JP2020166245A - Optical member, optical device, and coating liquid - Google Patents
Optical member, optical device, and coating liquid Download PDFInfo
- Publication number
- JP2020166245A JP2020166245A JP2020038643A JP2020038643A JP2020166245A JP 2020166245 A JP2020166245 A JP 2020166245A JP 2020038643 A JP2020038643 A JP 2020038643A JP 2020038643 A JP2020038643 A JP 2020038643A JP 2020166245 A JP2020166245 A JP 2020166245A
- Authority
- JP
- Japan
- Prior art keywords
- silicon oxide
- oxide particles
- fluorine
- porous layer
- organic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 99
- 238000000576 coating method Methods 0.000 title claims description 108
- 239000011248 coating agent Substances 0.000 title claims description 105
- 239000007788 liquid Substances 0.000 title claims description 90
- 239000002245 particle Substances 0.000 claims abstract description 182
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 176
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 165
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 75
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 74
- 239000011737 fluorine Substances 0.000 claims abstract description 74
- 150000007524 organic acids Chemical class 0.000 claims abstract description 62
- 239000011230 binding agent Substances 0.000 claims abstract description 26
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 238000010494 dissociation reaction Methods 0.000 claims description 5
- 230000005593 dissociations Effects 0.000 claims description 5
- 238000010304 firing Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 26
- 239000010410 layer Substances 0.000 description 129
- 239000010408 film Substances 0.000 description 97
- 235000019000 fluorine Nutrition 0.000 description 63
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 35
- 239000006185 dispersion Substances 0.000 description 32
- 239000011521 glass Substances 0.000 description 29
- 239000002904 solvent Substances 0.000 description 29
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000007787 solid Substances 0.000 description 20
- 238000002156 mixing Methods 0.000 description 15
- 238000003756 stirring Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 14
- 229940116333 ethyl lactate Drugs 0.000 description 14
- 101100203596 Caenorhabditis elegans sol-1 gene Proteins 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 230000007547 defect Effects 0.000 description 9
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- -1 Ether alcohols Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- YPJUNDFVDDCYIH-UHFFFAOYSA-N perfluorobutyric acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)F YPJUNDFVDDCYIH-UHFFFAOYSA-N 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000011164 primary particle Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 229940054273 1-propoxy-2-propanol Drugs 0.000 description 4
- FENFUOGYJVOCRY-UHFFFAOYSA-N 1-propoxypropan-2-ol Chemical compound CCCOCC(C)O FENFUOGYJVOCRY-UHFFFAOYSA-N 0.000 description 4
- 238000007865 diluting Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- PXUULQAPEKKVAH-UHFFFAOYSA-N perfluorohexanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F PXUULQAPEKKVAH-UHFFFAOYSA-N 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000282341 Mustela putorius furo Species 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 3
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- LRMSQVBRUNSOJL-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)F LRMSQVBRUNSOJL-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- CETWDUZRCINIHU-UHFFFAOYSA-N 2-heptanol Chemical compound CCCCCC(C)O CETWDUZRCINIHU-UHFFFAOYSA-N 0.000 description 2
- PFNHSEQQEPMLNI-UHFFFAOYSA-N 2-methyl-1-pentanol Chemical compound CCCC(C)CO PFNHSEQQEPMLNI-UHFFFAOYSA-N 0.000 description 2
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 2
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- HIJIXCXMVYTMCY-UHFFFAOYSA-N diethyl 2-heptylpropanedioate Chemical compound CCCCCCCC(C(=O)OCC)C(=O)OCC HIJIXCXMVYTMCY-UHFFFAOYSA-N 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 2
- ZOCHHNOQQHDWHG-UHFFFAOYSA-N hexan-3-ol Chemical compound CCCC(O)CC ZOCHHNOQQHDWHG-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229910000484 niobium oxide Inorganic materials 0.000 description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 2
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 2
- CXZGQIAOTKWCDB-UHFFFAOYSA-N perfluoropentanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CXZGQIAOTKWCDB-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- ZQBVUULQVWCGDQ-UHFFFAOYSA-N propan-1-ol;propan-2-ol Chemical compound CCCO.CC(C)O ZQBVUULQVWCGDQ-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- DMLNYLURSAKWRC-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O.CCOCC(C)O DMLNYLURSAKWRC-UHFFFAOYSA-N 0.000 description 1
- LVKMGHBPYIRYPS-UHFFFAOYSA-N 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluorooctanedioic acid;dihydrate Chemical compound O.O.OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(O)=O LVKMGHBPYIRYPS-UHFFFAOYSA-N 0.000 description 1
- BAYAKMPRFGNNFW-UHFFFAOYSA-N 2,4-dimethylpentan-3-ol Chemical compound CC(C)C(O)C(C)C BAYAKMPRFGNNFW-UHFFFAOYSA-N 0.000 description 1
- QNVRIHYSUZMSGM-LURJTMIESA-N 2-Hexanol Natural products CCCC[C@H](C)O QNVRIHYSUZMSGM-LURJTMIESA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- TZYRSLHNPKPEFV-UHFFFAOYSA-N 2-ethyl-1-butanol Chemical compound CCC(CC)CO TZYRSLHNPKPEFV-UHFFFAOYSA-N 0.000 description 1
- HCGFUIQPSOCUHI-UHFFFAOYSA-N 2-propan-2-yloxyethanol Chemical compound CC(C)OCCO HCGFUIQPSOCUHI-UHFFFAOYSA-N 0.000 description 1
- IWTBVKIGCDZRPL-LURJTMIESA-N 3-Methylbutanol Natural products CC[C@H](C)CCO IWTBVKIGCDZRPL-LURJTMIESA-N 0.000 description 1
- IWTBVKIGCDZRPL-UHFFFAOYSA-N 3-methylpentanol Chemical compound CCC(C)CCO IWTBVKIGCDZRPL-UHFFFAOYSA-N 0.000 description 1
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 101100489867 Mus musculus Got2 gene Proteins 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- ZIXLDMFVRPABBX-UHFFFAOYSA-N alpha-methylcyclopentanone Natural products CC1CCCC1=O ZIXLDMFVRPABBX-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- PBWZKZYHONABLN-UHFFFAOYSA-N difluoroacetic acid Chemical compound OC(=O)C(F)F PBWZKZYHONABLN-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- XPBBUZJBQWWFFJ-UHFFFAOYSA-N fluorosilane Chemical compound [SiH3]F XPBBUZJBQWWFFJ-UHFFFAOYSA-N 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 1
- 229940075613 gadolinium oxide Drugs 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000001032 ion-exclusion chromatography Methods 0.000 description 1
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N n-butyl methyl ketone Natural products CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- JLQFVGYYVXALAG-CFEVTAHFSA-N yasmin 28 Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1.C([C@]12[C@H]3C[C@H]3[C@H]3[C@H]4[C@@H]([C@]5(CCC(=O)C=C5[C@@H]5C[C@@H]54)C)CC[C@@]31C)CC(=O)O2 JLQFVGYYVXALAG-CFEVTAHFSA-N 0.000 description 1
Landscapes
- Studio Devices (AREA)
- Camera Bodies And Camera Details Or Accessories (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、低散乱かつ膜強度に優れた反射防止膜を有する光学部材、それを用いた光学機器および反射防止膜を形成するための塗工液に関する。 The present invention relates to an optical member having an antireflection film having low scattering and excellent film strength, an optical device using the optical member, and a coating liquid for forming the antireflection film.
従来、光学部材の光入出射界面での反射を抑えるために、屈折率の異なる光学膜を数十から数百nmの厚みで単層あるいは複数層を積層した反射防止層を形成することが知られている。これら反射防止層を形成するためには、蒸着、スパッタリング等の真空成膜法やディップコート、スピンコート等の湿式成膜法が用いられる。 Conventionally, in order to suppress reflection at the light input / output interface of an optical member, it has been known to form an antireflection layer in which a single layer or a plurality of layers are laminated with a thickness of several tens to several hundreds nm of optical films having different refractive indexes. Has been done. In order to form these antireflection layers, a vacuum film forming method such as vapor deposition or sputtering or a wet film forming method such as dip coating or spin coating is used.
反射防止層の最表層に用いられる材料には屈折率が低く、透明な材料である、シリカやフッ化マグネシウム、フッ化カルシウムなどの無機材料やシリコーン樹脂や非晶質のフッ素樹脂などの有機材料を用いることが知られている。 The material used for the outermost layer of the antireflection layer is a transparent material with a low refractive index, such as inorganic materials such as silica, magnesium fluoride, and calcium fluoride, and organic materials such as silicone resin and amorphous fluororesin. Is known to be used.
近年は、反射率をより低く抑えるため、シリカやフッ化マグネシウムなどの層内に空隙を形成して空気(屈折率1.0)の領域を含ませることによって、屈折率を1.3以下にまで低減した低屈折率層の開発が進んでいる。内部に空隙を含む低屈折率層の形成には、酸化ケイ素粒子の分散液を塗布/乾燥する手法が広く用いられている。 In recent years, in order to keep the reflectance lower, the refractive index has been reduced to 1.3 or less by forming voids in a layer such as silica or magnesium fluoride to include a region of air (refractive index 1.0). The development of a low refractive index layer that has been reduced to the above is in progress. A method of applying / drying a dispersion of silicon oxide particles is widely used for forming a low refractive index layer containing voids inside.
一方、光学部材にシリカ粒子を用いる場合、透明性や外観に問題が発生することが知られている。シリカ粒子は混合する有機溶剤や有機高分子との親和性が悪く、塗料化時に凝集し、散乱を発生するためである。特許文献1には、この課題を解決するために有機高分子を含まない塗料によって膜を形成し、凝集を抑制することによって散乱のない多孔質層を形成する方法が開示されている。 On the other hand, when silica particles are used for the optical member, it is known that problems occur in transparency and appearance. This is because the silica particles have a poor affinity with the organic solvent or the organic polymer to be mixed, and agglomerate during coating to generate scattering. Patent Document 1 discloses a method of forming a film with a coating material containing no organic polymer and suppressing aggregation to form a non-scattering porous layer in order to solve this problem.
しかしながら、特許文献1に記載の多孔質層は散乱を抑制するために、有機高分子に代表されるバインダーを含まない。反射防止膜として光学部材の表面に設けられる多孔質層は、低屈折率や透明性が求められる一方で膜としての強度も求められる。そのためバインダーを含まない膜では膜強度が不十分であり、低散乱と膜強度を両立できないという課題があった。 However, the porous layer described in Patent Document 1 does not contain a binder typified by an organic polymer in order to suppress scattering. The porous layer provided on the surface of the optical member as an antireflection film is required to have a low refractive index and transparency, while also being required to have strength as a film. Therefore, the film strength of the film not containing the binder is insufficient, and there is a problem that both low scattering and film strength cannot be achieved at the same time.
本発明は、上記に鑑みてなされたものであり、低散乱かつ膜強度に優れた多孔質層を備える光学部材、それを用いた光学機器、および多孔質層を形成するための塗工液を提供するものである。 The present invention has been made in view of the above, and an optical member provided with a porous layer having low scattering and excellent film strength, an optical device using the optical member, and a coating liquid for forming the porous layer are provided. It is to provide.
上記の課題を解決する光学部材は、基材上に多孔質層を有し、前記多孔質層は、酸化ケイ素粒子と無機バインダーとを有し、含フッ素有機酸を有することを特徴とする。
また、本発明に係る塗工液は、多孔質層を形成するための塗工液であって、酸化ケイ素粒子と無機バインダーと有機溶媒とを含み、前記酸化ケイ素粒子は、表面に含フッ素有機酸を有することを特徴とする。
The optical member for solving the above problems has a porous layer on a base material, and the porous layer has silicon oxide particles and an inorganic binder, and has a fluorine-containing organic acid.
