remove impurity components to obtain molten steel is widely used. Such steel scrap melting is a very important technique in consideration of recycling of steel materials. For example, a slag-making material such as quicklime is charged together with steel scrap into an electric furnace such as an arc furnace and melted. At this time, a predetermined gas such as oxygen is blown from a gas pipe at the lower part of the furnace or a lance inserted into the furnace to perform gas injection to stir the molten steel. On the other hand, the metal-slag reaction oxidatively removes phosphorus (P) and other impurity components in the molten steel, and at the same time, adjusts the carbon (C) concentration. Finally, the furnace body is tilted to separate the slag above the molten steel, and only the molten steel below it is taken out.

例えば、特許文献1では、電気炉に鉄鋼スクラップと炭材とを収容し、炉内底部に炉外からランスを挿入して酸素吹精を行いながら炭材の燃焼熱で鉄鋼スクラップ材を溶解し溶鋼を得る鉄鋼スクラップ溶解方法が開示されている。ここで、酸素吹精の過程ではFe成分が不可避的に酸化されながら溶解するため、大量のFeOスラグが発生し溶鋼の歩留まりを低下させる。そのため、スクラップ材の溶落後には炭粉などの還元材を投入するべきことを述べている。なお、FeOスラグとの還元反応が吸熱反応となる還元材は溶鋼温度を低下させてしまうため、還元材としては発熱反応となるFeSiやAl灰などが好適であるとしている。 For example, in Patent Document 1, steel scrap and charcoal material are stored in an electric furnace, and a lance is inserted into the bottom of the furnace from outside the furnace to perform oxygen blowing while melting the steel scrap material with the combustion heat of the charcoal material. A steel scrap melting method for obtaining molten steel is disclosed. Here, in the process of oxygen blowing, the Fe component is inevitably oxidized and dissolved, so that a large amount of FeO slag is generated and the yield of molten steel is lowered. Therefore, it states that a reducing agent such as charcoal powder should be added after the scrap material has melted down. Since the reducing agent whose reduction reaction with FeO slag is an endothermic reaction lowers the molten steel temperature, FeSi or Al ash, which is an exothermic reaction, is said to be suitable as the reducing material.

ところで、溶鋼中のリン(P)などを酸化除去するための酸素源として、固体酸化物、例えば、金属酸化物などを投入して歩留まりを向上させる方法も提案されている。 By the way, a method has also been proposed in which a solid oxide, for example, a metal oxide or the like is added as an oxygen source for oxidizing and removing phosphorus (P) or the like in molten steel to improve the yield.

例えば、特許文献2では、スクラップ材を溶解した後の脱P処理において、酸素源として金属酸化物を使用することを開示している。金属酸化物を昇温後の溶鋼に投入して脱P反応を生じさせるのである。金属酸化物としては、酸化鉄、ミルスケール、酸化合金鉄の他に集塵機に捕捉される製鉄所ダスト等の廃棄物を例示している。一方、金属酸化物は分解吸熱反応を伴うため、溶鋼を十分に昇温してから投入するか、若しくは、酸素ガスを併せて使用して脱P反応による昇温を合わせて行う必要があるとしている。 For example, Patent Document 2 discloses that a metal oxide is used as an oxygen source in the de-P treatment after melting the scrap material. The metal oxide is put into the molten steel after the temperature is raised to cause a de-P reaction. Examples of metal oxides include iron oxide, mill scale, ferroalloy, and waste such as steel mill dust trapped in a dust collector. On the other hand, since metal oxides are accompanied by a decomposition endothermic reaction, it is necessary to raise the temperature of the molten steel sufficiently before charging it, or to use oxygen gas together to raise the temperature by the de-P reaction. There is.

特開2002−97512号公報JP-A-2002-97512 特開2003−213321号公報Japanese Unexamined Patent Publication No. 2003-213321

