JP2020165564A - Plate-like structure and manufacturing method therefor - Google Patents

Plate-like structure and manufacturing method therefor Download PDF

Info

Publication number
JP2020165564A
JP2020165564A JP2019065071A JP2019065071A JP2020165564A JP 2020165564 A JP2020165564 A JP 2020165564A JP 2019065071 A JP2019065071 A JP 2019065071A JP 2019065071 A JP2019065071 A JP 2019065071A JP 2020165564 A JP2020165564 A JP 2020165564A
Authority
JP
Japan
Prior art keywords
plate
tubular
shaped
shaped portion
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019065071A
Other languages
Japanese (ja)
Inventor
淳史 須釜
Junji Sugama
淳史 須釜
克哉 乘田
Katsunari Norita
克哉 乘田
恵太 野口
Keita Noguchi
恵太 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2019065071A priority Critical patent/JP2020165564A/en
Publication of JP2020165564A publication Critical patent/JP2020165564A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a plate-like structure capable of easily manufacturing a cylindrical structure in which a plate member is arranged inside a cylinder member, and a manufacturing method therefore.SOLUTION: A plate-like structure 1 comprises a plate-like part 10 in which a through hole 11 is formed, and a cylindrical part 20 that surrounds the outer periphery of the plate-like part 10. With such a plate-like structure 1, it is possible to easily manufacture a cylindrical structure in which the plate-like part 10 having the through hole 11 formed is arranged inside a cylindrical member 101, for example, a shell-and-tube heat exchanger 100 or a cylindrical structure with a filter, in which positional deviation, inclination, etc. of the plate-like part 10 in the cylindrical member 101 are unlikely to occur, and melt-down and deformation are unlikely to occur.SELECTED DRAWING: Figure 2

Description

本発明は、板状構造体及びその製造方法に関する。 The present invention relates to a plate-like structure and a method for producing the same.

筒部材の内部に、複数の貫通孔が設けられた円形の板部材を取り付け、その板部材を、冷媒が流れる配管を保持するための保持部材として使用するシェル・アンド・チューブ式熱交換器等の筒状構造物が存在する(特許文献1参照)。
また、筒部材の内側に、同様に複数の貫通孔が設けられた円形の板部材を取り付け、その板部材を流体内の汚れや不要物を除去するフィルタとして使用する筒状構造物も存在する(特許文献2参照)。
A shell-and-tube heat exchanger, etc., in which a circular plate member provided with a plurality of through holes is attached to the inside of the tubular member, and the plate member is used as a holding member for holding a pipe through which a refrigerant flows. There is a tubular structure (see Patent Document 1).
In addition, there is also a tubular structure in which a circular plate member having a plurality of through holes is similarly attached to the inside of the tubular member, and the plate member is used as a filter for removing dirt and unnecessary substances in a fluid. (See Patent Document 2).

特開2013−122346号公報Japanese Unexamined Patent Publication No. 2013-122346 特開2010−158612号公報JP-A-2010-158612

しかし、これらの筒状構造物を製造する際に、板部材は筒部材の内面に溶接等で接合されるので、作業が容易ではない。さらに、板部材を筒部材の内部の所定位置に配置することは容易ではなく、板部材が傾いたり、変形したり、板部材の周辺部に溶落ち(溶損)が発生したりする場合もある。
従って、本発明は、筒部材の内部に板部材が配置された筒状構造物を容易に製造可能となる板状構造体及びその製造方法を提供することを目的とする。
However, when manufacturing these tubular structures, the plate members are joined to the inner surface of the tubular members by welding or the like, so that the work is not easy. Further, it is not easy to arrange the plate member at a predetermined position inside the tubular member, and the plate member may be tilted or deformed, or melt-down (melting damage) may occur in the peripheral portion of the plate member. is there.
Therefore, an object of the present invention is to provide a plate-shaped structure capable of easily manufacturing a tubular structure in which a plate member is arranged inside the tubular member, and a method for manufacturing the plate-shaped structure.

本発明は、上記課題を解決するために、以下のものを提供する。 The present invention provides the following in order to solve the above problems.

貫通孔が形成された板状部と、前記板状部の外周を囲む筒状部と、を備える、板状構造体。 A plate-shaped structure including a plate-shaped portion having a through hole formed therein and a tubular portion surrounding the outer periphery of the plate-shaped portion.

前記板状部は円形で、前記筒状部は前記板状部の外周を囲む円筒状であってもよい。 The plate-shaped portion may be circular, and the tubular portion may be cylindrical so as to surround the outer periphery of the plate-shaped portion.

ブランク材の外縁から所定距離離間した内部領域を第1型と第2型とで挟持して前記第1型と前記第2型とを互いに近づく方向に移動させることで、挟持された前記内部領域を押圧して厚みの減少した板状部を形成するともに、前記板状部の外周の前記第1型及び前記第2型によって押圧されなかった部分に筒状部を形成する押圧工程と、前記板状部に貫通孔を形成する孔開け工程と、を含む、板状構造体の製造方法。 The sandwiched internal region is sandwiched between the first mold and the second mold by sandwiching the internal region separated from the outer edge of the blank material by a predetermined distance and moving the first mold and the second mold in a direction approaching each other. To form a plate-shaped portion having a reduced thickness, and to form a tubular portion on a portion not pressed by the first mold and the second mold on the outer periphery of the plate-shaped portion, and the above-mentioned. A method for manufacturing a plate-shaped structure, which comprises a perforation step of forming a through hole in a plate-shaped portion.

前記ブランク材は円柱状で、前記第1型と前記第2型とは、前記ブランク材よりも小径の円柱状で、前記板状部は円形、前記筒状部は前記板状部の外周を囲む円筒状に形成されてもよい。 The blank material is a cylinder, and the first type and the second type are cylinders having a diameter smaller than that of the blank material, the plate-shaped portion is circular, and the tubular portion is the outer circumference of the plate-shaped portion. It may be formed in a surrounding cylindrical shape.

前記貫通孔は、前記板状部に、打抜きまたはエッチングすることにより形成されてもよい。 The through hole may be formed in the plate-shaped portion by punching or etching.

