JP4775431B2 - Manufacturing method of heat plate - Google Patents

Manufacturing method of heat plate Download PDF

Info

Publication number
JP4775431B2
JP4775431B2 JP2008312906A JP2008312906A JP4775431B2 JP 4775431 B2 JP4775431 B2 JP 4775431B2 JP 2008312906 A JP2008312906 A JP 2008312906A JP 2008312906 A JP2008312906 A JP 2008312906A JP 4775431 B2 JP4775431 B2 JP 4775431B2
Authority
JP
Japan
Prior art keywords
plate
concave groove
flow path
groove
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008312906A
Other languages
Japanese (ja)
Other versions
JP2009115448A (en
Inventor
久司 堀
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008312906A priority Critical patent/JP4775431B2/en
Publication of JP2009115448A publication Critical patent/JP2009115448A/en
Application granted granted Critical
Publication of JP4775431B2 publication Critical patent/JP4775431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、例えば、半導体製造装置などにおいて冷却用に使用されるヒートプレートの製造方法に関する。 The present invention may, for example, a method of manufacturing a heat plates to be used for cooling in the semiconductor manufacturing device.

半導体製造装置において冷却用に使用されるヒートプレートには、アルミニウム合金からなる一対の板材のうち、一方に冷却媒体流路となる凹溝を予め形成し、一対の板材における接合面の周囲をTIG溶接、MIG溶接、または電子ビーム溶接したもの、あるいは上記一対の板材を厚さ方向に沿ってボルト締めしたものが用いられている。このうち、TIG溶接やMIG溶接を用いて製作したヒートプレートは、溶接時にピンホールを生じていたり、シールドガスを巻き込むことがあるため、溶接部分の信頼性に問題があった。また、電子ビーム溶接を用いて製作したヒートプレートは、溶接作業を真空中で行うため、コスト高となると共に、高精度の溶接位置決めを行うため、位置決め治具が必要となっていた。   In a heat plate used for cooling in a semiconductor manufacturing apparatus, a concave groove serving as a cooling medium flow path is formed in one of a pair of plate materials made of an aluminum alloy in advance, and the periphery of the joint surface of the pair of plate materials is TIG. Welded, MIG welded, electron beam welded, or a pair of plate members bolted along the thickness direction is used. Among these, the heat plate manufactured using TIG welding or MIG welding has a problem in the reliability of the welded portion because pinholes may be generated during welding or shield gas may be involved. In addition, the heat plate manufactured using electron beam welding is expensive because the welding operation is performed in a vacuum, and a positioning jig is necessary to perform high-precision welding positioning.

以上の問題を解決するため、予め一方の板材に冷却媒体流路となる凹溝を形成した一対の板材における接合面に、互いに嵌合し且つ上記流路を包囲する環状溝と環状突出部とを形成し、一対の板材を鍛圧圧縮しつつ上記環状溝と環状突出部とを嵌合した高密度のシール性を有する締結部を形成したヒートプレートも提案されている(例えば、特許文献1参照)。
特開2000−311932号公報(第1〜15頁、図1〜24)
In order to solve the above problem, an annular groove and an annular protrusion that are fitted to each other and surround the flow path are joined to a joint surface of a pair of plate materials in which a concave groove that serves as a cooling medium flow channel is formed in advance on one plate material. There is also proposed a heat plate in which a fastening portion having a high-density sealing property is formed by fitting the annular groove and the annular projecting portion while forging and compressing a pair of plate materials (see, for example, Patent Document 1). ).
JP 2000-311932 A (pages 1 to 15, FIGS. 1 to 24)

しかしながら、前記鍛圧圧縮により接合して形成されるヒートプレートは、締結部を得るため、一方の板材における冷却媒体流路となる凹溝に加えて、一対の板材に環状溝または環状突出部を更に形成する必要がある。このため、工数およびコストが増え、且つ嵌合操作と鍛圧圧縮とを同時に行うため高い位置決め精度を要するなど工程が煩雑になる、という問題があった。
更に、従来のヒートプレートや特許文献1のヒートプレートでは、一対の板材を溶接または鍛圧圧縮により接合しているため、冷却媒体流路でない位置にも一対の板材が位置している。このため、ヒートプレートが厚肉で且つ重量が嵩む、という問題もあった。
However, in order to obtain a fastening portion, the heat plate formed by joining by forging compression compresses a pair of plates further with an annular groove or an annular protrusion in addition to a concave groove serving as a cooling medium flow path in one plate. Need to form. For this reason, there existed a problem that a process became complicated, for example, a man-hour and cost increased, and high positioning accuracy was required since fitting operation and forging pressure compression were performed simultaneously.
Further, in the conventional heat plate and the heat plate of Patent Document 1, since the pair of plate members are joined by welding or forging pressure compression, the pair of plate members is also located at a position other than the cooling medium flow path. For this reason, there also existed a problem that a heat plate was thick and weight increased.

本発明は、背景技術において説明した問題点を解決し、例えば、真空内で用いられても、ガス漏れなどのおそれがなく、薄肉且つ軽量であるヒートプレートを少ない素材と工数により安価に製作できるヒートプレートの製造方法を提供する、ことを課題とする。 The present invention is to solve the problems described in the background art, for example, be used in a vacuum, there is no fear of such a gas leak, inexpensively manufactured by small material and man-hours heat plates which is thin and lightweight It is an object of the present invention to provide a method for producing a heat plate.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、熱媒流路を有する1つの基板と係る流路の開口部を蓋板により固相状態で閉塞することに着想して成されたものである。
即ち、本発明のヒートプレートの製造方法(請求項1)は、金属または合金からなる基板の表面において、当該表面に沿って直線部および屈曲部の少なくとも一方からなり、上記基板の表面寄りで且つ当該凹溝の開口部の両側に位置する一対の段部、および係る一対の段部間に位置し且つこれらの段部よりも深い位置に形成される熱媒体用流路からなる凹溝を形成する工程と、係る凹溝における一対の段部間に跨って、金属または合金からなる蓋板を載置することにより当該凹溝の開口部を閉塞する工程と、係る蓋板の周縁と上記基板との境界付近に沿って摩擦攪拌接合を施すことにより、係る蓋板を上記凹溝の開口部における一対の段部間に沿って接合する工程と、を含むヒートプレートの製造方法であって、上記閉塞および接合工程に用いる上記蓋板は、上記一対の段部間に挿入されて凹溝の開口部を閉鎖すると共に、底面に上記熱媒体用流路内の上部に進入する圧肉部を一体に有する断面ほぼ逆ハット形を呈するか、あるいは、底面から上記熱媒体用流路の両側壁に沿って垂下する一対の平行な凸条を一体に有する断面ほぼゲタ形状を呈するものであ上記接合工程で用いる摩擦接合ツールのツール本体の底面には、攪拌ピンの根本からその周囲に螺旋形状にして拡がる渦巻き形凸条が突設され、係る渦巻き形凸条と攪拌ピンとの間に螺旋型の内側メタル溜まり部が位置しており、上記接合工程に用いる摩擦接合ツールにおける攪拌ピンの先端面における上記凹溝寄りの外周端は、該凹溝の熱媒体用流路における当該外周端が近接する一方の側壁の真上の位置よりも係る側壁に隣接する段部の縦壁寄りに位置し上記接合工程に用いる摩擦接合ツールの攪拌ピンの先端面における上記凹溝寄りの外周端は、上記凹溝における一方の段部の底面上であって当該凹溝の熱媒体流路の側壁の上端から攪拌ピンの半径分だけ上記段部の縦壁寄りの位置上における当該攪拌ピンの半径分の高さの位置を中心とし、この中心から上記半径分を上記縦壁の底面側に垂下した垂直線を、上記熱媒体流路の側壁の真上に向けてほぼ90°回転することにより形成される4分の1円の円周よりも上記一方の段部の縦壁寄りに位置すると共に上記接合工程に用いる摩擦接合ツールにおける攪拌ピンの移動軌跡の終端は、前記凹溝中の熱媒体流路の真上から離れた前記基板上に位置する、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention has been conceived by concealing one substrate having a heat medium flow path and the opening of the flow path in a solid state by a lid plate.
That is, the method for manufacturing a heat plate according to the present invention (Claim 1) comprises, on the surface of a substrate made of a metal or an alloy, at least one of a straight portion and a bent portion along the surface, and close to the surface of the substrate. A pair of step portions located on both sides of the opening of the groove, and a groove formed of a heat medium flow path formed between the pair of step portions and deeper than these step portions are formed. A step of closing the opening of the groove by placing a cover plate made of metal or alloy across a pair of steps in the groove, and the periphery of the cover plate and the substrate A step of joining the lid plate along a pair of steps in the opening of the concave groove by performing friction stir welding along the vicinity of the boundary with For the above-mentioned closing and joining process The lid plate is inserted between the pair of stepped portions to close the opening of the concave groove, and has a pressure-reverse portion integrally entering the upper portion of the heat medium flow path on the bottom surface. or exhibits a hat-shaped, or state, and are not exhibiting cross almost Geta shape having a pair of parallel ridges extending downward along the bottom surface on both side walls of the heating medium flow path integrally, used in the bonding step On the bottom surface of the tool body of the friction welding tool, spiral ridges that project spirally from the base of the agitation pin are provided so as to project between the spiral ridge and the agitation pin. Is located on the tip end face of the stirring pin in the friction welding tool used in the joining step, and the outer peripheral end near the concave groove is one side wall close to the outer peripheral end in the heat medium flow path of the concave groove. The side that is more than the position directly above Located in vertical wall side of the step portion adjacent to the outer peripheral edge of the recessed groove near the distal end surface of the stirring pin of the friction welding tool used in the bonding process, a on the bottom surface of one of the stepped portion in the groove Centering on the position of the height of the stirring pin radius on the position closer to the vertical wall of the stepped portion by the radius of the stirring pin from the upper end of the side wall of the heat medium flow path of the concave groove. More than the circumference of a quarter circle formed by rotating a vertical line with a radius portion hanging down to the bottom surface side of the vertical wall approximately 90 ° toward a position directly above the side wall of the heat medium flow path. The end of the movement path of the stirring pin in the friction welding tool used for the joining step is located on the substrate that is located near the vertical wall of one step portion and that is away from just above the heat medium flow path in the concave groove. It is characterized by being located .