電気炉による鉄鋼スクラップの溶解において、酸素ガス吹精は、溶鋼の攪拌、昇温、及びリン(P)などの成分調整といった操業性やメタル−スラグ反応の制御についての重要な役割を担っている。ここで、特許文献1でも述べられているように、酸素ガス吹精の過程では、大量のFeOスラグを発生させて溶鋼の歩留まりが低下するため、酸素ガス量をより少なくすることが好ましい。一方、操業安定性を確保するには、溶鋼を攪拌しつつ温度制御を行って、特に、大型の鉄鋼スクラップを用いる場合にあっては、酸素ガス量をより多くすることが好ましい。そこで、特許文献2で述べられているように、金属酸化物を用いることも考慮されるが、その投入タイミングと酸素量の調整が煩雑である。 In melting steel scrap by an electric furnace, oxygen gas blowing plays an important role in maneuverability such as stirring, raising the temperature of molten steel, and adjusting components such as phosphorus (P) and controlling the metal-slag reaction. .. Here, as described in Patent Document 1, in the process of oxygen gas blowing, a large amount of FeO slag is generated and the yield of molten steel is lowered, so that it is preferable to reduce the amount of oxygen gas. On the other hand, in order to ensure operational stability, it is preferable to control the temperature while stirring the molten steel, and to increase the amount of oxygen gas, especially when a large steel scrap is used. Therefore, as described in Patent Document 2, the use of a metal oxide is also considered, but the adjustment of the input timing and the amount of oxygen is complicated.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、電気炉の内部の鉄鋼スクラップに挿入されたランスでガス吹精を行って攪拌しつつ成分調整を行って合金溶鋼を得る鉄鋼スクラップ溶解方法において、ガス吹精を制御し操業安定性を確保しつつ歩留まりの向上を図る溶解方法の提供にある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to adjust the components while stirring by gas blowing with a lance inserted in steel scrap inside an electric furnace. In the steel scrap melting method for obtaining alloy molten steel by performing the above, the present invention is to provide a melting method for improving the yield while controlling gas blowing to ensure operational stability.

本発明による鉄鋼スクラップ溶解方法は、電気炉の内部へ鉄鋼スクラップを装入し溶解させ該電気炉に挿入されたランスで酸素吹精を行って攪拌しつつ元素成分を調整し合金溶鋼を得る鉄鋼スクラップ溶解方法であって、前記鉄鋼スクラップを前記電気炉に装入し合わせて金属酸化物を装入し、昇温の後に、不活性ガスにてガス吹精することを特徴とする。 In the steel scrap melting method according to the present invention, steel scrap is charged into an electric furnace and melted, and oxygen is blown by a lance inserted in the electric furnace to adjust elemental components while stirring to obtain alloy molten steel. It is a scrap melting method, characterized in that the steel scrap is charged into the electric furnace, metal oxide is charged, the temperature is raised, and then gas is blown with an inert gas.

かかる発明によれば、金属酸化物をあらかじめ投入しておき、昇温後の脱P工程において酸素の供給を調整しスラグフォーミングを抑制できて、操業安定性を確保しつつ歩留まりの向上を図ることができるのである。 According to such an invention, a metal oxide is charged in advance, oxygen supply can be adjusted in the de-P step after the temperature rise to suppress slag forming, and the yield can be improved while ensuring operational stability. Can be done.

上記した発明において、前記鉄鋼スクラップを初装及び追装に分けて前記電気炉に装入し、前記初装に合わせて前記金属酸化物を装入し酸素吹精して溶解し脱Pを行うとともに、前記追装の後に前記昇温を行うことを特徴としてもよい。かかる発明によれば、鉄鋼スクラップを追装した場合においても脱Pでき、合金溶鋼の攪拌による操業安定性を確保しつつ歩留まりの向上を図ることができる。 In the above-described invention, the steel scrap is separately charged into the electric furnace for initial mounting and additional mounting, and the metal oxide is charged according to the initial mounting, oxygen is blown to dissolve the scrap, and de-P is performed. At the same time, the temperature rise may be performed after the follow-up. According to such an invention, P can be removed even when steel scrap is added, and the yield can be improved while ensuring the operational stability by stirring the alloy molten steel.

上記した発明において、前記合金溶鋼はMoを含む鋼種であり、前記金属酸化物はMoの酸化物であることを特徴としてもよい。かかる発明によればMoに併せて供給される酸素を用いて脱Pでき、歩留まりの向上を図ることができる。 In the above invention, the alloy molten steel may be a steel type containing Mo, and the metal oxide may be an oxide of Mo. According to such an invention, P can be removed by using oxygen supplied together with Mo, and the yield can be improved.

上記した発明において、前記不活性ガスはアルゴンガスであることを特徴としてもよい。かかる発明によれば、アルゴンガスによるガス吹精をすることで歩留まりの向上を図ることができる。 In the above invention, the inert gas may be an argon gas. According to such an invention, the yield can be improved by performing gas injection with argon gas.

