JP2020166963A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2020166963A
JP2020166963A JP2019064264A JP2019064264A JP2020166963A JP 2020166963 A JP2020166963 A JP 2020166963A JP 2019064264 A JP2019064264 A JP 2019064264A JP 2019064264 A JP2019064264 A JP 2019064264A JP 2020166963 A JP2020166963 A JP 2020166963A
Authority
JP
Japan
Prior art keywords
electrode plate
plate group
thickness
case
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019064264A
Other languages
Japanese (ja)
Inventor
繁 松本
Shigeru Matsumoto
繁 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2019064264A priority Critical patent/JP2020166963A/en
Publication of JP2020166963A publication Critical patent/JP2020166963A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a secondary battery in which degradation in the durability of a resin case can be suppressed.SOLUTION: A secondary battery comprises: an electrode plate group in which rectangular positive electrode plates and rectangular negative electrode plates are laminated via a separator; electrolyte; and a resin battery case 100b which houses the electrode plate group and the electrolyte. In the secondary battery, two lateral sides of the electrode plate group each fixed by the collector plates have a first thickness in a lamination direction, while a portion sandwiched by the two lateral sides of the electrode plate group has a second thickness thicker than the first thickness and expanding in an arc in the lamination direction. An inner surface 111 of the battery case 100b facing the lamination direction of the electrode plate group has an arc-shaped surface which corresponds to the arc shape of the electrode plate group expanding in the lamination direction.SELECTED DRAWING: Figure 4

Description

本発明は、二次電池に関する。 The present invention relates to a secondary battery.

一般に、ポータブル機器や携帯機器等の電源として、また電気自動車やハイブリッド自動車用の電源として、エネルギー密度が高く信頼性に優れた二次電池であるニッケル水素二次電池が広く用いられている。ニッケル水素二次電池は、水酸化ニッケルを主成分とした正極板と、水素吸蔵合金を主成分とした負極板とをセパレータを介して積層させた極板群と、アルカリ電解液とがケースに収容されることで構成されている。 In general, a nickel-metal hydride secondary battery, which is a secondary battery having high energy density and excellent reliability, is widely used as a power source for portable devices and portable devices, and as a power source for electric vehicles and hybrid vehicles. In a nickel-metal hydride secondary battery, a positive electrode plate containing nickel hydroxide as a main component, a negative electrode plate containing a hydrogen storage alloy as a main component are laminated via a separator, and an alkaline electrolytic solution is used as a case. It consists of being contained.

ニッケル水素二次電池は、水素吸蔵合金が水素を吸蔵する充電によって膨張するため、極板群を収容するケースが外方に押圧されて膨らむ。例えば、膨張に対応した二次電池の一例が特許文献1に記載されている。 In a nickel-metal hydride secondary battery, a hydrogen storage alloy expands due to charging to store hydrogen, so that a case accommodating a group of electrode plates is pressed outward and expands. For example, Patent Document 1 describes an example of a secondary battery corresponding to expansion.

特許文献1に記載の二次電池は、角型電池の充放電サイクル中に生ずる電池の膨張を吸収可能な電池パックを有している。電池パックは、複数の角型素電池を位置決めリブを介して同一平面上の所定位置に配列する樹脂ケースを有している。樹脂ケースの内面の角型素電池の側面に対向する位置には、角型素電池の膨らみを吸収するための凹所が形成されている。凹所は、断面がほぼ円弧状であって、位置決めリブの間に形成されている。これにより、電池の充放電サイクル中の内圧上昇による膨らみで電池パックの外形と外観とが変化を起こさないようにしている。 The secondary battery described in Patent Document 1 has a battery pack capable of absorbing the expansion of the battery that occurs during the charge / discharge cycle of the square battery. The battery pack has a resin case in which a plurality of square elementary batteries are arranged at predetermined positions on the same plane via positioning ribs. A recess is formed on the inner surface of the resin case at a position facing the side surface of the square battery to absorb the bulge of the square battery. The recess has a substantially arcuate cross section and is formed between the positioning ribs. This prevents the outer shape and appearance of the battery pack from changing due to swelling due to an increase in internal pressure during the battery charge / discharge cycle.

特開平10−340710号公報JP-A-10-340710

二次電池は、充放電で極板群が膨張する都度、極板群を収納する樹脂ケースに極板群からの膨張圧力がかかる。こうした、樹脂ケースに繰り返される応力集中が樹脂ケースの耐久性を低下させるおそれがある。 In the secondary battery, the expansion pressure from the electrode plate group is applied to the resin case for accommodating the electrode plate group each time the electrode plate group expands due to charging and discharging. Such repeated stress concentration in the resin case may reduce the durability of the resin case.

なお、こうした課題は、ニッケル水素二次電池に限られたものではなく、極板群が充放電等によって膨張するリチウムイオン二次電池等のその他の二次電池についても同様である。 It should be noted that these problems are not limited to the nickel-metal hydride secondary battery, but the same applies to other secondary batteries such as a lithium ion secondary battery in which the electrode plate group expands due to charging / discharging or the like.

本発明は、このような実情に鑑みてなされたものであり、その目的は、樹脂ケースの耐久性の低下を抑制することのできる二次電池を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a secondary battery capable of suppressing a decrease in durability of a resin case.

上記課題を解決する二次電池は、矩形状の正極板と矩形状の負極板とをセパレータを介して積層させた極板群と、電解液と、前記極板群及び前記電解液を収容する樹脂製のケースとを備え、集電板でそれぞれ固定されている前記極板群の2側辺は、積層方向に第1厚さを有し、前記極板群の前記2側辺に挟まれる部分は、前記第1厚さよりも厚く前記積層方向に弧状に膨らんだ第2厚さを有し、前記極板群の前記積層方向と対向する前記ケースの対向面は、前記積層方向に膨らんだ前記極板群の弧状に対応する弧状の面を有している。 The secondary battery for solving the above-mentioned problems accommodates a group of electrode plates in which a rectangular positive electrode plate and a rectangular negative electrode plate are laminated via a separator, an electrolytic solution, the electrode plate group, and the electrolytic solution. The two side surfaces of the electrode plate group, which are provided with a resin case and are fixed to each other by a current collector plate, have a first thickness in the stacking direction and are sandwiched between the two side sides of the electrode plate group. The portion has a second thickness that is thicker than the first thickness and bulges in an arc shape in the stacking direction, and the facing surface of the case facing the stacking direction of the electrode plate group bulges in the stacking direction. It has an arcuate surface corresponding to the arcuate shape of the electrode plate group.

このような構成によれば、極板の膨らみの少ない充放電前にあって、極板群の積層方向と対向するケースの対向面が極板群の膨らみである弧状に対応して中央が凹んだ面となることで、極板群の2側辺に挟まれる部分とケースの対向面との間の当接面積が広く確保される。そして、極板の膨らみが大きくなる充放電後は、極板群の膨張による膨張力がケースの対向面全体で分散して受けられる。よって、ケースの広範囲で極板群からの押圧力を受けるためケースにかかる単位面積当たりの負荷が軽減される。これにより、樹脂製のケースの耐久性の低下が抑制される。 According to such a configuration, before charging / discharging with little bulge of the electrode plates, the facing surface of the case facing the stacking direction of the electrode plates is recessed in the center corresponding to the arc shape which is the bulge of the electrode plates. By forming the surface, a wide contact area is secured between the portion sandwiched between the two side surfaces of the electrode plate group and the facing surface of the case. Then, after charging / discharging in which the swelling of the electrode plates becomes large, the expansion force due to the expansion of the electrode plates is dispersed and received over the entire facing surface of the case. Therefore, since the pressing force from the electrode plate group is received over a wide range of the case, the load per unit area applied to the case is reduced. As a result, the decrease in durability of the resin case is suppressed.