本発明によれば、筒部材の内部に板部材が配置された筒状構造物を容易に製造可能となる板状構造体及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a plate-shaped structure capable of easily manufacturing a tubular structure in which a plate member is arranged inside the tubular member, and a method for manufacturing the plate-shaped structure.

実施形態に係る板状構造体の斜視図である。It is a perspective view of the plate-like structure which concerns on embodiment. 実施形態に係る板状構造体を用いた筒状構造物の一例としてのシェル・アンド・チューブ式熱交換器の概略縦断面図である。It is a schematic vertical sectional view of the shell-and-tube type heat exchanger as an example of the tubular structure using the plate-like structure which concerns on embodiment. 板状構造体の鍛造工程を説明する図である。It is a figure explaining the forging process of a plate-shaped structure. 第1比較形態の熱交換器の概略縦断面図である。It is a schematic vertical sectional view of the heat exchanger of the 1st comparative form. 第2比較形態の熱交換器を説明する図であり、(a)は概略縦断面図、(b)は概略斜視図である。It is a figure explaining the heat exchanger of the 2nd comparative form, (a) is a schematic vertical sectional view, (b) is a schematic perspective view. 筒状構造物(実施形態)の概略断面図である。It is the schematic sectional drawing of the tubular structure (the embodiment). 筒状構造物(実施形態)の素材等を示した表である。It is a table which showed the material of the tubular structure (the embodiment) and the like. 筒状構造物(比較形態)の概略断面図である。It is a schematic cross-sectional view of a tubular structure (comparative form). 筒状構造物(比較形態)の素材等を示した表である。It is a table which showed the material and the like of a tubular structure (comparative form). 筒状構造物(実施形態)筒状構造物,筒状構造物(比較形態)の製作に用いた材料の材料強度を、ビッカース硬度により比較した表である。It is a table which compared the material strength of the material used for manufacturing a tubular structure (embodiment) and a tubular structure (comparative form) by Vickers hardness. 筒状構造物(実施形態)及び筒状構造物(比較形態)の内圧付与試験の結果を示すグラフである。It is a graph which shows the result of the internal pressure application test of the tubular structure (the embodiment) and the tubular structure (comparative form).

図1は、本実施形態に係る板状構造体1の斜視図である。板状構造体1は、貫通孔11が設けられた板状部10と、板状部10の外周より板状部10に対して直交するX方向(軸方向,長さ方向)に所定長さで延びる筒状部20とを有する。 FIG. 1 is a perspective view of the plate-shaped structure 1 according to the present embodiment. The plate-shaped structure 1 has a predetermined length in the X direction (axial direction, length direction) orthogonal to the plate-shaped portion 10 from the outer circumference of the plate-shaped portion 10 provided with the through hole 11 and the plate-shaped portion 10. It has a tubular portion 20 extending in.

図2は、板状構造体1を用いた筒状構造物の一実施形態であるシェル・アンド・チューブ式熱交換器100の概略縦断面図である。
シェル・アンド・チューブ式熱交換器100(以下、単に、熱交換器100という)は、円筒形の筒部材101(シェル)と、その中に配置された複数の伝熱管102(チューブ)とを備え、伝熱管102の内側と外側とに異なる温度の流体を流し、熱交換を行う。板状構造体1は、この熱交換器100の一部として用いられ、板状部10は、熱交換器100における伝熱管保持部として用いられる。
ただし、これに限定されず、本実施形態の板状構造体1を用いた筒状構造物は、筒部材の内部にフィルタが配置された筒状構造物であってもよい。この場合、貫通孔11を有する板状部10が筒部材101の内部に配置されたフィルタ部材として用いられる。
FIG. 2 is a schematic vertical sectional view of a shell-and-tube heat exchanger 100, which is an embodiment of a tubular structure using the plate-shaped structure 1.
The shell-and-tube heat exchanger 100 (hereinafter, simply referred to as a heat exchanger 100) comprises a cylindrical tubular member 101 (shell) and a plurality of heat transfer tubes 102 (tubes) arranged therein. In preparation, fluids having different temperatures are flowed inside and outside the heat transfer tube 102 to exchange heat. The plate-shaped structure 1 is used as a part of the heat exchanger 100, and the plate-shaped portion 10 is used as a heat transfer tube holding portion in the heat exchanger 100.
However, the present invention is not limited to this, and the tubular structure using the plate-shaped structure 1 of the present embodiment may be a tubular structure in which a filter is arranged inside the tubular member. In this case, the plate-shaped portion 10 having the through hole 11 is used as a filter member arranged inside the tubular member 101.

(板状構造体1)
図1に戻り、板状構造体1は、上述のように貫通孔11が設けられた板状部10と、板状部10の外周より板状部10に対して直交するX方向に所定長さで延びる筒状部20とを有する。
(Plate-shaped structure 1)
Returning to FIG. 1, the plate-shaped structure 1 has a predetermined length in the X direction orthogonal to the plate-shaped portion 10 from the outer circumference of the plate-shaped portion 10 provided with the through hole 11 as described above and the plate-shaped portion 10. It has a tubular portion 20 extending from the side.

板状構造体1は、金属製のブランク材1A’(後述の図3に図示)より鍛造される鍛造部材で、板状部10と筒状部20とは一体である。
ただし、これに限定されず、板状構造体1は、例えば板状部10と筒状部20とが別体で製造されたものを、互いに接合して製造されたものであってよい。
The plate-shaped structure 1 is a forged member forged from a metal blank material 1A'(shown in FIG. 3 described later), and the plate-shaped portion 10 and the tubular portion 20 are integrated.
However, the present invention is not limited to this, and the plate-shaped structure 1 may be manufactured by joining, for example, a plate-shaped portion 10 and a tubular portion 20 separately manufactured to each other.