本発明による溶解方法に用いる電気炉の一例としてのアーク炉の断面図である。It is sectional drawing of the arc furnace as an example of the electric furnace used in the melting method by this invention. 従来例及び1つの実施例による溶解方法を比較する工程図である。It is a process drawing which compares the dissolution method by a conventional example and one Example. 脱リンに必要となる酸素量とその供給源を示すグラフである。It is a graph which shows the amount of oxygen required for dephosphorization and the source thereof. 従来例及び他の実施例による溶解方法を比較する工程図である。It is a process diagram which compares the dissolution method by a conventional example and another Example.

本発明による1つの実施例としての鉄鋼スクラップ溶解方法について、図1乃至図3を用いて説明する。 A steel scrap melting method as an example according to the present invention will be described with reference to FIGS. 1 to 3.

図1に示すように、アーク炉1は、加熱用の電極2の垂下された炉内の底部(炉床)3において、鉄鋼スクラップ等の原料をアーク加熱して溶解させる電気炉である。かかるアーク炉1は、合金溶鋼4に挿入されたランス5からガスを吹き込んで合金溶鋼4を攪拌して合金の組成成分を調整する精錬を行うことが可能である。ここで、炉床からガスを噴き出し撹拌する炉床撹拌式の場合、ガスを噴き出す炉床のポーラスの詰まりを抑制するために、溶鋼のある場合に常に一定量のガスを噴出させ続ける必要がある。これに対し、ランス5によるガス吹精を行うアーク炉1では、ランス5を合金溶鋼4から引き抜いてガスの噴出を停止させることができる。本例では、このようなアーク炉1を用いるが、ランスによるガス吹精を行うことができれば他の電気炉としてもよい。なお、ランス5は例えば吹精台車6によって支持される。 As shown in FIG. 1, the arc furnace 1 is an electric furnace in which raw materials such as steel scrap are arc-heated and melted at the bottom (hearth) 3 in the furnace in which the heating electrode 2 is hung. Such an arc furnace 1 can perform refining in which gas is blown from a lance 5 inserted into the molten alloy steel 4 to stir the molten alloy steel 4 to adjust the composition components of the alloy. Here, in the case of the hearth stirring type in which gas is ejected from the hearth and stirred, it is necessary to constantly eject a certain amount of gas when there is molten steel in order to suppress clogging of the porous of the hearth that ejects gas. .. On the other hand, in the arc furnace 1 in which the gas is blown by the lance 5, the lance 5 can be pulled out from the molten alloy steel 4 to stop the gas ejection. In this example, such an arc furnace 1 is used, but another electric furnace may be used as long as gas blowing by a lance can be performed. The lance 5 is supported by, for example, a blower carriage 6.

図2(a)に示すように、鉄鋼スクラップの溶解において、一般的には脱リン(脱P)を行う際に酸素吹精が行われる。例えば、初装において得ようとする鋼種についての成分を含有する鉄鋼スクラップやその元素成分を調整するための添加金属(合金)などの合金溶鋼の原料と、スラグ原料をアーク炉1の内部に装入し(S1)、昇温して溶解させ合金溶鋼4及びその液面を覆うスラグ7(図1参照)を得る(S2)。そして、ランス5から酸素ガスを吹き込んで酸素吹精を行い合金溶鋼の脱炭に併せて脱リンを行う(S3)。 As shown in FIG. 2A, in melting steel scrap, oxygen blowing is generally performed when dephosphorization (de-P) is performed. For example, raw materials for molten alloy steel such as steel scrap containing components for the steel type to be obtained in the initial mounting and additive metals (alloys) for adjusting the elemental components, and slag raw materials are loaded inside the arc furnace 1. (S1), the temperature is raised and melted to obtain the alloy molten steel 4 and the slag 7 (see FIG. 1) covering the liquid surface thereof (S2). Then, oxygen gas is blown from the lance 5 to perform oxygen injection, and dephosphorization is performed at the same time as decarburization of the alloy molten steel (S3).