これによれば、前記凹溝における熱媒体用流路を挟んだ一対の段部間に蓋板を容易且つ正確に位置決めして配置でき、且つ表面が平坦な熱交換面を形成し易くなると共に、摩擦攪拌接合による接合部が熱媒体流路から離れているため、熱媒体流路の断面積を設定通りに確保することも容易となるまた、位置ずれや熱媒体流路の断面積を小さく変形させるなどの接合部不良を確実に予防することもできるので、歩留まりと生産性の向上を図ることも可能となる
しかも、前記摩擦攪拌ツールのツール本体の底面に、攪拌ピンの根本からその周囲に螺旋形状にして拡がる渦巻き凸条が突設され、且つ前記内側メタル溜まり部が位置していることで、接合夫付近のメタルの一部は基板などの表面に段階的に拡がって固化するため、バリの少ない表面の接合部を形成できる
According to this, the lid plate can be easily and accurately positioned and disposed between the pair of step portions sandwiching the heat medium flow path in the concave groove, and it becomes easy to form a heat exchange surface with a flat surface. In addition, since the joint portion by friction stir welding is separated from the heat medium flow path, it is easy to secure the cross-sectional area of the heat medium flow path as set . In addition, since it is possible to reliably prevent misalignment and a defective joint such as a change in the cross-sectional area of the heat medium flow path, it is possible to improve yield and productivity .
In addition, a spiral protrusion that extends in a spiral shape from the base of the stirring pin to the periphery of the bottom surface of the tool body of the friction stirring tool protrudes, and the inner metal pool portion is positioned, so that Since a part of the nearby metal spreads stepwise on the surface of the substrate or the like and solidifies, it is possible to form a bonding portion having a surface with few burrs .

更に、攪拌ピンの先端面における上記凹溝寄りの外周端の位置を規定したことで、攪拌ピンの位置決めが容易になると共に、健全な接合部を確実に形成することができると共に、位置ずれや熱媒体流路の断面積を小さく変形させるなどの接合部不良を確実に予防することもでき、歩留まりと生産性の向上を図ることも可能となるしかも、攪拌ピンの終端が熱媒体流路の位置から確実に外れるため、終端に形成される攪拌ピンの凹んだ抜け跡が熱媒体流路に接近または連通する事態を防止でき、信頼性を高められる
従って、少ない素材と工数により、ガス漏れなどの不具合を生じにくいヒートプレートを確実且つ安価に提供することが可能となる
Furthermore, by defining the position of the outer peripheral end near the concave groove on the tip surface of the stirring pin, positioning of the stirring pin is facilitated, and a sound joint can be reliably formed, and positional deviation and It is also possible to reliably prevent joint defects such as a small deformation of the cross-sectional area of the heat medium flow path, and to improve yield and productivity . Moreover, since the end of the stirring pin is surely removed from the position of the heat medium flow path, it is possible to prevent the recessed trace of the stirring pin formed at the end from approaching or communicating with the heat medium flow path, thereby improving reliability. It is done .
Therefore, it is possible to reliably and inexpensively provide a heat plate that is less likely to cause problems such as gas leaks, with fewer materials and man-hours .

尚、本発明のヒートプレートは、冷却用の他、加熱用としても使用できる
また、基板や蓋板の材質には、合金基板や蓋板の金属または合金と摩擦攪拌接合が可能なアルミニウム、鋼材、ステンレス鋼、チタン合金などの同種金属または異種金属も含まれる
更に、蓋板は、凹溝における一対の段部間または熱媒体流路の対向する一対の側壁間に、厚肉部を有する断面逆ハット形や、係る一対の側壁間などに沿って短く垂下する凸条を有する断面ゲタ形の形態からなる係る断面逆ハット形や断面ゲタ形の蓋板を用いることにより、摩擦攪拌接合時において、凹溝の幅方向におけるずれを容易に防止することができる
加えて、前記熱媒体には、冷却媒体と加熱媒体の双方が含まれる
The heat plate of the present invention can be used not only for cooling but also for heating .
The material of the substrate and the cover plate also includes the same type or different types of metals such as aluminum, steel, stainless steel, and titanium alloy that can be friction stir welded to the alloy substrate or cover plate metal or alloy .
Furthermore, the lid plate is drooped shortly between the pair of stepped portions in the groove or between the pair of opposing side walls of the heat medium flow path along the cross-section inverted hat shape having a thick wall portion or between the pair of side walls. It has the shape of a cross section with a protruding ridge . By using such a cross-sectional inverted hat-shaped or cross-sectionally shaped cover plate, it is possible to easily prevent the groove in the width direction from being displaced during friction stir welding .
In addition, the heat medium includes both a cooling medium and a heating medium .

更に、本発明には、前記摩擦接合ツールのツール本体の底面に突設される渦巻き形凸条は、底面視で約1周巻き、あるいは約半周巻きである、ヒートプレートの製造方法(請求項2)も含まれる Further, according to the present invention, the spiral ridge projecting from the bottom surface of the tool body of the friction welding tool has about one turn or about half turn when viewed from the bottom (claim). 2) is also included .

また、本発明には、前記接合工程における摩擦攪拌接合は、前記蓋板の周縁と前記基板との境界付近に沿って、摩擦接合ツールを回転しつつ連続移動させる1パスにより行われる、ヒートプレートの製造方法(請求項3)も含まれる Further, according to the present invention, the friction stir welding in the joining step is performed by one pass that continuously moves the friction welding tool while rotating around the boundary between the periphery of the lid plate and the substrate. The manufacturing method (Claim 3) is also included .

これによれば、少ない工数によって凹溝の開口部を迅速に密封したヒートプレートを製造できるため、ガス漏れなどの不具合を生じにくいヒートプレートを効率良く且つ一層安価に提供することが可能となる According to this, a heat plate in which the opening of the concave groove is quickly sealed can be manufactured with a small number of man-hours . Therefore, it is possible to provide a heat plate that is less likely to cause problems such as gas leakage efficiently and at a lower cost .

以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明の前提となる参考形態のヒートプレート1の平面図、図2は、図1中のB−B線の矢視に沿った垂直断面図、図3は、図2中の一点鎖線部分Cの拡大図である。
ヒートプレート1は、図1,図2に示すように、厚さが約30mmのアルミニウム合金からなる平坦な基板2と、係る基板2の表面3に沿って平面視で直線部および屈曲部を含む蛇行形状に形成された凹溝6と、係る凹溝6の開口部を閉塞し且つ密封する蓋板5と、を含む。
基板2は、例えばJIS:A6061−T5のアルミニウム合金からなり、その表面3に沿って、エンドミルによる座ぐり加工を施すことにより、直線部と曲線部とを交互に有する凹溝6を形成している。図3に拡大して示すように、凹溝6は、基板2の表面3寄りで且つ当該凹溝6の開口部の両側に対称に位置する一対の段部8,8と、係る段部8,8間に位置し且つこれらよりも深い位置で且つ基板2の裏面4寄りに形成される断面角形の熱媒体流路7とからなる。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 is a plan view of a heat plate 1 of a reference form as a premise of the present invention, FIG. 2 is a vertical sectional view taken along the line B-B in FIG. 1, and FIG. It is an enlarged view of a dashed-dotted line part C. FIG.
1 and 2, the heat plate 1 includes a flat substrate 2 made of an aluminum alloy having a thickness of about 30 mm, and a straight portion and a bent portion in plan view along the surface 3 of the substrate 2. The concave groove 6 is formed in a meandering shape, and the lid plate 5 closes and seals the opening of the concave groove 6.
The substrate 2 is made of, for example, an aluminum alloy of JIS: A6061-T5, and the concave groove 6 having alternating straight portions and curved portions is formed along the surface 3 by counter boring with an end mill. Yes. As shown in an enlarged view in FIG. 3, the groove 6 has a pair of step portions 8, 8 that are located near the surface 3 of the substrate 2 and symmetrically on both sides of the opening of the groove 6, and the step portion 8. , 8 and a heat medium flow path 7 having a square cross section formed at a position deeper than these and near the back surface 4 of the substrate 2.