Further, the coating liquid according to the present invention is a coating liquid for forming a porous layer, and contains silicon oxide particles, an inorganic binder and an organic solvent, and the silicon oxide particles are fluorine-containing organic on the surface. It is characterized by having an acid.
本発明によれば、低散乱かつ膜強度に優れた多孔質層、それを用いた光学機器、および多孔質層を形成するための塗工液を提供することができる。 According to the present invention, it is possible to provide a porous layer having low scattering and excellent film strength, an optical device using the porous layer, and a coating liquid for forming the porous layer.
以下、本発明の好適な実施形態について詳細に説明する。
(多孔質層)
図1は、本発明の光学部材の一実施形態を示す模式図である。同図において、本発明に係る光学部材1は、基材2上に反射防止膜として多孔質層3が形成された光学部材1である。多孔質層3は、酸化ケイ素粒子4と無機バインダー5とを有する。酸化ケイ素粒子4は、表面に含フッ素有機酸7を有する。また、酸化ケイ素粒子4は、基材2表面に対して複数段積み重なって形成された層を構成していることが好ましい。
Hereinafter, preferred embodiments of the present invention will be described in detail.
(Porous layer)
FIG. 1 is a schematic view showing an embodiment of the optical member of the present invention. In the figure, the optical member 1 according to the present invention is an optical member 1 in which a porous layer 3 is formed as an antireflection film on a base material 2. The porous layer 3 has silicon oxide particles 4 and an inorganic binder 5. The silicon oxide particles 4 have a fluorine-containing organic acid 7 on the surface. Further, it is preferable that the silicon oxide particles 4 form a layer formed by stacking a plurality of layers on the surface of the base material 2.
図2および図3は、本発明の光学部材の多孔質層3を部分的に拡大した様子を示す概略図である。図2は、酸化ケイ素粒子4が中空酸化ケイ素粒子である場合を示し、図3は、酸化ケイ素粒子4が鎖状酸化ケイ素粒子(酸化ケイ素粒子連結体)からなる場合を示す。図2および図3に示すように、多孔質層3を構成する酸化ケイ素粒子4同士は、無機バインダー5によって結着されており、多孔質層3は、複数の酸化ケイ素粒子4間に複数の空隙6を含んでいる。そして、多孔質層3は、1分子中のフッ素原子数が5以上11以下である含フッ素有機酸7を含んでいる。 2 and 3 are schematic views showing a partially enlarged state of the porous layer 3 of the optical member of the present invention. FIG. 2 shows a case where the silicon oxide particles 4 are hollow silicon oxide particles, and FIG. 3 shows a case where the silicon oxide particles 4 are made of chain silicon oxide particles (silicon oxide particle conjugate). As shown in FIGS. 2 and 3, the silicon oxide particles 4 constituting the porous layer 3 are bound to each other by an inorganic binder 5, and the porous layer 3 has a plurality of silicon oxide particles 4 among the plurality of silicon oxide particles 4. It contains a void 6. The porous layer 3 contains a fluorine-containing organic acid 7 in which the number of fluorine atoms in one molecule is 5 or more and 11 or less.
酸化ケイ素粒子4によって構成される多孔質層3は、基材2表面に整列された酸化ケイ素粒子4が複数段積み重なって形成されている。 The porous layer 3 composed of the silicon oxide particles 4 is formed by stacking a plurality of silicon oxide particles 4 aligned on the surface of the base material 2.
低散乱かつ膜強度に優れた多孔質層3を得るためには、酸化ケイ素粒子4の配列性が整った状態が好ましい。酸化ケイ素粒子4の配列性の違いは主に、多孔質層3を形成する塗工液中の酸化ケイ素粒子4の分散状態および塗膜形成時の酸化ケイ素粒子4の分散状態によって変化する。 In order to obtain the porous layer 3 having low scattering and excellent film strength, it is preferable that the silicon oxide particles 4 have a well-arranged arrangement. The difference in the arrangement of the silicon oxide particles 4 mainly changes depending on the dispersed state of the silicon oxide particles 4 in the coating liquid forming the porous layer 3 and the dispersed state of the silicon oxide particles 4 at the time of forming the coating film.
塗工液中の酸化ケイ素粒子4が分散媒や無機バインダー5の影響を受けず、十分に分散している場合は、酸化ケイ素粒子4が配列しやすい。ただし、分散媒や無機バインダー5の影響により酸化ケイ素粒子4が若干凝集した状態で分散していると配列性は悪化する。 When the silicon oxide particles 4 in the coating liquid are not affected by the dispersion medium or the inorganic binder 5 and are sufficiently dispersed, the silicon oxide particles 4 are likely to be arranged. However, if the silicon oxide particles 4 are dispersed in a slightly aggregated state due to the influence of the dispersion medium and the inorganic binder 5, the arrangement property deteriorates.
また、塗工液を基材2上に塗布し、塗膜を形成する際の溶媒の揮発・乾燥や、濃縮による酸化ケイ素粒子4の流動も配列性に大きく影響する。塗工液中での酸化ケイ素粒子4の分散状態が良好でも、塗膜形成の乾燥時に酸化ケイ素粒子4が凝集したりすると酸化ケイ素粒子4の配列性が乱れてしまい、塗膜にした際に酸化ケイ素粒子4間の隙間が大きくなり、基材面方向のボイドが大きくなる。そのため、可視光において散乱が大きくなってしまう。また、酸化ケイ素粒子4が整列して堆積させた状態でなく、ずれた状態で形成されることで、塗膜の応力分布が不均一になり膜の強度が十分に保たれない。 Further, the volatilization and drying of the solvent when the coating liquid is applied onto the base material 2 to form the coating film, and the flow of the silicon oxide particles 4 due to concentration also greatly affect the arrangement. Even if the dispersed state of the silicon oxide particles 4 in the coating liquid is good, if the silicon oxide particles 4 aggregate during the drying of the coating film formation, the arrangement of the silicon oxide particles 4 is disturbed, and when the coating film is formed. The gap between the silicon oxide particles 4 becomes large, and the void in the substrate surface direction becomes large. Therefore, the scattering becomes large in visible light. Further, since the silicon oxide particles 4 are formed in a shifted state rather than in an aligned and deposited state, the stress distribution of the coating film becomes non-uniform and the strength of the film cannot be sufficiently maintained.
上述したように、表面に含フッ素有機酸7が付加された酸化ケイ素粒子4を用いることで、酸化ケイ素粒子4の配列性が乱れることなく整列して堆積させた状態で、本発明の多孔質層3となる塗膜を形成することができる。 As described above, by using the silicon oxide particles 4 having the fluorine-containing organic acid 7 added to the surface, the porous silicon oxide particles 4 of the present invention are arranged and deposited without disturbing the arrangement of the silicon oxide particles 4. A coating film to be layer 3 can be formed.
上記含フッ素有機酸7は、塗工液中の酸化ケイ素粒子4の分散性を向上させるだけでなく、塗膜形成時の酸化ケイ素粒子4を整列して堆積させた状態を維持したままで塗膜化させることができ、低散乱かつ膜強度に優れた多孔質層3を実現することができる。 The fluorine-containing organic acid 7 not only improves the dispersibility of the silicon oxide particles 4 in the coating liquid, but also coats the silicon oxide particles 4 while maintaining the aligned and deposited state at the time of forming the coating film. It is possible to form a film, and it is possible to realize a porous layer 3 having low scattering and excellent film strength.
塗工液中や多孔質層3に含まれる含フッ素有機酸7は、酸化ケイ素粒子や多孔質層中の元素分析や、イオン排除クロマトグラフィ等による有機酸の分離定量分析などにより求めることができる。 The fluorine-containing organic acid 7 contained in the coating liquid or the porous layer 3 can be obtained by elemental analysis in silicon oxide particles or the porous layer, separation and quantitative analysis of the organic acid by ion exclusion chromatography or the like.
本発明に好適な含フッ素有機酸7としては、2,2,3,3−テトラフルオロプロピオン酸、ペンタフルオロプロピオン酸、ヘプタフルオロ酪酸、ノナフルオロ吉草酸、ウンデカフルオロヘキサン酸、ドデカフルオロスベリン酸、トリデカフルオロヘプタン酸などが挙げられる。 Examples of the fluorine-containing organic acid 7 suitable for the present invention include 2,2,3,3-tetrafluoropropionic acid, pentafluoropropionic acid, heptafluorobutyric acid, nonafluorovaleric acid, undecafluorohexanoic acid, and dodecafluorosveric acid. Examples include tridecafluoroheptanic acid.
含フッ素有機酸7は、1分子中のフッ素原子数(以下、単にフッ素数と記述する場合がある)が5以上11以下である有機酸が好ましい。多孔質層3が、1分子中のフッ素原子数が5以上11以下である有機酸を含むことによって、低散乱かつ優れた膜強度を実現することができる。
フッ素数が5未満であると、塗工液中の酸化ケイ素粒子4の分散性は向上させることができても、Si−OH同士の反応促進が不十分であるため、塗膜形成時の酸化ケイ素粒子4を整列して堆積させた状態で塗膜化させることが困難であり、散乱が悪化する傾向にある。フッ素数が11を超えると、塗工液の塗布性や経時安定性が悪化することにより、得られた多孔質層3の外観品位が低下してしまう場合がある。また、フッ素数が11を超えると、CF基の反撥力が大きくなりすぎて、塗膜形成時の酸化ケイ素粒子4が均一に配列せず、散乱や膜強度が悪化する傾向にある。
The fluorine-containing organic acid 7 is preferably an organic acid having a fluorine atom number in one molecule (hereinafter, may be simply referred to as a fluorine number) of 5 or more and 11 or less. When the porous layer 3 contains an organic acid having 5 or more and 11 or less fluorine atoms in one molecule, low scattering and excellent film strength can be realized.
If the number of fluorines is less than 5, the dispersibility of the silicon oxide particles 4 in the coating liquid can be improved, but the reaction promotion between Si—OH is insufficient, so that oxidation during coating film formation It is difficult to form a coating film in a state where the silicon particles 4 are aligned and deposited, and the scattering tends to be aggravated. If the number of fluorines exceeds 11, the coatability of the coating liquid and the stability over time deteriorate, and the appearance quality of the obtained porous layer 3 may deteriorate. On the other hand, when the number of fluorines exceeds 11, the repulsive force of the CF group becomes too large, and the silicon oxide particles 4 at the time of forming the coating film are not uniformly arranged, and the scattering and the film strength tend to deteriorate.
酸化ケイ素粒子4の形状としては、真球、繭型、俵型、円盤、棒状、針状、角型、鎖状などの形状が挙げられる。中でも、図2に示すような内部に空孔を有し、空孔の外側の周囲にシェルを有する中空粒子である中空酸化ケイ素粒子や、図3に示すような親水性粒子連結体である鎖状酸化ケイ素粒子(鎖状粒子)からなることが好ましい。 Examples of the shape of the silicon oxide particles 4 include a true sphere, a cocoon shape, a bale shape, a disk shape, a rod shape, a needle shape, a square shape, and a chain shape. Among them, hollow silicon oxide particles which are hollow particles having pores inside and shells around the outside of the pores as shown in FIG. 2 and chains which are hydrophilic particle conjugates as shown in FIG. It is preferably composed of silicon oxide particles (chain particles).