ここで、合金溶鋼4中のリンは、酸素吹精においてスラグ7から供給される酸素及びランス5から吹き込まれる酸素ガスと以下の反応を起こしてスラグ7に取り込まれる。つまり、合金溶鋼4が脱リンされる。
[P]+3/2(O2−)+O(g)→(PO 3−
Here, phosphorus in the alloy molten steel 4 undergoes the following reaction with oxygen supplied from the slag 7 and oxygen gas blown from the lance 5 in oxygen blowing, and is taken into the slag 7. That is, the alloy molten steel 4 is dephosphorized.
[P] +3/2 (O 2-) + O 2 (g) → (PO 4 3-)

この例では、さらに鉄鋼スクラップ等の原料の追装を行っている(S4)。そして、原料の追装された合金溶鋼を昇温し主として追装された原料を溶解させて(S5)、再び酸素吹精によって脱炭及び脱リンを行う(S6)。そして、十分に脱リンできていることを成分分析によって確認して(S7)、さらに昇温を経て(S8)、流滓、出湯を行い(S9)、所望の成分に調整された合金溶鋼4を得ることができる。 In this example, raw materials such as steel scrap are further tracked (S4). Then, the temperature of the alloy molten steel to which the raw material has been added is raised to mainly dissolve the added raw material (S5), and decarburization and phosphorus are performed again by oxygen blowing (S6). Then, it is confirmed by component analysis that the phosphorus is sufficiently dephosphorized (S7), the temperature is further raised (S8), slag and hot water are discharged (S9), and the alloy molten steel 4 adjusted to a desired component. Can be obtained.

ここで、本発明者らは、酸素吹精を行うことで、合金溶鋼4中の鉄が酸化されてスラグ7に取り込まれて歩留まり向上を妨げていることに着目し、供給される酸素量を少なくして酸化鉄の生成量を減じることを検討した。 Here, the present inventors have focused on the fact that iron in the molten alloy steel 4 is oxidized and taken into the slag 7 by performing oxygen injection, which hinders the improvement of the yield, and the amount of oxygen supplied is determined. It was examined to reduce the amount of iron oxide produced.

すなわち図2(b)に示すように、2回目の酸素吹精(S6)の代わりに、ランス5からアルゴンガスなどの不活性ガスを吹き込んで合金溶鋼4を攪拌するのである(Ar攪拌;S6’)。ただし、単にAr攪拌としただけでは、酸素が不足して十分な脱リンができないことがある。そこで、初装(S1)において、鉄鋼スクラップに合わせて金属酸化物を装入するのである。 That is, as shown in FIG. 2B, instead of the second oxygen injection (S6), an inert gas such as argon gas is blown from the lance 5 to stir the alloy molten steel 4 (Ar stirring; S6). '). However, simply by stirring Ar, oxygen may be insufficient and sufficient dephosphorization may not be possible. Therefore, in the initial mounting (S1), the metal oxide is charged in accordance with the steel scrap.

図3(a)を併せて参照すると、1回目の酸素吹精(S3)によって供給される酸素の量をA、金属酸化物から供給される酸素の量をB、2回目の酸素吹精(S6)によって供給される酸素の量をCとしたとき、全体を通して十分な脱リンをさせるために必要とされる酸素の量Mよりも多い酸素を供給できればよいことになる。つまり、M≦A+B+Cである。 With reference to FIG. 3A, the amount of oxygen supplied by the first oxygen blow (S3) is A, the amount of oxygen supplied from the metal oxide is B, and the second oxygen blow (S3) is also referred to. When the amount of oxygen supplied by S6) is C, it suffices to supply more oxygen than the amount of oxygen M required for sufficient dephosphorization throughout. That is, M ≦ A + B + C.

ここで、図3(b)に示すように、M≦A+Bであれば、2回目の酸素吹精(S6)による酸素の供給は不要となる。そこで、Bの量が充分となるように金属酸化物を装入しておけば、2回目の酸素吹精(S6)の代わりにArガスによる攪拌(S6’)とすることができ、過剰な酸素による鉄の酸化を抑制できる。なお、1回目の酸素吹精(S3)においては十分な酸素がランス5から供給される。そのため、金属酸化物中の酸素は金属に結合したまま残存する。他方、Arによる攪拌(S6’)においては金属酸化物中の酸素は金属から分離して脱リンに使用される。つまり、酸素吹精の停止に応じて金属酸化物中の酸素が消費され、酸素の供給を調整できる。 Here, as shown in FIG. 3B, if M ≦ A + B, the supply of oxygen by the second oxygen infusion (S6) becomes unnecessary. Therefore, if a metal oxide is charged so that the amount of B is sufficient, stirring with Ar gas (S6') can be performed instead of the second oxygen injection (S6), which is excessive. It can suppress the oxidation of iron by oxygen. In the first oxygen blow (S3), sufficient oxygen is supplied from the lance 5. Therefore, oxygen in the metal oxide remains bound to the metal. On the other hand, in stirring with Ar (S6'), oxygen in the metal oxide is separated from the metal and used for dephosphorization. That is, oxygen in the metal oxide is consumed in response to the stoppage of oxygen infusion, and the supply of oxygen can be adjusted.

