JP2020165124A - Ceiling vibration isolation material and ceiling vibration isolation structure - Google Patents

Ceiling vibration isolation material and ceiling vibration isolation structure Download PDF

Info

Publication number
JP2020165124A
JP2020165124A JP2019064464A JP2019064464A JP2020165124A JP 2020165124 A JP2020165124 A JP 2020165124A JP 2019064464 A JP2019064464 A JP 2019064464A JP 2019064464 A JP2019064464 A JP 2019064464A JP 2020165124 A JP2020165124 A JP 2020165124A
Authority
JP
Japan
Prior art keywords
ceiling
vibration
hat
ceiling surface
vibration isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019064464A
Other languages
Japanese (ja)
Other versions
JP7201174B2 (en
Inventor
弘之 中瀬
Hiroyuki Nakase
弘之 中瀬
隆人 毛利
Takahito Mori
隆人 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Polysis Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Polysis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd, Polysis Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2019064464A priority Critical patent/JP7201174B2/en
Publication of JP2020165124A publication Critical patent/JP2020165124A/en
Application granted granted Critical
Publication of JP7201174B2 publication Critical patent/JP7201174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide a ceiling vibration isolation material and a ceiling vibration isolation structure having a vibration isolation property against floor impact sound in a wide range of frequency band without depending on weight.SOLUTION: A ceiling vibration isolation material 10 laid over opposing ceiling backing materials 20 in the ceiling backing materials 20 supporting a ceiling surface material 40 comprises: a hat material 3 of a hat shape in a front view in which left and right L-shaped locking pieces 1 locked to the ceiling backing materials 20 and a bottom piece 2 connecting the left and right locking pieces 1 are integrated; and a vibration isolators 5 which is attached to each of the right and left sides of the bottom surface 2a of the bottom piece 2 and is brought into contact with the ceiling surface material 40 in a compressed state within a compression ratio of 10% to 20%.SELECTED DRAWING: Figure 1

Description

本発明は、天井防振材及び天井防振構造に関する。 The present invention relates to a ceiling vibration isolator and a ceiling vibration isolator structure.

建物の上階の床衝撃音は、上階の床を介してその振動が下方にある下階の天井に伝搬され、下階の天井が励振されることにより床衝撃音が下階へ放射される。尚、この床衝撃音には、63Hz前後の重量床衝撃音と、256Hz乃至500Hz程度の軽量床衝撃音が含まれる。 The floor impact sound of the upper floor of the building is propagated to the ceiling of the lower floor below through the floor of the upper floor, and the floor impact sound is radiated to the lower floor by exciting the ceiling of the lower floor. To. The floor impact sound includes a heavy floor impact sound of about 63 Hz and a lightweight floor impact sound of about 256 Hz to 500 Hz.

例えば、格子状に組み付けられた天井下地材(野縁や野縁受等)に対して石膏ボード等からなる天井面材が留め付けられ、天井下地材は床梁から垂下される吊木にて支持される。天井面材のうち、天井下地材に直接留め付けられている箇所の振動は抑制されるものの、格子状の天井下地材の間にあって直接留め付けられていない箇所は振動し易い。 For example, a ceiling surface material made of gypsum board or the like is fastened to a ceiling base material (field edge, field edge receiver, etc.) assembled in a grid pattern, and the ceiling base material is a hanging tree hanging from a floor beam. Be supported. Of the ceiling surface materials, the vibration of the portion directly fastened to the ceiling base material is suppressed, but the portion between the grid-shaped ceiling base materials that is not directly fastened tends to vibrate.

そこで、天井面材の背面の全面に比較的重量のある遮音シートからなる天井防振材を配設する方策があるが、このように天井面材の上面の全面に重量のある遮音シートを配設したとしても、必ずしも床衝撃音を低減できないことが分かっている。また、全面に遮音シートを配設することにより材料コストのアップに繋がり、工費の観点においても好ましくない。さらに、重量のある遮音シートによって天井防振材の重量が重くなり過ぎると、建物の構造躯体に対する重量負担に繋がり得る。天井面材に強化石膏ボード等を適用して天井面材そのものの重量を重くすることにより、天井面材の振動低減を図ろうとする方策においても、同様の課題が生じ得る。従って、可及的に少ない面積でかつ軽量な天井防振材を配設しながら、重量床衝撃音と軽量床衝撃音の双方を効果的に低減できる防振性能に優れた天井防振材及び天井防振構造の開発が望まれている。 Therefore, there is a measure to dispose a ceiling vibration isolator made of a relatively heavy sound insulation sheet on the entire back surface of the ceiling surface material. In this way, a heavy sound insulation sheet is arranged on the entire upper surface of the ceiling surface material. It is known that even if it is installed, the floor impact noise cannot always be reduced. Further, disposing the sound insulation sheet on the entire surface leads to an increase in material cost, which is not preferable from the viewpoint of construction cost. Further, if the weight of the ceiling vibration isolator becomes too heavy due to the heavy sound insulation sheet, it may lead to a weight burden on the structural frame of the building. A similar problem may occur in a measure for reducing vibration of the ceiling surface material by applying a reinforced gypsum board or the like to the ceiling surface material to increase the weight of the ceiling surface material itself. Therefore, a ceiling vibration isolator with excellent vibration isolation performance that can effectively reduce both heavy floor impact noise and lightweight floor impact noise while arranging a lightweight ceiling vibration isolator with as small an area as possible. The development of a ceiling vibration isolation structure is desired.

ここで、天井下地材に対して、重量床衝撃音対応の中央部と、軽量床衝撃音対応の左右二箇所の端部と、を備えているダイナミックダンパーが提案されている。ダイナミックダンパーは、左右の野縁に係止される質量体(第一質量体とする)と、第一質量体の中央位置の上方に錘として載置される質量体(第二質量体とする)を有する。この第一質量体はその長手方向に三つの領域に区分され、中央の領域の上方には第二質量体が載置され、各領域の下方にはそれぞれの領域に対応して相互に分割された弾性体が取り付けられている。そして、第二質量体の負荷のない左右の領域が軽量床衝撃音を低減でき、第二質量体の負荷のある中央の領域が重量床衝撃音を低減できるとしている(例えば、特許文献1参照)。 Here, a dynamic damper having a central portion corresponding to a heavy floor impact sound and two left and right end portions corresponding to a lightweight floor impact sound has been proposed for the ceiling base material. The dynamic damper consists of a mass body (referred to as the first mass body) locked to the left and right field edges and a mass body (referred to as the second mass body) placed as a weight above the center position of the first mass body. ). This first mass body is divided into three regions in the longitudinal direction, a second mass body is placed above the central region, and below each region, it is mutually divided corresponding to each region. An elastic body is attached. It is said that the left and right regions where the second mass body is not loaded can reduce the lightweight floor impact sound, and the central region where the second mass body is loaded can reduce the heavy floor impact sound (see, for example, Patent Document 1). ).