中空酸化ケイ素粒子は、空孔に含まれる空気(屈折率1.0)によって多孔質層3の屈折率を下げることができる。空孔は単孔、多孔どちらでも良く適宜選択することができる。中空酸化ケイ素粒子の製造方法としては、例えば、特開2001−233611号公報や、特開2008−139581号公報等に記載されている方法で作製することが可能である。中空酸化ケイ素粒子により、基材2表面に対して平行方向に整列された酸化ケイ素粒子4が複数段積み重なって形成された層の屈折率を下げることが可能となる。 The hollow silicon oxide particles can lower the refractive index of the porous layer 3 by the air (refractive index 1.0) contained in the pores. The pores may be either single pores or porous, and can be appropriately selected. As a method for producing the hollow silicon oxide particles, for example, it can be produced by the method described in JP-A-2001-233611, JP-A-2008-139581, and the like. The hollow silicon oxide particles make it possible to reduce the refractive index of a layer formed by stacking a plurality of layers of silicon oxide particles 4 aligned in a direction parallel to the surface of the base material 2.
本発明における無機バインダー5は、酸化ケイ素バインダーが好ましい。 The inorganic binder 5 in the present invention is preferably a silicon oxide binder.
(多孔質層を形成する塗工液)
本発明に係る塗工液は、多孔質層3を形成する塗工液であって、表面に含フッ素有機酸7を有する酸化ケイ素粒子4、無機バインダー5および有機溶媒を含んでいる。
(Coating liquid that forms a porous layer)
The coating liquid according to the present invention is a coating liquid that forms the porous layer 3, and contains silicon oxide particles 4 having a fluorine-containing organic acid 7 on the surface, an inorganic binder 5, and an organic solvent.
塗工液に用いることができる有機溶媒は、酸化ケイ素粒子が析出したり、塗工液が急激に増粘したりしない溶媒であれば良い。具体的には、例えば以下の溶媒が挙げられる。メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチルプロパノール、1−ペンタノール、2−ペンタノール、シクロペンタノール、2−メチルブタノール、3−メチルブタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、4−メチル−2−ペンタノール、2−メチル−1−ペンタノール、2−エチルブタノール、2,4−ジメチル−3−ペンタノール、3−エチルブタノール、1−ヘプタノール、2−ヘプタノール、1−オクタノール、2−オクタノールなどの1価のアルコール類。エチレングリコール、トリエチレングリコールなどの2価以上のアルコール類。メトキシエタノール、エトキシエタノール、プロポキシエタノール、イソプロポキシエタノール、ブトキシエタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−プロポキシ−2−プロパノールなどのエーテルアルコール類、ジメトキシエタン、ジグライム(ジエチレングリコールジメチルエーテル)、テトラヒドロフラン、ジオキサン、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテルのようなエーテル類。ギ酸エチル、酢酸エチル、酢酸n−ブチル、乳酸メチル、乳酸エチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテートなどのエステル類。n−ヘキサン、n−オクタン、シクロヘキサン、シクロペンタン、シクロオクタンのような各種の脂肪族系ないしは脂環族系の炭化水素類。トルエン、キシレン、エチルベンゼンなどの各種の芳香族炭化水素類。アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノンなどの各種のケトン類。クロロホルム、メチレンクロライド、四塩化炭素、テトラクロロエタンのような、各種の塩素化炭化水素類。N−メチルピロリドン、N,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、エチレンカーボネートのような、非プロトン性極性溶媒等。これらの溶媒のうち、2種類以上の溶媒を混ぜて使用することもできる。 The organic solvent that can be used in the coating liquid may be any solvent that does not cause silicon oxide particles to precipitate or the coating liquid to rapidly thicken. Specifically, for example, the following solvents can be mentioned. Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methylpropanol, 1-pentanol, 2-pentanol, cyclopentanol, 2-methylbutanol, 3-methylbutanol, 1 -Hexanol, 2-hexanol, 3-hexanol, 4-methyl-2-pentanol, 2-methyl-1-pentanol, 2-ethylbutanol, 2,4-dimethyl-3-pentanol, 3-ethylbutanol, Monohydric alcohols such as 1-heptanol, 2-heptanol, 1-octanol and 2-octanol. Divalent or higher alcohols such as ethylene glycol and triethylene glycol. Ether alcohols such as methoxyethanol, ethoxyethanol, propoxyethanol, isopropoxyethanol, butoxyethanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-propoxy-2-propanol, dimethoxyethane, diglime ( Ethers such as diethylene glycol dimethyl ether), tetrahydrofuran, dioxane, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether. Esters such as ethyl formate, ethyl acetate, n-butyl acetate, methyl lactate, ethyl lactate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, and propylene glycol monomethyl ether acetate. Various aliphatic or alicyclic hydrocarbons such as n-hexane, n-octane, cyclohexane, cyclopentane, and cyclooctane. Various aromatic hydrocarbons such as toluene, xylene and ethylbenzene. Various ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone. Various chlorinated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, tetrachloroethane. Aprotic polar solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, ethylene carbonate and the like. Of these solvents, two or more kinds of solvents can be mixed and used.
酸化ケイ素粒子4の分散性、塗布性の観点から、塗工液に含まれる溶媒としては、30%以上が炭素数4以上6以下の水酸基を有する水溶性溶媒であることが好ましい。中でも、エトキシエタノール、プロポキシエタノール、イソプロポキシエタノール、ブトキシエタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−プロポキシ−2−プロパノール、乳酸エチルから選択される1種以上を含む溶媒が特に好ましい。 From the viewpoint of dispersibility and coatability of the silicon oxide particles 4, the solvent contained in the coating liquid is preferably a water-soluble solvent in which 30% or more has a hydroxyl group having 4 or more and 6 or less carbon atoms. Among them, one or more selected from ethoxyethanol, propoxyethanol, isopropanol, butoxyethanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-propanol-2-propanol, and ethyl lactate are included. Solvents are particularly preferred.
酸化ケイ素粒子4の表面には1分子中のフッ素数が5以上11以下である含フッ素有機酸が付加されている。より具体的には、酸化ケイ素粒子4の表面に存在する一部のOH基に含フッ素有機酸が付加している。塗工液に含まれる酸化ケイ素粒子4は、それぞれの表面に付加した含フッ素有機酸7によって酸化ケイ素粒子4間の距離が保たれ、凝集が抑制され分散性が向上する。そして、塗膜形成時には、酸化ケイ素粒子4を整列して堆積させた状態が含フッ素有機酸によって維持されるため、低散乱かつ膜強度に優れた多孔質層3を得ることができる。 A fluorine-containing organic acid having a fluorine number of 5 or more and 11 or less in one molecule is added to the surface of the silicon oxide particles 4. More specifically, a fluorine-containing organic acid is added to some OH groups existing on the surface of the silicon oxide particles 4. In the silicon oxide particles 4 contained in the coating liquid, the distance between the silicon oxide particles 4 is maintained by the fluorine-containing organic acid 7 added to the surface thereof, aggregation is suppressed, and the dispersibility is improved. Then, at the time of forming the coating film, the state in which the silicon oxide particles 4 are aligned and deposited is maintained by the fluorine-containing organic acid, so that the porous layer 3 having low scattering and excellent film strength can be obtained.
含フッ素有機酸7は酸化ケイ素に対して、0.1phr以上8phr以下の範囲で含まれることが好ましく、より好ましくは0.2phr以上2.0phr以下である。ここで、「phr」は、酸化ケイ素重量100に対する含フッ素有機酸の重量部を表す。含フッ素有機酸7が酸化ケイ素に対して、0.1phrよりも少ない範囲で含まれていると、塗膜形成時の酸化ケイ素粒子4を整列して堆積させた状態で塗膜化させることが十分にできず散乱が悪化する。また、分散媒やバインダーの影響により、塗工液中の酸化ケイ素粒子4の分散安定性が悪化し、経時による塗工液の増粘やゲル化を引き起こす場合がある。含フッ素有機酸7が酸化ケイ素に対して8phrよりも多い範囲で含まれると、酸化ケイ素粒子4が緻密に詰まった状態になり易く、空隙6が少なくなるため塗膜自体の屈折率が上がり易くなる。 The fluorine-containing organic acid 7 is preferably contained in the range of 0.1 phr or more and 8 phr or less, and more preferably 0.2 phr or more and 2.0 phr or less with respect to silicon oxide. Here, "phr" represents a part by weight of the fluorine-containing organic acid with respect to the weight of silicon oxide of 100. When the fluorine-containing organic acid 7 is contained in a range less than 0.1 phr with respect to silicon oxide, the silicon oxide particles 4 at the time of forming the coating film may be aligned and deposited to form a coating film. Scattering worsens because it cannot be done sufficiently. Further, due to the influence of the dispersion medium and the binder, the dispersion stability of the silicon oxide particles 4 in the coating liquid deteriorates, which may cause the coating liquid to thicken or gel over time. When the fluorine-containing organic acid 7 is contained in a range of more than 8 phr with respect to silicon oxide, the silicon oxide particles 4 are likely to be densely clogged, and the voids 6 are reduced, so that the refractive index of the coating film itself is likely to increase. Become.
また、含フッ素有機酸7の酸解離定数は0pKa以上0.5pKa以下であることが好ましく、より好ましくは0.1pKa以上0.3pKa以下である。酸解離定数が0pKaより小さい場合は、塗膜形成時の酸化ケイ素粒子4の配列が乱れ、散乱が悪化しやすい。酸解離定数が0.5pKaよりも大きい場合は、塗膜の強度が低下するため塗膜を拭き上げた際に線状のキズが入り易く、得られた多孔質層3の外観品位が若干悪くなる場合がある。 The acid dissociation constant of the fluorine-containing organic acid 7 is preferably 0 pKa or more and 0.5 pKa or less, and more preferably 0.1 pKa or more and 0.3 pKa or less. When the acid dissociation constant is smaller than 0 pKa, the arrangement of the silicon oxide particles 4 at the time of forming the coating film is disturbed, and the scattering tends to be deteriorated. When the acid dissociation constant is larger than 0.5 pKa, the strength of the coating film is lowered, so that linear scratches are likely to occur when the coating film is wiped off, and the appearance quality of the obtained porous layer 3 is slightly poor. May become.
また、含フッ素有機酸7の分子量は100以上360以下であることが好ましい。分子量が100よりも小さいと散乱が悪化し易くなる。分子量が360よりも大きくなると、塗工液の経時安定性が悪化する場合がある。 The molecular weight of the fluorine-containing organic acid 7 is preferably 100 or more and 360 or less. If the molecular weight is less than 100, the scattering tends to worsen. If the molecular weight is larger than 360, the stability of the coating liquid over time may deteriorate.
酸化ケイ素粒子4が中空酸化ケイ素粒子の場合、平均粒子径は15nm以上100nm以下、好ましくは15nm以上60nm以下が望ましい。中空酸化ケイ素粒子の平均粒子径が15nm未満の場合、中空粒子を作製するのに必要なコアとなる粒子を安定的に作ることが難しく、中空酸化ケイ素粒子自体の作製が難しい。また中空酸化ケイ素粒子の平均粒子径が100nmを超える場合、中空酸化ケイ素粒子間の空隙6のサイズが大きくなるため、大きなボイドが発生しやすく、また中空酸化ケイ素粒子の大きさに伴う散乱が発生するため好ましくない。 When the silicon oxide particles 4 are hollow silicon oxide particles, the average particle diameter is preferably 15 nm or more and 100 nm or less, preferably 15 nm or more and 60 nm or less. When the average particle size of the hollow silicon oxide particles is less than 15 nm, it is difficult to stably produce the core particles necessary for producing the hollow particles, and it is difficult to produce the hollow silicon oxide particles themselves. Further, when the average particle diameter of the hollow silicon oxide particles exceeds 100 nm, the size of the voids 6 between the hollow silicon oxide particles becomes large, so that large voids are likely to occur, and scattering due to the size of the hollow silicon oxide particles occurs. Therefore, it is not preferable.