また、過剰な酸素の供給を抑制できることから、炭素の急激な酸化などに伴うスラグのフォーミングをも抑制できて、例えばアーク炉1から合金溶鋼があふれてしまうような現象を防止できて操業安定性を向上させ、歩留まりの向上にも寄与する。他方、初装(S1)において、金属酸化物は鉄鋼スクラップに合わせてあらかじめ装入されている。つまり、金属酸化物を脱リン処理中に投入する場合と比べ、溶鋼の温度や成分を大きく変動させることなく、操業安定性を高め得る。 In addition, since the supply of excess oxygen can be suppressed, the forming of slag due to the rapid oxidation of carbon can be suppressed, and the phenomenon that the molten alloy steel overflows from the arc furnace 1 can be prevented, for example, and the operation stability can be suppressed. And contributes to the improvement of yield. On the other hand, in the initial loading (S1), the metal oxide is charged in advance according to the steel scrap. That is, the operational stability can be improved without significantly changing the temperature and composition of the molten steel as compared with the case where the metal oxide is added during the dephosphorization treatment.

以上のように、鉄鋼スクラップの装入に合わせて金属酸化物を装入し、昇温(S5)の後にアルゴンなどの不活性ガスでガス吹精(Ar攪拌;S6’)することで、十分に脱リンしつつ過剰な酸素による鉄の酸化を抑制して歩留まりを向上させ得る。特に、上記したように、追装を行う場合であっても、初装(S1)において鉄鋼スクラップに合わせて金属酸化物を装入しておけば、追装(S4)の後に昇温(S5)を行って不活性ガスによるガス吹精(Ar攪拌;S6’)をすれば脱リン可能であり、過剰な酸素の供給を抑制して歩留まりの向上を図ることができる。なお、このような製造方法は、例えば熱間ダイス鋼の製造に有効である。 As described above, it is sufficient to charge the metal oxide in accordance with the charge of the steel scrap, raise the temperature (S5), and then gas blow with an inert gas such as argon (Ar stirring; S6'). It is possible to improve the yield by suppressing the oxidation of iron due to excess oxygen while dephosphorizing. In particular, as described above, even in the case of performing additional equipment, if the metal oxide is charged in accordance with the steel scrap in the initial equipment (S1), the temperature rises (S5) after the additional equipment (S4). ) Is performed and gas is blown with an inert gas (Ar stirring; S6') to dephosphorize, and the supply of excess oxygen can be suppressed to improve the yield. It should be noted that such a manufacturing method is effective for, for example, manufacturing hot die steel.

また、金属酸化物は得ようとする合金溶鋼の成分組成に含まれる元素からなる金属の酸化物とすることが好ましい。例えば、合金溶鋼には必須の鉄の酸化物である酸化鉄を金属酸化物として用いることも好ましい。酸化鉄としては、鍛造の際に生じるスケールや表面疵取りで生じるくずを用いると廃棄物の再利用ができて好ましい。また、例えば合金溶鋼をMoを含む合金とする場合、Moの酸化物であるMoOを金属酸化物として好適に用い得る。 Further, the metal oxide is preferably a metal oxide composed of elements contained in the component composition of the alloy molten steel to be obtained. For example, it is also preferable to use iron oxide, which is an essential iron oxide for alloy molten steel, as a metal oxide. As the iron oxide, it is preferable to use scale generated during forging and waste generated by removing surface defects because waste can be reused. Further, for example, when the alloy molten steel is an alloy containing Mo, MoO 3 , which is an oxide of Mo, can be preferably used as a metal oxide.