また、充放電前から充放電後に至るまで、ケースの対向面と極板群との接触面積を広く確保することができるため、高い放熱効果が得られる。
好ましい構成として、前記ケースにおいて向かい合う2つの前記対向面の間隔のうち前記極板群の2側辺を収容する部分の間隔を第1間隔とし、前記極板群の2側辺の間の中央の間隔を第2間隔としたとき、前記第1間隔は、前記第1厚さよりも長く、かつ、前記第2厚さよりも短く、前記第2間隔は、前記第2厚さに略等しい。
Further, since a wide contact area between the facing surface of the case and the electrode plate group can be secured from before charging / discharging to after charging / discharging, a high heat dissipation effect can be obtained.
As a preferred configuration, of the distance between the two facing surfaces facing each other in the case, the distance between the portions accommodating the two side sides of the plate group is set as the first distance, and the distance between the two side sides of the plate group is set as the first distance. When the interval is the second interval, the first interval is longer than the first thickness and shorter than the second thickness, and the second interval is substantially equal to the second thickness.

このような構成によれば、極板群の弧状と、ケースの対向面の弧状とが近い形状となる。よって、ケースの耐久性の低下を抑制することができる。また、放熱効果が発揮されやすい。 According to such a configuration, the arc shape of the electrode plate group and the arc shape of the facing surface of the case are close to each other. Therefore, it is possible to suppress a decrease in the durability of the case. In addition, the heat dissipation effect is easily exhibited.

好ましい構成として、前記ケースの外壁の内面が前記弧状の前記対向面であり、前記外壁の外面が直線状の面である。
このような構成によれば、ケースの外壁が極板群の2側辺を収容する部分で厚く、極板群の2側辺の間の中央で薄くなる。つまり、ケース内側が弧状、ケースの外面が直線状の平面である。このような構成によれば、ケース内側への膨張力が積層方向及び対向面の面方向に分力される。よって、ケースの外壁の端部への応力集中が抑制される。
As a preferred configuration, the inner surface of the outer wall of the case is the arc-shaped facing surface, and the outer surface of the outer wall is a linear surface.
According to such a configuration, the outer wall of the case is thick at the portion accommodating the two side sides of the electrode plate group and thin at the center between the two side sides of the electrode plate group. That is, the inside of the case is an arc shape, and the outer surface of the case is a straight plane. According to such a configuration, the expansion force inward of the case is distributed in the stacking direction and the surface direction of the facing surface. Therefore, stress concentration on the end of the outer wall of the case is suppressed.

好ましい構成として、複数の前記ケースを備える電池モジュールを備え、前記電池モジュールは、隣接する2つの前記ケースの間が隔壁で区画されている。
このような構成によれば、隔壁で区画されたケースにおいてケースの外壁と隔壁との接続部への応力集中が緩和される。
As a preferred configuration, a battery module including the plurality of cases is provided, and the battery module is partitioned between two adjacent cases by a partition wall.
According to such a configuration, the stress concentration on the connection portion between the outer wall of the case and the partition wall is relaxed in the case partitioned by the partition wall.

好ましい構成として、前記ケースの前記極板群の前記2側辺を収容する部分において前記対向面と前記積層方向に平行な側面との接続部の断面が第1円弧となる面であり、前記ケースの前記極板群の前記2側辺の間を収容する部分において前記対向面の断面が前記極板群の弧状に対応する前記第1円弧よりも大径の第2円弧となる面である。 As a preferred configuration, the cross section of the connecting portion between the facing surface and the side surface parallel to the stacking direction in the portion accommodating the two side sides of the electrode plate group of the case is a surface having a first arc. In the portion accommodating between the two side sides of the electrode plate group, the cross section of the facing surface is a surface having a second arc having a diameter larger than the first arc corresponding to the arc shape of the electrode plate group.

このような構成によれば、押圧力を分力させることに加えて、応力が集中する位置をケースの対向面と側面との接続部から、接続部から離れた対向面側に変更することができる。これにより、応力集中が緩和される。 According to such a configuration, in addition to distributing the pressing force, the position where the stress is concentrated can be changed from the connecting portion between the facing surface and the side surface of the case to the facing surface side away from the connecting portion. it can. As a result, stress concentration is relaxed.

本発明によれば、樹脂ケースの耐久性の低下を抑制することができる。 According to the present invention, it is possible to suppress a decrease in the durability of the resin case.

二次電池の一実施形態を示す正面断面図。The front sectional view which shows one Embodiment of a secondary battery. 同実施形態の極板群の拡大断面構造を示す断面図。The cross-sectional view which shows the enlarged cross-sectional structure of the electrode plate group of the same embodiment. 同実施形態の極板群の電槽挿入前の上面視構造を模式的に示す模式図。The schematic diagram which shows typically the top view structure before the electric tank insertion of the electrode plate group of the same embodiment. 同実施形態のケースの極板群挿入前の上面視構造を模式的に示す模式図。The schematic diagram which shows typically the top view structure before the electrode plate group insertion of the case of the same embodiment. 同実施形態の隔壁と側壁とにかかる力を説明する説明図。Explanatory drawing explaining the force applied to the partition wall and the side wall of the same embodiment. 二次電池のその他の実施形態についてケースの電槽挿入前の上面視構造を模式的に示す模式図。FIG. 6 is a schematic view schematically showing a top view structure of the case before inserting the battery case for other embodiments of the secondary battery.

図1〜図5を参照して、二次電池の一実施形態について説明する。
図1に示されるように、本実施形態の二次電池は、複数のニッケル水素二次電池(単電池)を電気的に直列接続することによって構成される角形の密閉式電池である。
An embodiment of the secondary battery will be described with reference to FIGS. 1 to 5.
As shown in FIG. 1, the secondary battery of the present embodiment is a square sealed battery formed by electrically connecting a plurality of nickel-metal hydride secondary batteries (cell batteries) in series.

ここで、この角形の密閉式電池は、複数の単電池を収容可能な一体電槽100と同一体電槽100を封止する蓋体200とによって構成される直方体状の角形ケース300を有している。なお、この角形ケース300は、樹脂製のものを用いることができる。そして、角形ケース300の表面には電池使用時の放熱性を高めるべく複数の凹凸(図示略)が形成されている。 Here, this square sealed battery has a rectangular parallelepiped square case 300 composed of an integrated battery 100 capable of accommodating a plurality of single batteries and a lid 200 for sealing the same battery 100. ing. As the square case 300, a resin case can be used. A plurality of irregularities (not shown) are formed on the surface of the square case 300 in order to improve heat dissipation when the battery is used.