(板状部10)
板状部10は、厚さ方向(X方向)に延びる複数の貫通孔11が設けられた一定の厚みを有する部材である。複数の貫通孔11は互いに同径で、X方向と直交する方向の断面は円形である。ただし、これに限定されず、貫通孔11の断面は、円形以外の他の形状でもよく、また複数の貫通孔11は同径でなくてもよい。
貫通孔11のうちの一部は、伝熱管102が挿通される伝熱管挿通孔11Aで、他の貫通孔11は、熱媒体が通過する熱媒体流通孔11Bである。
伝熱管102は、伝熱管挿通孔11Aに挿通されることで、筒部材101内に保持されている。
(Plate-shaped part 10)
The plate-shaped portion 10 is a member having a certain thickness provided with a plurality of through holes 11 extending in the thickness direction (X direction). The plurality of through holes 11 have the same diameter and have a circular cross section in the direction orthogonal to the X direction. However, the present invention is not limited to this, and the cross section of the through hole 11 may have a shape other than a circular shape, and the plurality of through holes 11 may not have the same diameter.
A part of the through holes 11 is a heat transfer tube insertion hole 11A through which the heat transfer tube 102 is inserted, and the other through holes 11 are heat medium flow holes 11B through which the heat medium passes.
The heat transfer tube 102 is held in the tubular member 101 by being inserted into the heat transfer tube insertion hole 11A.

(筒状部20)
筒状部20は、板状部10の外周における一面10A側と他面10B側とから、X方向に沿って延びている。筒状部20の一面10A側と他面10B側とに延びる長さは、実施形態では同じ長さである。ただし、これに限定されず、筒状部20の一面10A側と他面10B側とに延びる長さは、同じ長さでなくてもよい。
筒状部20の厚さ及び径は、熱交換器100の筒部材101と略同一である。なお、筒状部20は円筒状に限らず、X方向と直交する断面形状が筒部材101と同一であれば他の形状であってもよい。
(Cylindrical portion 20)
The tubular portion 20 extends along the X direction from the one surface 10A side and the other surface 10B side on the outer circumference of the plate-shaped portion 10. The length extending from one surface 10A side and the other surface 10B side of the tubular portion 20 is the same length in the embodiment. However, the length is not limited to this, and the length extending from the one side 10A side and the other side 10B side of the tubular portion 20 does not have to be the same.
The thickness and diameter of the tubular portion 20 are substantially the same as those of the tubular member 101 of the heat exchanger 100. The tubular portion 20 is not limited to a cylindrical shape, and may have another shape as long as the cross-sectional shape orthogonal to the X direction is the same as that of the tubular member 101.

(鍛造工程)
次に、図3を参照して、板状構造体1の鍛造工程について説明する。板状構造体1は、分流鍛造金型を用いて製造される。
分流鍛造金型は、ブランク材1A’の上部に配置される上部金型(第1型)31と、下部に配置される下部金型(第2型)32と、径方向外側に配置される側面金型33と、を備える。実施形態においてブランク材1A’は所定厚みの円柱状である。
(Forging process)
Next, the forging process of the plate-shaped structure 1 will be described with reference to FIG. The plate-shaped structure 1 is manufactured by using a diversion forging die.
The diversion forging dies are arranged on the outer side in the radial direction with the upper die (first die) 31 arranged above the blank material 1A'and the lower die (second die) 32 arranged below. A side mold 33 is provided. In the embodiment, the blank material 1A'is a columnar shape having a predetermined thickness.

上部金型31は、ブランク材1A’の外径よりも小径の円柱状に形成され、上下に移動可能で、ブランク材1A’の表面の外縁から所定距離離間した内部領域を押圧する。
下部金型32は、ブランク材1A’の外径よりも小さい上部金型31と一致する径の円柱状に形成され、下部に固定され、ブランク材1A’の裏面の外縁から所定距離離間した内部領域と接する。
側面金型33は、ブランク材1A’の外径と一致する内径の円環形状を有し、下部に固定される。
The upper mold 31 is formed in a columnar shape having a diameter smaller than the outer diameter of the blank material 1A', is movable up and down, and presses an internal region separated from the outer edge of the surface of the blank material 1A' by a predetermined distance.
The lower mold 32 is formed in a columnar shape having a diameter corresponding to the upper mold 31 which is smaller than the outer diameter of the blank material 1A', is fixed to the lower part, and is inside separated from the outer edge of the back surface of the blank material 1A' by a predetermined distance. It touches the area.
The side mold 33 has an inner diameter ring shape that matches the outer diameter of the blank material 1A'and is fixed to the lower portion.

まず、図3(a)に示すようにブランク材1A’を、上部金型31、下部金型32及び側面金型33の中心軸Oが一致するように配置する。 First, as shown in FIG. 3A, the blank material 1A'is arranged so that the central axes O of the upper mold 31, the lower mold 32, and the side mold 33 coincide with each other.

次いで図3(b)に示すように、上部金型31を所定量降下させる。そうすると、上部金型31によってブランク材1A’の表面における外縁から所定距離離間した内部領域が押圧される。
このとき、ブランク材1A’には下方に移動する方向に力が加わるが、下部金型32が配置されているので、ブランク材1A’の裏面における外縁から所定距離離間した内部領域が上方に押圧される。
これにより、ブランク材1A’における外縁から所定距離離間した内部領域は圧縮されて、表裏面が窪み、厚みが減少して、他の部分より薄い板状部10が形成される。
それとともに板状部10の外周における、上部金型31及び下部金型32によって押圧されなかった部分は、押圧された部分の材料が流動することで厚みが増加し凸状となって筒状部20が形成される。これにより、図3(c)に示す、中心軸に沿った方向の断面がH型の中間成形体1A’’が形成される。
Next, as shown in FIG. 3B, the upper mold 31 is lowered by a predetermined amount. Then, the upper mold 31 presses the inner region on the surface of the blank material 1A'distanced from the outer edge by a predetermined distance.
At this time, a force is applied to the blank material 1A'in the direction of moving downward, but since the lower mold 32 is arranged, the internal region on the back surface of the blank material 1A' separated by a predetermined distance from the outer edge is pressed upward. Will be done.
As a result, the internal region of the blank material 1A'distanced from the outer edge by a predetermined distance is compressed, the front and back surfaces are recessed, the thickness is reduced, and a plate-shaped portion 10 thinner than the other portions is formed.
At the same time, the portion of the outer circumference of the plate-shaped portion 10 that has not been pressed by the upper mold 31 and the lower mold 32 becomes thicker and convex due to the flow of the material of the pressed portion, and becomes a tubular portion. 20 is formed. As a result, the intermediate molded body 1A ″ having an H-shaped cross section in the direction along the central axis shown in FIG. 3C is formed.