特開2018−28177号公報JP-A-2018-28177

特許文献1に記載のダイナミックダンパーによれば、中央の領域で重量床衝撃音を低減でき、左右の端部の領域で軽量床衝撃音を低減できるとしている。ところで、一般に、軽量床衝撃音を低減するように例えば256Hz乃至500Hz程度にチューニングされた防振材は、防振設計上は63Hz前後で共振することから、63Hz前後の重量床衝撃音に対して悪影響を及ぼす可能性がある。特許文献1に記載のダイナミックダンパーでは、このように軽量床衝撃音を低減するための領域が左右の端部の比較的広い範囲に設定されていることから、63Hz前後の重量床衝撃音の固体伝搬経路になりかねない。また、重量床衝撃音を低減するための中央領域においては、第一質量体の上に第二質量体が載置されていることから、防振材の重量が重くなり、建物の構造躯体に対する重量負担に繋がり得るといった課題を内包する。 According to the dynamic damper described in Patent Document 1, heavy floor impact noise can be reduced in the central region, and lightweight floor impact noise can be reduced in the left and right end regions. By the way, in general, a vibration-proof material tuned to, for example, about 256 Hz to 500 Hz so as to reduce a lightweight floor impact sound resonates at about 63 Hz in terms of vibration-proof design, so that a heavy floor impact sound of about 63 Hz can be obtained. May have an adverse effect. In the dynamic damper described in Patent Document 1, since the region for reducing the lightweight floor impact sound is set in a relatively wide range at the left and right ends in this way, a solid body with a heavy floor impact sound of around 63 Hz. It can be a propagation path. Further, in the central region for reducing the heavy floor impact sound, since the second mass body is placed on the first mass body, the weight of the anti-vibration material becomes heavier, and the weight of the vibration isolator becomes heavier with respect to the structural frame of the building. It involves issues such as the burden of weight.

本発明は上記する課題に鑑みてなされたものであり、重量に依存することなく、広範囲の周波数帯域の床衝撃音に対する防振性を有する、天井防振材及び天井防振構造を提供することを目的としている。 The present invention has been made in view of the above problems, and provides a ceiling vibration isolator and a ceiling anti-vibration structure having vibration isolation against floor impact sound in a wide frequency band without depending on weight. It is an object.

前記目的を達成すべく、本発明による天井防振材の一態様は、
天井面材を支持する天井下地材において、対向する該天井下地材に架け渡される天井防振材であって、
前記天井下地材に係止される左右のL型の係止片と、左右の前記係止片を繋ぐ底片と、が一体とされている、正面視ハット型のハット材と、
前記底片の底面の左右二箇所に取り付けられていて、圧縮率10%乃至20%の範囲で圧縮された状態で前記天井面材に当接される防振材と、を有することを特徴とする。
In order to achieve the above object, one aspect of the ceiling vibration isolator according to the present invention is
In the ceiling base material that supports the ceiling surface material, it is a ceiling vibration isolator that is bridged over the ceiling base material that faces the ceiling.
A front-view hat-shaped hat material in which the left and right L-shaped locking pieces locked to the ceiling base material and the bottom piece connecting the left and right locking pieces are integrated.
It is characterized by having a vibration-proof material which is attached to two places on the left and right of the bottom surface of the bottom piece and is brought into contact with the ceiling surface material in a state of being compressed in a compression ratio of 10% to 20%. ..

本態様によれば、防振材が圧縮率10%乃至20%の範囲で圧縮された状態で天井面材に当接されるようになっていることにより、上階の床衝撃音による天井面材が振動した際に、圧縮状態の防振材がこの天井面材の振動に追随しながら弾性変形して、上階の床衝撃音に起因する天井面材の振動を効果的に低減することができる。例えば、天井下地材にハット材が架け渡された状態において、天井面材は、ハット材の底面に取り付けられている防振材を圧縮率10%乃至20%の範囲(圧縮量としては例えば数mm程度)圧縮した状態で天井下地材に取り付けられるようになっている。すなわち、本態様の天井防振材は、天井下地材にハット材が架け渡された状態において、天井面材にて押圧されて防振材が圧縮率10%乃至20%の範囲に圧縮されるように、ハット材の係止片の高さや防振材の厚みが設定されている。 According to this aspect, the anti-vibration material is brought into contact with the ceiling surface material in a state of being compressed in a compression ratio of 10% to 20%, so that the ceiling surface due to the floor impact sound of the upper floor When the material vibrates, the compressed vibration-proof material elastically deforms while following the vibration of the ceiling surface material, effectively reducing the vibration of the ceiling surface material caused by the floor impact sound on the upper floor. Can be done. For example, in a state where the hat material is laid over the ceiling base material, the ceiling surface material has a compression ratio of 10% to 20% (for example, a number as the compression amount) of the vibration isolator attached to the bottom surface of the hat material. It can be attached to the ceiling base material in a compressed state (about mm). That is, in the ceiling anti-vibration material of this embodiment, when the hat material is laid over the ceiling base material, the anti-vibration material is pressed by the ceiling surface material and the anti-vibration material is compressed in the range of 10% to 20%. As described above, the height of the locking piece of the hat material and the thickness of the anti-vibration material are set.

防振材は数mm乃至十数mm程度の厚みを有しており、したがって圧縮率10%未満に設定することは難しい。また、20%を超える圧縮率では防振材が圧縮され過ぎて振動に対する応答性が悪くなり、十分な防振性が得られ難い。これらを理由として、防振材の圧縮率を10%乃至20%の範囲に規定している。ここで、ハット材には、例えば、鋼製のハット材や、比較的硬質の樹脂製のハット材が適用され、ある程度の重量を有しているのがよい。防振材が圧縮された状態において、ハット材が軽過ぎて上方に反った状態では、十分な防振性が得られ難いためである。 The anti-vibration material has a thickness of about several mm to a dozen mm, and therefore it is difficult to set the compression ratio to less than 10%. Further, if the compression rate exceeds 20%, the vibration isolator is compressed too much and the responsiveness to vibration deteriorates, so that it is difficult to obtain sufficient vibration isolation. For these reasons, the compressibility of the anti-vibration material is specified in the range of 10% to 20%. Here, for example, a steel hat material or a relatively hard resin hat material is applied to the hat material, and it is preferable that the hat material has a certain weight. This is because it is difficult to obtain sufficient anti-vibration properties when the anti-vibration material is compressed and the hat material is too light and warps upward.

尚、天井下地材にハット材を架け渡す施工段階では、係止片が天井下地材に係止されるが、天井下地材に天井面材が取り付けられ、防振材が天井面材にて下方から押圧されて所定の圧縮率で圧縮している施工完了段階では、係止片は天井下地材に係止された状態を維持していてもよいし、係止片が天井下地材から浮いた状態であってもよい。天井防振材が係止片を有していることで、施工時に天井防振材を天井下地材に係止できることのみならず、例えば地震時に天井防振材が落下することを防止できる。 At the construction stage where the hat material is laid over the ceiling base material, the locking piece is locked to the ceiling base material, but the ceiling surface material is attached to the ceiling base material, and the vibration isolator is lowered by the ceiling surface material. At the stage of completion of construction, which is pressed from the ceiling and compressed at a predetermined compression rate, the locking piece may be kept locked to the ceiling base material, or the locking piece may be lifted from the ceiling base material. It may be in a state. Since the ceiling anti-vibration material has a locking piece, not only can the ceiling anti-vibration material be locked to the ceiling base material during construction, but also it is possible to prevent the ceiling anti-vibration material from falling during an earthquake, for example.