また、蓋板5は、平面視で凹溝6の開口部と相似形を呈し且つ断面が長方形であり、上記同様のアルミニウム合金板からなる。図3に示すように、蓋板5は、その両側縁を上記凹溝6の段部8,8間に挿入・載置されると共に、段部8,8の縦壁に沿った突き合わせ面(境界)9の長手方向に沿って、摩擦攪拌接合による接合部S,Sにより、凹溝6の開口部を密封し且つ基板2と一体化されている。図1に示すように、蓋板5は、その全周縁で接合部Sを介して、基板2と接合されている。尚、係る蓋板5には、複数の直線部および曲線部の板状部分を予め一体に接合した形態のものを用いても良い。
因みに、凹溝6における開口部の幅は約30mm、段部8の幅と深さはそれぞれ5mmずつ、熱媒体流路7の幅と深さはそれぞれ20mmずつのサイズであり、蓋板5の幅は約30mm弱で、且つ厚みは5mmである。
The cover plate 5 is similar to the opening of the groove 6 in plan view and has a rectangular cross section, and is made of the same aluminum alloy plate as described above. As shown in FIG. 3, the cover plate 5 is inserted and placed on both side edges between the step portions 8 and 8 of the concave groove 6, and a butting surface along the vertical wall of the step portions 8 and 8 ( Along the longitudinal direction of the boundary 9, the opening of the groove 6 is sealed and integrated with the substrate 2 by the joints S, S by friction stir welding. As shown in FIG. 1, the cover plate 5 is bonded to the substrate 2 via the bonding portion S at the entire periphery. In addition, you may use the thing of the form which joined the plate-shaped part of the some linear part and curved part integrally as the cover plate 5 concerned beforehand.
Incidentally, the width of the opening in the groove 6 is about 30 mm, the width and depth of the step 8 are each 5 mm, and the width and depth of the heat medium flow path 7 are each 20 mm. The width is less than about 30 mm and the thickness is 5 mm.

以上のようなヒートプレート1によれば、基板2に予め形成した凹溝6の開口部にて、当該基板2と蓋板5とが固相状態で摩擦攪拌接合されているので、従来の溶接によるピンホールやガスの巻き込みを防ぐことができる。また、凹溝6を有する基板2と係る凹溝6の開口部を閉塞して密封する蓋板5とから形成されているため、ヒートプレート1全体の厚みを薄く且つ軽量化することができる。従って、例えば半導体製造装置において真空中での冷却用に用いる場合、ガス漏れなどの不具合を解消できると共に、少ない素材と工数により安価に製造し得る。   According to the heat plate 1 as described above, since the substrate 2 and the cover plate 5 are friction stir welded in a solid state at the opening of the groove 6 formed in advance in the substrate 2, conventional welding is performed. Can prevent pinholes and gas entrainment. Moreover, since it forms from the board | substrate 2 which has the ditch | groove 6, and the cover plate 5 which obstruct | occludes the opening part of the ditch | groove 6 and seals, the thickness of the heat plate 1 whole can be made thin and lightweight. Therefore, for example, when used for cooling in a vacuum in a semiconductor manufacturing apparatus, problems such as gas leakage can be solved and manufacturing can be performed at low cost with fewer materials and man-hours.

以上のようなヒートプレート1を得るため製造方法であり、且つ後述するヒートプレート1c,1dを得るための本発明にも適用される製造方法を、図4以下に基づいて説明する。
図4に示すように、基板2の表面3に沿って、前述した蛇行形状の凹溝6を、例えばエンドミルまたはフライスによる切削加工にて形成する工程を行う。この際、大径および小径の2種類のエンドミルを順次使用して切削加工する方法の他に、刃先を有する先端部が断面逆ハット形の1種類エンドミルを用いて、連続して切削する方法により、段部8,8および熱媒体流路7からなる凹溝6を1パスで形成しても良い。図4に示すように、熱媒体流路7は、底面7bと一対の側壁7a,7aとに囲まれ、各段部8は底面8bと縦壁8aとを有する。
次に、図5に示すように、凹溝6の段部8,8間に跨って蓋板5を載置し、当該凹溝6の開口部を閉鎖する工程を行う。
A manufacturing method that is a manufacturing method for obtaining the heat plate 1 as described above and that is also applied to the present invention for obtaining the heat plates 1c and 1d described later will be described with reference to FIG.
As shown in FIG. 4, a step of forming the above-described meandering concave groove 6 along the surface 3 of the substrate 2 by, for example, cutting using an end mill or a milling cutter is performed. At this time, in addition to the method of cutting using two types of end mills of large diameter and small diameter one after another, the method of cutting continuously by using one type of end mill whose tip portion having a cutting edge has a reverse hat shape is used. The concave groove 6 composed of the step portions 8 and 8 and the heat medium flow path 7 may be formed in one pass. As shown in FIG. 4, the heat medium flow path 7 is surrounded by a bottom surface 7b and a pair of side walls 7a and 7a, and each step portion 8 has a bottom surface 8b and a vertical wall 8a.
Next, as shown in FIG. 5, a step of placing the cover plate 5 across the step portions 8, 8 of the groove 6 and closing the opening of the groove 6 is performed.

次いで、図6,図7に拡大して示すように、凹溝6における一方(右側)の段部8の縦壁8aと蓋板5の側縁との突き合わせ面9に沿って、高速回転する摩擦接合ツール10を配置し、且つその攪拌ピン14を挿入する。摩擦接合ツール10は、円柱形のツール本体11と、その底面12の中心付近が垂下する攪拌ピン17とを含む一体物で、例えばSKD61などの工具鋼から成形されている。
係るツール10のツール本体11の底面12には、図8,図9に示すように、その周縁において底面視が円形のリング状凸部13が垂下し、その内側には断面ほぼ三角形のリング溝(外側メタル溜まり溝)14が形成されている。
Next, as shown in enlarged views in FIGS. 6 and 7, the groove 6 rotates at a high speed along the abutting surface 9 between the vertical wall 8 a of the step 8 on one side (right side) and the side edge of the lid plate 5. Place the friction welding tool 10 and insert its stirring pin 14. The friction welding tool 10 is an integrated body including a cylindrical tool body 11 and a stirring pin 17 that hangs down near the center of the bottom surface 12 thereof, and is formed of a tool steel such as SKD61.
As shown in FIGS. 8 and 9, a ring-shaped convex portion 13 having a circular bottom view is suspended from the bottom surface 12 of the tool body 11 of the tool 10, and a ring groove having a substantially triangular cross section is formed on the inner side thereof. (Outer metal reservoir groove) 14 is formed.

また、ツール本体11の底面12には、攪拌ピン17の根元からその周囲に螺旋形状にして、底面視で約1周巻きにて拡がる渦巻き形凸条15が突設され、係る渦巻き形凸条15と攪拌ピン17との間に螺旋型の内側メタル溜まり部16が位置している。内側メタル溜まり部16は、図9に示すように、上記リング溝(外側メタル溜まり溝)14よりも当該摩擦接合ツール10の先端(下端)寄りに位置している。更に、攪拌ピン17は、その周面に攪拌促進用のネジ部17aを刻設している。尚、渦巻き形凸条15は、底面視で約半周巻きとなる複数本の形態とし、これらを攪拌ピン17から対称に配置しても良い。
係るツール10は、100〜1500rpmで高速回転しつつ、図7中の矢印で示すように、0.05〜2m/分の移動速度で右方向に移動される。この際、ツール本体11および攪拌ピン17は、数kN〜30kNの押圧力(押込み力)を軸心方向に伴っている。また、図6,図7に示すように、その底面12が基板2の表面3と蓋板5の表面に接するように、ツール本体11を垂直姿勢にして回転および移動される。尚、攪拌ピン17先端の先端面18は、段部8の縦壁8aと底面8bとのコーナーよりもやや高い部位に位置している。
Further, on the bottom surface 12 of the tool body 11, a spiral ridge 15 is formed so as to spiral from the base of the stirring pin 17 to the periphery thereof and expands in about one turn in a bottom view. A spiral inner metal reservoir 16 is located between 15 and the stirring pin 17. As shown in FIG. 9, the inner metal reservoir 16 is positioned closer to the tip (lower end) of the friction welding tool 10 than the ring groove (outer metal reservoir groove) 14. Furthermore, the stirring pin 17 has a screw portion 17a for promoting stirring on its peripheral surface. It should be noted that the spiral ridges 15 may be formed in a plurality of forms that are approximately half-circular when viewed from the bottom, and these may be arranged symmetrically from the stirring pin 17.
The tool 10 is rotated rightward at a moving speed of 0.05 to 2 m / min as indicated by an arrow in FIG. 7 while rotating at a high speed of 100 to 1500 rpm. At this time, the tool body 11 and the stirring pin 17 are accompanied by a pressing force (pushing force) of several kN to 30 kN in the axial direction. Also, as shown in FIGS. 6 and 7, the tool body 11 is rotated and moved in a vertical posture so that the bottom surface 12 is in contact with the surface 3 of the substrate 2 and the surface of the cover plate 5. The tip surface 18 at the tip of the stirring pin 17 is located at a position slightly higher than the corner between the vertical wall 8a and the bottom surface 8b of the step portion 8.