板状部10の板厚H3は、上部金型31の押し込み量H1によって調整することができ、ブランク材1A’の板厚tから押し込み量H1を減ずることにより算出することができる(図3(c)参照)。
筒状部20は、軸方向に所定の大きさH2を有し、上部に突出した上部筒状部21と下部に突出した下部筒状部22で構成される。
次いで、ピアス(くぎ抜き)加工またはエッチングにより板状部10に貫通孔11を形成する(図3(d)参照)。これにより、中間成形体1A’’から板状構造体1が形成される。
The plate thickness H3 of the plate-shaped portion 10 can be adjusted by the pushing amount H1 of the upper mold 31, and can be calculated by subtracting the pushing amount H1 from the plate thickness t of the blank material 1A'(FIG. 3 (FIG. 3). c) See).
The tubular portion 20 has a predetermined size H2 in the axial direction, and is composed of an upper tubular portion 21 projecting upward and a lower tubular portion 22 projecting downward.
Next, a through hole 11 is formed in the plate-shaped portion 10 by piercing or etching (see FIG. 3D). As a result, the plate-like structure 1 is formed from the intermediate molded body 1A''.

(筒状構造物)
(筒部材101)
上述のように、筒状構造物の一例としての熱交換器100は、円筒状の筒部材101を備える。筒部材101の両端は端板103により閉鎖されている。端板103には、複数の貫通孔103Aが設けられている。
(Cylindrical structure)
(Cylinder member 101)
As described above, the heat exchanger 100 as an example of the tubular structure includes a cylindrical tubular member 101. Both ends of the tubular member 101 are closed by end plates 103. The end plate 103 is provided with a plurality of through holes 103A.

筒部材101は、第1筒部材101Aと、第2筒部材101Bとを有する。第1筒部材101Aの側面には、媒体入口105が設けられ、第2筒部材101Bの側面には、媒体出口106が設けられている。 The tubular member 101 has a first tubular member 101A and a second tubular member 101B. A medium inlet 105 is provided on the side surface of the first cylinder member 101A, and a medium outlet 106 is provided on the side surface of the second cylinder member 101B.

第1筒部材101Aと第2筒部材101Bとの間には、板状構造体1が複数配置されている。板状構造体1は、筒部材101内の、媒体入口105と媒体出口106との間において板状部10がX方向に所定の間隔で互いに平行になるように複数設置されている。 A plurality of plate-shaped structures 1 are arranged between the first cylinder member 101A and the second cylinder member 101B. A plurality of plate-shaped structures 1 are installed in the tubular member 101 so that the plate-shaped portions 10 are parallel to each other in the X direction at predetermined intervals between the medium inlet 105 and the medium outlet 106.

互いに隣接する板状構造体1の筒状部20同士は接合されている。また、筒状部20の第1筒部材101A側は、第1筒部材101Aと接合され、筒状部20の第2筒部材101B側は、第2筒部材101Bと接合されている。これにより、第1筒部材101Aと、複数の筒状部20と、第2筒部材101Bとは接合されて一つの筒部材を構成する。なお、接合方法は、本実施形態では溶接であるが、これに限らず、ろう付け、または拡散接合、またはネジ式等の他の方法であってもよい。
なお、筒状部20同士、筒状部20と第1筒部材101A及び第2筒部材101Bとの接合の際、伝熱管挿通孔11A及び端板103の貫通孔103Aとが、X方向に沿って同一線上にくるように配置される。
そして、同一線上に配置された板状部10の伝熱管挿通孔11A及び端板103の貫通孔103Aには、伝熱管102が挿通され、伝熱管102が筒部材101内の所定位置に保持される。
The tubular portions 20 of the plate-shaped structures 1 adjacent to each other are joined to each other. Further, the first tubular member 101A side of the tubular portion 20 is joined to the first tubular member 101A, and the second tubular member 101B side of the tubular portion 20 is joined to the second tubular member 101B. As a result, the first tubular member 101A, the plurality of tubular portions 20, and the second tubular member 101B are joined to form one tubular member. The joining method is welding in the present embodiment, but is not limited to this, and other methods such as brazing, diffusion joining, and screw type may be used.
When joining the tubular portions 20, the tubular portions 20, the first tubular member 101A, and the second tubular member 101B, the heat transfer tube insertion hole 11A and the through hole 103A of the end plate 103 are aligned in the X direction. Are arranged so that they are on the same line.
Then, the heat transfer tube 102 is inserted into the heat transfer tube insertion hole 11A of the plate-shaped portion 10 and the through hole 103A of the end plate 103 arranged on the same line, and the heat transfer tube 102 is held at a predetermined position in the tubular member 101. To.

熱交換器100の伝熱管102には冷媒が流れる。また、筒部材101の媒体入口105からは熱媒体が筒部材101内に流入する。熱媒体は、複数の貫通孔11のうちの熱媒体流通孔11Bを通って矢印で示すように流れ、冷媒と熱交換して媒体出口106から流出する。このとき、熱媒体は冷媒から熱を奪われて冷却され、冷媒は熱媒体から熱を奪って加熱される。 Refrigerant flows through the heat transfer tube 102 of the heat exchanger 100. Further, the heat medium flows into the tubular member 101 from the medium inlet 105 of the tubular member 101. The heat medium flows through the heat medium flow holes 11B among the plurality of through holes 11 as shown by arrows, exchanges heat with the refrigerant, and flows out from the medium outlet 106. At this time, the heat medium is cooled by taking heat from the refrigerant, and the refrigerant is heated by taking heat from the heat medium.