ここで中空酸化ケイ素粒子の平均粒子径とは、平均フェレ径である。この平均フェレ径は、塗工液に含まれる複数の中空酸化ケイ素粒子を透過電子顕微鏡像によって観察したものを画像処理によって測定することができる。画像処理方法としては、image Pro PLUS(メディアサイバネティクス社製)など市販の画像処理を用いることができる。所定の画像領域において、必要であれば適宜コントラスト調整を行い、粒子測定によって各粒子の平均フェレ径を測定し、平均値を算出し求めることができる。 Here, the average particle size of the hollow silicon oxide particles is the average ferret diameter. The average ferret diameter can be measured by image processing of a plurality of hollow silicon oxide particles contained in the coating liquid observed by a transmission electron microscope image. As the image processing method, a commercially available image processing such as image Pro PLUS (manufactured by Media Cybernetics) can be used. In a predetermined image region, if necessary, the contrast is adjusted as appropriate, the average ferret diameter of each particle is measured by particle measurement, and the average value can be calculated and obtained.
中空酸化ケイ素粒子のシェルの厚みは平均粒子径の10%以上50%以下、好ましくは20%以上35%以下が望ましい。シェルの厚みが10%未満であると粒子の強度が不足するため好ましくない。またシェルの厚みが50%を超えると中空の効果が屈折率に顕著には現れないため好ましくない。 The thickness of the shell of the hollow silicon oxide particles is preferably 10% or more and 50% or less, preferably 20% or more and 35% or less of the average particle diameter. If the thickness of the shell is less than 10%, the strength of the particles is insufficient, which is not preferable. Further, if the thickness of the shell exceeds 50%, the hollow effect does not appear remarkably in the refractive index, which is not preferable.
次に、酸化ケイ素粒子4が鎖状酸化ケイ素粒子である場合について説明する。鎖状酸化ケイ素粒子とは、一次粒子である中実酸化ケイ素粒子が、直線または屈曲しながら複数連なった二次粒子である。鎖状酸化ケイ素粒子のサイズは短径と長径で表すことができる。 Next, a case where the silicon oxide particles 4 are chain silicon oxide particles will be described. The chain silicon oxide particles are secondary particles in which a plurality of solid silicon oxide particles, which are primary particles, are connected in a straight line or while being bent. The size of the chain silicon oxide particles can be represented by a minor axis and a major axis.
鎖状酸化ケイ素粒子の短径は、鎖状酸化ケイ素粒子の太さ、即ち鎖状酸化ケイ素粒子を構成する一次粒子1個の平均粒子径に相当しており、塗工液から抽出した鎖状酸化ケイ素粒子に対して窒素吸着法により求める比表面積から算出することができる。鎖状酸化ケイ素粒子の短径の平均は、8nm以上20nm以下が好ましい。短径が8nm未満であると、酸化ケイ素粒子4の表面積が増え過ぎてしまい、雰囲気中の水分や化学物質の取り込みによる信頼性低下の可能性が高まる。また、短径の平均が20nmを超えると、溶媒への分散が不安定になり塗工性が悪化する懸念がある。 The minor axis of the chain silicon oxide particles corresponds to the thickness of the chain silicon oxide particles, that is, the average particle size of one primary particle constituting the chain silicon oxide particles, and is a chain shape extracted from the coating liquid. It can be calculated from the specific surface area obtained by the nitrogen adsorption method for the silicon oxide particles. The average minor axis of the chain silicon oxide particles is preferably 8 nm or more and 20 nm or less. If the minor axis is less than 8 nm, the surface area of the silicon oxide particles 4 increases too much, and the possibility of reliability deterioration due to the uptake of moisture and chemical substances in the atmosphere increases. Further, if the average minor diameter exceeds 20 nm, the dispersion in the solvent becomes unstable and there is a concern that the coatability deteriorates.
一方、鎖状酸化ケイ素粒子の長径は、二次粒子の長さ、即ち連結体の平均粒子径に相当しており、動的光散乱法によって求めることができる。鎖状酸化ケイ素粒子の長径は、短径の4倍以上8倍以下が好ましい。長径が短径の4倍未満だと、膜にした時に屈折率が十分下がらない可能性があり、8倍を超えると増粘により塗工性やレベリング性が悪化し、膜の形成が困難となる。 On the other hand, the major axis of the chain silicon oxide particles corresponds to the length of the secondary particles, that is, the average particle diameter of the conjugate, and can be obtained by a dynamic light scattering method. The major axis of the chain silicon oxide particles is preferably 4 times or more and 8 times or less the minor axis. If the major axis is less than 4 times the minor axis, the refractive index may not decrease sufficiently when the film is formed, and if it exceeds 8 times, the coatability and leveling property deteriorate due to thickening, making it difficult to form the film. Become.
鎖状酸化ケイ素粒子を構成する一次粒子の形状は、明確に観察できる状態でも、粒子同士が互いに融着などして形が崩れた状態であっても構わないが、各一次粒子の形状を明確に観察できる状態であることが好ましい。鎖状酸化ケイ素粒子を構成する一個一個の一次粒子は、真球状でも繭型や俵型であっても良い。好ましくは繭型や俵型であり、より好ましくは短径が8nm以上20nm以下で長径が短径の1.5倍以上3.0倍以下の粒子である。また、短径、および長径と短径との関係が上記範囲内であれば、塗工液の中に、鎖状酸化ケイ素粒子以外に真球、繭型、俵型、円盤、棒状、針状、角型などの形状の粒子が混ざっていても良い。 The shape of the primary particles constituting the chain silicon oxide particles may be in a state where they can be clearly observed or in a state where the particles are fused to each other and lose their shape, but the shape of each primary particle is clear. It is preferable that the particles can be observed. The individual primary particles constituting the chain silicon oxide particles may be spherical, cocoon-shaped, or bale-shaped. The particles are preferably cocoon-shaped or bale-shaped, and more preferably particles having a minor axis of 8 nm or more and 20 nm or less and a major axis of 1.5 times or more and 3.0 times or less of the minor axis. If the minor axis and the relationship between the major axis and the minor axis are within the above range, in addition to the chain silicon oxide particles, a true sphere, a cocoon shape, a bale shape, a disk, a rod shape, and a needle shape are included in the coating liquid. , Square-shaped particles may be mixed.
また、鎖状酸化ケイ素粒子は、互いに結着可能な表面状態を有していることが好ましい。鎖状酸化ケイ素粒子はもともと表面に多くのシラノール(Si−OH)基を有しているが、シリカゾルと混合する方法によって、表面のシラノール基の数をさらに増やすことで、鎖状酸化ケイ素粒子が互いに結着可能な表面状態とすることが可能となる。コーティング組成物を塗布および乾燥させて、複数の鎖状酸化ケイ素粒子4が互いに接した状態となった時に、鎖状酸化ケイ素粒子が互いに結着すると、耐擦傷性の高い層を実現することができる。 Further, it is preferable that the chain silicon oxide particles have a surface state in which they can be bound to each other. The chain silicon oxide particles originally have many silanol (Si-OH) groups on the surface, but by further increasing the number of silanol groups on the surface by a method of mixing with silica sol, the chain silicon oxide particles can be formed. It is possible to make the surface states that can be bonded to each other. When the coating composition is applied and dried so that the plurality of chain silicon oxide particles 4 are in contact with each other and the chain silicon oxide particles are bound to each other, a layer having high scratch resistance can be realized. it can.
本発明における粒子同士を結合させる無機バインダー5は、ケイ酸エステルを加水分解・縮合することにより得られる酸化ケイ素オリゴマーが好ましい。 The inorganic binder 5 for binding the particles in the present invention is preferably a silicon oxide oligomer obtained by hydrolyzing and condensing a silicic acid ester.
本発明において、無機バインダー5の含有量は、酸化ケイ素粒子4に対して1.0phr以上20phr以下が好ましく、より好ましくは3.0phr以上15phr以下である。無機バインダー5の含有量が、酸化ケイ素粒子4に対して1.0phrより少ない場合は十分な膜強度が得られない。また、無機バインダー5の含有量が、酸化ケイ素粒子4に対して20phrより多い場合は可視光における散乱が悪化する場合や、屈折率が上がってしまう場合がある。 In the present invention, the content of the inorganic binder 5 is preferably 1.0 phr or more and 20 phr or less, and more preferably 3.0 phr or more and 15 phr or less with respect to the silicon oxide particles 4. When the content of the inorganic binder 5 is less than 1.0 phr with respect to the silicon oxide particles 4, sufficient film strength cannot be obtained. Further, when the content of the inorganic binder 5 is more than 20 phr with respect to the silicon oxide particles 4, the scattering in visible light may be deteriorated or the refractive index may be increased.
(光学部材とその製造方法)
本発明の光学部材1の製造方法は、基材2の上に、多孔質層3を形成する塗工液を塗布して塗膜を形成する工程と、塗膜が形成された基材1を、乾燥および/または焼成して多孔質層を形成する工程と、を有している。
(Optical member and its manufacturing method)
The method for producing the optical member 1 of the present invention includes a step of applying a coating liquid for forming a porous layer 3 on a base material 2 to form a coating film, and a base material 1 on which the coating film is formed. , Drying and / or firing to form a porous layer.
塗工液を塗布する方法としては、スピンコート法、ブレードコート法、ロールコート法、スリットコート法、印刷法やディップコート法などが挙げられる。凹面などの立体的に複雑な形状を有する光学部材を製造する場合、膜厚の均一性の観点からスピンコート法が好ましい。 Examples of the method for applying the coating liquid include a spin coating method, a blade coating method, a roll coating method, a slit coating method, a printing method and a dip coating method. When manufacturing an optical member having a three-dimensionally complicated shape such as a concave surface, the spin coating method is preferable from the viewpoint of film thickness uniformity.
本発明の多孔質層3を形成するため、塗工液を基材上に塗工し、乾燥および/または硬化を行う。乾燥および/または硬化は、溶媒を除去し、酸化ケイ素粒子同士を結着させながら配列性を乱さずに堆積させて、多孔質層3とするための工程である。乾燥および/または硬化の温度は、基材2の耐熱温度に依存するが、20℃以上200℃以下が好ましい。乾燥および/または硬化の時間は、基材に影響を与えず、且つ層内の有機溶媒を蒸発できる程度の時間であればよいが、好ましくは10分以上200時間以下、さらに好ましくは30分以上24時間以下である。 In order to form the porous layer 3 of the present invention, a coating liquid is applied onto a substrate and dried and / or cured. Drying and / or curing is a step of removing the solvent and depositing the silicon oxide particles while binding them together without disturbing the arrangement to form the porous layer 3. The drying and / or curing temperature depends on the heat resistant temperature of the base material 2, but is preferably 20 ° C. or higher and 200 ° C. or lower. The drying and / or curing time may be a time that does not affect the substrate and allows the organic solvent in the layer to evaporate, but is preferably 10 minutes or more and 200 hours or less, and more preferably 30 minutes or more. It is less than 24 hours.
上記方法に得られる本発明の光学部材1は、少なくとも基材2と、基材2の上に多孔質層3とを有している。 The optical member 1 of the present invention obtained by the above method has at least a base material 2 and a porous layer 3 on the base material 2.
基材2は、ガラス、樹脂などを用いることが可能である。また、その形状は限定されることはなく、平面、曲面、凹面、凸面、フィルム状であっても良い。 As the base material 2, glass, resin, or the like can be used. Further, the shape is not limited, and may be a flat surface, a curved surface, a concave surface, a convex surface, or a film shape.