また、天井下地材に対する天井面材の取り付け方法は、一般に、天井の端部の天井面材を取り付けた後、目地を合わせるようにして取り付け済の天井面材に対して新たな天井面材をスライドさせながら天井下地材に留め付けていく。仮に、ハット材の底片の底面の一箇所(例えば中央位置)に防振材が取り付けられている形態では、上記するように天井面材をスライドさせながら留め付ける際に、一つの防振材がスライドする天井面材から横方向にひきずられる際にせん断力を受け、防振材には部位ごとに圧縮量(もしくは圧縮率)の分布が生じ易くなる。防振材の部位ごとに圧縮量(もしくは圧縮率)の分布があると、防振材が初期の防振性能を発揮できない恐れがある。そこで、本態様の天井防振材では、ハット材の底片の底面の左右二箇所に防振材が取り付けられていることにより、スライドしながら留め付けが行われる天井面材にて付与されるせん断力が左右二つの防振材に振り分けられることで、各防振材のせん断力による圧縮量(もしくは圧縮率)の分布を低減でき、防振材による初期の防振性能を保障することを可能にしている。 In addition, the method of attaching the ceiling surface material to the ceiling base material is generally that after attaching the ceiling surface material at the end of the ceiling, a new ceiling surface material is attached to the installed ceiling surface material so as to align the joints. While sliding it, fasten it to the ceiling base material. If the anti-vibration material is attached to one place (for example, the center position) on the bottom surface of the bottom piece of the hat material, one anti-vibration material is attached when the ceiling surface material is slid and fastened as described above. When it is dragged laterally from the sliding ceiling surface material, it receives a shearing force, and the vibration isolator tends to have a distribution of compression amount (or compression ratio) for each part. If there is a distribution of the amount of compression (or compression ratio) for each part of the anti-vibration material, the anti-vibration material may not exhibit its initial anti-vibration performance. Therefore, in the ceiling anti-vibration material of this embodiment, the shearing applied to the ceiling surface material that is fastened while sliding is provided by attaching the anti-vibration material to the left and right two places on the bottom surface of the bottom piece of the hat material. By distributing the force to the two left and right anti-vibration materials, the distribution of the amount of compression (or compression rate) due to the shearing force of each anti-vibration material can be reduced, and the initial anti-vibration performance of the anti-vibration material can be guaranteed. I have to.

また、本発明による天井防振材の他の態様は、前記防振材の硬度が1度乃至20度の範囲であることを特徴とする。 Another aspect of the ceiling vibration isolator according to the present invention is characterized in that the hardness of the anti-vibration material is in the range of 1 degree to 20 degrees.

本態様によれば、防振材の硬度が1度乃至20度の範囲にあることにより、施工時に上記する圧縮率10%乃至20%の範囲に容易に圧縮することができ、防振性に優れた天井防振材を形成することができる。尚、防振材の硬度は、1度乃至20度の範囲の中でも、1度乃至5度の範囲がより好ましい。 According to this aspect, since the hardness of the anti-vibration material is in the range of 1 degree to 20 degrees, it can be easily compressed in the above-mentioned range of 10% to 20% of the compressibility at the time of construction, and the anti-vibration property is improved. An excellent ceiling vibration isolator can be formed. The hardness of the anti-vibration material is more preferably in the range of 1 degree to 5 degrees, even in the range of 1 degree to 20 degrees.

また、本発明による天井防振材の他の態様において、前記ハット材が鋼製のハット材であり、該ハット材の厚みが3.2mm乃至4.5mmの範囲にあることを特徴とする。 Further, in another aspect of the ceiling vibration isolator according to the present invention, the hat material is a steel hat material, and the thickness of the hat material is in the range of 3.2 mm to 4.5 mm.

本態様によれば、ハット材が鋼製のハット材であって、その厚みが3.2mm乃至4.5mmの範囲にあることから、ハット材が適度な重量を有することとなり、施工段階で天井下地材に係止させているだけのハット材によって防振材を上記する10%乃至20%の範囲に圧縮することができる。また、ハット材が軽過ぎないことから、防振材が圧縮された状態において、ハット材が上方に反ることが抑制され、防振材による十分な防振性が保障される。 According to this aspect, since the hat material is a steel hat material and its thickness is in the range of 3.2 mm to 4.5 mm, the hat material has an appropriate weight, and the ceiling is installed at the construction stage. The anti-vibration material can be compressed in the above range of 10% to 20% by the hat material that is only locked to the base material. Further, since the hat material is not too light, the hat material is suppressed from warping upward when the vibration isolator is compressed, and sufficient vibration isolation by the vibration isolator is guaranteed.

また、本発明による天井防振構造の一態様は、
天井面材と、該天井面材を支持する天井下地材と、対向する該天井下地材に架け渡される前記天井防振材と、を有し、
前記防振材が圧縮率10%乃至20%の範囲に圧縮した状態で前記天井面材に当接していることを特徴とする。
Moreover, one aspect of the ceiling vibration isolation structure according to the present invention is
It has a ceiling surface material, a ceiling base material that supports the ceiling surface material, and the ceiling vibration isolator that is bridged over the ceiling base material that faces the ceiling surface material.
The anti-vibration material is in contact with the ceiling surface material in a state of being compressed to a compression ratio of 10% to 20%.

本態様によれば、防振材が圧縮率10%乃至20%の範囲で圧縮された状態で天井面材に当接していることにより、上階の床衝撃音に起因して天井面材が振動した際に、圧縮状態の防振材がこの天井面材の振動に追随しながら弾性変形して、広範囲の周波数帯域の床衝撃音(重量床衝撃音及び軽量床衝撃音)による天井面材の振動を効果的に防振することができる。ここで、防振材が圧縮率10%乃至20%の範囲で圧縮され、重量床衝撃音の周波数帯域である63Hz前後に防振材をチューニングしておくことにより、音の周波数と振動伝達率の間の一般的な関係に基づけば、例えば256Hz乃至500Hz程度の周波数帯域である軽量床衝撃音も防振することができる。 According to this aspect, since the anti-vibration material is in contact with the ceiling surface material in a state of being compressed in a compression ratio of 10% to 20%, the ceiling surface material is caused by the floor impact sound of the upper floor. When vibrated, the compressed anti-vibration material elastically deforms while following the vibration of the ceiling surface material, and the ceiling surface material due to the floor impact sound (heavy floor impact sound and lightweight floor impact sound) in a wide frequency band. Vibration can be effectively suppressed. Here, the vibration isolator is compressed in the range of 10% to 20%, and by tuning the vibration isolator around 63 Hz, which is the frequency band of heavy floor impact sound, the frequency and vibration transmission rate of the sound. Based on the general relationship between, for example, a lightweight floor impact sound in a frequency band of about 256 Hz to 500 Hz can also be vibration-proofed.

また、本発明による天井防振構造の他の態様は、前記ハット材が前記天井下地材に固定されていることを特徴とする。 In addition, another aspect of the ceiling vibration isolation structure according to the present invention is characterized in that the hat material is fixed to the ceiling base material.