(本実施形態の効果)
次に、上述の板状構造体1を用いた熱交換器100の効果について、第1比較形態及び第2比較形態と対比して説明する。
(第1比較形態)
図4は図2に対応する第1比較形態の熱交換器200の概略縦断面図である。図4に示すように、第1比較形態の熱交換器200は、筒部材201が、第1筒部材と、第2筒部材とに分かれていない。また、第1実施形態のような、板状部10と筒状部20とを有する板状構造体1は用いられていない。
すなわち、筒部材201は一体であり、筒部材201の内部に、筒状部が設けられていない貫通孔211付きの板状部210が溶接されている。
(Effect of this embodiment)
Next, the effect of the heat exchanger 100 using the above-mentioned plate-shaped structure 1 will be described in comparison with the first comparative form and the second comparative form.
(First comparative form)
FIG. 4 is a schematic vertical sectional view of the heat exchanger 200 of the first comparative form corresponding to FIG. As shown in FIG. 4, in the heat exchanger 200 of the first comparative form, the tubular member 201 is not divided into a first tubular member and a second tubular member. Further, the plate-shaped structure 1 having the plate-shaped portion 10 and the tubular portion 20 as in the first embodiment is not used.
That is, the tubular member 201 is integrated, and a plate-shaped portion 210 having a through hole 211 without a tubular portion is welded inside the tubular member 201.

第1比較形態によると、熱交換器200の製造時において、板状部210を筒部材201内部のX方向における所定位置に配置するのが容易ではなく、位置ズレする可能性がある。
また、溶接時に板状部210をX方向に対して直交するように保持するのが容易ではなく、傾く可能性がある。
特に、筒部材201が細いときは、板状部210の配置が困難になり、位置ズレや傾きが生じやすい。
According to the first comparative embodiment, at the time of manufacturing the heat exchanger 200, it is not easy to arrange the plate-shaped portion 210 at a predetermined position in the X direction inside the tubular member 201, and there is a possibility that the position shifts.
Further, it is not easy to hold the plate-shaped portion 210 so as to be orthogonal to the X direction at the time of welding, and there is a possibility of tilting.
In particular, when the tubular member 201 is thin, it becomes difficult to arrange the plate-shaped portion 210, and the position shift or inclination is likely to occur.

板状部210を筒部材201の内面に溶接する際も、筒部材201の端部より溶接のためのトーチを挿入して、筒部材201内で作業することになるので作業性が悪い。
また、板状部210がフィルタである場合等、板状部210が薄いと、板状部210を筒部材201の内面に接合する際に、板状部210が変形する可能性がある。
さらに、板状部210がフィルタである場合、板状部210の縁部まで挿通孔が設けられているが、この際、溶接時に縁部の挿通孔に溶落ち(溶損)が発生する可能性がある。
Even when the plate-shaped portion 210 is welded to the inner surface of the tubular member 201, the torch for welding is inserted from the end of the tubular member 201 to work in the tubular member 201, resulting in poor workability.
Further, if the plate-shaped portion 210 is thin, such as when the plate-shaped portion 210 is a filter, the plate-shaped portion 210 may be deformed when the plate-shaped portion 210 is joined to the inner surface of the tubular member 201.
Further, when the plate-shaped portion 210 is a filter, an insertion hole is provided up to the edge portion of the plate-shaped portion 210, but at this time, melt-down (melting loss) may occur in the insertion hole of the edge portion during welding. There is sex.

(第2比較形態)
図5は第2比較形態の熱交換器300を示す図であり、(a)は概略縦断面図、(b)は概略斜視図である。図5に示すように、第2比較形態の熱交換器300は、筒部材301が、第1筒部材301Aと第2筒部材301Bとに分かれており、第1筒部材301Aと第2筒部材301Bとの間の隙間に板状部310を配置することで板状部310を筒部材301に保持する。
この場合、図5(b)に示すように、板状部310を取り付ける際、板状部310が筒部材301の内部のX方向と直交する方向に、位置ズレする可能性がある。
(Second comparative form)
5A and 5B are views showing the heat exchanger 300 of the second comparative form, where FIG. 5A is a schematic vertical sectional view and FIG. 5B is a schematic perspective view. As shown in FIG. 5, in the heat exchanger 300 of the second comparative form, the cylinder member 301 is divided into a first cylinder member 301A and a second cylinder member 301B, and the first cylinder member 301A and the second cylinder member 301B. By arranging the plate-shaped portion 310 in the gap between it and the 301B, the plate-shaped portion 310 is held by the tubular member 301.
In this case, as shown in FIG. 5B, when the plate-shaped portion 310 is attached, the plate-shaped portion 310 may be displaced in the direction orthogonal to the X direction inside the tubular member 301.

第1比較形態及び第2比較形態に比べて、本実施形態は以下の効果を有する。
(1)熱交換器100等の筒状構造物を組み立てる際に、第1筒部材101Aと第2筒部材101Bとの間に、所定数の板状構造体1を配置する。板状構造体1において、板状部10は筒状部20に対して一体で、所定位置に固定されているので、板状部10が位置ズレや変形することがない。また、傾くこともない。
Compared with the first comparative embodiment and the second comparative embodiment, the present embodiment has the following effects.
(1) When assembling a tubular structure such as a heat exchanger 100, a predetermined number of plate-shaped structures 1 are arranged between the first tubular member 101A and the second tubular member 101B. In the plate-shaped structure 1, since the plate-shaped portion 10 is integrated with the tubular portion 20 and fixed at a predetermined position, the plate-shaped portion 10 does not shift or deform. Also, it does not tilt.

(2)熱交換器100等の筒状構造物を組み立てる際に、第1筒部材101Aと第2筒部材101Bとの間に、所定数の板状構造体1を配置し、それらの接合は、外周側からの溶接等が可能であるので作業が容易である。 (2) When assembling a tubular structure such as a heat exchanger 100, a predetermined number of plate-shaped structures 1 are arranged between the first tubular member 101A and the second tubular member 101B, and the bonding thereof is performed. , Since welding from the outer peripheral side is possible, the work is easy.

(3)溶接は、筒状部20同士、または筒状部20と第1筒部材101Aまたは第2筒部材101Bとの間で行われる。すなわち、板状部10の縁部において溶接を行わないので、溶落ちが発生して板状部10の貫通孔11を塞がない。
すなわち、本実施形態の板状構造体1を用いることで、筒状構造物を容易且つ正確に製造できる。
(3) Welding is performed between the tubular portions 20 or between the tubular portions 20 and the first tubular member 101A or the second tubular member 101B. That is, since welding is not performed at the edge of the plate-shaped portion 10, melt-down occurs and the through hole 11 of the plate-shaped portion 10 is not blocked.
That is, by using the plate-shaped structure 1 of the present embodiment, the tubular structure can be easily and accurately manufactured.