角形ケース300を構成する一体電槽100は、例えばポリプロピレンやポリエチレン等といった、アルカリ性の電解液に対して耐性を有する合成樹脂材料により構成されている。そしてこの一体電槽100の内部には、複数の単電池を区画するかたちで隔壁110が形成されており、この隔壁110によって区画された部分が、単電池毎の電槽100bとなる。一体電槽100は、例えば、6つの電槽100bを有しており、図1には、その一部の4つが示されている。 The integrated electric tank 100 constituting the square case 300 is made of a synthetic resin material having resistance to an alkaline electrolytic solution such as polypropylene or polyethylene. A partition wall 110 is formed inside the integrated battery 100 in the form of partitioning a plurality of cells, and the portion partitioned by the partition 110 becomes the battery 100b for each cell. The integrated electric tank 100 has, for example, six electric tanks 100b, and FIG. 1 shows four of them.

こうして区画された電槽100b内には、極板群140と、その両側に接合された正極の集電板150及び負極の集電板160とが電解液とともに収容されている。
図2の上面から見た単電池の拡大断面構造に示されるように、極板群140は、矩形状の正極板141及び負極板142がセパレータ143を介して積層して構成されている。このとき、正極板141、負極板142及びセパレータ143が積層された方向が、積層方向(図2の第1厚さD1、第2厚さD2の方向)である。極板群140の正極板141及び負極板142は、板面の方向にあって互いに反対側の側部に突出されることで正極板141のリード部141a及び負極板142のリード部142aが構成され、これらリード部141a,142aの側端縁にそれぞれ集電板150,160が接合されている。また、極板群140の両側面には同極板群140を積層方向に挟むように外周セパレータ144が設けられている。極板群140は、一方の集電板150から他方の集電板160に向かう幅方向に幅W1を有している。また、極板群140は、積層方向には、各集電板150,160に近い各側辺140Sでは第1厚さD1を有し、2側辺に挟まれる部分である幅方向の中央部140Cには第2厚さD2を有している。
In the electric tank 100b partitioned in this way, the electrode plate group 140, the positive electrode current collectors 150 and the negative electrode current collectors 160 joined to both sides thereof are housed together with the electrolytic solution.
As shown in the enlarged cross-sectional structure of the cell as seen from the upper surface of FIG. 2, the electrode plate group 140 is configured by laminating a rectangular positive electrode plate 141 and a negative electrode plate 142 via a separator 143. At this time, the direction in which the positive electrode plate 141, the negative electrode plate 142, and the separator 143 are laminated is the stacking direction (the direction of the first thickness D1 and the second thickness D2 in FIG. 2). The positive electrode plate 141 and the negative electrode plate 142 of the electrode plate group 140 are formed by the lead portion 141a of the positive electrode plate 141 and the lead portion 142a of the negative electrode plate 142 by projecting to the side portions opposite to each other in the direction of the plate surface. The current collector plates 150 and 160 are joined to the side edge edges of the lead portions 141a and 142a, respectively. Further, outer peripheral separators 144 are provided on both side surfaces of the electrode plate group 140 so as to sandwich the electrode plate group 140 in the stacking direction. The electrode plate group 140 has a width W1 in the width direction from one current collector plate 150 to the other current collector plate 160. Further, the electrode plate group 140 has a first thickness D1 on each side side 140S close to each of the current collector plates 150 and 160 in the stacking direction, and is a central portion in the width direction which is a portion sandwiched between the two side sides. The 140C has a second thickness D2.

また、図1に示されるように、隔壁110の上部には各電槽100bの接続に用いられる貫通孔170が形成されている。貫通孔170は、集電板150の上部に突設されている接続突部151、及び集電板160の上部に突設されている接続突部161の2つの接続突部151,161同士が該貫通孔170を介して溶接接続されることで、各々隣接する電槽100bの極板群140を電気的に直列に接続させる。貫通孔170のうち、両端の電槽100bの各々外側に位置する貫通孔170は、一体電槽100の端側壁上方で正極の接続端子120又は負極の接続端子(図示略)が装着される。正極の接続端子120は、集電板150の接続突部151と溶接接続される。負極の接続端子は、集電板160の接続突部161と溶接接続される。こうして直列接続された極板群140、すなわち複数の単電池の総出力が正極の接続端子120及び負極の接続端子から取り出される。 Further, as shown in FIG. 1, a through hole 170 used for connecting each electric tank 100b is formed in the upper part of the partition wall 110. In the through hole 170, two connection protrusions 151 and 161 of the connection protrusion 151 protruding from the upper part of the current collector plate 150 and the connection protrusion 161 protruding from the upper part of the current collector plate 160 are connected to each other. By welding and connecting through the through hole 170, the electrode plate group 140 of the adjacent electric tanks 100b is electrically connected in series. Of the through holes 170, the through holes 170 located outside each of the electric tanks 100b at both ends are equipped with a positive electrode connection terminal 120 or a negative electrode connection terminal (not shown) above the end side wall of the integrated electric tank 100. The connection terminal 120 of the positive electrode is welded and connected to the connection protrusion 151 of the current collector plate 150. The connection terminal of the negative electrode is welded and connected to the connection protrusion 161 of the current collector plate 160. The electrode plate group 140 connected in series in this way, that is, the total output of the plurality of cell cells is taken out from the positive electrode connection terminal 120 and the negative electrode connection terminal.

一方、角形ケース300を構成する蓋体200には、角形ケース300の内部圧力が所定の開弁圧以上になったとき、ガスを放出して内部圧力を解放する排気弁210と、電槽100bの内部温度を検出するためのセンサを装着するセンサ装着穴220とが設けられている。センサ装着穴220は、極板群140の近傍まで延びる穴によって、極板群140の温度を測定可能にしている。 On the other hand, the lid 200 constituting the square case 300 includes an exhaust valve 210 that releases gas to release the internal pressure when the internal pressure of the square case 300 exceeds a predetermined valve opening pressure, and an electric tank 100b. A sensor mounting hole 220 for mounting a sensor for detecting the internal temperature of the lid is provided. The sensor mounting hole 220 makes it possible to measure the temperature of the electrode plate group 140 by a hole extending to the vicinity of the electrode plate group 140.

排気弁210は、角形密閉式電池内の内部圧力を許容されうる閾値以下に維持するためのものであり、内部圧力の値が許容される閾値を超えた開弁圧以上になった場合には、開弁されることで同電池内部に発生したガスを排出する。これにより、角形密閉式電池は、内部圧力が閾値以下になるまでガスを排出して、その内部圧力が許容されうる閾値以下に維持されるようになる。 The exhaust valve 210 is for maintaining the internal pressure in the square sealed battery below an acceptable threshold value, and when the value of the internal pressure exceeds the allowable threshold value and exceeds the valve opening pressure. When the valve is opened, the gas generated inside the battery is discharged. As a result, the square sealed battery discharges gas until the internal pressure becomes equal to or lower than the threshold value, and the internal pressure is maintained below the allowable threshold value.