図6,図7に示すように、高速回転する攪拌ピン17が、押込み力を伴って挿入されることにより、突き合わせ面9付近の基板2および蓋板5のアルミニウム合金(素材:以下メタルと称する)は、摩擦熱で攪拌され塑性流動化する。また、当該攪拌ピン17によって、その側方や根元付近に押し出されたメタルの一部は、一旦ツール本体11の底面12における内側メタル溜まり部16内に入り、攪拌ピン17の回転方向に沿ってその側方を通過した後、当該攪拌ピン17が直前に位置していた部位に移行しつつ幅方向に広がって固化する。
更に、上記メタルの一部は、リング溝(外側メタル溜まり部)14内に入った後、基板2などの表面3側に段階的に拡がって固化する。このため、突き合わせ面9に沿って、バリの少ない表面の接合部Sを形成することができる。
以上のような接合部Sは、前記図1に示したように、蛇行形状の蓋板5の全周縁に沿って連続して、即ち1パスで施される。これにより、表面3に沿って蛇行する熱媒体流路7が密封された前記ヒートプレート1を得ることができる。尚、図6中の符号19は、次述する攪拌ピン17の外周端を示す。
As shown in FIGS. 6 and 7, an agitation pin 17 that rotates at a high speed is inserted with a pushing force, whereby an aluminum alloy (material: hereinafter referred to as metal) of the substrate 2 and the cover plate 5 in the vicinity of the abutting surface 9. ) Is plastically fluidized by stirring with frictional heat. In addition, a part of the metal pushed out to the side or near the base by the stirring pin 17 once enters the inner metal pool portion 16 on the bottom surface 12 of the tool body 11, along the rotation direction of the stirring pin 17. After passing the side, the stirring pin 17 spreads in the width direction and solidifies while moving to the position where it was located immediately before.
Further, after a part of the metal enters the ring groove (outer metal reservoir portion) 14, the metal expands stepwise toward the surface 3 side of the substrate 2 and solidifies. For this reason, it is possible to form a joint S having a surface with few burrs along the butt surface 9.
As described above with reference to FIG. 1, the joining portion S as described above is applied continuously along the entire periphery of the meandering-shaped lid plate 5, that is, in one pass. Thereby, the said heat plate 1 with which the heat-medium flow path 7 meandering along the surface 3 was sealed can be obtained. In addition, the code | symbol 19 in FIG. 6 shows the outer peripheral end of the stirring pin 17 mentioned below.

ここで、摩擦接合ツール10を用いる前記接合工程における具体的な実施例について、比較例と併せて説明する。図10に示すように、厚さが30mmのアルミニウム合金(A6061−T5)からなる複数の基板2に、開口部の幅が30mm、段部8の幅と深さがそれぞれ5mmずつで、熱媒体流路7の幅と深さがそれぞれ20mmずつのサイズの凹溝6を個別に形成した。
また、幅が29.8mmで且つ厚さが5mmの上記と同じアルミニウム合金からなる複数の蓋板5を上記各凹溝6の段部8,8間に個別に挿入・載置し、図10に示すように、当該凹溝6の開口部を閉塞した後、係る状態で基板2および蓋板5を図示しない治具により拘束した。
Here, a specific example in the joining process using the friction welding tool 10 will be described together with a comparative example. As shown in FIG. 10, a plurality of substrates 2 made of an aluminum alloy (A6061-T5) with a thickness of 30 mm have an opening width of 30 mm and a step 8 width and depth of 5 mm, respectively. Concave grooves 6 each having a width and depth of the flow path 7 of 20 mm were formed individually.
Further, a plurality of lid plates 5 made of the same aluminum alloy as described above having a width of 29.8 mm and a thickness of 5 mm are individually inserted and placed between the step portions 8 and 8 of the respective concave grooves 6, and FIG. As shown in FIG. 2, after closing the opening of the concave groove 6, the substrate 2 and the cover plate 5 were restrained by a jig (not shown) in such a state.

更に、ツール本体11の直径が25mm、攪拌ピン17の直径が10mmで且つその長さが10mmのSKD61からなる摩擦接合ツール10を用意した。蓋板5により凹溝6を閉塞した複数の前記基板2に対し、摩擦接合ツール10の攪拌ピン17の先端面18における凹溝6寄りの外周端19の位置を、個別に変化させて摩擦攪拌接合を行った。
この際、ツール本体11および攪拌ピン17の回転数は900rpm、突き合わせ面9に沿った移動速度は0.3m/分、攪拌ピン17の軸心方向に沿った押込み力は1kN、接合(移動)長さは200mmとして全て共通とした。
Furthermore, a friction welding tool 10 made of SKD61 having a tool body 11 with a diameter of 25 mm, a stirring pin 17 with a diameter of 10 mm, and a length of 10 mm was prepared. Friction stir by individually changing the position of the outer peripheral end 19 near the concave groove 6 on the tip surface 18 of the stirring pin 17 of the friction welding tool 10 for the plurality of substrates 2 whose concave grooves 6 are closed by the cover plate 5. Bonding was performed.
At this time, the rotation speed of the tool body 11 and the stirring pin 17 is 900 rpm, the moving speed along the abutting surface 9 is 0.3 m / min, the pushing force along the axial direction of the stirring pin 17 is 1 kN, and bonding (moving). The length was 200 mm and all were common.

図10に例示する場合、攪拌ピン17の先端面18の中心は、凹溝6の左側の段部8の縦壁8a(突き合わせ面9と重複)上にあって、且つ攪拌ピン17の先端面18における凹溝6寄りの外周端19は、当該段部8の底面8bよりも僅かに高い部位に位置している。係る外周端19の位置を複数の基板2ごとに変化させて、前記同様の摩擦攪拌接合を行った。そして、各基板2ごとに得られた接合部S付近を切断し、その良否を判定した。それらの結果を図11に示した。
尚、図11のグラフ中で、○印は内部欠陥がなく接合位置も適正であった接合部Sを、△印は欠陥はないが位置ずれぎみであった接合部Sを、×印は位置ずれによる内部欠陥が生じ且つ熱媒体流路7の断面が狭くなった接合部Sを示す。
In the case illustrated in FIG. 10, the center of the tip surface 18 of the stirring pin 17 is on the vertical wall 8 a (overlapping the butting surface 9) of the stepped portion 8 on the left side of the groove 6 and the tip surface of the stirring pin 17. The outer peripheral end 19 near the concave groove 6 in 18 is located at a position slightly higher than the bottom surface 8 b of the step portion 8. Friction stir welding similar to that described above was performed by changing the position of the outer peripheral edge 19 for each of the plurality of substrates 2. And the junction part S vicinity obtained for every board | substrate 2 was cut | disconnected, and the quality was determined. The results are shown in FIG.
In the graph of FIG. 11, a circle mark indicates a bonding portion S that has no internal defect and the bonding position is appropriate, a triangle mark indicates a bonding portion S that has no defect but is misaligned, and a mark X indicates a position. The joining part S which the internal defect by shift | offset | difference produced and the cross section of the heat medium flow path 7 became narrow is shown.

また、図10,図11におけるxは、熱媒体流路7における左側の側壁7aの真上の位置から攪拌ピン14の右側の周面までの距離を、yは左側の段部8の底面8bから攪拌ピン17の先端面18までの距離を、図10におけるzは後述する中心を、pは後述する垂直線を示す。
図11のグラフによれば、各例において、攪拌ピン17の先端面18における凹溝6寄りの外周端19が、図11のグラフ中のカーブKの左側にある場合(実施例)は、接合部Sは○印または△印となり、上記カーブKよりも右側また下側に位置する場合(比較例)は、×印となった。
10 and 11, x is the distance from the position just above the left side wall 7 a in the heat medium flow path 7 to the right peripheral surface of the stirring pin 14, and y is the bottom surface 8 b of the left step 8. 10 to the tip surface 18 of the stirring pin 17, z in FIG. 10 indicates a center described later, and p indicates a vertical line described later.
According to the graph of FIG. 11, in each example, when the outer peripheral end 19 near the concave groove 6 on the tip surface 18 of the stirring pin 17 is on the left side of the curve K in the graph of FIG. The part S was marked with a circle or a triangle, and when it was located on the right side or below the curve K (comparative example), it was marked with a cross.