さらに、実施形態の板状構造体1を用いた熱交換器100は、以下の効果を有する。
(4)実施形態の板状構造体1は、図3に示すように円形のブランク材1A’を、上部金型31及び下部金型32によってその厚みを減少させる押圧工程を含む製造工程によって製造される。
このため、板状部10は押圧による加工硬化によって材料強度が増大している。また、筒状部20も加工硬化により材料強度が増大している。
ゆえに、熱交換器100の内部に、この加工硬化した板状構造体1を用いた場合、熱交換器100の内部に所定の圧力よりも高い圧力の流体が流されて内圧が上昇した場合でも、板状構造体1の強度が大きいことによって熱交換器100の強度も大きくなり、筒径が上昇しにくい。
Further, the heat exchanger 100 using the plate-shaped structure 1 of the embodiment has the following effects.
(4) The plate-shaped structure 1 of the embodiment is manufactured by a manufacturing process including a pressing step of reducing the thickness of the circular blank material 1A'by the upper mold 31 and the lower mold 32 as shown in FIG. Will be done.
Therefore, the material strength of the plate-shaped portion 10 is increased by work hardening by pressing. Further, the material strength of the tubular portion 20 is also increased by work hardening.
Therefore, when this work-hardened plate-like structure 1 is used inside the heat exchanger 100, even if a fluid having a pressure higher than a predetermined pressure is flowed inside the heat exchanger 100 and the internal pressure rises. Since the strength of the plate-shaped structure 1 is high, the strength of the heat exchanger 100 is also high, and the cylinder diameter is unlikely to increase.

(4)の効果を検証すべく、実施形態の板状構造体1を用いた熱交換器100に相当する筒状構造物100A(以下、筒状構造物100A(実施形態)という)と、上述の第1比較形態の板状部210を用いた熱交換器200に相当する筒状構造物200A(以下、筒状構造物200A(比較形態)という)とを製造し、それぞれに内圧を付与して、筒径の上昇について評価した。 In order to verify the effect of (4), a tubular structure 100A (hereinafter referred to as a tubular structure 100A (hereinafter referred to as an embodiment)) corresponding to a heat exchanger 100 using the plate-shaped structure 1 of the embodiment and the above-mentioned A tubular structure 200A (hereinafter referred to as a tubular structure 200A (comparative form)) corresponding to the heat exchanger 200 using the plate-shaped portion 210 of the first comparative form is manufactured, and internal pressure is applied to each. The increase in cylinder diameter was evaluated.

筒状構造物100A(実施形態)として、円形のブランク材を素材1A’から、押圧工程を含む実施形態の製造方法によって製造した実施形態の板状構造体1を組み込んだ筒状構造物100Aを製作した。
図6は筒状構造物100A(実施形態)の概略断面図であり、図7は筒状構造物100A(実施形態)の素材等を示した表である。
As the tubular structure 100A (embodiment), the tubular structure 100A incorporating the plate-shaped structure 1 of the embodiment in which a circular blank material is manufactured from the material 1A'by the manufacturing method of the embodiment including the pressing step is used. I made it.
FIG. 6 is a schematic cross-sectional view of the tubular structure 100A (embodiment), and FIG. 7 is a table showing materials and the like of the tubular structure 100A (embodiment).

また、筒状構造物200A(比較形態)として、円形のブランク材をそのまま用いた円板部210を組み込んだ筒状構造物200Aを製作した。
図8は筒状構造物200A(比較形態)の概略断面図であり、図9は筒状構造物200A(比較形態)の素材等を示した表である。
Further, as a tubular structure 200A (comparative form), a tubular structure 200A incorporating a disk portion 210 using a circular blank material as it is was manufactured.
FIG. 8 is a schematic cross-sectional view of the tubular structure 200A (comparative form), and FIG. 9 is a table showing materials and the like of the tubular structure 200A (comparative form).

図7、図9に示すように、筒状構造物100A(実施形態)の第1筒部材101Aと第2筒部材101B、及び筒状構造物200A(比較形態)の筒部材201は、直径24.0mm、板厚3.0mmのSUS304ステンレス鋼管を必要な長さに切断して用いた。 As shown in FIGS. 7 and 9, the first tubular member 101A and the second tubular member 101B of the tubular structure 100A (embodiment) and the tubular member 201 of the tubular structure 200A (comparative embodiment) have a diameter of 24. A SUS304 stainless steel pipe having a thickness of 0.0 mm and a plate thickness of 3.0 mm was cut to a required length and used.

筒状構造物100A(実施形態)の中に組み込まれる板状構造体1は、板厚4.0mmのSUS304ステンレス鋼板から直径24.0mmの円形のブランク材を切り出し、このブランク材に図3(a)〜図3(c)に示した鍛造工程を、図7に示したH1、H2、H3の条件で行い、板圧2.8mmの板状部10と筒状部20とを形成した後、板状部10の中央にφ5mmの貫通孔11を1つ設けたものを用いた。
筒状構造物200A(比較形態)の中に組み込まれる円板部210は、板厚2.8mmのSUS304ステンレス鋼板から直径18.0mmの円板を切り出して、円板の中央にφ5mmの貫通孔211を1つ設けたものを用いた。
The plate-shaped structure 1 incorporated in the tubular structure 100A (embodiment) is obtained by cutting out a circular blank material having a diameter of 24.0 mm from a SUS304 stainless steel plate having a plate thickness of 4.0 mm, and using this blank material as shown in FIG. After the forging steps shown in a) to 3 (c) are performed under the conditions of H1, H2, and H3 shown in FIG. 7, the plate-shaped portion 10 and the tubular portion 20 having a plate pressure of 2.8 mm are formed. , A plate-shaped portion 10 provided with one through hole 11 having a diameter of 5 mm was used.
The disk portion 210 incorporated in the tubular structure 200A (comparative form) is obtained by cutting out a disk having a diameter of 18.0 mm from a SUS304 stainless steel plate having a plate thickness of 2.8 mm and having a through hole of φ5 mm in the center of the disk. The one provided with one 211 was used.