(極板群140)
図2に示されるように、正極板141は、水酸化ニッケル及びコバルトを活物質として構成されている。詳しくは、水酸化ニッケルに、水酸化コバルトや金属コバルト粉末などの導電剤、そして必要に応じてカルボキシメチルセルロースなどの増粘剤やポリテトラフルオロエチレンなどの結着剤を適量加えてまずはペースト状に加工する。その後、こうしてペースト状になった加工物を、発泡ニッケル三次元多孔体等の芯材に塗布あるいは充填したのちに、これを乾燥、圧延、切断することによって板状の正極板141を形成する。なお、発泡ニッケル三次元多孔体としては、発泡ウレタンのウレタン骨格表面にニッケルメッキを施した後、発泡ウレタンを焼失させたものが用いられる。
(Pole plate group 140)
As shown in FIG. 2, the positive electrode plate 141 is composed of nickel hydroxide and cobalt as active materials. Specifically, to nickel hydroxide, add an appropriate amount of a conductive agent such as cobalt hydroxide or metallic cobalt powder, and if necessary, a thickener such as carboxymethyl cellulose or a binder such as polytetrafluoroethylene to form a paste. Process. Then, the paste-like processed product is applied or filled in a core material such as a three-dimensional foamed nickel porous body, and then dried, rolled, and cut to form a plate-shaped positive electrode plate 141. As the three-dimensional porous body of nickel foam, one in which the urethane foam skeleton surface is nickel-plated and then the urethane foam is burnt down is used.

負極板142は、例えば、ランタン、セリウム、及びネオジム等の希土類元素の混合物であるミッシュメタル、ニッケル、アルミニウム、コバルトおよびマンガンを構成要素とする水素吸蔵合金を活物質として構成されている。これも詳しくは、この水素吸蔵合金にカーボンブラックなどの導電剤、そして必要に応じてカルボキシメチルセルロースなどの増粘剤や、スチレン−ブタジエン共重合体などの結着剤を添加してまずはペースト状に加工する。その後、こうしてペースト状に加工された水素吸蔵合金を、パンチングメタル(活物質支持体)などの芯材に塗布あるいは充填した後、これを乾燥、圧延、切断することによって同じく板状の負極板142を形成する。 The negative electrode plate 142 is composed of, for example, a hydrogen storage alloy containing mischmetal, nickel, aluminum, cobalt, and manganese, which are a mixture of rare earth elements such as lanthanum, cerium, and neodymium, as an active material. For details, add a conductive agent such as carbon black to this hydrogen storage alloy, and if necessary, a thickener such as carboxymethyl cellulose and a binder such as a styrene-butadiene copolymer to make a paste. Process. Then, the hydrogen storage alloy processed into a paste in this way is applied or filled in a core material such as a punching metal (active material support), and then dried, rolled, and cut to obtain a plate-shaped negative electrode plate 142. To form.

セパレータ143としては、ポリプロピレンなどのオレフィン系樹脂の不織布、もしくは必要に応じてこれにスルフォン化などの親水処理を施したものを用いることができる。
こうした正極板141及び負極板142、及びセパレータ143は、正極板141と負極板142とを互いに反対側に突出する態様でセパレータ143を介して交互に積層することで直方体状の極板群140を構成する。そして、一方に突出して積層された各正極板141のリード部141aの外縁と集電板150とがスポット溶接等により接合されるとともに、他方に突出して積層された各負極板142のリード部142aの外縁と集電板160とがスポット溶接等により接合される。
As the separator 143, a non-woven fabric made of an olefin resin such as polypropylene, or, if necessary, a non-woven fabric obtained by subjecting it to a hydrophilic treatment such as sulfonization can be used.
The positive electrode plate 141, the negative electrode plate 142, and the separator 143 are formed by alternately stacking the positive electrode plate 141 and the negative electrode plate 142 on opposite sides of each other via the separator 143 to form a rectangular parallelepiped electrode plate group 140. Constitute. Then, the outer edge of the lead portion 141a of each positive electrode plate 141 protruding and laminated on one side and the current collector plate 150 are joined by spot welding or the like, and the lead portion 142a of each negative electrode plate 142 protruding and laminated on the other side is joined. The outer edge of the current collector plate 160 and the current collector plate 160 are joined by spot welding or the like.

集電板150及び160の溶接された極板群140は、角形ケース300内の各電槽100bに収容されて、隣接する極板群140の正極の集電板150と負極の集電板160とがそれらの上部に突設された接続突部151及び161同士のスポット溶接等により接続されることで、互いに隣接する極板群140が電気的に直列接続される。 The welded electrode plate group 140 of the current collector plates 150 and 160 is housed in each electric tank 100b in the square case 300, and the positive electrode current collector plate 150 and the negative electrode current collector plate 160 of the adjacent electrode plate group 140 are accommodated. The electrode plate group 140 adjacent to each other is electrically connected in series by being connected by spot welding or the like between the connecting protrusions 151 and 161 projecting above them.

各電槽100b内には、水酸化カリウムを主成分とするアルカリ水溶液(電解液)が所定量注入された状態で、蓋体200で一体電槽100の開口が封止されることで、複数の単電池(ニッケル水素二次電池)からなる例えば定格容量「6.5Ah」の角形密閉式電池が構成されている。 A predetermined amount of an alkaline aqueous solution (electrolyte solution) containing potassium hydroxide as a main component is injected into each of the battery 100b, and the lid 200 seals the opening of the integrated battery 100 to form a plurality of batteries. For example, a square sealed battery having a rated capacity of "6.5 Ah" is constructed of a single battery (nickel-metal hydride secondary battery).

図2及び図3に示されるように、正極の集電板150及び負極の集電板160はいずれも、略伸縮しない金属板であるため積層方向に対して極板群140の各側辺140Sを第1厚さD1に固定する。また、極板群140は、正極板141、負極板142及びセパレータ143が押圧されつつ積層される際、各側辺140Sの第1厚さD1と、幅方向の中央部140Cの第2厚さD2とは略同様の厚さに調整されている。 As shown in FIGS. 2 and 3, since both the positive electrode current collector plate 150 and the negative electrode current collector plate 160 are metal plates that do not expand and contract substantially, each side side 140S of the electrode plate group 140 with respect to the stacking direction. Is fixed to the first thickness D1. Further, when the positive electrode plate 141, the negative electrode plate 142 and the separator 143 are laminated while being pressed, the electrode plate group 140 has a first thickness D1 of each side side 140S and a second thickness of the central portion 140C in the width direction. The thickness is adjusted to be substantially the same as that of D2.

また、図1を参照して、蓋体200に対向する極板群140の上部の一部には極板群140の積層方向の膨らみを抑制する拘束テープが設けられている。また、蓋体200に対向する極板群140の下部の少なくとも一部には極板群140の積層方向の膨らみを抑える拘束テープが設けられている。よって、極板群140の上部及び下部が第1厚さD1に拘束する力が強い一方、極板群140の上下方向における中央部140Cを第1厚さD1以下に拘束する力が弱い。 Further, referring to FIG. 1, a restraining tape for suppressing the swelling of the electrode plate group 140 in the stacking direction is provided on a part of the upper part of the electrode plate group 140 facing the lid body 200. Further, at least a part of the lower portion of the electrode plate group 140 facing the lid 200 is provided with a restraining tape for suppressing the swelling of the electrode plate group 140 in the stacking direction. Therefore, the upper part and the lower part of the electrode plate group 140 have a strong force to restrain the first thickness D1, while the force to restrain the central portion 140C in the vertical direction of the electrode plate group 140 to the first thickness D1 or less is weak.