上記カーブKは、図10に例示するように、左側の段部8の縦壁8aの中間付近(攪拌ピン17の重心付近)を中心zとし、係る中心zから攪拌ピン17の半径r分の長さで底面8bまで垂下した垂直線pを、当該段部8の縦壁8aと底面8bとのコーナーから熱媒体流路7の左側の側壁7aの真上の位置まで90°回転して形成される4分の1の円周である。尚、図10の右側の段部8に、上記カーブKと線対称のカーブKを参考として図示した。   As illustrated in FIG. 10, the curve K has a center z near the middle of the vertical wall 8 a of the left step portion 8 (near the center of gravity of the stirring pin 17), and a radius r of the stirring pin 17 from the center z. A vertical line p that hangs down to the bottom surface 8b is formed by rotating 90 ° from a corner between the vertical wall 8a and the bottom surface 8b of the step 8 to a position directly above the left side wall 7a of the heat medium passage 7. Is a quarter circumference. In addition, the curve K and the axisymmetric curve K are illustrated in the step 8 on the right side of FIG. 10 for reference.

即ち、攪拌ピン17の先端面18における凹溝6寄りの外周端19が、凹溝6の左側(一方)の段部8の底面8b上にあって、当該凹溝6の熱媒体流路7の左側の側壁7aの上端から攪拌ピン17の半径r分だけ段部8の縦壁8a寄りの位置(図10では縦壁8aと一致)上から当該攪拌ピン17の半径r分の高さの位置z(図10では縦壁8aの中間点とほぼ一致)を中心とし、この中心zから攪拌ピン17の半径r分で底面8bまで垂下した垂直線pを、当該段部8の縦壁8aと底面8bとのコーナーから、熱媒体流路7の左側の側壁7aの真上の位置まで90°回転して形成される4分の1の円周のカーブKよりも左側、即ち段部8の縦壁8a寄りに位置する実施例では、接合部Sは○または△印となった。   That is, the outer peripheral end 19 near the concave groove 6 on the tip surface 18 of the stirring pin 17 is on the bottom surface 8 b of the step portion 8 on the left side (one side) of the concave groove 6, and the heat medium flow path 7 of the concave groove 6. The height of the stirrer pin 17 from the upper end of the left side wall 7a by the radius r of the stirrer pin 17 is close to the vertical wall 8a of the step 8 (corresponding to the vertical wall 8a in FIG. 10). A vertical line p centering on the position z (in FIG. 10 substantially coincides with the midpoint of the vertical wall 8a) and hanging from the center z to the bottom surface 8b by the radius r of the stirring pin 17 is taken as the vertical wall 8a of the step portion 8. And the bottom surface 8b from the corner of the heat medium flow path 7 to the position just above the left side wall 7a by 90.degree. In the example located near the vertical wall 8a, the joint S is marked with a circle or a triangle.

これら対し、上記カーブKよりも右側また下側に位置する比較例の接合部Sは、位置ずれ欠陥を有する×印となった。係る比較例の接合部Sは、攪拌ピン17と熱媒体流路7の側壁7aとの距離xが小さ過ぎたため、内部欠陥(空孔)を内包すると共に、熱媒体流路7内に流動(軟化)化したメタルが進入して、その断面を狭く変形させたものである。
以上の各実施例から摩擦攪拌接合の工程を適正な範囲で行うことにより、基板2の表面3に沿って凹溝6の熱媒体流路7を厳正に密封した本発明のヒートプレート1を確実に製造することが可能となる。
On the other hand, the joint portion S of the comparative example located on the right side or the lower side of the curve K was marked with x having a misalignment defect. Since the distance x between the stirring pin 17 and the side wall 7a of the heat medium flow path 7 is too small, the joint S of the comparative example includes internal defects (holes) and flows into the heat medium flow path 7 ( A softened metal enters, and its cross section is narrowly deformed.
By carrying out the friction stir welding process within the proper range from each of the above embodiments, the heat plate 1 of the present invention in which the heat medium flow path 7 of the concave groove 6 is strictly sealed along the surface 3 of the substrate 2 is surely obtained. Can be manufactured.

図12,図13は、前記ヒートプレート1と同様な参考形態のヒートプレート1aとそのを製造方法を示す平面図とその部分拡大図である。図12に示すように、基板2の表面3に沿って、前述した方法により、凹溝6の開口部を閉鎖した蓋板5の全周縁に沿って、前記摩擦接合ツール10を回転しつつ移動させる。
係るツール10は、基板2の表面3における左下側のスタート点(S始)から、図12中の実線で示す矢印に沿って、蓋板5およびこれに覆われた凹溝6の段部8に沿った蛇行形状の経路(往路:S往)を移動し、基板2の表面3における右上隅付近の折り返し部TPを経て、図12中の破線で示す矢印に沿って、同様に蛇行形状の経路(復路:S復)を移動する。これにより、蓋板5はその全周縁を接合部Sを介して基板2に接合される。
FIGS. 12 and 13 are a plan view and a partially enlarged view showing a heat plate 1a of a reference form similar to the heat plate 1 and a method of manufacturing the same. As shown in FIG. 12, along the surface 3 of the substrate 2, the friction welding tool 10 is rotated and moved along the entire periphery of the cover plate 5 with the opening of the groove 6 closed by the method described above. Let
The tool 10 has a step 8 of the cover plate 5 and the recessed groove 6 covered by the cover plate 5 along the arrow indicated by the solid line in FIG. 12 from the lower left start point (S start) on the surface 3 of the substrate 2. 12 is moved along a meandering-shaped path (outward path: S-out) along the upper-right corner of the surface 3 of the substrate 2 and along the arrow indicated by a broken line in FIG. Move the route (return: S return). As a result, the entire periphery of the lid plate 5 is bonded to the substrate 2 via the bonding portion S.

図13に拡大して示すように、摩擦接合ツール10は、左下側のスタート点(S始)に戻った際に、これを通過し且つ蓋板5から離れた位置、即ち熱媒体流路7の真上から離れた位置で終端(S終)とされ、その攪拌ピン17を抜き出す。
以上のような長い移動経路に沿って、前記ツール10を回転しつつ移動する1パス(一筆書き)により摩擦攪拌接合することにより、ヒートプレート1a(1)を効率よく製造することができる。しかも、蓋板5により覆われた凹溝6の熱媒体流路7は、前記ツール10の移動軌跡の終端(S終)から離れているので、攪拌ピン14の抜け跡の凹みに影響されず、十分な気密性をもって密封される。従って、薄肉且つ軽量であり、信頼性の高いヒートプレート1aを安価に提供し得る。
As shown in an enlarged view in FIG. 13, when the friction welding tool 10 returns to the lower left start point (S start), the friction welding tool 10 passes through this and is away from the cover plate 5, that is, the heat medium flow path 7. At the position away from directly above, the end (S end) is set, and the stirring pin 17 is extracted.
The heat plate 1a (1) can be efficiently manufactured by performing friction stir welding by one path (one-stroke writing) that moves while rotating the tool 10 along the long movement path as described above. Moreover, since the heat medium flow path 7 of the concave groove 6 covered by the cover plate 5 is away from the terminal end (S end) of the movement trajectory of the tool 10, it is not affected by the concave portion of the stir pin 14. Sealed with sufficient airtightness. Therefore, the heat plate 1a which is thin and lightweight and has high reliability can be provided at low cost.

図14,図15は、異なる参考形態のヒートプレート1bおよびその製造方法を示す概略図である。ヒートプレート1bは、図14に示すように、平面視で正方形の基板2bの表面において、内外同心の円形の接合部S1,S2間に、リング盤状の蓋板5aを接合することにより、円形の凹溝(熱媒体流路を含む)の開口部を密封したものである。即ち、円形の接合部S1,S2間に位置する上記凹溝は、平面視が円形で且つ曲線部のみから形成されている。
係るヒートプレート1bを得るため、前記摩擦接合ツール10の攪拌ピン17を、図15に示すように、基板2bの右下隅寄りのスタート点(S始)の位置から挿入し、内周側の接合部S1を、図14,図15中の実線の矢印で示すように、蓋板5aの内周に沿って且つ時計回り方向に沿って円形に移動して形成する。
14 and 15 are schematic views showing a heat plate 1b of a different reference form and a manufacturing method thereof. As shown in FIG. 14, the heat plate 1b has a circular shape by joining a ring disk-like lid plate 5a between the inner and outer concentric joints S1 and S2 on the surface of the square substrate 2b in plan view. The opening of the concave groove (including the heat medium flow path) is sealed. That is, the concave groove located between the circular joint portions S1 and S2 is circular in plan view and formed only from the curved portion.
In order to obtain the heat plate 1b, the stirring pin 17 of the friction welding tool 10 is inserted from the position of the start point (S start) near the lower right corner of the substrate 2b as shown in FIG. The part S1 is formed by moving in a circle along the inner periphery of the cover plate 5a and in the clockwise direction, as indicated by the solid line arrows in FIGS.