本態様によれば、ハット材の係止片と天井下地材がビスや釘等で固定されていることにより、天井下地材が振動した際にハット材と天井下地材との間のがたつき音の発生を抑止することができる。ハット材の厚みが厚く、比較的重量が重い場合は、防振材が天井面材に押圧されて圧縮している状態において、係止片と天井下地材が当接する場合がある。このような場合に、係止片が天井下地材に単に係止されているだけでは双方の間のがたつき音の発生が懸念されるため、このがたつき音を抑止するものである。 According to this aspect, since the locking piece of the hat material and the ceiling base material are fixed with screws, nails, etc., rattling between the hat material and the ceiling base material when the ceiling base material vibrates. The generation of sound can be suppressed. When the hat material is thick and relatively heavy, the locking piece may come into contact with the ceiling base material in a state where the vibration isolator is pressed against the ceiling surface material and compressed. In such a case, if the locking piece is simply locked to the ceiling base material, there is a concern that a rattling noise may be generated between the two, and thus this rattling noise is suppressed.

以上の説明から理解できるように、本発明の天井防振材及び天井防振構造によれば、重量に依存することなく、広範囲の周波数帯域の床衝撃音を防振することができる。 As can be understood from the above description, according to the ceiling vibration isolating material and the ceiling anti-vibration structure of the present invention, it is possible to isolate the floor impact sound in a wide frequency band without depending on the weight.

実施形態に係る天井防振材の斜視図である。It is a perspective view of the ceiling vibration isolation material which concerns on embodiment. 実施形態に係る天井防振構造の施工工程図であって、天井下地材に天井防振材が係止されている状態を示す図である。It is a construction process drawing of the ceiling vibration isolation structure which concerns on embodiment, and is the figure which shows the state which the ceiling vibration isolation material is locked with the ceiling base material. 図2のIII方向矢視図である。FIG. 2 is a view taken along the line III in FIG. 図2に続く天井防振構造の施工工程図であって、天井面材を横方向にスライドさせながら天井下地材に取り付けている状態を示す図である。It is a construction process drawing of the ceiling vibration isolation structure following FIG. 2, and is the figure which shows the state which the ceiling surface material is attached to the ceiling base material while sliding in the lateral direction. 図4に続く天井防振構造の施工工程図であって、天井面材が天井下地材に取り付けられ、天井防振構造が形成されている状態を示す図である。It is a construction process drawing of the ceiling vibration isolation structure following FIG. 4, and is the figure which shows the state which the ceiling surface material is attached to the ceiling base material, and the ceiling vibration isolation structure is formed. (a)は天井防振材が天井下地材に固定されていない実施形態を示す正面図であり、(b)は、天井防振材が天井下地材に固定されている実施形態を示す正面図である。(A) is a front view showing an embodiment in which the ceiling vibration isolator is not fixed to the ceiling base material, and (b) is a front view showing an embodiment in which the ceiling vibration isolator is fixed to the ceiling base material. Is.

以下、実施形態に係る天井防振材及び天井防振構造について、添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の構成要素については、同一の符号を付することにより重複した説明を省く場合がある。 Hereinafter, the ceiling anti-vibration material and the ceiling anti-vibration structure according to the embodiment will be described with reference to the attached drawings. In the present specification and drawings, substantially the same components may be designated by the same reference numerals to omit duplicate explanations.

[実施形態に係る天井防振材]
はじめに、図1を参照して、実施形態に係る天井防振材について説明する。ここで、図1は、実施形態に係る天井防振材の斜視図である。尚、天井防振材の説明に際して、適宜図2等を参照する。図示する天井防振材10は、天井下地材20(図2参照)に係止される左右のL型の係止片1と、左右の係止片1を繋ぐ底片2と、が一体とされている、正面視ハット型のハット材3と、底片2の底面2の左右二箇所に取り付けられている防振材5と、を有する。
[Ceiling anti-vibration material according to the embodiment]
First, the ceiling vibration isolator according to the embodiment will be described with reference to FIG. Here, FIG. 1 is a perspective view of the ceiling vibration isolator according to the embodiment. In the explanation of the ceiling vibration isolator, FIG. 2 and the like will be referred to as appropriate. In the ceiling vibration isolator 10 shown, the left and right L-shaped locking pieces 1 that are locked to the ceiling base material 20 (see FIG. 2) and the bottom piece 2 that connects the left and right locking pieces 1 are integrated. It has a front-view hat-type hat material 3 and anti-vibration materials 5 attached to the left and right sides of the bottom surface 2 of the bottom piece 2.

ハット材3は、鋼製で比較的重量があり、以下で詳説するように、下方から天井面材にて防振材5が押圧された際に、ハット材3と天井面材により防振材5を所定の圧縮率で圧縮できる程度の重量を有している。ハット材3の厚みt1は3.2mm乃至4.5mmの範囲にあり、ハット材3がこの範囲の厚みt1を有する鋼製の部材であることにより上記する適度な重量を有している。尚、ハット材3は、鋼製の部材の他にも、比較的硬質で適度な重量のある樹脂製の部材であってもよい。 The hat material 3 is made of steel and is relatively heavy. As will be described in detail below, when the vibration isolator 5 is pressed by the ceiling surface material from below, the hat material 3 and the ceiling surface material provide the vibration isolator. It has a weight sufficient to compress 5 at a predetermined compression rate. The thickness t1 of the hat material 3 is in the range of 3.2 mm to 4.5 mm, and since the hat material 3 is a steel member having a thickness t1 in this range, it has the above-mentioned appropriate weight. In addition to the steel member, the hat material 3 may be a resin member that is relatively hard and has an appropriate weight.

防振材5は、圧縮率10%乃至20%の範囲で圧縮された状態で天井面材40(図5参照)に当接されるように設定されている。防振材5は、発砲ウレタン等の発砲樹脂やゴム等により形成される。防振材5の寸法は、一例として、平面寸法であるt3×t4が20mm×40mm程度であり、厚みt2が20mm程度である。厚みt2が20mmの形態では、圧縮率10%乃至20%の範囲に圧縮される場合に、防振材5は2mm乃至4mm圧縮される。 The anti-vibration material 5 is set so as to come into contact with the ceiling surface material 40 (see FIG. 5) in a state of being compressed in a compression ratio of 10% to 20%. The anti-vibration material 5 is formed of a foaming resin such as urethane foam, rubber, or the like. As an example, the dimensions of the anti-vibration material 5 are such that t3 × t4, which is a plane dimension, is about 20 mm × 40 mm, and the thickness t2 is about 20 mm. In the form where the thickness t2 is 20 mm, the vibration isolator 5 is compressed by 2 mm to 4 mm when the compression ratio is compressed in the range of 10% to 20%.