ガラスとしては、酸化ジルコニウム、酸化チタン、酸化タンタル、酸化ニオブ、酸化ハフニウム、酸化ランタン、酸化ガドリニウム、酸化ケイ素、酸化カルシウム、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化ホウ素、酸化アルミニウムなどを含有する無機ガラスを用いることができる。ガラス基材としては研削研磨、モールド成形、フロート成形などで成形されたガラス基材を用いることができる。 Inorganic glass containing zirconium oxide, titanium oxide, tantalum oxide, niobium oxide, hafnium oxide, lanthanum oxide, gadolinium oxide, silicon oxide, calcium oxide, barium oxide, sodium oxide, potassium oxide, boron oxide, aluminum oxide, etc. Glass can be used. As the glass base material, a glass base material formed by grinding and polishing, molding, float molding or the like can be used.
樹脂としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、アクリル樹脂、ポリカーボネート、シクロオレフィンポリマー、ポリビニルアルコールなどを用いることができる。 As the resin, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, acrylic resin, polycarbonate, cycloolefin polymer, polyvinyl alcohol and the like can be used.
本発明の多孔質層3の屈折率は、1.20以上1.30以下が好ましく、1.20以上1.24以下がより好ましい。屈折率が1.20未満の場合は、膜中に含まれる空隙の割合が多いため、多孔質層の耐摩耗性が不足する場合がある。屈折率が1.30を超えると、空気と基材2との屈折率段差を十分に低減できず、反射防止効果が十分に得られない場合がある。 The refractive index of the porous layer 3 of the present invention is preferably 1.20 or more and 1.30 or less, and more preferably 1.20 or more and 1.24 or less. When the refractive index is less than 1.20, the proportion of voids contained in the film is large, so that the abrasion resistance of the porous layer may be insufficient. If the refractive index exceeds 1.30, the difference in refractive index between the air and the base material 2 cannot be sufficiently reduced, and the antireflection effect may not be sufficiently obtained.
さらに、本発明の多孔質層3に含まれるNaの量は、10ppm以下に抑制されている。これは、本発明の多孔質層3に用いる塗工液のNa含有量が、1ppm以下に抑制されていることによる。 Further, the amount of Na contained in the porous layer 3 of the present invention is suppressed to 10 ppm or less. This is because the Na content of the coating liquid used for the porous layer 3 of the present invention is suppressed to 1 ppm or less.
また、本発明の多孔質層3の表面は親水性であることが好ましい。具体的には、室温23℃、湿度40〜45%RHにおける純水の接触角が3°以上20°以下であることが好ましく、さらに好ましくは、5°以上10°以下である。純水の接触角が3°未満であると多孔質層3表面から膜中に水分などが入り易くなって環境安定性が損なわれるおそれがある。純水の接触角が20°を超えると、酸化ケイ素粒子同士の結着が弱く、多孔質層3の耐摩耗性が十分でない可能性がある。 Further, the surface of the porous layer 3 of the present invention is preferably hydrophilic. Specifically, the contact angle of pure water at room temperature of 23 ° C. and humidity of 40 to 45% RH is preferably 3 ° or more and 20 ° or less, and more preferably 5 ° or more and 10 ° or less. If the contact angle of pure water is less than 3 °, moisture or the like easily enters the membrane from the surface of the porous layer 3, which may impair environmental stability. If the contact angle of pure water exceeds 20 °, the binding between the silicon oxide particles is weak, and the abrasion resistance of the porous layer 3 may not be sufficient.
さらに、本発明の多孔質層3の表面には必要に応じて、防汚層などを設けても良い。防汚層の例としてはフッ素ポリマー層、フルオロシラン単分子層、酸化チタン粒子層などが挙げられる。 Further, an antifouling layer or the like may be provided on the surface of the porous layer 3 of the present invention, if necessary. Examples of the antifouling layer include a fluoropolymer layer, a fluorosilane monolayer, and a titanium oxide particle layer.
尚、本発明に係る光学部材1には、基材2と多孔質層3との間に中間層を設けても良い。中間層は、ガラス基材からの不純物の拡散を防いだり、多孔質層3の反射防止性能を高めたりする役割を担っている。中間層として好適な例として、酸化ジルコニウム、酸化チタン、酸化タンタル、酸化ニオブ、酸化ハフニウムを含有する高屈折率層や、酸化ケイ素、フッ化マグネシウムを含有する低屈折率層や、酸化アルミニウム、ポリマーなどが挙げられる。中間層は、単層でも複数の層が積層されていても良いが、高屈折率層と低屈折率層を交互に複数層積層したものが好ましい。 The optical member 1 according to the present invention may be provided with an intermediate layer between the base material 2 and the porous layer 3. The intermediate layer plays a role of preventing the diffusion of impurities from the glass base material and enhancing the antireflection performance of the porous layer 3. Suitable examples of the intermediate layer include a high refractive index layer containing zirconium oxide, titanium oxide, tantalum oxide, niobium oxide and hafnium oxide, a low refractive index layer containing silicon oxide and magnesium fluoride, aluminum oxide and a polymer. And so on. The intermediate layer may be a single layer or a plurality of layers may be laminated, but a layer in which a high refractive index layer and a low refractive index layer are alternately laminated is preferable.
本発明の光学部材1は、光学レンズ、光学ミラー、フィルター、光学フィルムとして用いることができる。中でも、光学レンズとして用いることが特に好ましい。また、本発明に係る光学部材1は、高い純度が求められる半導体素子や液晶パネル(またはディスプレイ)を構成する部材に限定されず、種々の光学機器に用いることができる。特に、高い反射防止性能が求められる撮像装置が備える撮像光学系のレンズとして好適である。 The optical member 1 of the present invention can be used as an optical lens, an optical mirror, a filter, and an optical film. Above all, it is particularly preferable to use it as an optical lens. Further, the optical member 1 according to the present invention is not limited to members constituting semiconductor elements and liquid crystal panels (or displays) that require high purity, and can be used in various optical devices. In particular, it is suitable as a lens for an imaging optical system included in an imaging device that requires high antireflection performance.
本発明の光学部材1を撮像光学系に用いれば、外部からの光が撮像光学系を介して撮像素子に結像するまでの間に、光学部材1の表面での光の反射が抑制され、光の透過率が向上し、フレアやゴーストも大幅に低減するため、質の高い画像を取得することが可能となる。 When the optical member 1 of the present invention is used in the image pickup optical system, the reflection of light on the surface of the optical member 1 is suppressed until the light from the outside is imaged on the image pickup element via the image pickup optical system. Since the light transmittance is improved and flare and ghost are significantly reduced, it is possible to acquire a high-quality image.
(光学機器)
本発明の光学部材は、各種光学レンズ、マイクロレンズ、液晶パネル用ガラスとして使用でき、本発明の光学部材を備える光学機器は、撮像機器や液晶プロジェクター、撮像センサー、液晶パネルなどに応用可能である。
(Optical equipment)
The optical member of the present invention can be used as various optical lenses, microlenses, and glass for a liquid crystal panel, and the optical device provided with the optical member of the present invention can be applied to an image pickup device, a liquid crystal projector, an image sensor, a liquid crystal panel, and the like. ..
図4は、本発明の撮像装置の好適な実施形態の一例であり、本発明の光学機器の一例であるレンズ鏡筒(交換レンズ)が結合された一眼レフデジタルカメラの構成例を示している。
本発明の光学機器とは、筐体と、筐体内に複数のレンズからなる光学系とを備える光学機器であり、例えば、双眼鏡、顕微鏡、半導体露光装置、交換レンズ等、本発明の光学部材を含む光学系を備える機器のことをいう。あるいは、本発明の光学部材を通過した光によって像を生成する機器、いわゆるカメラの交換レンズのことをいう。
FIG. 4 shows an example of a preferred embodiment of the image pickup apparatus of the present invention, and shows a configuration example of a single-lens reflex digital camera to which a lens barrel (interchangeable lens), which is an example of the optical device of the present invention, is coupled. ..
The optical device of the present invention is an optical device including a housing and an optical system composed of a plurality of lenses in the housing. For example, an optical member of the present invention such as binoculars, a microscope, a semiconductor exposure device, an interchangeable lens, etc. A device equipped with an optical system that includes it. Alternatively, it refers to an interchangeable lens of a so-called camera, which is a device that generates an image by light passing through an optical member of the present invention.
また、本発明の撮像装置とは、デジタルスチルカメラやデジタルビデオカメラ等のカメラシステムや、携帯電話機等の本発明の光学部材を通過した光を受光する撮像素子を備える電子機器のことをいう。なお、電子機器に搭載されるモジュール状の形態、例えばカメラモジュールを撮像装置とする場合もある。 Further, the image pickup device of the present invention refers to an electronic device including a camera system such as a digital still camera or a digital video camera, or an image pickup element that receives light that has passed through an optical member of the present invention such as a mobile phone. In some cases, a modular form mounted on an electronic device, for example, a camera module may be used as an image pickup device.
図4において、撮像装置400は、カメラ本体402と光学機器であるレンズ鏡筒401とが結合されているが、レンズ鏡筒401はカメラ本体402対して着脱可能ないわゆる交換レンズである。
被写体からの光は、レンズ鏡筒401の筐体420内の撮影光学系の光軸上に配置された複数のレンズ403、405などからなる光学系を通過し、撮像素子に受光される。本発明の光学部材は、例えばレンズ403など、光学系を構成するレンズとして配置される。
In FIG. 4, in the image pickup apparatus 400, the camera body 402 and the lens barrel 401, which is an optical device, are coupled, and the lens barrel 401 is a so-called interchangeable lens that can be attached to and detached from the camera body 402.
The light from the subject passes through an optical system including a plurality of lenses 403 and 405 arranged on the optical axis of the photographing optical system in the housing 420 of the lens barrel 401, and is received by the image sensor. The optical member of the present invention is arranged as a lens constituting an optical system such as a lens 403.
ここで、レンズ405は内筒404によって支持されて、フォーカシングやズーミングのためにレンズ鏡筒401の外筒に対して可動支持されている。 Here, the lens 405 is supported by the inner cylinder 404, and is movably supported with respect to the outer cylinder of the lens barrel 401 for focusing and zooming.
撮影前の観察期間では、被写体からの光は、カメラ本体の筐体421内の主ミラー407により反射され、プリズム411を透過後、ファインダレンズ412を通して撮影者に撮影画像が映し出される。主ミラー407は例えばハーフミラーとなっており、主ミラーを透過した光はサブミラー408によりAF(オートフォーカス)ユニット413の方向に反射され、例えばこの反射光は測距に使用される。また、主ミラー407は主ミラーホルダ440に接着などによって装着、支持されている。不図示の駆動機構を介して、撮影時には主ミラー407とサブミラー408を光路外に移動させ、シャッタ409を開き、撮像素子410にレンズ鏡筒401から入射した撮影光像を結像させる。また、絞り406は、開口面積を変更することにより撮影時の明るさや焦点深度を変更できるよう構成される。 During the observation period before shooting, the light from the subject is reflected by the main mirror 407 in the housing 421 of the camera body, passes through the prism 411, and then the shot image is projected to the photographer through the finder lens 412. The main mirror 407 is, for example, a half mirror, and the light transmitted through the main mirror is reflected by the sub mirror 408 in the direction of the AF (autofocus) unit 413, and the reflected light is used for distance measurement, for example. Further, the main mirror 407 is attached and supported on the main mirror holder 440 by adhesion or the like. At the time of photographing, the main mirror 407 and the sub mirror 408 are moved out of the optical path via a drive mechanism (not shown), the shutter 409 is opened, and the image pickup element 410 is imaged with a photographed light image incident from the lens barrel 401. Further, the aperture 406 is configured so that the brightness and the depth of focus at the time of shooting can be changed by changing the aperture area.
このように、本発明にかかる光学機器および撮像装置では、光学系を通過する光の反射が低減されるため、これらを用いて撮像を行うと、フレアやゴーストが低減されたシャープな画像を得ることができる。 As described above, in the optical device and the imaging apparatus according to the present invention, the reflection of light passing through the optical system is reduced. Therefore, when imaging is performed using these, a sharp image with reduced flare and ghost is obtained. be able to.