次に、図15に示すように、前記ツール10がスタート点(S始)に戻った際に、これを通過し且つ基板2bの外側寄りに移動させた後、外周側の接合部S2を、図14,図15中の破線の矢印で示すように、蓋板5aの外周に沿って且つ時計回り方向に沿って円形に移動して形成する。そして、係る外周側の接合部S2を形成した後、図15に示すように、摩擦接合ツール10を基板2bの右下隅寄りに移動させた位置を終端(S終)とし、その攪拌ピン17抜き出す。
これにより、攪拌ピン17の抜け跡に形成される凹みは、リング形の凹溝における同形(相似形)の熱媒体流路の真上から離れた位置に形成される。この結果、前記ツール10を回転しつつ移動する1パス(一筆書き)によって摩擦攪拌接合することにより、平面視でリング形の熱媒体流路を内包した薄肉で軽量なヒートプレート1bを得ることができる。
Next, as shown in FIG. 15, when the tool 10 returns to the start point (S start), after passing through the tool 10 and moving to the outside of the substrate 2b, the outer peripheral side joining portion S2 is As shown by the broken-line arrows in FIGS. 14 and 15, the cover plate 5 a is formed so as to move circularly along the outer periphery of the lid plate 5 a and along the clockwise direction. Then, after forming the outer peripheral side joining portion S2, as shown in FIG. 15, the position where the friction welding tool 10 is moved toward the lower right corner of the substrate 2b is set as the end (S end), and the stirring pin 17 is extracted. .
Thereby, the dent formed in the trace of the stirring pin 17 is formed at a position away from directly above the same-shaped (similar) heat medium flow path in the ring-shaped concave groove. As a result, it is possible to obtain a thin and light heat plate 1b including a ring-shaped heat medium flow path in a plan view by performing friction stir welding by one pass (one stroke writing) that moves while rotating the tool 10. it can.

図16は、以下の蓋板5bを用い本発明により得られるヒートプレート1cに関する。
係る蓋板5bは、図16に示すように、基板2の表面3に沿って形成された凹溝6の段部8,8間に挿入されることにより、凹溝6の開口部を閉鎖すると共に、その底面から熱媒体流路7内に短く進入する厚肉部5cを一体に有する断面ほぼ逆ハット形のものである。係る厚肉部5cが熱媒体流路7の上部に嵌合することにより、蓋板5b自体の摩擦攪拌接合の際における幅方向へのずれを予防することができ、係る接合工程で用いる拘束治具を低減することが可能となる。
ヒートプレート1cは、図16に示すように、基板2の表面3と蓋板5bとの突き合わせ面に沿って、前記同様の摩擦攪拌接合を施し、一対の接合部Sを形成することによって得られる。従って、係るヒートプレート1cによれば、蓋板5bを用いたことにより、凹溝6の幅方向のずれを抑制しつつ熱媒体流路7が高い気密を伴って閉塞され、且つ所要断面が正確に形成されたものとなる。
以上のようなヒートプレート1cも、前提的な参考形態の前記ヒートプレート1の製造方法に基づいて、製造することができる
FIG. 16 relates to a heat plate 1c obtained by the present invention using the following lid plate 5b.
As shown in FIG. 16, the cover plate 5 b is inserted between the steps 8 and 8 of the groove 6 formed along the surface 3 of the substrate 2, thereby closing the opening of the groove 6. At the same time, the cross section has a substantially inverted hat shape integrally having a thick portion 5c that enters the heat medium flow path 7 from the bottom. By fitting the thick part 5c into the upper part of the heat medium flow path 7, it is possible to prevent the cover plate 5b itself from shifting in the width direction during the friction stir welding, and the restraint treatment used in the joining process. It becomes possible to reduce tools.
As shown in FIG. 16, the heat plate 1 c is obtained by performing the same friction stir welding along the abutting surface between the surface 3 of the substrate 2 and the lid plate 5 b to form a pair of joints S. . Therefore, according to the heat plate 1c, by using the cover plate 5b, the heat medium flow path 7 is closed with high airtightness while suppressing the shift in the width direction of the groove 6 and the required cross section is accurate. Will be formed.
The heat plate 1c as described above can also be manufactured based on the manufacturing method of the heat plate 1 of the preferential reference form .

一方、図17は、本発明により得られる異なるの形態ヒートプレート1に関し、以下の蓋板5dを用いるものである。
係る蓋板5dは、図17に示すように、基板2の表面3に沿って形成された凹溝6の段部8,8間に挿入され、その開口部を閉鎖すると共に、底面から熱媒体流路7内にその両側壁7aに沿って短く垂下する一対の平行な凸条5e,5eを一体に有する断面ほぼゲタ形状のものである。この蓋板5dによっても、摩擦攪拌接合の際における幅方向へのずれを予防でき、拘束治具を低減することが可能となる。
ヒートプレート1dは、図17に示すように、基板2の表面3と蓋板5dとの突き合わせ面に沿って、前記同様の摩擦攪拌接合を施して、一対の接合部Sを形成することによって得られる。従って、係るヒートプレート1dによれば、蓋板5dを用いることにより、凹溝6の幅方向のずれを抑制しつつ熱媒体流路7が高い気密を伴って閉塞され、且つ所要断面が正確に形成されたものとなる。
尚、以上のような蓋板5b,5dには、アルミニウム合金の押出形材を用いても良い。また、蓋板5c,5dを用いる上記ヒートプレート1c,1dは、前記ヒートプレート1a,1bの形態にも適用することが可能である。
以上のようなヒートプレート1dも、前提的な参考形態の前記ヒートプレート1の製造方法に基づいて、製造することができる
On the other hand, FIG. 17 relates to different forms heat plate 1 d by Ri obtained that the present invention is to use the following cover plate 5d.
As shown in FIG. 17, the cover plate 5d is inserted between the step portions 8 and 8 of the recessed groove 6 formed along the surface 3 of the substrate 2, closes the opening, and heat medium from the bottom surface. The channel 7 has a substantially gettered cross section integrally including a pair of parallel protrusions 5e and 5e that hang down along the side walls 7a. Also with this lid plate 5d, it is possible to prevent displacement in the width direction during friction stir welding and to reduce the restraining jig.
As shown in FIG. 17, the heat plate 1 d is obtained by performing the same friction stir welding along the abutting surface between the surface 3 of the substrate 2 and the lid plate 5 d to form a pair of joints S. It is done. Therefore, according to the heat plate 1d, by using the cover plate 5d, the heat medium flow path 7 is closed with high airtightness while suppressing the shift in the width direction of the concave groove 6, and the required cross section is accurately set. It will be formed.
Note that an extruded shape of an aluminum alloy may be used for the cover plates 5b and 5d as described above. The heat plates 1c and 1d using the cover plates 5c and 5d can be applied to the forms of the heat plates 1a and 1b.
The heat plate 1d as described above can also be manufactured based on the manufacturing method of the heat plate 1 of the preferential reference form .

図18,図19は、参考形態の摩擦接合ツール20に関する。
摩擦接合ツール20は、図18,図19に示すように、SKD61などの工具鋼からなる一体成形物で、円柱形のツール本体22と、その円形の底面24の中心部から本体22と同軸心で垂下する円柱形の攪拌ピン26とを備えている。
また、図18,図19に示すように、ツール本体22の底面24には、攪拌ピン26の根元寄りが深くなる凹部25が上向きに設けられ、且つ先端面28を含む攪拌ピン26の周面には、攪拌促進用のネジ部(図示せず)を刻設している。
以上のような摩擦接合ツール20は、前記ヒートプレート1,1a,1bにおける基板2,2bと蓋板5,5bとの突き合わせ面9に沿って、回転しつつ移動することにより、前記同様の接合部S,S1,S2を形成することができる。この際、ツール本体22および攪拌ピン26の軸心は、図19中の直線の矢印で示す移動方向(右側)の反対側(左側)に3〜5°傾けた状態で使用される。
そして、攪拌ピン26により塑性流動化されたメタルの一部は、一旦凹部25内に入った後、基板2などの表面3側に拡がって固化する。この結果、摩擦接合ツール20を前記各接合工程に用いることにより、薄肉且つ軽量であり、信頼性の高いヒートプレート1,1a,1bを安価に提供することが可能となる。
18 and 19 relate to a friction welding tool 20 of a reference form.
As shown in FIGS. 18 and 19, the friction welding tool 20 is an integrally formed product made of tool steel such as SKD61, and is coaxial with the main body 22 from the center of the cylindrical tool main body 22 and the circular bottom surface 24 thereof. And a cylindrical stirring pin 26 that hangs down.
Further, as shown in FIGS. 18 and 19, the bottom surface 24 of the tool body 22 is provided with a concave portion 25 that is deeper toward the base of the stirring pin 26, and the circumferential surface of the stirring pin 26 including the tip surface 28. Are engraved with a screw portion (not shown) for promoting stirring.
The friction welding tool 20 as described above is rotated and moved along the abutting surface 9 between the substrates 2 and 2b and the cover plates 5 and 5b in the heat plates 1, 1a and 1b. Portions S, S1, and S2 can be formed. At this time, the axes of the tool body 22 and the stirring pin 26 are used in a state where they are inclined by 3 to 5 degrees on the opposite side (left side) of the moving direction (right side) indicated by the straight arrow in FIG.
A part of the metal plastically fluidized by the stirring pin 26 once enters the recess 25 and then spreads and solidifies on the surface 3 side of the substrate 2 or the like. As a result, by using the friction welding tool 20 for each joining step, it is possible to provide the heat plates 1, 1a, 1b that are thin and lightweight and have high reliability at low cost.