(押圧による材料の加工硬化の確認)
筒状構造物100A(実施形態),筒状構造物200A(比較形態)の製作に用いた材料の材料強度を、ビッカース硬度により比較した。
SUS304ステンレス鋼管のビッカース硬度は、板厚中心の位置において測定した。
筒状構造物100A(実施形態)の板状構造体(板厚2.8mm)のビッカース硬度は、初期の板厚4.0mmのSUS304ステンレス鋼板を素材とし、図3(a)〜図3(c)に示した鍛造工程を図7に示したH1、H2、H3の条件で行った後で、孔開け工程前の板状部10について、板厚中心の位置において測定した。
測定箇所は、図6で×印で示した中心から約4mmの箇所にあたり、板状部10の中では加工硬化がもっとも小さい箇所である。
筒状構造物200A(比較形態)の円板部210(板厚2.8mm)のビッカース硬度は、板厚2.8mmのSUS304ステンレス鋼板から直径18.0mmの円板部を切り抜く前に、板厚中心の位置において測定した。
(Confirmation of work hardening of material by pressing)
The material strengths of the materials used for producing the tubular structure 100A (embodiment) and the tubular structure 200A (comparative embodiment) were compared by Vickers hardness.
The Vickers hardness of the SUS304 stainless steel pipe was measured at the position of the center of the plate thickness.
The Vickers hardness of the plate-shaped structure (plate thickness 2.8 mm) of the tubular structure 100A (embodiment) is based on the initial SUS304 stainless steel plate having a plate thickness of 4.0 mm, and FIGS. After the forging step shown in c) was performed under the conditions of H1, H2, and H3 shown in FIG. 7, the plate-shaped portion 10 before the drilling step was measured at the position of the center of the plate thickness.
The measurement point corresponds to a point about 4 mm from the center indicated by a cross in FIG. 6, and is the place where work hardening is the smallest in the plate-shaped portion 10.
The Vickers hardness of the disk portion 210 (plate thickness 2.8 mm) of the tubular structure 200A (comparative form) is a plate before cutting out the disk portion having a diameter of 18.0 mm from the SUS304 stainless steel plate having a plate thickness of 2.8 mm. It was measured at the thick center position.

それらのビッカース硬度の測定結果を図10に示す。筒状構造物100A(実施形態)に組み込まれている板状構造体1の板状部10の硬度は350で、筒状構造物200A(比較形態)の円板部210Aの硬度166と比較して2倍を超えている。このことから、鍛造工程を行うことによって、材料の強度が上昇することが検証された。 The measurement results of those Vickers hardnesses are shown in FIG. The hardness of the plate-shaped portion 10 of the plate-shaped structure 1 incorporated in the tubular structure 100A (embodiment) is 350, which is compared with the hardness of the disc portion 210A of the tubular structure 200A (comparative form). It has more than doubled. From this, it was verified that the strength of the material was increased by performing the forging process.

(拡径率)
筒状構造物100A(実施形態)及び筒状構造物200A(比較形態)に対する内圧付与に対する拡径率を次のように定義する。

拡径率(%)=(D−D)/D×100

ここで、D:内圧付与時の筒状構造物の外径
:内圧付与前の筒状構造物の外径(24.0mm)
(Diameter expansion rate)
The diameter expansion rate for applying internal pressure to the tubular structure 100A (embodiment) and the tubular structure 200A (comparative embodiment) is defined as follows.

Diameter expansion rate (%) = (D-D 0 ) / D 0 x 100

Here, D: outer diameter of the tubular structure when internal pressure is applied.
D 0 : Outer diameter (24.0 mm) of the tubular structure before applying internal pressure

(内圧付与試験)
筒状構造物100A(実施形態)及び筒状構造物200A(比較形態)の内部に水を充填し、媒体入口105から筒状構造物100A(実施形態)及び筒状構造物200A(比較形態)の内部に水圧を付与した。
このとき、媒体出口106は封鎖した。この内圧付与試験の結果を図11に示す。図11における変位は、内圧付与に伴う筒状構造物の外径の変化量であり、D−Dに等しい。
(Internal pressure application test)
The inside of the tubular structure 100A (execution) and the tubular structure 200A (comparative form) is filled with water, and the tubular structure 100A (embodiment) and the tubular structure 200A (comparative form) are filled from the medium inlet 105. Water pressure was applied to the inside of the.
At this time, the medium outlet 106 was closed. The result of this internal pressure application test is shown in FIG. The displacement in FIG. 11 is the amount of change in the outer diameter of the tubular structure due to the application of internal pressure, and is equal to DD 0 .

(試験結果)
図11に、筒状構造物200A(比較形態)における変位と内圧の関係を黒四角(■)印、筒状構造物100A(実施形態)における変位と内圧の関係を黒丸(●)印で示す。
図示するように、筒状構造物100A(実施形態)の変位は、筒状構造物200A(比較形態)の変位よりも明らかに小さい。
例えば、拡径率10%となる内圧は、筒状構造物100A(実施形態)では55MPaが必要であるのに対して、筒状構造物200A(比較形態)では32MPaで拡径率10%に達してしまう。
このことから、筒状構造物100A(実施形態)は、内圧の上昇に対する拡径が起こりにくいことが検証された。
(Test results)
In FIG. 11, the relationship between the displacement and the internal pressure in the tubular structure 200A (comparative embodiment) is indicated by a black square (■) mark, and the relationship between the displacement and the internal pressure in the tubular structure 100A (embodiment) is indicated by a black circle (●) mark. ..
As shown, the displacement of the tubular structure 100A (embodiment) is clearly smaller than the displacement of the tubular structure 200A (comparative embodiment).
For example, the internal pressure for a diameter expansion rate of 10% is 55 MPa for the tubular structure 100A (embodiment), whereas it is 32 MPa for the tubular structure 200A (comparative form) and the diameter expansion rate is 10%. Will reach.
From this, it was verified that the tubular structure 100A (embodiment) is unlikely to expand in diameter with respect to an increase in internal pressure.