鉄鋼スクラップとしては、例えば、「リターン材」と呼ばれるアーク炉1の備えられる工場内で生産された製品から切り捨てられたスクラップ材のように、その成分組成の明確なスクラップを用いることが好ましい。つまり、用いられる鉄鋼スクラップの成分組成から、得ようとする合金溶鋼に精錬するための脱リンに必要な酸素量を予め算出でき、鉄鋼スクラップと金属酸化物との配合を定めやすく、得られる合金溶鋼の成分組成も安定する。 As the steel scrap, it is preferable to use scrap having a clear component composition, such as scrap material cut off from a product produced in a factory equipped with an arc furnace 1 called "return material". That is, the amount of oxygen required for dephosphorization for refining the alloy molten steel to be obtained can be calculated in advance from the composition of the steel scrap used, and the composition of the steel scrap and the metal oxide can be easily determined, and the obtained alloy can be obtained. The composition of molten steel is also stable.

また、他の例として、図4に示すように、鉄鋼スクラップを初装のみで装入する場合にも同様の方法を用い得る。 Further, as another example, as shown in FIG. 4, the same method can be used when the steel scrap is charged only by the initial loading.

例えば、図4(a)に示すように、通常の酸素吹精を行う場合には、初装において得ようとする材料の成分を含有する鉄鋼スクラップや成分調整用の金属などの合金の原料と、スラグ原料をアーク炉1に装入し(S11)、昇温して溶解させ合金溶鋼4及びその液面を覆うスラグ7(図1参照)を得る(S12)。そして、ランス5から酸素ガスを吹き込んで酸素吹精を行い合金溶鋼の脱炭と併せて脱リンを行う(S13)。そして、十分に脱リンできていることを成分分析によって確認して(S14)、さらに昇温を経て(S15)、流滓、出湯を行い(S16)、所望の成分に調整された合金溶鋼4を得ることができる。 For example, as shown in FIG. 4A, in the case of performing normal oxygen infusion, it is used as a raw material for an alloy such as steel scrap or a metal for adjusting the composition, which contains the component of the material to be obtained in the initial packaging. , The slag raw material is charged into the arc furnace 1 (S11), heated and melted to obtain the alloy molten steel 4 and the slag 7 (see FIG. 1) covering the liquid surface thereof (S12). Then, oxygen gas is blown from the lance 5 to perform oxygen injection, and dephosphorization is performed together with decarburization of the alloy molten steel (S13). Then, it is confirmed by component analysis that the phosphorus is sufficiently dephosphorized (S14), the temperature is further raised (S15), slag and hot water are discharged (S16), and the alloy molten steel 4 adjusted to a desired component. Can be obtained.

これに対して、図4(b)に示すように、酸素吹精(S13)の代わりに上記と同様のAr攪拌(S13’)を行っても、初装(S11)において十分な金属酸化物が装入されていれば、Ar攪拌によるガス吹精によって十分に脱リンしつつ過剰な酸素による鉄の酸化を抑制して歩留まりを向上させ得る。 On the other hand, as shown in FIG. 4 (b), even if the same Ar stirring (S13') as described above is performed instead of oxygen blowing (S13), sufficient metal oxide is obtained in the initial assembly (S11). If the iron is charged, the yield can be improved by suppressing the oxidation of iron by excess oxygen while sufficiently dephosphorizing by gas blowing with Ar stirring.

以上、本発明の代表的な実施例及びこれに基づく改変例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。 Although typical examples of the present invention and modifications based on the present invention have been described above, the present invention is not necessarily limited to these, and those skilled in the art can claim the gist of the present invention or the attached patent claims. Various alternative and modified examples could be found without departing from the scope.

1 アーク炉
4 合金溶鋼
5 ランス
7 スラグ
S1 初装
S4 追装
S5 昇温
S6 Ar攪拌(ガス吹精)

1 Arc furnace 4 Alloy molten steel 5 Lance 7 Slag S1 Initial installation S4 Addition S5 Temperature rise S6 Ar Stirring (gas blowing)

Claims (4)