また、防振材5の硬度は、1度乃至20度の範囲に設定されている。尚、発砲ウレタン等により形成される防振材5の硬度は、JIS規格に基づき、デュロメータを用いて測定される。防振材5の素材の一例である発砲ウレタンの硬度の測定方法には、JIS K 7312の熱硬化性ポリウレタンエラストマー成形物の物理試験方法と、JIS K 6400の二つがあるが、本実施形態では、例えば5倍以下の低発泡倍率の発砲ウレタンを主として使用する観点から、エラストマーと同じ測定方法である、JIS K 7312に基づき、アスカーゴム硬度計(デュロメータ)のC型もしくはF型を使用して、防振材5の硬度を測定する。尚、補足的に記載するが、JIS K 6400は、発泡倍率が20倍を超える発泡ウレタン等に対して適用されることが一般的である。 Further, the hardness of the vibration isolator 5 is set in the range of 1 degree to 20 degrees. The hardness of the anti-vibration material 5 formed of urethane foam or the like is measured using a durometer based on the JIS standard. There are two methods for measuring the hardness of urethane foam, which is an example of the material of the vibration isolator 5, a physical test method for a thermosetting polyurethane elastomer molded product of JIS K 7312 and JIS K 6400. In this embodiment, there are two methods. For example, from the viewpoint of mainly using urethane foam with a low foaming ratio of 5 times or less, based on JIS K 7312, which is the same measurement method as elastomer, C type or F type of Asker rubber hardness tester (durometer) is used. The hardness of the vibration isolator 5 is measured. As a supplementary description, JIS K 6400 is generally applied to urethane foam or the like having a foaming ratio of more than 20 times.

防振材5の硬度が1度乃至20度の範囲にあることにより、施工時に、防振材5は上記する圧縮率10%乃至20%の範囲に圧縮され易くなる。 When the hardness of the anti-vibration material 5 is in the range of 1 degree to 20 degrees, the anti-vibration material 5 is likely to be compressed in the above-mentioned compression ratio of 10% to 20% at the time of construction.

[実施形態に係る天井防振構造]
次に、図2乃至図6を参照して、実施形態に係る天井防振構造について、その施工方向とともに説明する。ここで、図2は、実施形態に係る天井防振構造の施工工程図であって、天井下地材に天井防振材が係止されている状態を示す図であり、図3は、図2のIII方向矢視図である。また、図4は、図2に続く天井防振構造の施工工程図であって、天井面材を横方向にスライドさせながら天井下地材に取り付けている状態を示す図である。さらに、図5は、図4に続く天井防振構造の施工工程図であって、天井面材が天井下地材に取り付けられ、天井防振構造が形成されている状態を示す図である。
[Ceiling anti-vibration structure according to the embodiment]
Next, with reference to FIGS. 2 to 6, the ceiling vibration isolation structure according to the embodiment will be described together with the construction direction thereof. Here, FIG. 2 is a construction process diagram of the ceiling vibration isolation structure according to the embodiment, and is a diagram showing a state in which the ceiling vibration isolation material is locked to the ceiling base material, and FIG. 3 is a diagram showing FIG. It is a view of the arrow in the direction of III. Further, FIG. 4 is a construction process diagram of the ceiling anti-vibration structure following FIG. 2, which shows a state in which the ceiling surface material is attached to the ceiling base material while sliding in the lateral direction. Further, FIG. 5 is a construction process diagram of the ceiling anti-vibration structure following FIG. 4, showing a state in which the ceiling surface material is attached to the ceiling base material to form the ceiling anti-vibration structure.

図2に示すように、上階の床材30の下方には、下階の天井を構成する天井下地材である野縁20が配設されている。より具体的には、図3に示すように、複数本の野縁20が所定間隔を置いて水平方向に平行に配設されており、各野縁20に対して直交する方向に延出する野縁受25が、各野縁20に対してビス等により固定されている。野縁受25は吊りボルト等の吊木(図示せず)を介してH形鋼等の形鋼材により形成される床梁(図示せず)から垂下される。野縁20と野縁受25は、木桟や溝形鋼等の形鋼材により形成される。また、床材30は、例えばALC(Autoclaved Lightweight Concrete、軽量気泡コンクリート)板等により形成される。 As shown in FIG. 2, below the floor material 30 on the upper floor, a field edge 20 which is a ceiling base material constituting the ceiling on the lower floor is arranged. More specifically, as shown in FIG. 3, a plurality of field edges 20 are arranged in parallel in the horizontal direction at predetermined intervals, and extend in a direction orthogonal to each field edge 20. The field edge receiver 25 is fixed to each field edge 20 with a screw or the like. The field edge receiver 25 is hung from a floor beam (not shown) formed of a shaped steel material such as H-shaped steel via a hanging tree (not shown) such as a hanging bolt. The field edge 20 and the field edge receiver 25 are formed of a shaped steel material such as a wooden crosspiece or a channel steel. Further, the floor material 30 is formed of, for example, an ALC (Autoclaved Lightweight Concrete) plate or the like.

所定間隔を置いて配設されている左右の野縁20に対して、天井防振材10を構成するハット材3の左右の係止片1が係止されることにより、天井防振材10が野縁20に仮留めされる。図2において、天井防振材10が野縁20に係止された状態において、防振材5の下端は野縁20の下面20aから下方に突出しており、この突出長t5は、上記する圧縮率10%乃至20%を充足する長さである。例えば、防振材5の厚みt2が20mmの形態では、突出長t5は圧縮率10%乃至20%に相当する2mm乃至4mmとなる。すなわち、野縁20にハット材3が架け渡された状態において、天井面材40(図5参照)にて押圧されて防振材5が圧縮率10%乃至20%の範囲に圧縮されるように、ハット材3の係止片1の高さt6や防振材の厚みt2が設定されている。 The ceiling anti-vibration material 10 is locked by the left and right locking pieces 1 of the hat material 3 constituting the ceiling anti-vibration material 10 with respect to the left and right field edges 20 arranged at predetermined intervals. Is temporarily fastened to the field edge 20. In FIG. 2, in a state where the ceiling vibration isolator 10 is locked to the field edge 20, the lower end of the vibration isolator 5 projects downward from the lower surface 20a of the field edge 20, and the protruding length t5 is the compression described above. It is a length that satisfies the rate of 10% to 20%. For example, in the form where the thickness t2 of the vibration isolator 5 is 20 mm, the protrusion length t5 is 2 mm to 4 mm, which corresponds to a compression rate of 10% to 20%. That is, in a state where the hat material 3 is stretched over the field edge 20, the anti-vibration material 5 is compressed by the ceiling surface material 40 (see FIG. 5) so as to be compressed in the range of 10% to 20%. The height t6 of the locking piece 1 of the hat material 3 and the thickness t2 of the anti-vibration material are set.

図2及び図3に示すように、各野縁20に対して複数の天井防振材10を架け渡した後、図4に示すように、石膏ボード等により形成される天井面材40を野縁20に取り付けていく。ここで、天井面材40の取り付け方法は一般に、図4の左側に示す天井の端部の天井面材40を取り付けた後、目地を合わせるようにして取り付け済の天井面材40に対して新たな天井面材40を斜め側方にX方向にスライドさせながら野縁20に留め付けていく。 As shown in FIGS. 2 and 3, after a plurality of ceiling anti-vibration materials 10 are bridged to each field edge 20, as shown in FIG. 4, the ceiling surface material 40 formed of gypsum board or the like is used. Attach it to the edge 20. Here, the method of attaching the ceiling surface material 40 is generally new to the attached ceiling surface material 40 by aligning the joints after attaching the ceiling surface material 40 at the end of the ceiling shown on the left side of FIG. The ceiling surface material 40 is slid diagonally in the X direction and fastened to the field edge 20.