そして、積層完了により押圧から解放された極板群140は、押圧による弾性変形が復元する正極板141、負極板142及びセパレータ143によって、多少膨張する。このとき、極板群140は、正極の集電板150や負極の集電板160からの拘束力の強い側辺140Sや、拘束テープが設けられた上部及び下部では復元量が少なく、逆に、拘束力の弱い幅方向及び上下方向の中央部140Cでは復元量が多くなる。よって、押圧から解放された極板群140は、積層方向に対して、各側辺140Sの第1厚さD1よりも中央部140Cの第2厚さD2が大きくなる形状、つまり両側辺140Sに比べて中央部140Cが膨らんだ形状、換言すると、中央部140Cに比べて両側辺140Sが縮んだ形状になる。 Then, the electrode plate group 140 released from pressing by the completion of lamination expands to some extent by the positive electrode plate 141, the negative electrode plate 142, and the separator 143 in which the elastic deformation due to pressing is restored. At this time, the electrode plate group 140 has a small amount of restoration at the side side 140S having a strong binding force from the positive electrode current collecting plate 150 and the negative electrode current collecting plate 160, and at the upper and lower portions where the restraining tape is provided. The amount of restoration is large in the central portion 140C in the width direction and the vertical direction where the binding force is weak. Therefore, the electrode plate group 140 released from pressing has a shape in which the second thickness D2 of the central portion 140C is larger than the first thickness D1 of each side side 140S, that is, both side sides 140S. In comparison, the central portion 140C has a bulging shape, in other words, the both side sides 140S have a contracted shape as compared with the central portion 140C.

また、幅方向の中央部140Cが膨らんだ極板群140は、電槽100bに収容されたあと、充放電による膨張や使用による膨張等によって電槽100bの内面111を膨張圧14Fで押圧するようになる。 Further, the electrode plate group 140 in which the central portion 140C in the width direction is expanded is housed in the electric tank 100b, and then the inner surface 111 of the electric tank 100b is pressed by the expansion pressure 14F due to expansion due to charge / discharge or use. become.

(電槽100b)
図3及び図4に示されるように、電槽100bは、電槽への挿入直前に積層時の押圧から解放されて中央部140Cの膨らんだ極板群140の形状に対応する形状の内面111を有している。よって、電槽100bとは別々に製造されて中央部140Cが膨らんだ極板群140を電槽100bに収容することが容易である。また、電槽100bの内面111と収容された極板群140との間の隙間を小さくすることができる。
(Electric tank 100b)
As shown in FIGS. 3 and 4, the electric tank 100b has an inner surface 111 having a shape corresponding to the shape of the bulging electrode plate group 140 of the central portion 140C, which is released from the pressing during stacking immediately before being inserted into the electric tank. have. Therefore, it is easy to accommodate the electrode plate group 140, which is manufactured separately from the electric tank 100b and whose central portion 140C is swollen, in the electric tank 100b. Further, the gap between the inner surface 111 of the electric tank 100b and the accommodated electrode plate group 140 can be reduced.

詳述すると、電槽100bは、極板群140を収容する直方体状の収容空間103を有している。収容空間103は、積層方向に対向する一対の外壁101と、幅方向に対向する一対の隔壁110と、下方に設けられる底面102とで区画され、収容空間103の上部開口が蓋体200で封止されることで密閉される。 More specifically, the electric tank 100b has a rectangular parallelepiped accommodating space 103 accommodating the electrode plate group 140. The accommodation space 103 is partitioned by a pair of outer walls 101 facing in the stacking direction, a pair of partition walls 110 facing in the width direction, and a bottom surface 102 provided below, and the upper opening of the accommodation space 103 is sealed with a lid 200. It is sealed by being stopped.

電槽100bに極板群140が収容されることで、一対の外壁101はそれぞれ、極板群140の外周セパレータ144に対向するとともに、一対の隔壁110はそれぞれ、極板群140の幅方向の側辺に設けられている各集電板150,160に対向する。 By accommodating the electrode plate group 140 in the electric tank 100b, the pair of outer walls 101 each face the outer peripheral separator 144 of the electrode plate group 140, and the pair of partition walls 110 each face the outer peripheral separator 144 of the electrode plate group 140 in the width direction of the electrode plate group 140. It faces the current collector plates 150 and 160 provided on the side sides.

収容空間103は、外壁101の幅方向の中央部112で積層方向に膨らむ形状をしている。詳述すると、対向する一対の外壁101の間隔は、隔壁110に近い端部113の第1間隔D11よりも、中央部112の第2間隔D12が広い。よって、外面101aが平面である外壁101は、端部113の第1板厚T11が中央部112の第2板厚T12がよりも厚く構成されることで、電槽100bの内面111が両端部113に対して中央部112が外方に湾曲している弧状に構成される。 The accommodation space 103 has a shape that swells in the stacking direction at the central portion 112 in the width direction of the outer wall 101. More specifically, the distance between the pair of outer walls 101 facing each other is wider in the second distance D12 in the central portion 112 than in the first distance D11 in the end portion 113 near the partition wall 110. Therefore, in the outer wall 101 whose outer surface 101a is flat, the first plate thickness T11 of the end portion 113 is thicker than the second plate thickness T12 of the central portion 112, so that the inner surface 111 of the electric tank 100b is formed at both ends. The central portion 112 is formed in an arc shape in which the central portion 112 is curved outward with respect to 113.

(作用)
なお、収容空間103の弧状は、収容空間103に収容される極板群140の膨らみ形状に対応するように形成されている。同様の正極板141、負極板142及びセパレータ143が積層されることで構成される極板群140は、積層後で電槽挿入直前の膨らみを算出できたり、測定できたりする。つまり、収容空間103の弧状は、予め取得や算出された電槽挿入直前の極板群140の膨らみに基づいて設計されたものである。
(Action)
The arc shape of the accommodation space 103 is formed so as to correspond to the bulging shape of the electrode plate group 140 accommodated in the accommodation space 103. The electrode plate group 140 formed by laminating the same positive electrode plate 141, negative electrode plate 142, and separator 143 can calculate or measure the swelling immediately before the insertion of the electric tank after laminating. That is, the arc shape of the accommodation space 103 is designed based on the bulge of the electrode plate group 140 immediately before the insertion of the electric tank, which is acquired or calculated in advance.

このとき、収容空間103の弧状は、極板群140との間の距離を小さくする。つまり、一対の外壁101の中央部112における第2間隔D12と極板群140の第2厚さD2との差は、収容空間103に極板群140を収容可能とする差であり、第2間隔D12は、第2厚さD2に略等しい。例えば、「第2間隔D12/第2厚さD2」は、「0.9以上1.1以下」であり、より好ましくは、「0.95以上1.05以下」である。なお、「第2間隔D12/第2厚さD2<1」のとき、第2厚さD2が圧縮されるように中央部140Cを押圧した極板群140を、中央部112が第2間隔D12である収容空間103に挿入する。 At this time, the arc shape of the accommodation space 103 reduces the distance between the accommodating space 103 and the electrode plate group 140. That is, the difference between the second interval D12 at the central portion 112 of the pair of outer walls 101 and the second thickness D2 of the electrode plate group 140 is a difference that allows the electrode plate group 140 to be accommodated in the accommodation space 103. The interval D12 is approximately equal to the second thickness D2. For example, the "second interval D12 / second thickness D2" is "0.9 or more and 1.1 or less", and more preferably "0.95 or more and 1.05 or less". When "second interval D12 / second thickness D2 <1", the electrode plate group 140 in which the central portion 140C is pressed so that the second thickness D2 is compressed, and the central portion 112 has the second interval D12. It is inserted into the accommodation space 103.