本発明は、以上において説明した各形態や実施例に限定されるものではない。
例えば、前記基板2,2bや蓋板5b,5dの材質には、アルミニウム合金に限らず、基板や蓋板の金属または合金と摩擦攪拌接合が可能な鋼材、ステンレス鋼、チタン合金などの同種金属または異種金属も含まれる。
また、凹溝は、前記段部8,8を開口部の両側に有する形態に限らず、断面正方形または長方形などの矩形や、係る断面形状の開口部側が幅広となった断面逆台形状としても良い。あるいは、開口部よりも底部が幅広の例えば断面ハット形の底広凹溝とし、係る凹溝の開口部の両側に段部8,8を有していても良い。
更に、凹溝6の形成には、2種類以上ドリルを用いたり、直線部や曲線部を適宜成形し得る鍛造型やプレス型などを用いる塑性加工により形成しても良い。
また、本発明のヒートプレートの基板は、前記平坦な基板2,2bに限らず、冷却または加熱すべき対象物の形状に応じて、表面が適宜カーブした湾曲形状や所要の角度で屈曲した屈曲形状、あるいは円筒形や多角筒形状としても良い。
更に、凹溝(熱媒体流路)は、直線部または曲線部のみからなるものでも良い。
尚、本発明のヒートプレートは、冷却用、加熱用、および保温用の何れにも適用することが可能である。
The present invention is not limited to the embodiments and examples described above.
For example, the materials of the substrates 2 and 2b and the cover plates 5b and 5d are not limited to aluminum alloys, but are similar metals such as steel, stainless steel, and titanium alloys capable of friction stir welding with the metal or alloy of the substrate or cover plate. Or a dissimilar metal is also contained.
The concave groove is not limited to the form having the stepped portions 8 and 8 on both sides of the opening, but may be a square such as a square or a rectangle, or an inverted trapezoidal shape in which the opening side of the cross-sectional shape is wide. good. Alternatively, the bottom may be wider than the opening, for example, a cross-section hat-shaped bottom wide concave groove, and may have stepped portions 8 and 8 on both sides of the opening of the concave groove.
Further, the concave groove 6 may be formed by using two or more types of drills, or by plastic working using a forging die or a press die that can form a straight portion or a curved portion as appropriate.
Further, the substrate of the heat plate of the present invention is not limited to the flat substrates 2 and 2b, but a curved shape whose surface is appropriately curved or a bent shape with a required angle according to the shape of the object to be cooled or heated. It is good also as a shape or a cylindrical shape or a polygonal cylinder shape.
Furthermore, the concave groove (heat medium flow path) may be composed of only a straight portion or a curved portion.
The heat plate of the present invention can be applied to any of cooling, heating, and heat retention.

本発明の前提的な参考形態のヒートプレートの一形態を示す平面図。The top view which shows one form of the heat plate of the premise reference form of this invention. 図1中のB−B線の矢視に沿った視角の断面図。Sectional drawing of the viewing angle along the arrow of the BB line in FIG. 図2中の一点鎖線部分Cの拡大図。The enlarged view of the dashed-dotted line part C in FIG. 上記ヒートプレートの製造方法における一工程を示す概略図。Schematic which shows 1 process in the manufacturing method of the said heat plate. 図4に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図5に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図6中のD−D線の矢視に沿った視角における断面図。Sectional drawing in the viewing angle along the arrow of the DD line | wire in FIG. 上記製造方法に用いる摩擦接合ツールを示す斜視図。The perspective view which shows the friction welding tool used for the said manufacturing method. 上記摩擦接合ツールを示す垂直断面図。The vertical sectional view showing the above-mentioned friction welding tool. 上記製造方法の接合工程における実施例などの概略を示す断面図。Sectional drawing which shows the outlines of the Example etc. in the joining process of the said manufacturing method. 摩擦接合ツールを配置した位置による接合部の良否を示すグラフ。The graph which shows the quality of the junction part by the position which has arrange | positioned the friction welding tool. 前記ヒートプレートの変形形態を示す平面図。The top view which shows the deformation | transformation form of the said heat plate. 図12中の一点鎖線部分Bの拡大図。The enlarged view of the dashed-dotted line part B in FIG. 異なる形態のヒートプレートを示す平面図。The top view which shows the heat plate of a different form. 図14中の一点鎖線部分Dの拡大図。The enlarged view of the dashed-dotted line part D in FIG. 本発明により得られる一形態のヒートプレートの凹溝付近を示す概略図。Schematic diagram showing the vicinity groove of one form of the heat plate that obtained Ri by the present invention. 本発明により得られる異なる形態のヒートプレートの凹溝付近を示す概略図Schematic diagram showing the vicinity groove of the heat plate by Ri obtained that different forms of the present invention 参考形態の摩擦接合ツールを示す斜視図。 The perspective view which shows the friction welding tool of a reference form. 上記摩擦接合ツールを示す垂直断面図。The vertical sectional view showing the above-mentioned friction welding tool.

符号の説明Explanation of symbols

1c,1d……………ヒートプレート
2,2b………………基板
3………………………表面
5b,5d……………蓋板
6………………………凹溝
7………………………熱媒体流路
7a……………………側壁
8………………………段部
8a……………………縦壁
8b……………………底面
9………………………突き合わせ面(境界)
0…………………摩擦接合ツール
7…………………攪拌ピン
18……………………先端面
19……………………外周端
S………………………接合部
S終……………………終端
r………………………攪拌ピンの半径
z………………………中心
p………………………垂直線
K………………………カーブ(4分の1の円周)
1c, 1d ……………… Heat plate 2, 2b ……………… Substrate 3 ……………………… Surface 5b, 5d …………… Cover plate 6 …………………… ... concave groove 7 ………………………… Heat channel 7a …………………… Side wall 8 ………………………… Step 8a …………………… Vertical wall 8b …………………… Bottom surface 9 ……………………… Mating surface (boundary)
1 0 ... .................. friction welding tool 1 7 ... .................. stirring pin 18 ........................ tip surface 19 ........................ outer peripheral end S ............ …………… Junction S end …………………… End r ……………………… Agitation pin radius z ……………………… Center p ……………… ……… Vertical line K ……………………… Curve (1/4 circumference)

Claims (3)