この際、野縁20の下面から防振材5の下端が若干下方に張り出していることから、天井面材40を野縁20に留め付けた際に防振材5を所定量だけ圧縮することができる。ここで、仮に、ハット材3の底片2の底面2aの一箇所(例えば中央位置)に防振材5が取り付けられている形態では、上記するように天井面材40をスライドさせながら留め付ける際に、一つの防振材5がスライドする天井面材40から横方向にひきずられる際にせん断力Sを受け、防振材5には部位ごとに圧縮率の分布が生じ易くなる。防振材5の部位ごとに圧縮率の分布があると、防振材5が初期の防振性能を発揮できない恐れがある。 At this time, since the lower end of the vibration isolator 5 projects slightly downward from the lower surface of the field edge 20, the vibration isolator 5 is compressed by a predetermined amount when the ceiling surface material 40 is fastened to the field edge 20. Can be done. Here, if the anti-vibration material 5 is attached to one place (for example, the central position) of the bottom surface 2a of the bottom piece 2 of the hat material 3, when the ceiling surface material 40 is slid and fastened as described above. In addition, when one anti-vibration material 5 is dragged laterally from the sliding ceiling surface material 40, it receives a shearing force S, and the anti-vibration material 5 tends to have a compression ratio distribution for each part. If the compression ratio is distributed for each part of the vibration isolator 5, the vibration isolator 5 may not exhibit the initial vibration isolation performance.

そこで、図示する天井防振材10では、ハット材3の底片2の底面2aの左右二箇所に防振材5が取り付けられていることにより、スライドしながら留め付けが行われる天井面材40にて付与されるせん断力Sが左右二つの防振材5に振り分けられることにより、各防振材5のせん断力Sによる圧縮率の分布を低減でき、防振材5による初期の防振性能を保障することを可能にしている。 Therefore, in the illustrated ceiling vibration isolator 10, the anti-vibration material 5 is attached to the left and right two places of the bottom surface 2a of the bottom piece 2 of the hat material 3, so that the ceiling surface material 40 is fastened while sliding. By distributing the shearing force S to be applied to the two left and right anti-vibration materials 5, the distribution of the compression ratio due to the shearing force S of each anti-vibration material 5 can be reduced, and the initial anti-vibration performance of the anti-vibration material 5 can be improved. It is possible to guarantee.

また、防振材5としては、その厚みt2が数mm乃至十数mm程度のものが適用される。そのため、圧縮率10%未満に設定することは精度上難しいことから、圧縮率の下限値を上記する10%に規定している。さらに、防振材5が20%を超える圧縮率で圧縮されると、防振材5が圧縮され過ぎて天井面材40の振動に対する応答性が悪くなり、十分な防振性が得られ難いことから、圧縮率の上限値を上記する20%に規定している。 Further, as the vibration isolator 5, a material having a thickness t2 of about several mm to a dozen mm is applied. Therefore, since it is difficult to set the compression rate to less than 10% in terms of accuracy, the lower limit of the compression rate is defined as the above 10%. Further, when the anti-vibration material 5 is compressed at a compression rate of more than 20%, the anti-vibration material 5 is compressed too much and the responsiveness to the vibration of the ceiling surface material 40 deteriorates, so that it is difficult to obtain sufficient anti-vibration properties. Therefore, the upper limit of the compression rate is set to 20% as described above.

図5に示すように、天井面材40が野縁20に対してビス等によって固定されることにより、防振材5は下方からで天井面材40にて押圧力Pで押圧され、かつ同時に上方からハット材3の重量のうちの分担荷重Wにて押圧されることにより、圧縮率10%乃至20%の範囲に圧縮した状態で天井面材40に当接して天井防振構造50が形成される。尚、床材30と天井面材40の間の空間G1には、グラスウールやロックウール等が充填されることにより断熱材層が形成されてもよい。 As shown in FIG. 5, by fixing the ceiling surface material 40 to the field edge 20 with screws or the like, the vibration isolator 5 is pressed by the ceiling surface material 40 from below with a pressing force P, and at the same time. By being pressed by the shared load W of the weight of the hat material 3 from above, the ceiling anti-vibration structure 50 is formed in contact with the ceiling surface material 40 in a state of being compressed to a compression ratio of 10% to 20%. Will be done. The space G1 between the floor material 30 and the ceiling surface material 40 may be filled with glass wool, rock wool, or the like to form a heat insulating material layer.

ここで、天井防振材10を構成するハット材3の係止片1は、天井下地材である野縁20に対して、図6(a)に示すように固定されていない形態であってもよいし、図6(b)に示すようにビス等により固定されている形態であってもよい。 Here, the locking piece 1 of the hat material 3 constituting the ceiling vibration isolator 10 is not fixed to the field edge 20 which is the ceiling base material as shown in FIG. 6A. Alternatively, it may be fixed by a screw or the like as shown in FIG. 6B.

防振材5が下方から天井面材40にて押圧された際に、図6(a)に示すように係止片1が野縁20に対して固定されていない場合において、ハット材3の重量のうちの分担荷重Wよりも押圧力Pが大きな場合には、天井防振材10は上方に僅かに浮き上がり、係止片1と野縁20の間に僅かな隙間G2が生じ得る。ここで、ハット材3の厚みt1が3.2mm乃至4.5mmの範囲にあり、ハット材3がこの範囲の厚みt1を有する鋼製の部材であって適度な重量を有することから、ハット材3にて防振材5が圧縮され、圧縮率10%乃至20%の範囲に圧縮された状態を形成できる。 When the anti-vibration material 5 is pressed by the ceiling surface material 40 from below, when the locking piece 1 is not fixed to the field edge 20 as shown in FIG. 6A, the hat material 3 When the pressing force P is larger than the shared load W of the weight, the ceiling vibration isolator 10 is slightly lifted upward, and a slight gap G2 may be formed between the locking piece 1 and the field edge 20. Here, since the thickness t1 of the hat material 3 is in the range of 3.2 mm to 4.5 mm, and the hat material 3 is a steel member having a thickness t1 in this range and has an appropriate weight, the hat material 3 The anti-vibration material 5 is compressed in step 3, and a compressed state can be formed in a compression ratio of 10% to 20%.

一方、下方から押圧力Pにて天井防振材10が上方に押圧された際に、ハット材3の重量のうちの分担荷重Wよりも押圧力Pが小さな場合には、ハット材3の重量によって係止片1が野縁20から浮き上がらない。このような場合に、係止片1が野縁20に単に係止されているだけでは、上階の床材30を介してその振動が天井面材40に伝搬され、天井面材40が励振された際に、係止片1と野縁20の間のがたつき音の発生が懸念される。そこで、図6(b)に示すように係止片1と野縁20をビス等の固定手段60によって固定することにより、このがたつき音を抑止することができる。 On the other hand, when the ceiling vibration isolator 10 is pressed upward by the pressing force P from below, if the pressing force P is smaller than the shared load W of the weight of the hat material 3, the weight of the hat material 3 The locking piece 1 does not rise from the field edge 20. In such a case, if the locking piece 1 is simply locked to the field edge 20, the vibration is propagated to the ceiling surface material 40 through the floor material 30 on the upper floor, and the ceiling surface material 40 is excited. When this is done, there is a concern that a rattling noise may be generated between the locking piece 1 and the field edge 20. Therefore, as shown in FIG. 6B, by fixing the locking piece 1 and the field edge 20 with a fixing means 60 such as a screw, this rattling noise can be suppressed.