同様に、一対の外壁101の端部113における第1間隔D11と極板群140の第1厚さD1との差は、収容空間103に極板群140を収容可能とする限りの小差である。よって、第1間隔D11は、極板群140の第1厚さD1より長く、第2厚さD2よりも短い。例えば、「第1間隔D11/第1厚さD1」は、「1.01以上1.1以下」であり、より好ましくは、「1.01以上1.05以下」である。 Similarly, the difference between the first spacing D11 at the end 113 of the pair of outer walls 101 and the first thickness D1 of the electrode plate group 140 is as small as possible to accommodate the electrode plate group 140 in the accommodation space 103. is there. Therefore, the first interval D11 is longer than the first thickness D1 of the electrode plate group 140 and shorter than the second thickness D2. For example, the "first interval D11 / first thickness D1" is "1.01 or more and 1.1 or less", and more preferably "1.01 or more and 1.05 or less".

これにより、電槽100bの収容空間103に極板群140が収容されたとき、電槽100bの内面111の広い範囲に極板群140の外周セパレータ144の広い範囲が当接、又は、小差で対向する。そして、充放電による膨張や、劣化による膨張が生じると、極板群140の膨張圧14Fが極板群140の対向面から電槽100bの内面111を外方に押圧する。このとき、膨張圧14Fは広い範囲に分散されるため、電槽100bの内面111に応力の集中が生じることが抑制されて、外壁101の変形や劣化が抑制される。 As a result, when the electrode plate group 140 is accommodated in the accommodation space 103 of the electric tank 100b, a wide range of the outer peripheral separator 144 of the electrode plate group 140 abuts on a wide range of the inner surface 111 of the electric tank 100b, or a small difference. Oppose with. Then, when expansion due to charge / discharge or expansion due to deterioration occurs, the expansion pressure 14F of the electrode plate group 140 presses the inner surface 111 of the electric tank 100b outward from the facing surface of the electrode plate group 140. At this time, since the expansion pressure 14F is dispersed in a wide range, the concentration of stress on the inner surface 111 of the electric tank 100b is suppressed, and the deformation and deterioration of the outer wall 101 are suppressed.

また、電槽100bの内面111に極板群140の広い範囲が当接、又は、小差で対向することで、極板群140の熱の外壁101への伝達効率が高まり放熱効果が発揮されやすくなり、極板群140の温度上昇が抑制されるようになる。 Further, when a wide range of the electrode plate group 140 abuts or faces the inner surface 111 of the electric tank 100b with a small difference, the heat transfer efficiency of the electrode plate group 140 to the outer wall 101 is enhanced and the heat dissipation effect is exhibited. It becomes easier and the temperature rise of the electrode plate group 140 is suppressed.

これにより、二次電池の応力集中抑制と温度上昇抑制とが両立できるようになる。
また、図5に示されるように、外壁101の板厚が端部113で厚いことから外壁101と隔壁110との接続部115に応力が集中することも抑制される。
As a result, it becomes possible to suppress the stress concentration of the secondary battery and suppress the temperature rise at the same time.
Further, as shown in FIG. 5, since the plate thickness of the outer wall 101 is thick at the end portion 113, it is possible to suppress the concentration of stress on the connecting portion 115 between the outer wall 101 and the partition wall 110.

通常、外壁101が外方に押圧されると、接続部115にあって、外壁101と隔壁110との境界である境界部分114を45°の角度で広げるような張力が作用し、外壁101と隔壁110との間に亀裂を生じさせる力が作用する。 Normally, when the outer wall 101 is pressed outward, a tension acts on the connecting portion 115 so as to widen the boundary portion 114, which is the boundary between the outer wall 101 and the partition wall 110, at an angle of 45 °, and the outer wall 101 and the outer wall 101. A force that causes a crack acts between the partition wall 110 and the partition wall 110.

この点、外壁101は、隔壁110に近い端部113の板厚が厚いため、中央部112に膨張圧14Fを受けると、接続部115では、幅方向への圧縮圧10Fと積層方向への張力11Fとに分力されて、境界部分114を広げる力が軽減される。よって、応力集中によって劣化が生じやすい境界部分114の耐久性の低下が抑えられて、樹脂ケースとしても耐久性の低下が抑制される。 In this respect, since the outer wall 101 has a thick end portion 113 close to the partition wall 110, when the central portion 112 receives an expansion pressure 14F, the connection portion 115 has a compression pressure 10F in the width direction and a tension in the stacking direction. The force is divided into 11F, and the force to widen the boundary portion 114 is reduced. Therefore, the decrease in durability of the boundary portion 114, which is likely to deteriorate due to stress concentration, is suppressed, and the decrease in durability of the resin case is also suppressed.

本実施形態によれば、以下に記載する効果が得られる。
(1)極板の膨らみの少ない充放電前にあって、極板群140の積層方向と対向する電槽100bの内面111が極板群140の膨らみである弧状に対応して中央が凹んだ面となることで、極板群140の2側辺に挟まれる部分と電槽100bの内面111との間の当接面積が広く確保される。そして、極板の膨らみの大きくなる充放電後は、極板群140の膨張による膨張圧14Fが電槽100bの内面111全体で分散して受けられる。よって、電槽100bの広範囲で極板群140からの膨張圧14Fを受けるためケースにかかる単位面積当たりの負荷が軽減される。これにより、樹脂製のケースの耐久性の低下が抑制される。
According to this embodiment, the effects described below can be obtained.
(1) Before charging / discharging with little bulge of the electrode plate, the inner surface 111 of the electric tank 100b facing the stacking direction of the electrode plate group 140 is recessed in the center corresponding to the arc shape which is the bulge of the electrode plate group 140. By forming a surface, a wide contact area is secured between the portion sandwiched between the two side sides of the electrode plate group 140 and the inner surface 111 of the electric tank 100b. Then, after charging / discharging in which the swelling of the electrode plate becomes large, the expansion pressure 14F due to the expansion of the electrode plate group 140 is dispersed and received over the entire inner surface 111 of the electric tank 100b. Therefore, since the expansion pressure 14F from the electrode plate group 140 is received in a wide range of the electric tank 100b, the load per unit area applied to the case is reduced. As a result, the decrease in durability of the resin case is suppressed.

また、充放電前から充放電後に至るまで、電槽100bの内面111と極板群140との接触面積を広く確保することができるため、高い放熱効果が得られる。
(2)極板群140の弧状と、電槽100bの内面111の弧状とが近い形状となる。よって、電槽100bの耐久性の低下を抑制することができる。また、放熱効果が発揮されやすい。
Further, since the contact area between the inner surface 111 of the electric tank 100b and the electrode plate group 140 can be secured widely from before charging / discharging to after charging / discharging, a high heat dissipation effect can be obtained.
(2) The arc shape of the electrode plate group 140 and the arc shape of the inner surface 111 of the electric tank 100b are close to each other. Therefore, it is possible to suppress a decrease in the durability of the battery case 100b. In addition, the heat dissipation effect is easily exhibited.