以下、実施例により本発明を具体的に説明する。本発明はその要旨を超えない範囲で適宜変更することが可能であり、以下で説明する実施例は、発明をこれらに限定するものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. The present invention can be appropriately modified without exceeding the gist thereof, and the examples described below do not limit the invention to these.
<多孔質層成膜時の塗工性の評価>
多孔質層を形成するための塗工液の塗布性の評価は以下のように行った。ガラス基板(φ30mm、厚み1mmの片面が研磨された合成石英)上の研磨面側に多孔質層が約120nmの厚みになるように塗工液を滴下しスピンコーターにて成膜した際、多孔質層上に不良が発生していないか外観評価を行った。
<Evaluation of coatability during film formation of porous layer>
The applicability of the coating liquid for forming the porous layer was evaluated as follows. When a coating liquid is dropped on the polished surface side of a glass substrate (φ30 mm, 1 mm thick synthetic quartz) so that the thickness of the porous layer is about 120 nm, and a spin coater is used to form a film, the porous layer is porous. The appearance was evaluated to see if there were any defects on the stratum.
外観上の不良が全く見られないもの(A)は、塗工性が非常に良好、外観上の不良は見られないが、滴下痕が若干発生しているもの(B)は、塗工性が良好、滴下痕の発生や異物が若干見られるものは(C)、塗工性が普通、ムラや異物などによりスジ状の不良などが発生し、明らかに見た目の悪いもの(D)は塗工性が悪い、として評価した。
A:塗工性が非常に良好
B:塗工性が良好
C:塗工性が普通
D:塗工性が悪い
本発明において、塗工性の評価がA、B、Cの場合は塗工性に問題の無いものとした。
The one (A) in which no defects in appearance are observed has very good coatability, and the one in which no defects in appearance are observed, but the one in which some dripping marks are generated (B) has excellent coatability. Good, those with dripping marks and some foreign matter (C), those with normal coatability, streaky defects due to unevenness and foreign matter, etc., and those with clearly bad appearance (D) are painted It was evaluated as having poor workability.
A: Very good coatability B: Good coatability C: Normal coatability D: Poor coatability In the present invention, when the coatability is evaluated as A, B, C, coatability is applied. It was assumed that there was no problem with sex.
<多孔質層の散乱評価>
多孔質層の散乱の評価は以下のように行った。まず、多孔質層が形成されたガラス基板(φ30mm、厚み1mmの両面が研磨された合成石英)が常に同じ位置になるように基材ホルダーを設置した。次に基材ホルダーに照度計(T−10M コニカミノルタセンシング社製)を設置し、照度を計測しながら、基材面側に垂直方向からの照度が4000luxとなるように白色光を照射した。次に白色光照射側が多孔質層の成膜面となるように多孔質層が形成されたガラス基板を設置した。設置したガラス基板を45°に傾け、照射面の反対面の法線方向からカメラ(レンズ:EF50mm F2.5 コンパクトマクロ キヤノン株式会社製、カメラ:EOS−70D キヤノン株式会社製)で撮影を行った。カメラの撮影条件は、ISO400、ホワイトバランス晴れ、絞り10、シャッタースピード10秒で行った。撮影を行った画像におけるガラス基材面の700pix×700pixの任意4箇所について平均輝度値を算出したものを散乱値として、散乱の評価を行った。
本発明において、上述した方法にて算出した散乱の値が25以下の塗膜については、低散乱を実現した多孔質層とした。
<Scattering evaluation of porous layer>
The evaluation of the scattering of the porous layer was performed as follows. First, the base material holder was installed so that the glass substrate (φ30 mm, thickness 1 mm, both sides polished synthetic quartz) on which the porous layer was formed was always in the same position. Next, an illuminance meter (manufactured by T-10M Konica Minolta Sensing Co., Ltd.) was installed in the base material holder, and while measuring the illuminance, white light was irradiated to the base material surface side so that the illuminance from the vertical direction was 4000 lux. Next, a glass substrate on which the porous layer was formed was installed so that the white light irradiation side became the film-forming surface of the porous layer. The installed glass substrate was tilted at 45 °, and a camera (lens: EF50mm F2.5 Compact Macro Canon Inc., camera: EOS-70D Canon Inc.) was used to shoot from the normal direction of the opposite surface of the irradiation surface. .. The shooting conditions of the camera were ISO400, white balance sunny, aperture 10 and shutter speed 10 seconds. Scattering was evaluated using the calculated average luminance values of 700 pix × 700 pix of any four points on the glass substrate surface in the photographed image as the scattering value.
In the present invention, the coating film having a scattering value of 25 or less calculated by the above method was used as a porous layer that realized low scattering.
<多孔質層の膜強度評価>
多孔質層の膜強度の評価は以下のように行った。まず、ガラス基板(φ30mm、厚み1mmの片面が研磨された合成石英)上の研磨面側に多孔質層を成膜し、エタノールを浸み込ませたポリエステルワイパー(テックスワイプ社製 アルファワイパーTX1009)で1000g/cm2の荷重をかけ、多孔質層上を10回往復させた後、多孔質層上に不良が発生していないか外観評価を行った。
<Evaluation of film strength of porous layer>
The film strength of the porous layer was evaluated as follows. First, a polyester wiper (Alpha wiper TX1009 manufactured by Texwipe) in which a porous layer was formed on the polished surface side of a glass substrate (φ30 mm, 1 mm thick synthetic quartz with one surface polished) and soaked with ethanol. After applying a load of 1000 g / cm 2 and reciprocating on the porous layer 10 times, the appearance was evaluated to see if any defects were generated on the porous layer.
外観上の変化がほとんど見られないもの(A)は、膜強度が非常に良好な膜、外観の見た目などが若干変化しているもの(B)は、膜強度が良好な膜、外観の見た目などが変化し、微少な線キズなどが生じているもの(C)は膜強度が普通の膜、外観の見た目などが著しく変化し、線キズや膜剥がれなどが生じているもの(D)は膜強度が悪い膜、として評価した。
A:膜強度が非常に良好な膜
B:膜強度が良好な膜
C:膜強度が普通な膜
D:膜強度が悪い膜
本発明において、膜強度の評価がA、B、Cの場合は膜強度に問題の無い膜とした。
Those with almost no change in appearance (A) are films with very good film strength, and those with slight changes in appearance (B) are films with good film strength and appearance. (C) is a film with normal film strength, and the appearance of the film is significantly changed, and line scratches and peeling of the film are occurring (D). It was evaluated as a film with poor film strength.
A: Film with very good film strength B: Film with good film strength C: Film with normal film strength D: Film with poor film strength In the present invention, when the evaluation of film strength is A, B, C A film having no problem in film strength was used.
<多孔質層の屈折率の評価>
屈折率の評価は以下のように行った。まず、ガラス基板(φ30mm、厚み1mmの片面が研磨された合成石英)上の研磨面側に多孔質層を成膜し、分光エリプソメータ(VASE、ジェー・エー・ウーラム・ジャパン製)を用い、波長380nmから800nmまで測定した。屈折率は波長550nmにおける屈折率とした。屈折率は以下の基準で評価した。
A:1.24以下のもの
B:1.24超1.30以下のもの
C:1.30超のもの
本発明において、屈折率の評価がA、Bの場合は低屈折率な多孔質層として問題の無い膜とした。
実施例1から実施例9における多孔質層を形成する塗工液の作製、多孔質層の形成は下記の方法で行った。
<Evaluation of refractive index of porous layer>
The refractive index was evaluated as follows. First, a porous layer is formed on the polished surface side of a glass substrate (φ30 mm, synthetic quartz having a thickness of 1 mm and one surface is polished), and a spectroscopic ellipsometer (VASE, manufactured by JA Woolam Japan) is used to obtain wavelength. It was measured from 380 nm to 800 nm. The refractive index was defined as the refractive index at a wavelength of 550 nm. The refractive index was evaluated according to the following criteria.
A: 1.24 or less B: more than 1.24 and 1.30 or less C: more than 1.30 In the present invention, when the evaluation of the refractive index is A or B, the porous layer has a low refractive index. The film had no problem.
The coating liquid for forming the porous layer and the formation of the porous layer in Examples 1 to 9 were prepared by the following methods.
<塗工液の作製、および多孔質層の形成>
[実施例1]
中空酸化ケイ素粒子のイソプロピルアルコール分散液(日揮触媒化成株式会社製 スルーリア1110、平均粒子径約50nm、シェル厚約10nm、固形分濃度20.5質量%)580gに、1−エトキシ−2−プロパノール(以下、1E2Pと略す)を加えながらイソプロピルアルコールを加熱留去した。固形分濃度19.5質量%となるまでイソプロピルアルコールを留去して、中空酸化ケイ素粒子の1E2P溶媒置換液(以下、溶媒置換液1と称する)610gを調製した。得られた溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ペンタフルオロプロピオン酸 フッ素数5)成分の比が100/1となるように、含フッ素有機酸を添加し、分散液1を得た。
<Preparation of coating liquid and formation of porous layer>
[Example 1]
1-ethoxy-2-propanol (1-ethoxy-2-propanol) in 580 g of an isopropyl alcohol dispersion of hollow silicon oxide particles (Thruria 1110 manufactured by Nikki Catalyst Kasei Co., Ltd., average particle diameter of about 50 nm, shell thickness of about 10 nm, solid content concentration of 20.5% by mass). Hereinafter, isopropyl alcohol was heated and distilled off while adding 1E2P). Isopropyl alcohol was distilled off until the solid content concentration reached 19.5% by mass to prepare 610 g of a 1E2P solvent replacement solution (hereinafter referred to as solvent replacement solution 1) of hollow silicon oxide particles. Fluorine-containing organic acid is added to the obtained solvent replacement solution 1 so that the ratio of the hollow silicon oxide particles: fluorine-containing organic acid (pentafluoropropionic acid, fluorine number 5 manufactured by Tokyo Chemical Industry Co., Ltd.) is 100/1. Then, the dispersion liquid 1 was obtained.
別の容器に、1−プロポキシ−2−プロパノール11.4gとメチルポリシリケート(コルコート株式会社製 メチルシリケート53A)4.5gをゆっくり加え室温で120分間攪拌し、シリカゾル(以下、シリカゾル1)を調整した。
固形分濃度が4.5質量%になるように、分散液1を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液1を得た。
To another container, slowly add 11.4 g of 1-propanol-2-propanol and 4.5 g of methyl polysilicate (methyl silicate 53A manufactured by Corcote Co., Ltd.) and stir at room temperature for 120 minutes to prepare silica sol (hereinafter, silica sol 1). did.
The dispersion 1 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 1 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液1をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層1を有する光学部材1を得た。多孔質層1における純水の接触角は10°である。 The obtained coating liquid 1 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form the porous layer 1. An optical member 1 to have was obtained. The contact angle of pure water in the porous layer 1 is 10 °.
[実施例2]
溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ヘプタフルオロ酪酸 フッ素数7)成分の比が100/1となるように、含フッ素有機酸を添加し、分散液2を得た。
[Example 2]
Fluorine-containing organic acid is added to the solvent replacement solution 1 so that the ratio of the components of hollow silicon oxide particles: fluorine-containing organic acid (heptafluorobutyric acid, Tokyo Chemical Industry Co., Ltd., fluorine number 7) is 100/1, and the dispersion liquid is added. I got 2.
固形分濃度が4.5質量%になるように、分散液2を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液2を得た。 The dispersion 2 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 2 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液2をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層2を有する光学部材2を得た。多孔質層2における純水の接触角は9°である。 The obtained coating liquid 2 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form the porous layer 2. An optical member 2 to have was obtained. The contact angle of pure water in the porous layer 2 is 9 °.