天井防振構造50によれば、防振材5が圧縮率10%乃至20%の範囲で圧縮された状態で天井面材40に当接していることにより、上階の床衝撃音に起因して天井面材40が振動した際に、圧縮状態の防振材5がこの天井面材40の振動に追随しながら弾性変形して、広範囲の周波数帯域の床衝撃音(重量床衝撃音から軽量床衝撃音までの床衝撃音)による天井面材40の振動を効果的に防振することができる。ここで、防振材5が圧縮率10%乃至20%の範囲で圧縮され、重量床衝撃音の周波数帯域である63Hz前後に防振材5をチューニングしておくことにより、音の周波数と振動伝達率の間の一般的な関係に基づけば、例えば256Hz乃至500Hz程度の周波数帯域である軽量床衝撃音も防振することができる。 According to the ceiling anti-vibration structure 50, the anti-vibration material 5 is in contact with the ceiling surface material 40 in a compressed state in the range of 10% to 20%, which is caused by the floor impact noise on the upper floor. When the ceiling surface material 40 vibrates, the compressed vibration isolator 5 elastically deforms while following the vibration of the ceiling surface material 40, resulting in floor impact sound in a wide frequency band (heavy floor impact sound to light weight). The vibration of the ceiling surface material 40 due to the floor impact sound up to the floor impact sound) can be effectively suppressed. Here, the vibration isolator 5 is compressed in a compression ratio of 10% to 20%, and by tuning the vibration isolator 5 to around 63 Hz, which is the frequency band of heavy floor impact sound, the frequency and vibration of the sound. Based on the general relationship between transmission rates, light-weight floor impact sounds in the frequency band of, for example, about 256 Hz to 500 Hz can also be vibration-proofed.

[振動加速度低減レベルを検証した実験その1]
本発明者等は、複数種の防振材を有する図1に示す天井防振材を製作し、各天井防振材を備える図5に示す天井防振構造を製作して、各天井防振構造における振動加速度低減レベルを検証する実験を行った。ここで、防振材の圧縮率を10%と20%の二種類で変化させ、防振材の硬度を1度、5度及び20度で変化させることにより複数種の天井防振構造を形成した。各天井防振構造を形成する防振材の寸法、圧縮率、硬度と、振動加速度低減レベルを以下の表1に示す。尚、表1における振動加速度低減レベルは、基準となるベンチマークにおける振動加速度に対して低減される加速度レベルを示しており、従って、数値はマイナス表記である。
[Experiment 1 to verify the vibration acceleration reduction level]
The present inventors have produced the ceiling vibration isolator shown in FIG. 1 having a plurality of types of anti-vibration materials, and produced the ceiling anti-vibration structure shown in FIG. 5 including each ceiling anti-vibration material to provide each ceiling vibration isolation material. An experiment was conducted to verify the vibration acceleration reduction level in the structure. Here, a plurality of types of ceiling vibration isolation structures are formed by changing the compressibility of the vibration isolator between 10% and 20% and changing the hardness of the vibration isolator at 1, 5, and 20 degrees. did. Table 1 below shows the dimensions, compressibility, hardness, and vibration acceleration reduction level of the vibration-proof material that forms each ceiling vibration-proof structure. The vibration acceleration reduction level in Table 1 indicates the acceleration level to be reduced with respect to the vibration acceleration in the reference benchmark, and therefore, the numerical values are expressed in minus.

Figure 2020165124
Figure 2020165124

表1より、防振材の圧縮率が10%、20%のいずれにおいても(圧縮率が10%乃至20%の範囲)、また、防振材の硬度が1度乃至20度の範囲において、基準となる振動加速度レベルに対して振動加速度低減レベルは20dB以上と極めて高い低減レベルとなることが実証されている。この結果より、硬度が1度乃至20度の範囲の防振材が、圧縮率10%乃至20%の範囲で圧縮されてなる天井防振構造が望ましい構造であると規定することができる。 From Table 1, when the compressibility of the anti-vibration material is 10% or 20% (compression rate is in the range of 10% to 20%), and when the hardness of the anti-vibration material is in the range of 1 to 20 degrees. It has been demonstrated that the vibration acceleration reduction level is an extremely high reduction level of 20 dB or more with respect to the reference vibration acceleration level. From this result, it can be defined that a ceiling vibration isolator structure in which the vibration isolator having a hardness in the range of 1 degree to 20 degrees is compressed in the compression ratio range of 10% to 20% is a desirable structure.

[振動加速度低減レベルを検証した実験その2]
本発明者等はさらに、ハット材の厚みを変化させて複数種の天井防振構造を試作し、各天井防振構造における振動加速度低減レベルを検証する実験を行った。ここで、ハット材の厚みは、4.5mm、3.2mm、2.3mmの3種とした。各天井防振構を形成する防振材の寸法、圧縮率、硬度、及びハット材の厚みと、振動加速度低減レベルを以下の表2に示す。
[Experiment 2 to verify the vibration acceleration reduction level]
Furthermore, the present inventors have conducted experiments to verify the vibration acceleration reduction level in each ceiling vibration isolation structure by prototyping a plurality of types of ceiling vibration isolation structures by changing the thickness of the hat material. Here, the thickness of the hat material was set to three types of 4.5 mm, 3.2 mm, and 2.3 mm. Table 2 below shows the dimensions, compression ratio, hardness, thickness of the hat material, and vibration acceleration reduction level of the vibration-proof material forming each ceiling vibration-proof structure.

Figure 2020165124
Figure 2020165124

表2より、ハット材の厚みが2.3mmの実施例9において、基準となる振動加速度レベルに対して振動加速度低減レベルは19.9dBと20dBに近い低減レベルとなり、ハット材の厚みが4.5mm、3.2mmの実施例7,8において、基準となる振動加速度レベルに対して振動加速度低減レベルが20dB以上と極めて高い低減レベルとなった。この結果より、ハット材の厚みとしては、2.3mm乃至4.5mmの範囲が好ましい範囲であり、3.2mm乃至4.5mmの範囲が望ましい範囲であると規定することができる。 From Table 2, in Example 9 in which the thickness of the hat material is 2.3 mm, the vibration acceleration reduction level is 19.9 dB, which is close to 20 dB with respect to the reference vibration acceleration level, and the thickness of the hat material is 4. In Examples 7 and 8 of 5 mm and 3.2 mm, the vibration acceleration reduction level was 20 dB or more, which was an extremely high reduction level with respect to the reference vibration acceleration level. From this result, it can be defined that the thickness of the hat material is preferably in the range of 2.3 mm to 4.5 mm and is preferably in the range of 3.2 mm to 4.5 mm.

上記実施形態に挙げた構成等に対し、その他の構成要素が組み合わされるなどした他の実施形態であってもよく、また、本発明はここで示した構成に何等限定されるものではない。この点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。 Other embodiments may be obtained in which other components are combined with respect to the configurations listed in the above embodiments, and the present invention is not limited to the configurations shown here. This point can be changed without departing from the spirit of the present invention, and can be appropriately determined according to the application form thereof.