(3)電槽100bの外壁101が極板群140の2側辺を収容する部分としての端部113で厚く、極板群140の2側辺の間の中央部112で薄くなる。つまり、電槽100bの内面111が弧状、電槽100bの外面101a側が直線状の平面である。このため、電槽100bの内面111への膨張圧14Fが積層方向及び内面111の面方向(幅方向)に分力される。よって、電槽100bの外壁101の端部113への応力集中が抑制される。 (3) The outer wall 101 of the electric tank 100b is thick at the end 113 as a portion accommodating the two side sides of the electrode plate group 140, and is thin at the central portion 112 between the two side sides of the electrode plate group 140. That is, the inner surface 111 of the electric tank 100b is an arc shape, and the outer surface 101a side of the electric tank 100b is a straight plane. Therefore, the expansion pressure 14F on the inner surface 111 of the electric tank 100b is divided in the stacking direction and the surface direction (width direction) of the inner surface 111. Therefore, stress concentration on the end 113 of the outer wall 101 of the electric tank 100b is suppressed.

(4)隔壁110で区画された電槽100bにおいて電槽100bの外壁101と隔壁110との接続部115への応力集中が緩和される。
上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(4) In the electric tank 100b partitioned by the partition wall 110, the stress concentration on the connection portion 115 between the outer wall 101 of the electric tank 100b and the partition wall 110 is relaxed.
The above embodiment can be modified and implemented as follows. The above-described embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.

・上記実施形態では、電槽100bの内面111において外壁101と隔壁110との接続部が直角に近い境界部分114を有している場合について例示した。しかしこれに限らず、外壁101と隔壁110との接合する部分を、応力が集中し難い形状にしたり、応力集中の生じる位置を境界部分114からずらしたりしてもよい。 In the above embodiment, a case where the connection portion between the outer wall 101 and the partition wall 110 has a boundary portion 114 close to a right angle on the inner surface 111 of the electric tank 100b has been illustrated. However, the present invention is not limited to this, and the joint portion between the outer wall 101 and the partition wall 110 may be shaped so that stress concentration is difficult to concentrate, or the position where stress concentration occurs may be shifted from the boundary portion 114.

例えば、図6に示されるように、電槽100bを上方から見たとき、電槽100bの内面111が、外壁101と隔壁110との境界部分123が半径R1の第1円弧で接続されている。また、電槽100bの内面111が、両境界部分123の間で半径R2の第2円弧122で接続されている。なお、半径R1は応力集中を抑制できる半径であり、「半径R1<<半径R2」であり、かつ、半径R2は第2円弧122の形状が対向する極板群140の膨らみに対応する形状に近似される値である。 For example, as shown in FIG. 6, when the electric tank 100b is viewed from above, the inner surface 111 of the electric tank 100b is connected to the boundary portion 123 between the outer wall 101 and the partition wall 110 by a first arc having a radius R1. .. Further, the inner surface 111 of the electric tank 100b is connected between the two boundary portions 123 by a second arc 122 having a radius R2. The radius R1 is a radius capable of suppressing stress concentration, is "radius R1 << radius R2", and the radius R2 has a shape corresponding to the bulge of the electrode plate group 140 opposite to the shape of the second arc 122. It is a value to be approximated.

境界部分123は、略直角に交差する外壁101と隔壁110との内面を円弧で連結することで応力集中の生じやすい角が無い。よって、応力集中の生じやすい接続部124において、特定位置への応力集中を生じさせ難くさせ、応力も広い範囲に分散するようにしている。 The boundary portion 123 has no corner at which stress concentration is likely to occur because the inner surfaces of the outer wall 101 and the partition wall 110 that intersect at substantially right angles are connected by an arc. Therefore, in the connecting portion 124 where stress concentration is likely to occur, it is difficult to cause stress concentration at a specific position, and the stress is also dispersed in a wide range.

また、外壁101は、隔壁110から幅方向に厚い板厚T21の部分を延出させることで接続部124における応力集中の発生位置を厚い板厚T21が薄い板厚T22に向かって変化する接続部124から離れた位置周辺等に変更することができる。これにより、応力集中が緩和される。 Further, the outer wall 101 is a connecting portion in which the thick plate thickness T21 changes toward the thin plate thickness T22 at the position where stress concentration occurs in the connecting portion 124 by extending the portion of the thick plate thickness T21 from the partition wall 110 in the width direction. It can be changed to the vicinity of a position away from 124. As a result, stress concentration is relaxed.

ずれた応力の集中位置においても、外壁101は、境界部分123が厚い板厚T21であるため、第2円弧122に膨張圧24Fを受けると、幅方向への圧縮圧20Fと積層方向への張力21Fとに分力されて、境界部分123を広げる力が軽減される。よって、応力集中によって劣化が生じやすい境界部分123の耐久性の低下が抑えられて、樹脂ケースとしても耐久性の低下が抑制される。 Even at the displaced stress concentration position, since the boundary portion 123 of the outer wall 101 has a thick plate thickness T21, when the expansion pressure 24F is applied to the second arc 122, the compression pressure 20F in the width direction and the tension in the stacking direction are applied. The force is divided into 21F, and the force to expand the boundary portion 123 is reduced. Therefore, the decrease in durability of the boundary portion 123, which is likely to be deteriorated due to stress concentration, is suppressed, and the decrease in durability of the resin case is also suppressed.

・上記実施形態では、極板群140は、正極板141及び負極板142をセパレータ143を介して積層した積層型の構造である場合について例示した。しかしこれに限らず、二次電池の形状や使用目的に応じて適宜変更してもよい。例えば、長尺の正極板及び長尺の負極板を長尺のセパレータを介して扁平に捲回した捲回型の構造である。 -In the above embodiment, the case where the electrode plate group 140 has a laminated structure in which the positive electrode plate 141 and the negative electrode plate 142 are laminated via the separator 143 is illustrated. However, the present invention is not limited to this, and may be appropriately changed depending on the shape of the secondary battery and the purpose of use. For example, it is a winding type structure in which a long positive electrode plate and a long negative electrode plate are flatly wound via a long separator.

・上記実施形態では、極板群140の上部及び下部に拘束テープが設けられている場合について例示したが、これに限らず、極板群の上部及び下部の一方に拘束テープが設けられていてもよいし、極板群の上部及び下部の両方に拘束テープが設けられていなくてもよい。 -In the above embodiment, the case where the restraint tape is provided on the upper part and the lower part of the electrode plate group 140 is illustrated, but the present invention is not limited to this, and the restraint tape is provided on one of the upper part and the lower part of the electrode plate group. Alternatively, the restraint tape may not be provided on both the upper part and the lower part of the electrode plate group.

・上記実施形態では、二次電池が角形密閉式電池である場合について例示したが、これに限らず、密閉式の水素吸蔵合金を用いたニッケル水素二次電池であれば適用対象とすることができる。 -In the above embodiment, the case where the secondary battery is a square sealed battery has been illustrated, but the present invention is not limited to this, and any nickel hydrogen secondary battery using a sealed hydrogen storage alloy can be applied. it can.