[実施例3]
溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ノナフルオロ吉草酸 フッ素数9)成分の比が100/1となるように、含フッ素有機酸を添加し、分散液3を得た。
[Example 3]
Hollow silicon oxide particles: Fluorine-containing organic acid (Nonafluorovaleric acid manufactured by Tokyo Chemical Industry Co., Ltd., fluorine number 9) is added to the solvent replacement solution 1 so that the ratio of the components is 100/1, and the dispersion liquid is added. I got 3.
固形分濃度が4.5質量%になるように、分散液3を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液3を得た。 The dispersion 3 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 3 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液3をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層3を有する光学部材3を得た。多孔質層3における純水の接触角は11°である。 The obtained coating liquid 3 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form the porous layer 3. An optical member 3 to have was obtained. The contact angle of pure water in the porous layer 3 is 11 °.
[実施例4]
溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ウンデカフルオロヘキサン酸 フッ素数11)成分の比が100/2となるように、含フッ素有機酸を添加し、分散液4を得た。
[Example 4]
A fluorine-containing organic acid was added to the solvent replacement solution 1 so that the ratio of the hollow silicon oxide particles: fluorine-containing organic acid (undecafluorohexanoic acid fluorine number 11 manufactured by Tokyo Chemical Industry Co., Ltd.) was 100/2. The dispersion liquid 4 was obtained.
固形分濃度が4.5質量%になるように、分散液4を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液4を得た。 The dispersion 4 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 4 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液4をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層4を有する光学部材4を得た。多孔質層4における純水の接触角は10°である。 The obtained coating liquid 4 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form the porous layer 4. An optical member 4 to have was obtained. The contact angle of pure water in the porous layer 4 is 10 °.
[実施例5]
親水性酸化ケイ素粒子の水分散液(扶桑化学工業株式会社製 PL−1、平均粒子径約15nm、長径/短径=2.6、固形分濃度12質量%)500gに、1−メトキシ−2−プロパノール(以下、PGMEと略す)を加えながら水を加熱留去した。固形分濃度17質量%となるまで水を留去して、親水性酸化ケイ素粒子のPGME溶媒置換液(以下、溶媒置換液2と称する)350gを調製した。得られた溶媒置換液2に親水性酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ウンデカフルオロヘキサン酸 フッ素数11)成分の比が100/3となるように、含フッ素有機酸を添加し、分散液5を得た。
[Example 5]
1-methoxy-2 in 500 g of an aqueous dispersion of hydrophilic silicon oxide particles (PL-1, manufactured by Fuso Chemical Industry Co., Ltd., average particle diameter of about 15 nm, major / minor diameter = 2.6, solid content concentration: 12% by mass) -Water was heated and distilled off while adding propanol (hereinafter abbreviated as PGME). Water was distilled off until the solid content concentration reached 17% by mass to prepare 350 g of a PGME solvent substitution solution (hereinafter referred to as solvent substitution solution 2) of hydrophilic silicon oxide particles. Hydrophilic organic acid containing hydrophilic silicon oxide particles: fluorine-containing organic acid (undecafluorohexanoic acid manufactured by Tokyo Kasei Kogyo Co., Ltd., number of fluorine 11) so that the ratio of the components to the obtained solvent replacement solution 2 is 100/3. Was added to obtain a dispersion liquid 5.
別の容器に、純水18.0gとケイ酸エチル20.0gをゆっくり加え室温で120分間攪拌し、シリカゾル(以下、シリカゾル2)を調製した。
固形分濃度が4.5質量%になるように、分散液5を1−プロポキシ−2−プロパノールで希釈した後、親水性酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル2を添加した。さらに、室温で2時間混合攪拌することで親水性酸化ケイ素粒子連結体を含む塗工液5を得た。
18.0 g of pure water and 20.0 g of ethyl silicate were slowly added to another container and stirred at room temperature for 120 minutes to prepare a silica sol (hereinafter referred to as silica sol 2).
After diluting the dispersion 5 with 1-propoxy-2-propanol so that the solid content concentration becomes 4.5% by mass, the silica sol so that the ratio of the hydrophilic silicon oxide particles: silica sol component becomes 100/12. 2 was added. Further, the coating liquid 5 containing the hydrophilic silicon oxide particle conjugate was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液5をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層5を有する光学部材5を得た。多孔質層5における純水の接触角は10°である。 The obtained coating liquid 5 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form a porous layer 5. An optical member 5 to have was obtained. The contact angle of pure water in the porous layer 5 is 10 °.
[実施例6]
溶媒置換液2に親水性酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ウンデカフルオロヘキサン酸 フッ素数11)成分の比が100/8となるように、含フッ素有機酸を添加し、分散液6を得た。
[Example 6]
A fluorine-containing organic acid was added to the solvent replacement solution 2 so that the ratio of the hydrophilic silicon oxide particles: fluorine-containing organic acid (Undecafluorohexanoic acid, Tokyo Chemical Industry Co., Ltd., fluorine number 11) was 100/8. , The dispersion liquid 6 was obtained.
固形分濃度が4.5質量%になるように、分散液6を1−プロポキシ−2−プロパノールで希釈した後、親水性酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル2を添加した。さらに、室温で2時間混合攪拌することで親水性酸化ケイ素粒子の連結体を含む塗工液6を得た。 After diluting the dispersion 6 with 1-propoxy-2-propanol so that the solid content concentration becomes 4.5% by mass, the silica sol has a ratio of hydrophilic silicon oxide particles: silica sol component of 100/12. 2 was added. Further, the mixture was mixed and stirred at room temperature for 2 hours to obtain a coating liquid 6 containing a conjugate of hydrophilic silicon oxide particles.
得られた塗工液6をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層6を有する光学部材6を得た。多孔質層6における純水の接触角は11°である。 The obtained coating liquid 6 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form the porous layer 6. An optical member 6 to have was obtained. The contact angle of pure water in the porous layer 6 is 11 °.
[実施例7]
溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ヘプタフルオロ酪酸 フッ素数7)成分の比が100/0.2となるように、含フッ素有機酸を添加し、分散液7を得た。
[Example 7]
A fluorine-containing organic acid was added to the solvent replacement solution 1 so that the ratio of the hollow silicon oxide particles: fluorine-containing organic acid (heptafluorobutyric acid, fluorine number 7 manufactured by Tokyo Chemical Industry Co., Ltd.) was 100 / 0.2. A dispersion 7 was obtained.
固形分濃度が4.5質量%になるように、分散液7を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液7を得た。 The dispersion 7 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 7 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液7をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層7を有する光学部材7を得た。多孔質層7における純水の接触角は8°である。 The obtained coating liquid 7 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form the porous layer 7. An optical member 7 to have was obtained. The contact angle of pure water in the porous layer 7 is 8 °.
[実施例8]
溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ヘプタフルオロ酪酸 フッ素数7)成分の比が100/0.1となるように、含フッ素有機酸を添加し、分散液8を得た。
[Example 8]
A fluorine-containing organic acid was added to the solvent replacement solution 1 so that the ratio of the hollow silicon oxide particles: fluorine-containing organic acid (heptafluorobutyric acid, Tokyo Chemical Industry Co., Ltd., fluorine number 7) was 100 / 0.1. The dispersion liquid 8 was obtained.
固形分濃度が4.5質量%になるように、分散液8を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液8を得た。 The dispersion 8 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 8 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液8をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層8を有する光学部材8を得た。多孔質層8における純水の接触角は9°である。 The obtained coating liquid 8 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form the porous layer 8. An optical member 8 to have was obtained. The contact angle of pure water in the porous layer 8 is 9 °.
[実施例9]
溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ヘプタフルオロ酪酸 フッ素数7)成分の比が100/0.05となるように、含フッ素有機酸を添加し、分散液9を得た。
[Example 9]
A fluorine-containing organic acid was added to the solvent replacement solution 1 so that the ratio of the hollow silicon oxide particles: fluorine-containing organic acid (heptafluorobutyric acid, Tokyo Chemical Industry Co., Ltd., fluorine number 7) was 100/0.05. The dispersion liquid 9 was obtained.
固形分濃度が4.5質量%になるように、分散液9を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液9を得た。 The dispersion 9 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 9 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液9をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層9を有する光学部材9を得た。多孔質層9における純水の接触角は10°である。 The obtained coating liquid 9 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form a porous layer 9. An optical member 9 to have was obtained. The contact angle of pure water in the porous layer 9 is 10 °.
[比較例1]
溶媒置換液1に中空酸化ケイ素粒子:無機酸(東京化成工業株式会社製 塩酸フッ素数0)成分の比が100/1となるように、無機酸を添加し、分散液10を得た。
[Comparative Example 1]
An inorganic acid was added to the solvent replacement solution 1 so that the ratio of the hollow silicon oxide particles: inorganic acid (Tokyo Kasei Kogyo Co., Ltd., hydrochloric acid number 0) was 100/1 to obtain a dispersion solution 10.
固形分濃度が4.5質量%になるように、分散液10を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液10を得た。 The dispersion 10 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 10 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液10をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層10を有する光学部材10を得た。多孔質層10における純水の接触角は28°である。 The obtained coating liquid 10 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form a porous layer 10. An optical member 10 to have was obtained. The contact angle of pure water in the porous layer 10 is 28 °.
[比較例2]
固形分濃度が4.5質量%になるように、溶媒置換液1を乳酸エチルで希釈し、分散液11を得た後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液11を得た。
[Comparative Example 2]
After diluting the solvent substitution solution 1 with ethyl lactate so that the solid content concentration becomes 4.5% by mass to obtain the dispersion solution 11, the ratio of the hollow silicon oxide particles: silica sol component becomes 100/12. , Silica sol 1 was added. Further, the coating liquid 11 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液11をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層11を有する光学部材11を得た。多孔質層11における純水の接触角は9°である。 The obtained coating liquid 11 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired at 140 ° C. for 30 minutes in a constant temperature furnace to form the porous layer 11. An optical member 11 to have was obtained. The contact angle of pure water in the porous layer 11 is 9 °.
[比較例3]
溶媒置換液2に親水性酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ジフルオロ酢酸 フッ素数2)成分の比が100/0.05となるように、含フッ素有機酸を添加し、分散液12を得た。
固形分濃度が4.5質量%になるように、溶媒置換液2を1−プロポキシ−2−プロパノールで希釈した後、親水性酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル2を添加した。さらに、室温で2時間混合攪拌することで親水性酸化ケイ素粒子の連結体を含む塗工液12を得た。
[Comparative Example 3]
A fluorine-containing organic acid was added to the solvent replacement solution 2 so that the ratio of hydrophilic silicon oxide particles: fluorine-containing organic acid (difluoroacetic acid, fluorine number 2 manufactured by Tokyo Chemical Industry Co., Ltd.) was 100/0.05. A dispersion liquid 12 was obtained.
After diluting the solvent replacement solution 2 with 1-propoxy-2-propanol so that the solid content concentration becomes 4.5% by mass, the ratio of the hydrophilic silicon oxide particles: silica sol component becomes 100/12. Silica sol 2 was added. Further, by mixing and stirring at room temperature for 2 hours, a coating liquid 12 containing a conjugate of hydrophilic silicon oxide particles was obtained.
得られた塗工液12をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層12を有する光学部材12を得た。多孔質層12における純水の接触角は17°である。 The obtained coating liquid 12 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form a porous layer 12. An optical member 12 to have was obtained. The contact angle of pure water in the porous layer 12 is 17 °.