1:係止片、2:底片、2a:底面、3:ハット材、5:防振材、10:天井防振材、20:天井下地材(野縁)、25:野縁受、30:床材(ALC版)、40:天井面材(石膏ボード)、50:天井防振構造、60:固定手段 1: Locking piece 2: Bottom piece, 2a: Bottom surface 3: Hat material, 5: Anti-vibration material, 10: Ceiling anti-vibration material, 20: Ceiling base material (field edge), 25: Field edge receiver, 30: Floor material (ALC version), 40: Ceiling surface material (gypsum board), 50: Ceiling anti-vibration structure, 60: Fixing means

Claims (5)

天井面材を支持する天井下地材において、対向する該天井下地材に架け渡される天井防振材であって、
前記天井下地材に係止される左右のL型の係止片と、左右の前記係止片を繋ぐ底片と、が一体とされている、正面視ハット型のハット材と、
前記底片の底面の左右二箇所に取り付けられていて、圧縮率10%乃至20%の範囲で圧縮された状態で前記天井面材に当接される防振材と、を有することを特徴とする、天井防振材。
In the ceiling base material that supports the ceiling surface material, it is a ceiling vibration isolator that is bridged over the ceiling base material that faces the ceiling.
A front-view hat-shaped hat material in which the left and right L-shaped locking pieces locked to the ceiling base material and the bottom piece connecting the left and right locking pieces are integrated.
It is characterized by having a vibration-proof material which is attached to two places on the left and right of the bottom surface of the bottom piece and is brought into contact with the ceiling surface material in a state of being compressed in a compression ratio of 10% to 20%. , Ceiling anti-vibration material.
前記防振材の硬度が1度乃至20度の範囲であることを特徴とする、請求項1に記載の天井防振材。 The ceiling vibration isolator according to claim 1, wherein the hardness of the anti-vibration material is in the range of 1 degree to 20 degrees. 前記ハット材が鋼製のハット材であり、該ハット材の厚みが3.2mm乃至4.5mmの範囲にあることを特徴とする、請求項1又は2に記載の天井防振材。 The ceiling vibration isolator according to claim 1 or 2, wherein the hat material is a steel hat material, and the thickness of the hat material is in the range of 3.2 mm to 4.5 mm. 天井面材と、該天井面材を支持する天井下地材と、対向する該天井下地材に架け渡される請求項1乃至3のいずれか一項に記載の天井防振材と、を有し、
前記防振材が圧縮率10%乃至20%の範囲に圧縮した状態で前記天井面材に当接していることを特徴とする、天井防振構造。
It has a ceiling surface material, a ceiling base material that supports the ceiling surface material, and a ceiling vibration isolator according to any one of claims 1 to 3 that spans the ceiling base material that faces the ceiling surface material.
A ceiling anti-vibration structure, characterized in that the anti-vibration material is in contact with the ceiling surface material in a state of being compressed to a compression ratio of 10% to 20%.
前記ハット材が前記天井下地材に固定されていることを特徴とする、請求項4に記載の天井防振構造。 The ceiling vibration isolation structure according to claim 4, wherein the hat material is fixed to the ceiling base material.
JP2019064464A 2019-03-28 2019-03-28 Ceiling anti-vibration material and ceiling anti-vibration structure Active JP7201174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064464A JP7201174B2 (en) 2019-03-28 2019-03-28 Ceiling anti-vibration material and ceiling anti-vibration structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064464A JP7201174B2 (en) 2019-03-28 2019-03-28 Ceiling anti-vibration material and ceiling anti-vibration structure

Publications (2)

Publication Number Publication Date
JP2020165124A true JP2020165124A (en) 2020-10-08
JP7201174B2 JP7201174B2 (en) 2023-01-10

Family

ID=72714341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064464A Active JP7201174B2 (en) 2019-03-28 2019-03-28 Ceiling anti-vibration material and ceiling anti-vibration structure

Country Status (1)

Country Link
JP (1) JP7201174B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233537A (en) * 1986-04-03 1987-10-13 Kazuto Sedo Vibration suppressing method for structure
JPH08232386A (en) * 1995-02-24 1996-09-10 Sekisui Chem Co Ltd Ceiling damping structure
JP2000205333A (en) * 1999-01-12 2000-07-25 Yamaha Motor Co Ltd Vibration relaxation unit and seat using it
JP2007133246A (en) * 2005-11-11 2007-05-31 Swcc Showa Device Technology Co Ltd Sound absorbing structure
JP2008039153A (en) * 2006-08-10 2008-02-21 Nippon Steel & Sumikin Metal Products Co Ltd Vibration damping device and erecting member superior in vibration damping performance
JP2018028177A (en) * 2016-08-15 2018-02-22 積水ハウス株式会社 Dynamic damper and ceiling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233537A (en) * 1986-04-03 1987-10-13 Kazuto Sedo Vibration suppressing method for structure
JPH08232386A (en) * 1995-02-24 1996-09-10 Sekisui Chem Co Ltd Ceiling damping structure
JP2000205333A (en) * 1999-01-12 2000-07-25 Yamaha Motor Co Ltd Vibration relaxation unit and seat using it
JP2007133246A (en) * 2005-11-11 2007-05-31 Swcc Showa Device Technology Co Ltd Sound absorbing structure
JP2008039153A (en) * 2006-08-10 2008-02-21 Nippon Steel & Sumikin Metal Products Co Ltd Vibration damping device and erecting member superior in vibration damping performance
JP2018028177A (en) * 2016-08-15 2018-02-22 積水ハウス株式会社 Dynamic damper and ceiling

Also Published As

Publication number Publication date
JP7201174B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
JP5584913B2 (en) Floor structure
JP2015117521A (en) Hollow double wall
JP2020165124A (en) Ceiling vibration isolation material and ceiling vibration isolation structure
JP4919673B2 (en) Damping structure for buildings
JP3477072B2 (en) Building floor structure
JP2001146811A (en) Soundproof floor structure
JP2006077517A (en) Ceiling structure
JP7033400B2 (en) Floor structure
JP2013204313A (en) Sound insulation floor structure
JP7090296B2 (en) Soundproof ceiling structure
JP2003172019A (en) Floating interior-finishing structure of building
JP2016033298A (en) Floor structure and floor panel
JP6430171B2 (en) Anti-vibration material for floating floor structures
JP4732909B2 (en) Floor structure
JP6374664B2 (en) Construction method of sound insulation floor structure
JP2019007503A (en) Tuned mass damper, installation structure of tuned mass damper, and installation method of tuned mass damper
JP7074582B2 (en) Building ceiling structure
JP7435271B2 (en) Sound insulation structure
JPH10183849A (en) Soundproof ceiling structure
JPH02272138A (en) Soundproof floor
EP3235974B1 (en) A building part with high sound insulation performance
JP2018003303A (en) Rib material for sound insulation floor, and sound insulation floor structure
JP6928428B2 (en) Sound insulation floor structure
JP2019112858A (en) Sound insulation floor structure
JP2023013342A (en) Vibration damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221214

R150 Certificate of patent or registration of utility model

Ref document number: 7201174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150