金属または合金からなる基板の表面において、当該表面に沿って直線部および屈曲部の少なくとも一方からなり、上記基板の表面寄りで且つ当該凹溝の開口部の両側に位置する一対の段部、および係る一対の段部間に位置し且つこれらの段部よりも深い位置に形成される熱媒体用流路からなる凹溝を形成する工程と、
上記凹溝における一対の段部間に跨って、金属または合金からなる蓋板を載置することにより当該凹溝の開口部を閉塞する工程と、
上記蓋板の周縁と上記基板との境界付近に沿って摩擦攪拌接合を施すことにより、係る蓋板を上記凹溝の開口部における一対の段部間に沿って接合する工程と、を含むヒートプレートの製造方法であって、
上記閉塞および接合工程に用いる上記蓋板は、上記一対の段部間に挿入されて凹溝の開口部を閉鎖すると共に、底面に上記熱媒体用流路内の上部に進入する圧肉部を一体に有する断面ほぼ逆ハット形を呈するか、あるいは、底面から上記熱媒体用流路の両側壁に沿って垂下する一対の平行な凸条を一体に有する断面ほぼゲタ形状を呈するものであ
上記接合工程で用いる摩擦接合ツールのツール本体の底面には、攪拌ピンの根本からその周囲に螺旋形状にして拡がる渦巻き形凸条が突設され、係る渦巻き形凸条と攪拌ピンとの間に螺旋型の内側メタル溜まり部が位置しており、
上記接合工程に用いる摩擦接合ツールにおける攪拌ピンの先端面における上記凹溝寄りの外周端は、該凹溝の熱媒体用流路における当該外周端が近接する一方の側壁の真上の位置よりも係る側壁に隣接する段部の縦壁寄りに位置し
上記接合工程に用いる摩擦接合ツールの攪拌ピンの先端面における上記凹溝寄りの外周端は、上記凹溝における一方の段部の底面上であって当該凹溝の熱媒体流路の側壁の上端から攪拌ピンの半径分だけ上記段部の縦壁寄りの位置上における当該攪拌ピンの半径分の高さの位置を中心とし、この中心から上記半径分を上記縦壁の底面側に垂下した垂直線を、上記熱媒体流路の側壁の真上に向けてほぼ90°回転することにより形成される4分の1円の円周よりも上記一方の段部の縦壁寄りに位置すると共に
上記接合工程に用いる摩擦接合ツールにおける攪拌ピンの移動軌跡の終端は、前記凹溝中の熱媒体流路の真上から離れた前記基板上に位置する
ことを特徴とするヒートプレートの製造方法。
A pair of stepped portions formed on at least one of a straight portion and a bent portion along the surface, and located on both sides of the opening of the concave groove, on the surface of the substrate made of a metal or an alloy; and Forming a groove formed of a flow path for a heat medium that is located between the pair of stepped portions and deeper than these stepped portions;
A step of closing the opening of the groove by placing a cover plate made of a metal or an alloy across a pair of steps in the groove,
A step of joining the lid plate along a pair of steps in the opening of the concave groove by performing friction stir welding along the vicinity of the boundary between the peripheral edge of the lid plate and the substrate. A method of manufacturing a plate,
The lid plate used in the closing and joining step is inserted between the pair of stepped portions to close the opening of the concave groove, and has a pressed portion that enters the upper portion in the heat medium channel on the bottom surface. or exhibits a cross-section substantially reversed hat shape having integrally or state, and are not exhibiting cross almost Geta shape having a pair of parallel ridges extending downward along the bottom surface on both side walls of the heating medium passage integrated ,
On the bottom surface of the tool body of the friction welding tool used in the above-mentioned joining process, spiral ridges extending in a spiral shape from the root of the stirring pin to the periphery thereof are projected, and a spiral is formed between the spiral ridge and the stirring pin. The inner metal reservoir of the mold is located
In the friction welding tool used in the joining step, the outer peripheral end near the concave groove on the tip surface of the stirring pin is more than the position directly above one side wall of the concave groove in the heat medium flow path where the outer peripheral end is close. Located near the vertical wall of the step adjacent to the side wall ,
The outer peripheral end near the concave groove on the tip surface of the stirring pin of the friction welding tool used in the bonding step is on the bottom surface of one step portion of the concave groove and is the upper end of the side wall of the heat medium flow path of the concave groove From the center of the position of the height of the radius of the stirrer pin on the position near the vertical wall of the stepped portion by the radius of the stirrer pin. The wire is positioned closer to the vertical wall of the one step than the circumference of a quarter circle formed by rotating approximately 90 ° toward the directly above the side wall of the heat medium flow path ,
The terminal end of the movement path of the stirring pin in the friction welding tool used in the bonding step is located on the substrate away from directly above the heat medium flow path in the groove .
The manufacturing method of the heat plate characterized by the above-mentioned.
前記摩擦接合ツールのツール本体の底面に突設される渦巻き形凸条は、底面視で約1周巻き、あるいは約半周巻きである
請求項1に記載のヒートプレートの製造方法。
The spiral ridge protruding from the bottom surface of the tool body of the friction welding tool is wound about one turn or about half turn in a bottom view .
The manufacturing method of the heat plate of Claim 1 .
前記接合工程における摩擦攪拌接合は、前記蓋板の周縁と前記基板との境界付近に沿って、摩擦接合ツールを回転しつつ連続移動させる1パスにより行われる、
請求項1または2に記載のヒートプレートの製造方法。
The friction stir welding in the joining step is performed by one pass that continuously moves the friction welding tool while rotating around the boundary between the peripheral edge of the lid plate and the substrate.
The manufacturing method of the heat plate of Claim 1 or 2.
JP2008312906A 2008-12-09 2008-12-09 Manufacturing method of heat plate Expired - Lifetime JP4775431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312906A JP4775431B2 (en) 2008-12-09 2008-12-09 Manufacturing method of heat plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312906A JP4775431B2 (en) 2008-12-09 2008-12-09 Manufacturing method of heat plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001058030A Division JP4385533B2 (en) 2001-03-02 2001-03-02 Manufacturing method of heat plate

Publications (2)

Publication Number Publication Date
JP2009115448A JP2009115448A (en) 2009-05-28
JP4775431B2 true JP4775431B2 (en) 2011-09-21

Family

ID=40782769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312906A Expired - Lifetime JP4775431B2 (en) 2008-12-09 2008-12-09 Manufacturing method of heat plate

Country Status (1)

Country Link
JP (1) JP4775431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052480B2 (en) * 2016-06-23 2021-07-06 Aalto University Foundation Sr Non-consumable tool and a process for solid-state production of a channel and a weld joint, and a structure of at least two components based on originally bulk components of similar, or dissimilar, materials

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409144B2 (en) * 2009-06-30 2014-02-05 日立オートモティブシステムズ株式会社 Disc brake and manufacturing method thereof
JP5347774B2 (en) * 2009-07-02 2013-11-20 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
NL2009446A (en) 2011-10-12 2013-04-15 Asml Netherlands Bv Radiation beam welding method, body and lithographic apparatus.
JP5862272B2 (en) * 2011-12-19 2016-02-16 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
JP5496279B2 (en) * 2012-07-25 2014-05-21 株式会社放熱器のオーエス Heat exchanger and manufacturing method thereof
EP2965850A1 (en) * 2014-07-11 2016-01-13 NELA Razvojni center d.o.o. Podruznica Vincarje Friction stir welding joint design and method for manufacturing cooling devices for electronic components
CN108925119B (en) * 2018-08-21 2023-12-19 苏州申川精密部件有限公司 Water cooling plate for new energy automobile controller circuit board and manufacturing method thereof
KR20200040397A (en) * 2018-10-10 2020-04-20 안범모 Bonding component and manufacturing semiconductor bonding component and manufacturing semiconductor device
JP7468312B2 (en) * 2020-11-19 2024-04-16 株式会社デンソー Case and Electrical Equipment
CN115213546B (en) * 2022-08-12 2023-07-18 燕山大学 Tool for forming and processing metal inner heat dissipation pore canal and friction stir welding equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544701B2 (en) * 1993-08-24 1996-10-16 アクトロニクス株式会社 Plate type heat pipe
JPH10244343A (en) * 1997-02-28 1998-09-14 Showa Alum Corp Manufacture of hollow material
JP3038167B2 (en) * 1997-06-20 2000-05-08 川崎重工業株式会社 Manufacturing method of spray cooling type heat sink
JP3629124B2 (en) * 1997-07-23 2005-03-16 三菱電機株式会社 Semiconductor device cooling device and manufacturing method thereof
JPH1147961A (en) * 1997-08-04 1999-02-23 Showa Alum Corp Manufacture of plate type heat pipe
JP4048579B2 (en) * 1997-08-28 2008-02-20 住友電気工業株式会社 Heat dissipating body including refrigerant flow path and manufacturing method thereof
JP3409674B2 (en) * 1998-01-12 2003-05-26 日本軽金属株式会社 Annular joining method, sealed container and viscous damper obtained thereby
JP4294168B2 (en) * 1999-06-18 2009-07-08 昭和電工株式会社 Bonded joint structure and metal hollow material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052480B2 (en) * 2016-06-23 2021-07-06 Aalto University Foundation Sr Non-consumable tool and a process for solid-state production of a channel and a weld joint, and a structure of at least two components based on originally bulk components of similar, or dissimilar, materials

Also Published As

Publication number Publication date
JP2009115448A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4775431B2 (en) Manufacturing method of heat plate
JP4385533B2 (en) Manufacturing method of heat plate
JP6372515B2 (en) Liquid cooling jacket manufacturing method and liquid cooling jacket
WO2019150620A1 (en) Method for manufacturing liquid cooling jacket
JP6036714B2 (en) Manufacturing method of liquid cooling jacket
JP4775428B2 (en) Manufacturing method of heat plate
WO2015107716A1 (en) Method of manufacturing liquid-cooled jacket
WO2019150610A1 (en) Method for manufacturing liquid cooling jacket
CN110603116A (en) Method for manufacturing liquid cooling jacket
JP2019181473A (en) Liquid-cooled jacket manufacturing method
JP6287751B2 (en) Friction stir welding method
WO2019064848A1 (en) Method for producing liquid-cooled jacket
JP6769427B2 (en) How to manufacture a liquid-cooled jacket
WO2019097734A1 (en) Joining method
WO2019123679A1 (en) Method for manufacturing liquid cooling jacket
WO2009081731A1 (en) Joining method
WO2017013978A1 (en) Joining method and method for manufacturing heat sink
WO2015060007A1 (en) Method for manufacturing heat transfer plate and joining method
TW201416155A (en) Method for manufacturing water-cooled heat sink and water-cooled heat sink manufactured by the same
JP6885285B2 (en) How to manufacture a liquid-cooled jacket
JP2020001051A (en) Manufacturing method of liquid-cooled jacket
CN114929423A (en) Method for manufacturing liquid-cooled jacket and friction stir welding method
JP6015638B2 (en) Manufacturing method of heat transfer plate
JP2020015065A (en) Method for manufacturing heat transfer plate and friction-agitation joint method
JP2021186873A (en) Liquid-cooled jacket manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4775431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term