・上記実施形態では、二次電池がニッケル水素二次電池である場合について例示したが、これに限らず、二次電池は、充放電等で膨張と収縮を繰り返すリチウムイオン二次電池、その他の二次電池であってもよい。 -In the above embodiment, the case where the secondary battery is a nickel hydrogen secondary battery has been illustrated, but the secondary battery is not limited to this, and the secondary battery is a lithium ion secondary battery that repeatedly expands and contracts due to charging and discharging, and other batteries. It may be a secondary battery.

100…一体電槽、100b…電槽、101…外壁、101a…外面、102…底面、103…収容空間、110…隔壁、111…内面、112…中央部、113…端部、114…境界部分、115…接続部、120…接続端子、123…境界部分、124…接続部、140…極板群、141…正極板、141a…リード部、142…負極板、142a…リード部、143…セパレータ、144…外周セパレータ、150…集電板、151…接続突部、160…集電板、161…接続突部、170…貫通孔、200…蓋体、210…排気弁、220…センサ装着穴、300…角形ケース。
100 ... integrated electric tank, 100b ... electric tank, 101 ... outer wall, 101a ... outer surface, 102 ... bottom surface, 103 ... accommodation space, 110 ... partition wall, 111 ... inner surface, 112 ... central part, 113 ... end part, 114 ... boundary part , 115 ... connection part, 120 ... connection terminal, 123 ... boundary part, 124 ... connection part, 140 ... electrode plate group, 141 ... positive electrode plate, 141a ... lead part, 142 ... negative electrode plate, 142a ... lead part, 143 ... separator , 144 ... outer peripheral separator, 150 ... current collector plate, 151 ... connection protrusion, 160 ... current collector plate, 161 ... connection protrusion, 170 ... through hole, 200 ... lid, 210 ... exhaust valve, 220 ... sensor mounting hole , 300 ... Square case.

Claims (5)

矩形状の正極板と矩形状の負極板とをセパレータを介して積層させた極板群と、電解液と、前記極板群及び前記電解液を収容する樹脂製のケースとを備え、
集電板でそれぞれ固定されている前記極板群の2側辺は、積層方向に第1厚さを有し、
前記極板群の前記2側辺に挟まれる部分は、前記第1厚さよりも厚く前記積層方向に弧状に膨らんだ第2厚さを有し、
前記極板群の前記積層方向と対向する前記ケースの対向面は、前記積層方向に膨らんだ前記極板群の弧状に対応する弧状の面を有している
二次電池。
A group of electrode plates in which a rectangular positive electrode plate and a rectangular negative electrode plate are laminated via a separator, an electrolytic solution, and a resin case for accommodating the electrode plate group and the electrolytic solution are provided.
The two side sides of the electrode plate group fixed by the current collector plates each have a first thickness in the stacking direction.
The portion of the electrode plate group sandwiched between the two sides has a second thickness that is thicker than the first thickness and bulges in an arc shape in the stacking direction.
A secondary battery having an arcuate surface corresponding to the arcuate shape of the electrode plate group bulging in the stacking direction as a facing surface of the case facing the stacking direction of the electrode plate group.
前記ケースにおいて向かい合う2つの前記対向面の間隔のうち前記極板群の2側辺を収容する部分の間隔を第1間隔とし、前記極板群の2側辺の間の中央の間隔を第2間隔としたとき、
前記第1間隔は、前記第1厚さよりも長く、かつ、前記第2厚さよりも短く、
前記第2間隔は、前記第2厚さに略等しい
請求項1に記載の二次電池。
Of the distance between the two facing surfaces facing each other in the case, the distance between the portions accommodating the two side sides of the electrode plate group is set as the first distance, and the central distance between the two side sides of the plate group is set as the second distance. When set as an interval
The first interval is longer than the first thickness and shorter than the second thickness.
The secondary battery according to claim 1, wherein the second interval is substantially equal to the second thickness.
前記ケースの外壁の内面が前記弧状の前記対向面であり、
前記外壁の外面が直線状の面である
請求項1又は2に記載の二次電池。
The inner surface of the outer wall of the case is the arc-shaped facing surface.
The secondary battery according to claim 1 or 2, wherein the outer surface of the outer wall is a straight surface.
複数の前記ケースを備える電池モジュールを備え、
前記電池モジュールは、隣接する2つの前記ケースの間が隔壁で区画されている
請求項1〜3のいずれか一項に記載の二次電池。
A battery module with a plurality of the above cases
The secondary battery according to any one of claims 1 to 3, wherein the battery module is partitioned between two adjacent cases by a partition wall.
前記ケースの前記極板群の前記2側辺を収容する部分において前記対向面と前記積層方向に平行な側面との接続部の断面が第1円弧となる面であり、
前記ケースの前記極板群の前記2側辺の間を収容する部分において前記対向面の断面が前記極板群の弧状に対応する前記第1円弧よりも大径の第2円弧となる面である
請求項1〜4のいずれか一項に記載の二次電池。
In the portion of the case that accommodates the two side surfaces of the electrode plate group, the cross section of the connecting portion between the facing surface and the side surface parallel to the stacking direction is a surface having a first arc.
In the portion of the case that accommodates between the two side sides of the electrode plate group, the cross section of the facing surface is a second arc having a diameter larger than the first arc corresponding to the arc shape of the electrode plate group. The secondary battery according to any one of claims 1 to 4.
JP2019064264A 2019-03-28 2019-03-28 Secondary battery Pending JP2020166963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064264A JP2020166963A (en) 2019-03-28 2019-03-28 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064264A JP2020166963A (en) 2019-03-28 2019-03-28 Secondary battery

Publications (1)

Publication Number Publication Date
JP2020166963A true JP2020166963A (en) 2020-10-08

Family

ID=72717545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064264A Pending JP2020166963A (en) 2019-03-28 2019-03-28 Secondary battery

Country Status (1)

Country Link
JP (1) JP2020166963A (en)

Similar Documents

Publication Publication Date Title
KR101651712B1 (en) Secondary Battery
JP2024096240A (en) Energy Storage Module
KR101530803B1 (en) Secondary battery
JP2013093225A (en) Storage element, electric cell, and battery pack
JP3293287B2 (en) Square sealed alkaline storage battery and its unit battery
CN107808975B (en) Sealed secondary battery
JP5988669B2 (en) Battery stack
JPH06338304A (en) Cell and battery structure
JPH11273709A (en) Battery
US20220320645A1 (en) All-solid-state battery
JPH07272761A (en) Nonaqueous electrolytic secondary battery
US20140170471A1 (en) Electrode plate, layered electrode group, battery, and cylindrical battery
US20220407166A1 (en) Electricity storage device and insulating holder
US20210151722A1 (en) Battery pack
US20180083235A1 (en) Stacked battery
JP4088732B2 (en) Secondary battery
JP4126684B2 (en) Nickel metal hydride secondary battery
JP2020166963A (en) Secondary battery
JP2020140848A (en) Nickel metal hydride accumulator battery
JP5809044B2 (en) Secondary battery
KR101148017B1 (en) Secondary battery with a spirally-rolled electrode group
JP2005285378A (en) Alkali secondary battery and its manufacturing method
CN111146505A (en) Non-aqueous electrolyte secondary battery
JPH11329372A (en) Rectangular sealed alkaline storage battery
JP2024083724A (en) Secondary battery and manufacturing method of secondary battery