電気炉の内部へ鉄鋼スクラップを装入し溶解させ該電気炉に挿入されたランスで酸素吹精を行って攪拌しつつ元素成分を調整し合金溶鋼を得る鉄鋼スクラップ溶解方法であって、
前記鉄鋼スクラップを前記電気炉に装入し合わせて金属酸化物を装入し、昇温の後に、不活性ガスにてガス吹精することを特徴とする電気炉による鉄鋼スクラップ溶解方法。
This is a steel scrap melting method in which steel scrap is charged into the inside of an electric furnace and melted, and oxygen is blown by a lance inserted in the electric furnace to adjust the elemental components while stirring to obtain alloy molten steel.
A method for melting steel scrap by an electric furnace, which comprises charging the steel scrap into the electric furnace, charging the metal oxide, heating the temperature, and then injecting gas with an inert gas.
前記鉄鋼スクラップを初装及び追装に分けて前記電気炉に装入し、前記初装に合わせて前記金属酸化物を装入し酸素吹精して溶解し脱Pを行うとともに、前記追装の後に前記昇温を行うことを特徴とする請求項1記載の電気炉による鉄鋼スクラップ溶解方法。 The steel scrap is divided into initial and additional equipment and charged into the electric furnace, and the metal oxide is charged according to the initial equipment and oxygen is blown to dissolve and de-P, and the additional equipment is performed. The method for melting steel scrap by an electric furnace according to claim 1, wherein the temperature is raised after the above. 前記合金溶鋼はMoを含む鋼種であり、前記金属酸化物はMoの酸化物であることを特徴とする請求項1又は2に記載の鉄鋼スクラップ溶解方法。 The steel scrap melting method according to claim 1 or 2, wherein the alloy molten steel is a steel type containing Mo, and the metal oxide is an oxide of Mo. 前記不活性ガスはアルゴンガスであることを特徴とする請求項1乃至3のうちの1つに記載の鉄鋼スクラップ溶解方法。 The steel scrap melting method according to any one of claims 1 to 3, wherein the inert gas is argon gas.
JP2019072573A 2019-04-05 2019-04-05 Steel scrap melting method by electric furnace Active JP7255326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019072573A JP7255326B2 (en) 2019-04-05 2019-04-05 Steel scrap melting method by electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019072573A JP7255326B2 (en) 2019-04-05 2019-04-05 Steel scrap melting method by electric furnace

Publications (2)

Publication Number Publication Date
JP2020169370A true JP2020169370A (en) 2020-10-15
JP7255326B2 JP7255326B2 (en) 2023-04-11

Family

ID=72747131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019072573A Active JP7255326B2 (en) 2019-04-05 2019-04-05 Steel scrap melting method by electric furnace

Country Status (1)

Country Link
JP (1) JP7255326B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158718A (en) * 1996-11-29 1998-06-16 Kawasaki Steel Corp Method for recycling dust in electric furnace
JP2001342510A (en) * 2000-06-02 2001-12-14 Nisshin Steel Co Ltd Method for smelting metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158718A (en) * 1996-11-29 1998-06-16 Kawasaki Steel Corp Method for recycling dust in electric furnace
JP2001342510A (en) * 2000-06-02 2001-12-14 Nisshin Steel Co Ltd Method for smelting metal

Also Published As

Publication number Publication date
JP7255326B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
JP5522320B1 (en) Steelmaking slag reduction treatment method
JP4778501B2 (en) Reduction of chromium metal from oxidized chromium slag
JP6070844B2 (en) Exhaust gas treatment method and exhaust gas treatment equipment
JP4736466B2 (en) Method for producing high chromium molten steel
JP4742740B2 (en) Method for melting low-sulfur steel
EP2210959B1 (en) Process for producing molten iron
JP2006206957A (en) Method for recovering manganese from slag produced when manufacturing manganese-based ferroalloy
JPH02236235A (en) Smelt reduction method of ni ore and smelting furnace thereof
JPS6356287B2 (en)
JP2020169370A (en) Method for melting steel scrap in electric furnace
JP2006249568A (en) Method for producing molten iron having low phosphorus
JP2011084811A (en) Method for producing molten pig iron
RU2044061C1 (en) Composition burden for steel melting
JP3679475B2 (en) Method for refining stainless steel
JP3509072B2 (en) Iron and steel making
JP3158912B2 (en) Stainless steel refining method
JP2964861B2 (en) Stainless steel manufacturing method
JP7447878B2 (en) Method for decarburizing molten Cr and method for producing Cr-containing steel
RU2787133C1 (en) Method for the production of steel in an electric arc furnace
JP2001032009A (en) Method for refining molten steel containing chromium
JPH1046226A (en) Production of low nitrogen molten steel with arc electric furnace
SU691497A1 (en) Method of steel smelting
JP6560868B2 (en) Slag treatment method
JP3996536B2 (en) Method of adding Mn in converter
JPH11279614A (en) Method for refining chromium-containing molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150