以上、本発明の好ましい実施形態について説明したが、本発明は、上述した実施形態に制限されるものではなく、適宜変更が可能である。
例えば、上述した実施形態では、板状構造体1、第1筒部材101A及び第2筒部材101Bを、円筒状に構成したが、これに限らない。すなわち、板状構造体、第1筒部材及び第2筒部材を、角筒状に構成してもよく、楕円筒状に構成してもよい。
Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment and can be appropriately modified.
For example, in the above-described embodiment, the plate-shaped structure 1, the first tubular member 101A, and the second tubular member 101B are formed in a cylindrical shape, but the present invention is not limited to this. That is, the plate-shaped structure, the first tubular member, and the second tubular member may be configured in a square tubular shape or an elliptical tubular shape.

1 板状構造体
1A ブランク材
10 板状部
10A 一面
10B 他面
11 貫通孔
20 筒状部
100 熱交換器(筒状構造物)
101 筒部
101A 第1筒部材
101B 第2筒部材
102 伝熱管
105 媒体入口
106 媒体出口
1 Plate-shaped structure 1A Blank material 10 Plate-shaped part 10A One side 10B Other side 11 Through hole 20 Cylindrical part 100 Heat exchanger (cylindrical structure)
101 Cylinder 101A 1st Cylinder Member 101B 2nd Cylinder Member 102 Heat Transfer Tube 105 Media Inlet 106 Media Outlet

Claims (5)

貫通孔が形成された板状部と、
前記板状部の外周を囲む筒状部と、
を備える、
板状構造体。
A plate-shaped part with a through hole and
A tubular portion that surrounds the outer circumference of the plate-shaped portion and
To prepare
Plate-like structure.
前記板状部は円形で、
前記筒状部は前記板状部の外周を囲む円筒状である、
請求項1に記載の板状構造体。
The plate-shaped part is circular
The tubular portion has a cylindrical shape that surrounds the outer circumference of the plate-shaped portion.
The plate-shaped structure according to claim 1.
ブランク材の外縁から所定距離離間した内部領域を第1型と第2型とで挟持して前記第1型と前記第2型とを互いに近づく方向に移動させることで、挟持された前記内部領域を押圧して厚みの減少した板状部を形成するともに、
前記板状部の外周の前記第1型及び前記第2型によって押圧されなかった部分に筒状部を形成する押圧工程と、
前記板状部に貫通孔を形成する孔開け工程と、
を含む、板状構造体の製造方法。
The sandwiched internal region is sandwiched between the first mold and the second mold by sandwiching the internal region separated from the outer edge of the blank material by a predetermined distance and moving the first mold and the second mold in a direction approaching each other. To form a plate-like part with reduced thickness by pressing
A pressing step of forming a tubular portion on a portion not pressed by the first mold and the second mold on the outer periphery of the plate-shaped portion, and a pressing step.
The drilling step of forming a through hole in the plate-shaped portion and
A method for manufacturing a plate-like structure including.
前記ブランク材は円柱状で、
前記第1型と前記第2型とは、前記ブランク材よりも小径の円柱状で、
前記板状部は円形、前記筒状部は前記板状部の外周を囲む円筒状に形成される、
請求項3に記載の板状構造体の製造方法。
The blank material is columnar
The first type and the second type have a columnar shape having a smaller diameter than the blank material.
The plate-shaped portion is formed in a circular shape, and the tubular portion is formed in a cylindrical shape surrounding the outer periphery of the plate-shaped portion.
The method for manufacturing a plate-like structure according to claim 3.
前記貫通孔は、前記板状部に、打抜きまたはエッチングすることにより形成される、
請求項3または4に記載の板状構造体の製造方法。
The through hole is formed in the plate-shaped portion by punching or etching.
The method for producing a plate-like structure according to claim 3 or 4.
JP2019065071A 2019-03-28 2019-03-28 Plate-like structure and manufacturing method therefor Withdrawn JP2020165564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065071A JP2020165564A (en) 2019-03-28 2019-03-28 Plate-like structure and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065071A JP2020165564A (en) 2019-03-28 2019-03-28 Plate-like structure and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2020165564A true JP2020165564A (en) 2020-10-08

Family

ID=72714411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065071A Withdrawn JP2020165564A (en) 2019-03-28 2019-03-28 Plate-like structure and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2020165564A (en)

Similar Documents

Publication Publication Date Title
JP4385533B2 (en) Manufacturing method of heat plate
JP6701376B2 (en) Heat exchanger plate, plate heat exchanger, and method of making plate heat exchanger
JP4775431B2 (en) Manufacturing method of heat plate
CN100501297C (en) Heat pipe radiator and method for manufacturing same
JP2019527140A (en) Fluid system and manufacturing method by friction welding
WO2009104575A1 (en) Method of manufacturing a pipe coupling component, method of manufacturing a casing structural member, and pipe coupling structure for a hollow part
US10551134B2 (en) Header for a heat exchanger, and method of making the same
KR20210137569A (en) Vibrating Heat Pipes Using Ultrasonic Additive Manufacturing
JP2018138851A (en) Heat exchanger and manufacturing method thereof
JP2008209073A (en) Heat exchanger manufacturing method and heat exchange plate
JP3025441B2 (en) Method for manufacturing first cooling wall of fusion reactor
JP2020165564A (en) Plate-like structure and manufacturing method therefor
JP2009103440A (en) Heat plate and its manufacturing method
JP2020165565A (en) Cylindrical structure and manufacturing method therefore
EP3833922B1 (en) Heat exchanger and corresponding production method
JP4029938B2 (en) Plate heat exchanger and support device for plate heat exchanger
JP2004523360A (en) Brazing flake preforms and their use in the manufacture of heat exchangers
CN113427224B (en) Method for manufacturing center post thermoforming mold with cooling unit
CN106091757B (en) A kind of package assembly and assemble method of full welding corrugated board cluster
KR102050139B1 (en) Primary Surface Heat Exchanger having Improved Internal Pressure and Manufacturing Method Thereof and Heat Exchange System
JP2007216264A (en) Method of manufacturing plate-like member with groove
JP7025914B2 (en) Heat exchanger
BR102022002574A2 (en) METALLIC BELOW SEALING SYSTEM, AND METHOD TO MANUFACTURE THE METALLIC BELOW CAPSULE
JP6547517B2 (en) Heat exchanger manufacturing method
JP6390292B2 (en) Plate heat exchanger

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20220324