[比較例4]
溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 2,2,3,3−テトラフルオロプロピオン酸 フッ素数4)成分の比が100/0.1となるように、含フッ素有機酸を添加し、分散液13を得た。
[Comparative Example 4]
Hollow silicon oxide particles in the solvent replacement solution 1: Fluorine-containing organic acid (2,2,3,3-tetrafluoropropionic acid, fluorine number 4 manufactured by Tokyo Chemical Industry Co., Ltd.) , Fluorine-containing organic acid was added to obtain a dispersion liquid 13.
固形分濃度が4.5質量%になるように、分散液13を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液13を得た。 The dispersion 13 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 13 containing the hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液13をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層13を有する光学部材13を得た。多孔質層13における純水の接触角は14°である。 The obtained coating liquid 13 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form a porous layer 13. An optical member 13 to have was obtained. The contact angle of pure water in the porous layer 13 is 14 °.
[比較例5]
溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 ドデカフルオロスベリン酸 フッ素数12)成分の比が100/1となるように、含フッ素有機酸を添加し、分散液14を得た。
[Comparative Example 5]
Fluorine-containing organic acid is added and dispersed in the solvent replacement solution 1 so that the ratio of the hollow silicon oxide particles: fluorine-containing organic acid (Dodecafluorosuberic acid, Tokyo Chemical Industry Co., Ltd., fluorine number 12) is 100/1. Liquid 14 was obtained.
固形分濃度が4.5質量%になるように、分散液14を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液14を得た。 The dispersion 14 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 14 containing the hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液14をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層14を有する光学部材14を得た。多孔質層14における純水の接触角は10°である。 The obtained coating liquid 14 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form a porous layer 14. An optical member 14 to have was obtained. The contact angle of pure water in the porous layer 14 is 10 °.
[比較例6]
溶媒置換液1に中空酸化ケイ素粒子:含フッ素有機酸(東京化成工業株式会社製 トリデカフルオロヘプタン酸 フッ素数13)成分の比が100/9となるように、含フッ素有機酸を添加し、分散液15を得た。
[Comparative Example 6]
A fluorine-containing organic acid was added to the solvent replacement solution 1 so that the ratio of the hollow silicon oxide particles: fluorine-containing organic acid (tridecafluoroheptanic acid, fluorine number 13 manufactured by Tokyo Chemical Industry Co., Ltd.) was 100/9. The dispersion liquid 15 was obtained.
固形分濃度が4.5質量%になるように、分散液15を乳酸エチルで希釈した後、中空酸化ケイ素粒子:シリカゾル成分の比が100/12となるように、シリカゾル1を添加した。さらに、室温で2時間混合攪拌することで中空酸化ケイ素粒子を含む塗工液15を得た。 The dispersion 15 was diluted with ethyl lactate so that the solid content concentration was 4.5% by mass, and then silica sol 1 was added so that the ratio of the hollow silicon oxide particles: silica sol component was 100/12. Further, the coating liquid 15 containing hollow silicon oxide particles was obtained by mixing and stirring at room temperature for 2 hours.
得られた塗工液15をガラス基板上に滴下し、約120nmの厚みになるようにスピンコーターにて成膜した後、恒温炉にて140℃で30分焼成を行い、多孔質層15を有する光学部材15を得た。多孔質層15における純水の接触角は13°である。 The obtained coating liquid 15 is dropped onto a glass substrate to form a film with a spin coater so as to have a thickness of about 120 nm, and then fired in a constant temperature furnace at 140 ° C. for 30 minutes to form a porous layer 15. An optical member 15 to have was obtained. The contact angle of pure water in the porous layer 15 is 13 °.
実施例および比較例にて作製した塗工液1〜15の評価結果を表1に示す。
表1の結果から、次のことが分かった。
比較例2の塗工液11は塗工時にリング状の不良や滴下痕が目立ち、スジ状の不良も放射状に多く発生したことから塗工性に問題があることが分かった。無機酸は塗工液中の酸化ケイ素粒子を分散させることはできても、塗膜形成時に酸化ケイ素粒子の分散状態を維持させることが難しく、成膜工程において粒子凝集が多く発生していることが推定される。また、比較例3、4の塗工液12、13も析出物や異物の混入が原因と想定されるスジ状の不良が多く発生しており、塗膜を拭き上げた際にその不良を起点として線状のキズが入り易いことがわかった。
From the results in Table 1, the following was found.
It was found that the coating liquid 11 of Comparative Example 2 had a problem in coatability because ring-shaped defects and dripping marks were conspicuous during coating, and many streak-shaped defects were also generated radially. Although the inorganic acid can disperse the silicon oxide particles in the coating liquid, it is difficult to maintain the dispersed state of the silicon oxide particles at the time of forming the coating film, and a lot of particle aggregation occurs in the film forming process. Is estimated. In addition, the coating liquids 12 and 13 of Comparative Examples 3 and 4 also have many streaky defects that are assumed to be caused by the inclusion of precipitates and foreign substances, and the defects are the starting point when the coating film is wiped off. It was found that linear scratches are likely to occur.
次に、実施例および比較例にて作製した光学部材1〜15それぞれが有する多孔質層を反射防止膜として評価した結果を表2に示す。
表2の結果から、光学部材1から9には、散乱が25以下と低散乱で、かつ膜強度の優れた膜が設けられていることが分かった。また、低屈折率な反射防止膜として十分な性能を実現できることも分かった。 From the results in Table 2, it was found that the optical members 1 to 9 were provided with a film having low scattering of 25 or less and excellent film strength. It was also found that sufficient performance can be realized as an antireflection film having a low refractive index.
比較例として作製した光学部材10から15の多孔質層は、散乱と膜強度の両方に優れた特性を兼ね備えることが難しく、反射防止膜としての性能が十分ではないことが確認された。 It was confirmed that the porous layers of the optical members 10 to 15 produced as a comparative example are difficult to have excellent characteristics in both scattering and film strength, and the performance as an antireflection film is not sufficient.
1…光学部材
2…基材
3…多孔質層
4…酸化ケイ素粒子
5…無機バインダー
6…空隙
7…含フッ素有機酸
400…撮像装置
401…レンズ鏡筒
402…カメラ本体
403,405…レンズ
404…内筒
406…絞り
407…主ミラー
408…サブミラー
409…シャッタ
410…撮像素子
411…プリズム
412…ファインダレンズ
413…AFユニット
420…筐体
421…カメラ本体の筐体
440…主ミラーホルダ
1 ... Optical member 2 ... Base material 3 ... Porous layer 4 ... Silicon oxide particles 5 ... Inorganic binder 6 ... Voids 7 ... Fluorine-containing organic acid 400 ... Imaging device 401 ... Lens barrel 402 ... Camera body 403,405 ... Lens 404 ... Inner cylinder 406 ... Aperture 407 ... Main mirror 408 ... Sub mirror 409 ... Shutter 410 ... Imaging element 411 ... Prism 412 ... Finder lens 413 ... AF unit 420 ... Housing 421 ... Camera body housing 440 ... Main mirror holder
Claims (20)
前記レンズが請求項1から5のいずれか一項に記載の光学部材であることを特徴とする光学機器。 An optical device including a housing and an optical system composed of a plurality of lenses in the housing.
An optical device according to any one of claims 1 to 5, wherein the lens is an optical member.
基材の上に、酸化ケイ素粒子と無機バインダーと有機溶媒とを含み、前記酸化ケイ素粒子の表面に含フッ素有機酸を有する塗工液を塗布して塗膜を形成する工程と、
前記塗膜を乾燥および/または焼成して多孔質層を形成する工程と、
を有することを特徴とする光学部材の製造方法。 A method for manufacturing an optical member having a porous layer in which a plurality of silicon oxide particles are bonded with an inorganic binder.
A step of forming a coating film by applying a coating liquid containing silicon oxide particles, an inorganic binder and an organic solvent on a base material and having a fluorine-containing organic acid on the surface of the silicon oxide particles.
The step of drying and / or firing the coating film to form a porous layer, and
A method for manufacturing an optical member, which comprises.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/823,824 US12006439B2 (en) | 2019-03-27 | 2020-03-19 | Optical member, optical device and coating liquid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019061171 | 2019-03-27 | ||
JP2019061171 | 2019-03-27 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020166245A true JP2020166245A (en) | 2020-10-08 |
JP2020166245A5 JP2020166245A5 (en) | 2023-03-14 |
JP7401351B2 JP7401351B2 (en) | 2023-12-19 |
Family
ID=72716079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020038643A Active JP7401351B2 (en) | 2019-03-27 | 2020-03-06 | Components, optical equipment, coating fluids, manufacturing methods for components, porous membranes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7401351B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016109999A (en) * | 2014-12-10 | 2016-06-20 | キヤノン株式会社 | Optical member and production method of optical member |
JP2018151484A (en) * | 2017-03-10 | 2018-09-27 | キヤノン株式会社 | Optical member and method for producing optical member |
JP2019035847A (en) * | 2017-08-15 | 2019-03-07 | キヤノン株式会社 | Optical element, optical system, imaging device, and method for manufacturing optical element |
-
2020
- 2020-03-06 JP JP2020038643A patent/JP7401351B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016109999A (en) * | 2014-12-10 | 2016-06-20 | キヤノン株式会社 | Optical member and production method of optical member |
JP2018151484A (en) * | 2017-03-10 | 2018-09-27 | キヤノン株式会社 | Optical member and method for producing optical member |
JP2019035847A (en) * | 2017-08-15 | 2019-03-07 | キヤノン株式会社 | Optical element, optical system, imaging device, and method for manufacturing optical element |
Also Published As
Publication number | Publication date |
---|---|
JP7401351B2 (en) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7118615B2 (en) | Optical element, optical system and imaging device | |
JP7187631B2 (en) | OPTICAL MEMBER AND OPTICAL MEMBER MANUFACTURING METHOD | |
US12006439B2 (en) | Optical member, optical device and coating liquid | |
JP4760237B2 (en) | Optical component and projection-type image display device using the same | |
US20070053062A1 (en) | Optical part and projection type display apparatus using same | |
JP4811081B2 (en) | Optical component and projection-type image display device using the same | |
JP7471892B2 (en) | Optical member and method for manufacturing the same | |
US10234600B2 (en) | Optical member, method for manufacturing optical member, and optical device | |
US12077467B2 (en) | Member with porous layer and coating liquid for forming porous layer | |
JP7401351B2 (en) | Components, optical equipment, coating fluids, manufacturing methods for components, porous membranes | |
US20180259681A1 (en) | Optical member, image pickup apparatus, and method for manufacturing optical member | |
JP7322107B2 (en) | Member having porous layer and coating liquid for forming porous layer | |
JP2020007382A (en) | Coating composition and method for producing the same, and optical member, and imaging device | |
JP7378924B2 (en) | Optical elements, their manufacturing methods, imaging devices, and optical instruments | |
JP2003161805A (en) | Optical component and optical equipment incorporating the same | |
JP7458734B2 (en) | Optical member and method for manufacturing optical member | |
US20230339817A1 (en) | Article including porous layer containing inorganic particles,and coating liquid for forming porous layer containinginorganic particles | |
WO2024095908A1 (en) | Member having optical interference layer, and optical device | |
JP2022078665A (en) | Optical member and method for manufacturing optical member | |
JP2024066464A (en) | Member having light interference layer and method for manufacturing the same | |
JP2024065684A (en) | Member having light interference layer and method for manufacturing the same | |
US11531142B2 (en) | Optical member and method for manufacturing optical member | |
WO2020196851A1 (en) | Porous film, optical element, optical system, interchangeable lens, optical device and manufacturing method of porous film | |
US20160124121A1 (en) | Optical member and image pickup apparatus | |
JP2023031380A (en) | Transmission type diffraction element, light source device, optical system, electronic apparatus, and method for manufacturing transmission type diffraction element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20220630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230303 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231207 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7401351 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |