JP2020165065A - Heat-resistant heat-insulation sheet and manufacturing method thereof, and battery pack - Google Patents

Heat-resistant heat-insulation sheet and manufacturing method thereof, and battery pack Download PDF

Info

Publication number
JP2020165065A
JP2020165065A JP2019069002A JP2019069002A JP2020165065A JP 2020165065 A JP2020165065 A JP 2020165065A JP 2019069002 A JP2019069002 A JP 2019069002A JP 2019069002 A JP2019069002 A JP 2019069002A JP 2020165065 A JP2020165065 A JP 2020165065A
Authority
JP
Japan
Prior art keywords
heat
density
low
layer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019069002A
Other languages
Japanese (ja)
Other versions
JP7115395B2 (en
Inventor
立花 宏泰
Hiroyasu Tachibana
宏泰 立花
淳 小▲柳▼
Atsushi Koyanagi
淳 小▲柳▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2019069002A priority Critical patent/JP7115395B2/en
Priority to PCT/JP2020/007362 priority patent/WO2020202901A1/en
Publication of JP2020165065A publication Critical patent/JP2020165065A/en
Application granted granted Critical
Publication of JP7115395B2 publication Critical patent/JP7115395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/38Inorganic fibres or flakes siliceous
    • D21H13/40Inorganic fibres or flakes siliceous vitreous, e.g. mineral wool, glass fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Thermal Insulation (AREA)

Abstract

To provide a heat-resistant heat-insulation sheet having excellent heat resistance and heat-insulation property, burning difficulty, and light weight, and a battery pack having this heat-resistant heat-insulation sheet inserted between cells.SOLUTION: The heat-resistant heat-insulation sheet 10 has a total thickness of 0.1-2.5 mm and a total combustion heat of 1MJ/m2 or under, and is assembled with a low-density layer 1 having a content a rate of a clay mineral occupying in the total content of an inorganic fiber and the clay mineral of lower than 50 mass%, and a first high-density layer 2 and a second high-density layer 3 respectively provided on both sides of the low-density layer 1; wherein the first high-density layer 2 and the second high-density layer 3 have 50 mass% or over of a content rate of the clay mineral occupying in the total content of the inorganic fiber and the clay mineral, and the thickness of the first high-density layer 2 and the second high-density layer 3 are lower than or equal to the thickness of the low-density layer 1 and 0.05 mm or over.SELECTED DRAWING: Figure 1

Description

本発明は耐熱断熱シートとその製造方法、及び組電池に関する。 The present invention relates to a heat-resistant heat insulating sheet, a method for manufacturing the same, and an assembled battery.

近年、リチウムイオン電池等の高出力、高容量の充電池がモバイル機器、工具、自動車、鉄道、航空機等に広く用いられるようになっている。これら、高出力、高容量の充電池は、損傷や、内部の不純物によって短絡が生じると内部エネルギーが熱として瞬間的に放出され、電池の劣化の加速や発火を生じさせる場合がある。 In recent years, high-output, high-capacity rechargeable batteries such as lithium-ion batteries have come to be widely used in mobile devices, tools, automobiles, railways, aircraft, and the like. In these high-power, high-capacity rechargeable batteries, when a short circuit occurs due to damage or internal impurities, internal energy is instantaneously released as heat, which may accelerate the deterioration of the battery or cause ignition.

特に自動車等の高容量の蓄電量を搭載する用途には、高電圧、高出力を要するため多数の単電池が積層される等、隣接した単電池がパッキングされた組電池の状態(バッテリーパックまたは集合体と呼ばれることもある。)で使用されることが多い。その場合、1つの単電池の不具合が、隣接する電池に及ぶことが懸念される。
そこで特許文献1では、温度を測定して、異常を検出することが提案されている。
しかし、特許文献1は、異常は検知できるものの、1つの単電池の不具合が、隣接する電池に及ぶことを防止できるものではない。
In particular, for applications such as automobiles that are equipped with a high-capacity storage capacity, a large number of cells are stacked because high voltage and high output are required, and the state of an assembled battery packed with adjacent cells (battery pack or It is often used in (sometimes called an aggregate). In that case, there is a concern that the failure of one cell may extend to adjacent batteries.
Therefore, Patent Document 1 proposes to detect an abnormality by measuring the temperature.
However, in Patent Document 1, although an abnormality can be detected, it is not possible to prevent a defect of one cell cell from reaching an adjacent battery.

1つの単電池の不具合が、隣接する電池に及ぶことを防止するためには、単電池間に不燃性の耐熱断熱シートを配置することが考えられる。
耐熱断熱シートの候補としては、不燃性である金属の薄板が挙げられるが、熱伝導率が高く、隣接セルへの熱影響を遮断できない。また、金属は比重が高いこと、導電体であるため、セル電極との絶縁対策が必要なこと、端面が電池セルへ傷をつける懸念がある等の問題があり、使用できない。
In order to prevent the malfunction of one cell from extending to adjacent batteries, it is conceivable to arrange a nonflammable heat-resistant heat insulating sheet between the cells.
A candidate for the heat-resistant heat-insulating sheet is a thin metal plate that is nonflammable, but it has high thermal conductivity and cannot block the heat effect on adjacent cells. Further, since the metal has a high specific gravity and is a conductor, there are problems that it is necessary to take measures for insulation with the cell electrode and that the end face may damage the battery cell, so that the metal cannot be used.

非金属の不燃性の耐熱断熱材料としては、古くはアスベストまたはアスベスト入りスレート板が使用されたが、アスベストの人体に対する有害性があり、現在は使用できない。
アスベスト代替の難燃材料として、建材等の分野では珪酸カルシウム板が使用されてきたが、珪酸カルシウムはアルカリ性が強く、電池などに使用すると腐食等の問題を生じやすい。
Asbestos or asbestos-containing slate plates have been used as non-metal non-flammable heat-resistant heat insulating materials in the past, but asbestos is harmful to the human body and cannot be used at present.
Calcium silicate plates have been used in the field of building materials as a flame-retardant material to replace asbestos, but calcium silicate is highly alkaline and tends to cause problems such as corrosion when used in batteries and the like.

アルミナセメント等の耐火セメント材を板状に形成した不燃材は、不燃性には問題がないが、密度が高く、バッテリーパックの重量増になるため好ましくない。また、薄くすると破損しやすく、切断の際にも粉塵が発生するため、特定の作業環境対策が必要である。
ガラス繊維からなるガラスウール(グラスウール)、ガラスペーパー、ガラスクロス等は室温近辺の断熱材としては優れた材料だが、通気性がよく気体に対する遮蔽性が低いため、高温の空気、燃焼ガス、火炎が通過してしまうという問題がある。
A non-combustible material obtained by forming a refractory cement material such as alumina cement into a plate shape has no problem in non-combustibility, but is not preferable because it has a high density and increases the weight of the battery pack. In addition, if it is made thin, it is easily damaged and dust is generated even when cutting, so specific work environment measures are required.
Glass wool (glass wool) made of glass fiber, glass paper, glass cloth, etc. are excellent materials as heat insulating materials near room temperature, but because they have good air permeability and low shielding property against gas, high temperature air, combustion gas, flames, etc. There is a problem that it passes through.

耐熱シートとしては、ガラス繊維等の無機繊維に、無機鉱物、特に粘土鉱物を含有させたものも提案されている(特許文献2、特許文献3)。
特許文献2、特許文献3の耐熱シートは、主として、触媒担体等の用途に好適に使用できるとされている。
しかし、特許文献2、3に開示されている耐熱シートは、断熱性に劣り、かつ、軽量性に欠けるものであった。また、高温にさらされた際、耐熱シート自体が燃焼してしまう可能性があった。
As the heat-resistant sheet, an inorganic fiber such as glass fiber containing an inorganic mineral, particularly a clay mineral, has been proposed (Patent Documents 2 and 3).
It is said that the heat-resistant sheets of Patent Documents 2 and 3 can be suitably used mainly for applications such as catalyst carriers.
However, the heat-resistant sheets disclosed in Patent Documents 2 and 3 are inferior in heat insulating properties and lack light weight. In addition, the heat-resistant sheet itself may burn when exposed to high temperatures.

特開2010−212192号公報Japanese Unexamined Patent Publication No. 2010-21192 特開平7−252794号公報JP-A-7-252794 特開2013−234410号公報Japanese Unexamined Patent Publication No. 2013-234410

本発明は、上記事情に鑑みて、耐熱性、断熱性に優れ、燃焼しにくく、かつ軽量な耐熱断熱シートと、この耐熱断熱シートを単電池の間に挿入した組電池を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide a heat-resistant heat-insulating sheet having excellent heat resistance and heat-insulating properties, which is difficult to burn, and which is lightweight, and an assembled battery in which the heat-resistant heat-insulating sheet is inserted between cells. And.

上記の課題を達成するために、本発明は以下の構成を採用した。
[1]低密度層と前記低密度層の第1の面と第2の面の少なくとも一方に設けられ、前記低密度層より密度が大きい高密度層とを備える耐熱断熱シートであって、
前記耐熱断熱シート全体の厚さが0.1〜2.5mmであり、
前記耐熱断熱シート全体の燃焼熱が、1MJ/m以下であり、
前記低密度層は、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満の層であり、
前記高密度層は、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%以上の層であり、
前記高密度層の1層あたりの厚さは前記低密度層の厚さ以下であり、かつ、少なくとも1つの前記高密度層の厚さは0.05mm以上である、ことを特徴とする耐熱断熱シート。
[2]前記無機繊維が、ガラス繊維、炭素繊維、グラスウール、ロックウール、溶融岩石繊維、セラミック繊維、及び炭化ケイ素繊維から選択される1種以上である、[1]に記載の耐熱断熱シート。
[3]前記粘土鉱物が、セピオライトである、[1]又は[2]に記載の耐熱断熱シート。
[4]前記低密度層の密度が、0.1〜0.25g/cmである、[1]〜[3]のいずれか一項に記載の耐熱断熱シート。
[5]前記高密度層の密度が、0.35〜2.5g/cmである、[1]〜[4]のいずれか一項に記載の耐熱断熱シート。
[6]前記低密度層における無機成分の含有量が80質量%以上であり、前記高密度層における無機成分の含有量が90質量%以上である、[1]〜[5]のいずれか一項に記載の耐熱断熱シート。
[7]積層された複数の単電池と、前記複数の単電池の各々の間に挿入された[1]〜[6]のいずれか一項に記載の耐熱断熱シートとを備える、ことを特徴とする組電池。
[8]さらに、前記複数の単電池の内最外層に積層された単電池の外側に配置された、[1]〜[6]のいずれか一項に記載の耐熱断熱シートを備える、[7]に記載の組電池。
[9][1]〜[6]のいずれか一項に記載の耐熱断熱シートの製造方法であって、
無機繊維と粘土鉱物の合計含有量が80質量%以上であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満である低密度シートの第1の面と第2の面の少なくとも一方に、
前記低密度シートより密度が大きく、無機繊維と粘土鉱物の合計含有量が90質量%以上であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%以上である高密度シートを積層する、耐熱断熱シートの製造方法。
[10][1]〜[6]のいずれか一項に記載の耐熱断熱シートの製造方法であって、
無機繊維と粘土鉱物の合計含有量が80質量%以上であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満である低密度シートの第1の面と第2の面の少なくとも一方に、粘土鉱物のスラリー層を形成する、耐熱断熱シートの製造方法。
In order to achieve the above problems, the present invention has adopted the following configuration.
[1] A heat-resistant heat-insulating sheet provided on at least one of a low-density layer and a first surface and a second surface of the low-density layer, and having a high-density layer having a higher density than the low-density layer.
The total thickness of the heat-resistant heat-insulating sheet is 0.1 to 2.5 mm.
The combustion heat of the entire heat-resistant heat insulating sheet is 1 MJ / m 2 or less.
The low-density layer is a layer in which the ratio of the clay mineral content to the total content of the inorganic fiber and the clay mineral is less than 50% by mass.
The high-density layer is a layer in which the ratio of the clay mineral content to the total content of the inorganic fiber and the clay mineral is 50% by mass or more.
The heat insulation is characterized in that the thickness of the high-density layer per layer is equal to or less than the thickness of the low-density layer, and the thickness of at least one of the high-density layers is 0.05 mm or more. Sheet.
[2] The heat-resistant heat insulating sheet according to [1], wherein the inorganic fiber is at least one selected from glass fiber, carbon fiber, glass wool, rock wool, molten rock fiber, ceramic fiber, and silicon carbide fiber.
[3] The heat-resistant heat-insulating sheet according to [1] or [2], wherein the clay mineral is sepiolite.
[4] The heat-resistant heat-insulating sheet according to any one of [1] to [3], wherein the density of the low-density layer is 0.1 to 0.25 g / cm 3 .
[5] The heat-resistant heat-insulating sheet according to any one of [1] to [4], wherein the density of the high-density layer is 0.35 to 2.5 g / cm 3 .
[6] Any one of [1] to [5], wherein the content of the inorganic component in the low-density layer is 80% by mass or more, and the content of the inorganic component in the high-density layer is 90% by mass or more. Heat-resistant insulation sheet described in the section.
[7] The feature is that the plurality of stacked cells and the heat-resistant heat insulating sheet according to any one of [1] to [6] inserted between the plurality of cells are provided. Batteries to be assembled.
[8] Further, the heat-resistant heat insulating sheet according to any one of [1] to [6] is provided, which is arranged outside the cells laminated on the innermost outermost layer of the plurality of cells. ] The assembled battery described in.
[9] The method for producing a heat-resistant heat-insulating sheet according to any one of [1] to [6].
The first surface of the low-density sheet in which the total content of the inorganic fiber and the clay mineral is 80% by mass or more, and the ratio of the content of the clay mineral to the total content of the inorganic fiber and the clay mineral is less than 50% by mass. And on at least one of the second side,
The density is higher than that of the low-density sheet, the total content of inorganic fibers and clay minerals is 90% by mass or more, and the ratio of the content of clay minerals to the total content of inorganic fibers and clay minerals is 50% by mass or more. A method for manufacturing a heat-resistant and heat-insulating sheet by laminating a certain high-density sheet.
[10] The method for producing a heat-resistant heat-insulating sheet according to any one of [1] to [6].
The first surface of a low-density sheet in which the total content of inorganic fibers and clay minerals is 80% by mass or more, and the ratio of the content of clay minerals to the total content of inorganic fibers and clay minerals is less than 50% by mass. A method for producing a heat-resistant heat insulating sheet, which forms a clay mineral slurry layer on at least one of the second surface and the second surface.

本発明の耐熱断熱シートは、耐熱性、断熱性に優れ、燃焼しにくく、かつ軽量である。また、この耐熱断熱シートを単電池の間に挿入した組電池は、1つの単電池の不具合が、隣接する電池に及ぶことを防止しやすい。 The heat-resistant heat-insulating sheet of the present invention is excellent in heat resistance and heat-insulating properties, is hard to burn, and is lightweight. Further, the assembled battery in which the heat-resistant heat-insulating sheet is inserted between the cells can easily prevent the defect of one cell from extending to the adjacent batteries.

第1実施形態に係る耐熱断熱シートの断面図である。It is sectional drawing of the heat-resistant heat insulating sheet which concerns on 1st Embodiment. 第2実施形態に係る耐熱断熱シートの断面図である。It is sectional drawing of the heat-resistant heat insulating sheet which concerns on 2nd Embodiment. 一実施形態に係る組電池の構成図である。It is a block diagram of the assembled battery which concerns on one Embodiment. 実施例1の耐熱断熱シートの表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the heat-resistant heat insulating sheet of Example 1. 実施例1の耐熱断熱シートの垂直断面の電子顕微鏡写真である。It is an electron micrograph of the vertical cross section of the heat-resistant heat insulating sheet of Example 1. 実施例1の耐熱断熱シートの垂直断面に対するエックス線電子マイクロアナライザ(XMA)によるマグネシウム元素の存在確率像である。It is the existence probability image of the magnesium element by the X-ray electron microanalyzer (XMA) with respect to the vertical cross section of the heat-resistant heat insulating sheet of Example 1. 実施例2の耐熱断熱シートの表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the heat-resistant heat-insulating sheet of Example 2. 実施例2の耐熱断熱シートの垂直断面の電子顕微鏡写真である。It is an electron micrograph of the vertical cross section of the heat-resistant heat insulating sheet of Example 2. 比較例1の耐熱断熱シートの表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the heat-resistant heat insulating sheet of Comparative Example 1. 比較例3の耐熱断熱シートの表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the heat-resistant heat insulating sheet of Comparative Example 3.

以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は「〜」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments or specific examples, but the present invention is not limited to such embodiments. In this specification, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.

[耐熱断熱シート]
(第1実施形態)
図1は、第1実施形態に係る耐熱断熱シートの断面図である。図1は説明の便宜上、厚み方向を強調している。
図1に示すように、本実施形態の耐熱断熱シート10は、低密度層1と、低密度層1の第1の面に設けられた第1高密度層2と、第1の面と反対側の面である第2の面に設けられた第2高密度層3とを備えている。低密度層1と第1高密度層2と第2高密度層3は、取り扱いの便宜上一体化されていることが好ましいが、単に積層されているだけでも差し支えない。
[Heat-resistant heat-insulating sheet]
(First Embodiment)
FIG. 1 is a cross-sectional view of the heat-resistant heat-insulating sheet according to the first embodiment. FIG. 1 emphasizes the thickness direction for convenience of explanation.
As shown in FIG. 1, the heat-resistant heat insulating sheet 10 of the present embodiment is opposite to the low-density layer 1, the first high-density layer 2 provided on the first surface of the low-density layer 1, and the first surface. It includes a second high-density layer 3 provided on a second surface, which is a side surface. The low-density layer 1, the first high-density layer 2, and the second high-density layer 3 are preferably integrated for convenience of handling, but may be simply laminated.

低密度層1と第1高密度層2の境界、及び低密度層1と第2高密度層3の境界は、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合によって決められる。
すなわち、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満である層が低密度層1であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%以上である層が第1高密度層2又は第2高密度層3である。
なお、低密度層1と第1高密度層2の境界、及び低密度層1と第2高密度層3の境界は、耐熱断熱シート10の面方向と平行な面とする。
The boundary between the low-density layer 1 and the first high-density layer 2 and the boundary between the low-density layer 1 and the second high-density layer 3 are determined by the ratio of the clay mineral content to the total content of the inorganic fiber and the clay mineral. Be done.
That is, the low-density layer 1 is the layer in which the ratio of the content of the clay mineral to the total content of the inorganic fiber and the clay mineral is less than 50% by mass, and the clay mineral in the total content of the inorganic fiber and the clay mineral. The layer having a content ratio of 50% by mass or more is the first high-density layer 2 or the second high-density layer 3.
The boundary between the low-density layer 1 and the first high-density layer 2 and the boundary between the low-density layer 1 and the second high-density layer 3 are parallel to the surface direction of the heat-resistant heat insulating sheet 10.

無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%以上の層と粘土鉱物を全く含まない層とが隣接していれば、その層の境界が、そのまま、本発明における低密度層と高密度層の境界となる。
無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が、厚み方向において、例えば、60質量%程度から40質量%程度まで漸減しているような場合は、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%である部分が、高密度層の終端であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満となった部分が、低密度層の終端である。
If a layer in which the content of clay minerals in the total content of inorganic fibers and clay minerals is 50% by mass or more and a layer containing no clay minerals are adjacent to each other, the boundary between the layers remains as it is. It is the boundary between the low-density layer and the high-density layer in the invention.
When the ratio of the content of clay minerals to the total content of inorganic fibers and clay minerals gradually decreases from about 60% by mass to about 40% by mass in the thickness direction, the inorganic fibers and clay minerals The portion where the ratio of the clay mineral content to the total content of the clay mineral is 50% by mass is the end of the high-density layer, and the ratio of the clay mineral content to the total content of the inorganic fiber and the clay mineral is 50. The portion of less than mass% is the end of the low density layer.

無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合は、X線マイクロアナライザ―により構成元素の存在比を求め、粘土鉱物と無機繊維の各含有量既知の標準サンプルの構成元素存在比と比較することで求められる。
X線マイクロアナライザ―による値は、蛍光X線分析法あるいは、原子吸光光度計により求めた値により校正して、より精度を高めてもよい。
なお、耐熱断熱シート10の面方向と平行な面において、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合にばらつきがある場合は、耐熱断熱シート10の面方向と平行な面全体についての平均値をその面における含有量の割合とする。
The ratio of the content of clay minerals to the total content of inorganic fibers and clay minerals is determined by determining the abundance ratio of constituent elements using an X-ray microanalyzer, and the constituent elements of standard samples in which the contents of clay minerals and inorganic fibers are known. It is obtained by comparing with the abundance ratio.
The value obtained by the X-ray microanalyzer may be calibrated by the fluorescent X-ray analysis method or the value obtained by the atomic absorption spectrophotometer to further improve the accuracy.
If there is a variation in the ratio of the clay mineral content to the total content of the inorganic fibers and clay minerals on the surface parallel to the surface direction of the heat insulating sheet 10, it is parallel to the surface direction of the heat insulating sheet 10. The average value for the entire surface is taken as the ratio of the content in that surface.

低密度層の機能は低密度であることにより発揮され、高密度層の機能は高密度であることにより発揮されるので、低密度層と高密度層の境界は、できるだけ明確であることが好ましい。すなわち、境界を境として、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が、急激に変化していることが好ましい。境界が明確であることにより、低密度層と高密度層が、各々の機能を発揮しやすくなり、全体の厚さをより薄くして高い性能を発揮することができる。 Since the function of the low density layer is exerted by the low density and the function of the high density layer is exerted by the high density, the boundary between the low density layer and the high density layer is preferably as clear as possible. .. That is, it is preferable that the ratio of the clay mineral content to the total content of the inorganic fiber and the clay mineral changes sharply with the boundary as a boundary. By having a clear boundary, the low-density layer and the high-density layer can easily exert their respective functions, and the overall thickness can be made thinner to exhibit high performance.

低密度層1に含まれる粘土鉱物の含有量は、第1高密度層2及び第2高密度層3の各々に含まれる粘土鉱物の含有量の少なくとも一方に対して、10質量%以下であることが好ましい。すなわち、大部分の粘土鉱物は、第1高密度層2又は第2高密度層3に存在する。 The content of the clay mineral contained in the low-density layer 1 is 10% by mass or less with respect to at least one of the contents of the clay mineral contained in each of the first high-density layer 2 and the second high-density layer 3. Is preferable. That is, most of the clay minerals are present in the first high-density layer 2 or the second high-density layer 3.

低密度層1における無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合は、低密度を達成するために50質量%未満であり、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましい。実質的にゼロ質量%であることが最も好ましい。低密度であるほど、熱伝導性を抑制することができる。 The ratio of the content of clay minerals to the total content of inorganic fibers and clay minerals in the low density layer 1 is less than 50% by mass, preferably 40% by mass or less in order to achieve low density, and is preferably 30. It is more preferably mass% or less, further preferably 20 mass% or less, and particularly preferably 10 mass% or less. Most preferably, it is substantially zero mass%. The lower the density, the more the thermal conductivity can be suppressed.

第1高密度層2及び第2高密度層3における無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合は、高密度を達成するために50質量%以上であり、55質量%以上であることが好ましく、100質量%であってもよい。粘土鉱物の含有量の割合が高く高密度になるほど、火炎や高温ガスの透過を抑制しやすい。
各層に含まれる粘土鉱物の含有量は、耐熱断熱シート10の面方向と平行な各面における粘土鉱物の含有量を、厚さ方向において、積算することによって求められる。
The ratio of the content of clay minerals to the total content of inorganic fibers and clay minerals in the first high-density layer 2 and the second high-density layer 3 is 50% by mass or more in order to achieve high density, and 55% by mass. It is preferably% or more, and may be 100% by mass. The higher the proportion of clay mineral content and the higher the density, the easier it is to suppress the permeation of flames and high-temperature gas.
The content of clay minerals contained in each layer is determined by integrating the content of clay minerals on each surface parallel to the surface direction of the heat-resistant heat insulating sheet 10 in the thickness direction.

低密度層1と第1高密度層2の境界から、低密度層1と第2高密度層3の境界までの距離が低密度層1の厚さとなる。また、低密度層1と第1高密度層2の境界から第1高密度層2の低密度層1と反対側の表面までの距離が第1高密度層2の厚さとなる。また、低密度層1と第2高密度層3の境界から第2高密度層3の低密度層1と反対側の表面までの距離が第2高密度層3の厚さとなる。 The distance from the boundary between the low-density layer 1 and the first high-density layer 2 to the boundary between the low-density layer 1 and the second high-density layer 3 is the thickness of the low-density layer 1. Further, the distance from the boundary between the low-density layer 1 and the first high-density layer 2 to the surface of the first high-density layer 2 opposite to the low-density layer 1 is the thickness of the first high-density layer 2. Further, the distance from the boundary between the low-density layer 1 and the second high-density layer 3 to the surface of the second high-density layer 3 opposite to the low-density layer 1 is the thickness of the second high-density layer 3.

各層の厚さは、各層が独立しており容易に分離可能な場合は、それぞれの層の厚みを印加圧力が低く、層厚みの変化を伴わないJIS L1086規定の不織布、織物用定圧厚み計(測定圧力0.35N以下、測定直径25.2mm)によって求める。
層間の分離が困難な場合は、垂直断面のX線マイクロアナライザ―画像における粘土鉱物の含有量が50質量%以上の領域の厚さを高密度層の厚さとし、50質量%未満の領域の厚さを低密度層の厚さとする。
垂直断面における高密度層と低密度層の境界が観察画像から明瞭であれば、電子顕微鏡写真又は光学顕微鏡写真の垂直断面の観察画像から、直接各層の厚さを測定してもよい。
なお、垂直断面を作製する際に、層構成を変化させてしまうおそれがある場合は、樹脂包埋法又は凍結割断法を用いて、層構成と各層の厚さを維持して垂直断面を得る。
As for the thickness of each layer, if each layer is independent and can be easily separated, the pressure applied to the thickness of each layer is low and the layer thickness does not change. JIS L1086 specified non-woven fabric, constant pressure thickness gauge for woven fabric ( The measurement pressure is 0.35 N or less and the measurement diameter is 25.2 mm).
If it is difficult to separate the layers, the thickness of the region where the clay mineral content in the vertical cross-section X-ray microanalyzer image is 50% by mass or more is defined as the thickness of the high-density layer, and the thickness of the region less than 50% by mass is defined as the thickness of the high-density layer. Let this be the thickness of the low density layer.
If the boundary between the high-density layer and the low-density layer in the vertical cross section is clear from the observation image, the thickness of each layer may be measured directly from the observation image of the vertical cross section of the electron micrograph or the optical micrograph.
When the vertical cross section is produced, if there is a risk of changing the layer structure, a resin embedding method or a freeze-cutting method is used to obtain a vertical cross section while maintaining the layer structure and the thickness of each layer. ..

低密度層1の厚さに特に限定はないが、耐熱断熱シート10全体の厚さの範囲でできるだけ厚いことが好ましい。すなわち、低密度層1の厚さは、耐熱断熱シート10全体の厚さに近いことが好ましい。
具体的には、耐熱断熱シート10全体の厚さより0.05mm薄い厚さ未満となる範囲で、0.3mm以上であることが好ましく、0.5mm以上であることがより好ましい。
低密度層1の厚さをできるだけ厚くした方が、充分な断熱効果を得やすい。また、耐熱断熱シート10全体の重量を小さくでき、ひいては、耐熱断熱シート10を使用した組電池全体の重量を小さくできる。
The thickness of the low-density layer 1 is not particularly limited, but it is preferably as thick as possible within the thickness range of the entire heat-resistant heat insulating sheet 10. That is, the thickness of the low-density layer 1 is preferably close to the thickness of the entire heat-resistant heat-insulating sheet 10.
Specifically, it is preferably 0.3 mm or more, and more preferably 0.5 mm or more, within a range of less than 0.05 mm thinner than the entire thickness of the heat-resistant heat insulating sheet 10.
It is easier to obtain a sufficient heat insulating effect when the thickness of the low density layer 1 is made as thick as possible. Further, the weight of the entire heat-resistant heat-insulating sheet 10 can be reduced, and by extension, the weight of the entire assembled battery using the heat-resistant heat-insulating sheet 10 can be reduced.

第1高密度層2及び第2高密度層3の厚さは、各々低密度層1の厚さ以下である。第1高密度層2及び第2高密度層3の双方の厚さを低密度層1の厚さ以下とすることにより、耐熱断熱シート10全体の厚さを薄くすると共に、耐熱断熱シート10全体の質量を抑制できる。ひいては、耐熱断熱シート10を使用した組電池全体の厚さと質量を小さくできる。 The thickness of the first high-density layer 2 and the second high-density layer 3 is equal to or less than the thickness of the low-density layer 1, respectively. By making the thickness of both the first high-density layer 2 and the second high-density layer 3 equal to or less than the thickness of the low-density layer 1, the thickness of the entire heat-resistant heat-insulating sheet 10 is reduced, and the entire heat-resistant heat-insulating sheet 10 is reduced. Mass can be suppressed. As a result, the thickness and mass of the entire assembled battery using the heat-resistant heat insulating sheet 10 can be reduced.

また、第1高密度層2及び第2高密度層3の少なくとも一方の厚さは、0.05mm以上である。第1高密度層2及び第2高密度層3の少なくとも一方の厚さが、0.05mm以上であることにより、火炎や高温ガスの透過を抑制しやすい。
第1高密度層2及び第2高密度層3の少なくとも一方の厚さは、0.05〜1mmであることが好ましく、0.1〜0.5mmであることがより好ましい。
第1高密度層2と第2高密度層3は、共に0.05mm以上の厚さであることが好ましく、共に、上記好ましい厚さの範囲であることが好ましい。
Further, the thickness of at least one of the first high-density layer 2 and the second high-density layer 3 is 0.05 mm or more. When the thickness of at least one of the first high-density layer 2 and the second high-density layer 3 is 0.05 mm or more, it is easy to suppress the permeation of flame and high-temperature gas.
The thickness of at least one of the first high-density layer 2 and the second high-density layer 3 is preferably 0.05 to 1 mm, more preferably 0.1 to 0.5 mm.
Both the first high-density layer 2 and the second high-density layer 3 preferably have a thickness of 0.05 mm or more, and both are preferably in the above-mentioned preferable thickness range.

耐熱断熱シート10全体の厚さは、0.1〜2.5mmである。耐熱断熱シート10全体の厚さが0.1mm以上であることにより、充分な断熱効果を得やすい。また、2.5mm以下であることにより、耐熱断熱シート10を使用した組電池全体の厚さを薄くできる。
耐熱断熱シート10全体の厚さは、0.1〜2.5mmであることが好ましく、0.5〜1.5mmであることがより好ましい。
The total thickness of the heat-resistant heat insulating sheet 10 is 0.1 to 2.5 mm. When the thickness of the entire heat-resistant heat-insulating sheet 10 is 0.1 mm or more, it is easy to obtain a sufficient heat-insulating effect. Further, when the thickness is 2.5 mm or less, the thickness of the entire assembled battery using the heat-resistant heat insulating sheet 10 can be reduced.
The total thickness of the heat-resistant heat insulating sheet 10 is preferably 0.1 to 2.5 mm, more preferably 0.5 to 1.5 mm.

低密度層1と第1高密度層2の境界から、低密度層1と第2高密度層3の境界までの単位面積あたりの質量が、低密度層1の坪量となる。また、低密度層1と第1高密度層2の境界から第1高密度層2の低密度層1と反対側の表面までの単位面積あたりの質量が第1高密度層2の坪量となる。また、低密度層1と第2高密度層3の境界から第2高密度層3の低密度層1と反対側の表面までの単位面積あたりの質量が第2高密度層3の坪量となる。 The mass per unit area from the boundary between the low-density layer 1 and the first high-density layer 2 to the boundary between the low-density layer 1 and the second high-density layer 3 is the basis weight of the low-density layer 1. Further, the mass per unit area from the boundary between the low-density layer 1 and the first high-density layer 2 to the surface of the first high-density layer 2 opposite to the low-density layer 1 is the basis weight of the first high-density layer 2. Become. Further, the mass per unit area from the boundary between the low-density layer 1 and the second high-density layer 3 to the surface of the second high-density layer 3 opposite to the low-density layer 1 is the basis weight of the second high-density layer 3. Become.

各々の坪量は、剥離、切削、溶解、等適切な方法により、各層を単独で取り出し、質量を測定することによって求めることができる。各層を個別に取り出すことが困難な場合は、層中の構成成分の含有量を化学分析、あるいは機器分析によって測定し、計算により構成成分質量の和によって求める。 The basis weight of each layer can be determined by taking out each layer independently by an appropriate method such as peeling, cutting, melting, etc., and measuring the mass. When it is difficult to take out each layer individually, the content of the constituent components in the layer is measured by chemical analysis or instrumental analysis, and calculated by the sum of the constituent masses.

低密度層1の坪量に特に限定はないが、10〜300g/mであることが好ましく、15〜280/mであることがより好ましく、20〜250g/mであることがさらに好ましい。
坪量が好ましい範囲の下限値以上であれば、断熱効果を発揮しやすく、耐熱断熱シート10の強度も確保しやすい。また、好ましい範囲の上限値以下であれば耐熱断熱シート10の厚さが過剰になることがない。
Although there is no particular limitation on the basis weight of the low density layer 1 is preferably 10 to 300 g / m 2, more preferably from 15-280 / m 2, still to be 20 to 250 g / m 2 preferable.
When the basis weight is not less than the lower limit of the preferable range, the heat insulating effect is easily exhibited, and the strength of the heat resistant heat insulating sheet 10 is also easy to be secured. Further, if it is not more than the upper limit of the preferable range, the thickness of the heat-resistant heat insulating sheet 10 does not become excessive.

低密度層1は、粘土鉱物の含有割合が低いことにより、無機繊維の間に空隙を確保しやすく、密度が低くなりやすい。
低密度層1の密度は、0.1〜0.25g/cmであることが好ましく、0.1〜0.2g/cmであることがより好ましく、0.1〜0.17g/cmであることがさらに好ましい。
低密度層1の密度が好ましい下限値以上であることにより、層内の対流を抑制しやすい。また、耐熱断熱シート10の強度を確保しやすい。また、低密度層1の密度が好ましい上限値以下であることにより、熱伝達を抑制しやすい。
Since the low density layer 1 has a low content ratio of clay minerals, it is easy to secure voids between the inorganic fibers, and the density tends to be low.
Density of the low density layer 1 is preferably 0.1~0.25g / cm 3, more preferably 0.1~0.2g / cm 3, 0.1~0.17g / cm It is more preferably 3 .
When the density of the low-density layer 1 is equal to or higher than the preferable lower limit value, convection in the layer can be easily suppressed. In addition, it is easy to secure the strength of the heat-resistant heat insulating sheet 10. Further, when the density of the low density layer 1 is not more than a preferable upper limit value, heat transfer can be easily suppressed.

第1高密度層2及び第2高密度層3は、各々粘土鉱物の含有割合が高いことにより、密度が高くなりやすい。第1高密度層2及び第2高密度層3は、各々低密度層1よりも密度が高い。
第1高密度層2及び第2高密度層3の少なくとも一方の密度は、0.3〜2.5g/cmであることが好ましく、0.35〜2.5g/cmであることがより好ましく、0.4〜2.5g/cmであることがさらに好ましい。
また、第1高密度層2と第2高密度層3の双方が上記好ましい範囲の密度であることが好ましい。
第1高密度層2及び第2高密度層3の少なくとも一方の密度が好ましい下限値以上であることにより、火炎や高温ガスの透過を抑制しやすい。また、上限値以下であることにより、耐熱断熱シート10全体の重量が過剰とならない。
The first high-density layer 2 and the second high-density layer 3 tend to have high densities due to the high content ratio of clay minerals. The first high-density layer 2 and the second high-density layer 3 each have a higher density than the low-density layer 1.
At least one of the density of the first dense layer 2 and the second high-density layer 3, it is preferably 0.3~2.5g / cm 3, a 0.35~2.5g / cm 3 More preferably, it is 0.4 to 2.5 g / cm 3 .
Further, it is preferable that both the first high-density layer 2 and the second high-density layer 3 have the density in the above preferable range.
When the density of at least one of the first high-density layer 2 and the second high-density layer 3 is at least a preferable lower limit value, it is easy to suppress the permeation of flame and high-temperature gas. Further, when it is not more than the upper limit value, the weight of the entire heat-resistant heat insulating sheet 10 does not become excessive.

低密度層1に占める無機成分の含有量は80質量%以上であることが好ましく、85質量%以上であることが好ましく、90質量%以上であることがより好ましい。
第1高密度層2及び第2高密度層3に占める無機成分の含有量は90質量%以上であることが好ましく、94質量%以上であることがより好ましく、96質量%以上であることがさらに好ましく、100質量%であってもよい。
各層における無機成分の含有量が高いことにより、不燃性を確保できる。
The content of the inorganic component in the low-density layer 1 is preferably 80% by mass or more, preferably 85% by mass or more, and more preferably 90% by mass or more.
The content of the inorganic component in the first high-density layer 2 and the second high-density layer 3 is preferably 90% by mass or more, more preferably 94% by mass or more, and preferably 96% by mass or more. More preferably, it may be 100% by mass.
Due to the high content of inorganic components in each layer, nonflammability can be ensured.

各層に占める無機成分の含有量は、含有無機物の量を蛍光X線分析法により分析することによって求める。
各層に占める無機成分の含有量は、各層を溶解してICP分析法によって含有無機物の量を定量してもよい。また、加熱減量法により、質量減少分を有機分と水分として差し引くことによって求めてもよい。ただし、その結果が蛍光X線分析法により求めた値と相違する場合は、蛍光X線分析法により求めた値を正とする。
The content of the inorganic component in each layer is determined by analyzing the amount of the contained inorganic substance by a fluorescent X-ray analysis method.
As for the content of the inorganic component in each layer, each layer may be dissolved and the amount of the contained inorganic substance may be quantified by an ICP analysis method. Further, it may be obtained by subtracting the mass reduction amount as the organic content and the water content by the heating weight loss method. However, if the result is different from the value obtained by the fluorescent X-ray analysis method, the value obtained by the fluorescent X-ray analysis method is regarded as positive.

耐熱断熱シート10を構成する無機繊維としては、ガラス繊維、炭素繊維、グラスウール、ロックウール、バサルト繊維等の溶融岩石繊維、アルミナ繊維等のセラミック繊維、炭化ケイ素繊維等を用いることができる。特にガラス繊維が、安価なこと、導電性を持たないこと、シートをカットするときのカット刃の損耗が少ないことから好適に用いられる。
無機繊維は、1種を単独で使用してもよいし、2種以上を併用してもよい。
As the inorganic fibers constituting the heat-resistant heat insulating sheet 10, molten rock fibers such as glass fibers, carbon fibers, glass wool, rock wool and basalt fibers, ceramic fibers such as alumina fibers, silicon carbide fibers and the like can be used. In particular, glass fiber is preferably used because it is inexpensive, does not have conductivity, and has little wear on the cutting blade when cutting a sheet.
As the inorganic fiber, one type may be used alone, or two or more types may be used in combination.

ガラス繊維としては、一般的なEガラスの他、高強度のSガラス、耐酸性に優れるCガラス等を使用できる。コストの観点からは、安価なEガラスを使用することが好ましい。ガラス繊維の断面形状に特に限定はなく、円形、扁平形等の物を使用できる。
無機繊維としてガラス繊維を使用する場合、ガラス繊維は、1種を単独で用いても2種以上を併用してもよい。
As the glass fiber, in addition to general E glass, high-strength S glass, C glass having excellent acid resistance, and the like can be used. From the viewpoint of cost, it is preferable to use inexpensive E-glass. The cross-sectional shape of the glass fiber is not particularly limited, and a circular or flat shape can be used.
When glass fiber is used as the inorganic fiber, one type of glass fiber may be used alone or two or more types may be used in combination.

無機繊維の繊維径は、3〜30μmが好ましく、10〜30μmがより好ましく、20〜30μmがさらに好ましい。
無機繊維の繊維径が好ましい上限値以下であることにより、低密度層1における無機繊維間の空隙が狭くなり、空隙内の対流、気体の通過が起きにくくなり、断熱効果を得やすい。また無機繊維同士の接触点、交絡点を確保しやすいため、耐熱断熱シート10全体の引っ張り強度が高まり、ハンドリングしやすくなる。
また、皮膚刺激性が強くなりすぎず、また切断加工の際に毛羽立ち、粉落ちを抑制しやすい。また、繊維間の空隙が大きくなりすぎて、加熱された空気の通過、空隙内の対流が起こりやすくなることも避けやすい。
The fiber diameter of the inorganic fiber is preferably 3 to 30 μm, more preferably 10 to 30 μm, still more preferably 20 to 30 μm.
When the fiber diameter of the inorganic fiber is not more than a preferable upper limit value, the voids between the inorganic fibers in the low density layer 1 are narrowed, convection in the voids and gas passage are less likely to occur, and a heat insulating effect can be easily obtained. Further, since it is easy to secure contact points and entanglement points between the inorganic fibers, the tensile strength of the entire heat-resistant heat insulating sheet 10 is increased, and handling is facilitated.
In addition, the skin irritation does not become too strong, and it is easy to suppress fluffing and powder falling during the cutting process. In addition, it is easy to avoid that the gaps between the fibers become too large and the passage of heated air and convection in the gaps are likely to occur.

一方、無機繊維の繊維径が3μm未満では、世界保健機関(WHO)により定義された「WHO吸入性繊維(呼吸により体内に吸入され、肺まで到達する繊維状物質をいい、長さ5μm超、直径3μm未満、アスペクト比3超のもの)」に該当し、健康への影響が懸念され、使用上の制限もある。そのため、無機繊維の繊維径は3μm以上であることが望ましい。 On the other hand, when the fiber diameter of the inorganic fiber is less than 3 μm, “WHO inhalable fiber (a fibrous substance that is inhaled into the body by respiration and reaches the lungs, and has a length of more than 5 μm,” defined by the World Health Organization (WHO). (With a diameter of less than 3 μm and an aspect ratio of more than 3) ”, there are concerns about its impact on health, and there are restrictions on its use. Therefore, it is desirable that the fiber diameter of the inorganic fiber is 3 μm or more.

また、無機繊維の繊維径が好ましい下限値以上であることにより、低密度層1における繊維間の空隙を維持する力を確保しやすい。そのため、吸湿、吸水により、吸着水の毛細管力で繊維間の空隙がつぶれてしまうことを回避しやすい。また、単電池間の圧縮力によって、耐熱断熱シート10全体の厚さが低下してしまうことも回避しやすい。したがって、特に低密度層1の厚さ低下による断熱性の低下を抑制できると共に、低密度層1の繊維間の接触点が増えて、熱伝達率が上昇してしまうことを回避できる。 Further, when the fiber diameter of the inorganic fiber is at least a preferable lower limit value, it is easy to secure the ability to maintain the voids between the fibers in the low density layer 1. Therefore, it is easy to prevent the voids between the fibers from being crushed by the capillary force of the adsorbed water due to moisture absorption and water absorption. Further, it is easy to avoid that the thickness of the entire heat-resistant heat insulating sheet 10 is reduced due to the compressive force between the cells. Therefore, it is possible to suppress a decrease in heat insulating property due to a decrease in thickness of the low density layer 1, and it is possible to avoid an increase in contact points between fibers of the low density layer 1 and an increase in heat transfer coefficient.

無機繊維は、繊維径が3μm以上で10μm未満の無機繊維と繊維径10μm〜30μmの無機繊維を併用することも好ましい。
繊維径の異なる無機繊維を組み合わせて使用することにより、無機繊維間の空隙を狭くすることによる断熱効果向上効果及び表面平滑化効果と、無機繊維同士の接触点、交絡点の確保による引っ張り強度向上効果を得ながら、低密度層1の厚さを確保し、繊維間の空隙を維持することが可能となる。
As the inorganic fiber, it is also preferable to use an inorganic fiber having a fiber diameter of 3 μm or more and less than 10 μm and an inorganic fiber having a fiber diameter of 10 μm to 30 μm in combination.
By using a combination of inorganic fibers with different fiber diameters, the effect of improving the heat insulating effect and the surface smoothing effect by narrowing the voids between the inorganic fibers, and the improvement of tensile strength by securing the contact points and entanglement points between the inorganic fibers. While obtaining the effect, it is possible to secure the thickness of the low density layer 1 and maintain the voids between the fibers.

無機繊維の繊維長は、1〜25.2mmであることが好ましく、3〜20mmであることがより好ましく、5〜15mmであることがさらに好ましい。
無機繊維の繊維長が好ましい下限値以上であれば、シート製造工程中の強度を確保できる。
無機繊維の繊維長が好ましい上限値以下であれば、繊維の捩れによる結束の発生がなく、地合い(厚さおよび繊維密度の均一性)を良好に保つことができる。
The fiber length of the inorganic fiber is preferably 1 to 25.2 mm, more preferably 3 to 20 mm, and even more preferably 5 to 15 mm.
When the fiber length of the inorganic fiber is at least the preferable lower limit value, the strength during the sheet manufacturing process can be ensured.
When the fiber length of the inorganic fiber is not more than the preferable upper limit value, binding does not occur due to twisting of the fiber, and the texture (uniformity of thickness and fiber density) can be kept good.

耐熱断熱シート10を構成する粘土鉱物は自己塗膜形成能力がある。そのため、粘土鉱物を多く含む第1高密度層2及び第2高密度層3は、高密度の層となる。
粘土鉱物としては、層状含水ケイ酸塩鉱物、例えば、カオリナイト、スメクタイト、モンモリロナイト、セリサイト、イライト、グローコナイト、クロライト、セピオライト、タルク等の含水フェロケイ酸塩鉱物類とその混合物が挙げられる。
中でも、セピオライトは、塗膜形成力が高く、乾燥時のひび割れが少なく、乾燥後の塗膜強度が高いため好ましい。
The clay mineral constituting the heat-resistant heat-insulating sheet 10 has a self-coating ability. Therefore, the first high-density layer 2 and the second high-density layer 3 containing a large amount of clay minerals are high-density layers.
Examples of clay minerals include layered hydrous silicate minerals, for example, hydroferosilicate minerals such as kaolinite, smectite, montmorillonite, sericite, illite, gloconite, chlorite, sepiolite, and talc, and mixtures thereof. ..
Of these, sepiolite is preferable because it has a high coating film-forming ability, has few cracks during drying, and has a high coating film strength after drying.

セピオライトは、天然に産出する粘土鉱物の一種で、独特の鎖状粒子構造を有する含水ケイ酸マグネシウムである。
セピオライトには、成因の違いにより、高温高圧下における熱水作用を受け、結晶化度が高く、長繊維で明瞭な繊維状形態を示すα型(従来、山皮とも呼ばれる。)と、浅海底や湖底での堆積作用を成因とし、結晶化度が低く、短繊維(塊状または粘土状形態である。)のβ型がある。
Sepiolite is a naturally occurring clay mineral that is a hydrous magnesium silicate with a unique chain-like particle structure.
Due to the difference in origin, sepiolite is subjected to hydrothermal action under high temperature and high pressure, has a high degree of crystallinity, and has long fibers and a clear fibrous morphology (conventionally called mountain bark) and shallow seabed. There is a β-type of short fibers (massive or clay-like morphology) with low crystallinity due to sedimentation on the bottom of the lake.

α型のセピオライトは、不純物含有量が多く、人体に対する安全上好ましくない石英等の結晶性シリカを数〜十数質量%程度含有する。そのため、セピオライトとしては、不純物含有量が比較的少ないβ型が好ましい。
β型のセピオライトの中でも、結晶性シリカの含有量が少ない産地のセピオライトを選択して用いることが望ましい。結晶性シリカはシートの切断時に刃物の損耗を早めるため、結晶性シリカの含有量は少ない方が好ましい。
The α-type sepiolite contains a large amount of impurities and contains several to a dozen mass% of crystalline silica such as quartz, which is not preferable for safety to the human body. Therefore, as sepiolite, β-type having a relatively low impurity content is preferable.
Among β-type sepiolites, it is desirable to select and use sepiolites from production areas where the content of crystalline silica is low. Since crystalline silica accelerates the wear of the blade when cutting the sheet, it is preferable that the content of crystalline silica is small.

結晶性シリカの含有量は、X線粉末回折法で、結晶性シリカのピーク強度を標準サンプルのピーク強度と比較することで定量できる。
耐熱断熱シート10における結晶性シリカの含有量は1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.2質量%以下であることがさらに好ましい。
The content of crystalline silica can be quantified by X-ray powder diffraction by comparing the peak intensity of crystalline silica with the peak intensity of a standard sample.
The content of crystalline silica in the heat-resistant heat insulating sheet 10 is preferably 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.2% by mass or less.

耐熱断熱シート10を構成する無機繊維と粘土鉱物以外の任意成分としては、無機繊維間を結着するための無機、又は有機の各種バインダー等が挙げられる。
バインダーとしては、結着性があり、耐熱性があり、電池、電極、配線に対する腐食性が少ないものが好適である。
無機バインダーとしては、各種無機セメント類、各種ガラス類等が挙げられる。
Examples of the optional components other than the inorganic fibers and clay minerals constituting the heat-resistant heat insulating sheet 10 include various inorganic or organic binders for binding the inorganic fibers.
As the binder, a binder having binding property, heat resistance, and less corrosiveness to batteries, electrodes, and wiring is preferable.
Examples of the inorganic binder include various inorganic cements and various glasses.

有機バインダーとしては、熱融着性樹脂パウダー、熱融着性樹脂繊維、樹脂エマルション、樹脂溶液、熱硬化性樹脂、熱可塑性樹脂を用いることができる。
中でも、添加量対比で結着性に優れ、発熱量が少ない点から、PVA繊維が好適に用いられる。耐水性の観点からアクリル樹脂エマルション等も好適である。外側が低融点樹脂、内側が高融点樹脂である芯鞘タイプのバインダー繊維も、好適である。
また、溶融接着性はないが、微細にフィブリル化して交絡する能力が高いパラアラミド繊維、アラミドパルプ、結晶性ポリエステル、液晶性ポリエステル、木材由来パルプ、草由来パルプ等も用いることができる。これら、有機バインダーは単独でも、併用して用いてもよい。
As the organic binder, a thermosetting resin powder, a heat-sealing resin fiber, a resin emulsion, a resin solution, a thermosetting resin, and a thermoplastic resin can be used.
Among them, PVA fiber is preferably used because it is excellent in binding property in comparison with the amount of addition and the amount of heat generated is small. An acrylic resin emulsion or the like is also suitable from the viewpoint of water resistance. A core-sheath type binder fiber having a low melting point resin on the outside and a high melting point resin on the inside is also suitable.
Further, para-aramid fiber, aramid pulp, crystalline polyester, liquid crystal polyester, wood-derived pulp, grass-derived pulp and the like, which are not melt-adhesive but have a high ability to be finely fibrillated and entangled, can also be used. These organic binders may be used alone or in combination.

有機バインダーの添加量を多くするほど、耐熱断熱シート10の強度は向上する。しかし、有機成分を多量に含むと、熱による収縮を生じやすくなる等、耐熱性が低下する。また、単電池の発熱により加熱された場合、有機成分が酸化により発熱したり、分解ガスを発生したりする場合がある。その場合、破裂、発火、発煙に至る可能性もある。 The greater the amount of the organic binder added, the higher the strength of the heat-resistant heat insulating sheet 10. However, if a large amount of an organic component is contained, the heat resistance is lowered, for example, shrinkage due to heat is likely to occur. Further, when heated by the heat generated by the cell, the organic component may generate heat by oxidation or generate decomposition gas. In that case, it may explode, ignite, or smoke.

耐熱断熱シート10における有機バインダー等の有機成分の量は、耐熱断熱シート10全体の燃焼熱が、1MJ/m以下となる量である。
耐熱断熱シート10全体の燃焼熱は、耐熱断熱シート10に存在する各有機物の燃焼熱の総和であり、各有機物の燃焼熱は、その有機物の単位質量あたりの燃焼熱に単位面積あたりのその有機物の質量を乗じた値である。そして、有機物の燃焼熱は、有機物の種類が異なっても大きい差がないので、燃焼熱は、有機成分の量と関係する。すなわち、燃焼熱は、有機成分の量の指標となる。
The amount of the organic component such as the organic binder in the heat-resistant heat-insulating sheet 10 is such that the combustion heat of the entire heat-resistant heat-insulating sheet 10 is 1 MJ / m 2 or less.
The heat of combustion of the entire heat-resistant heat insulating sheet 10 is the sum of the heat of combustion of each organic substance existing in the heat-resistant heat insulating sheet 10, and the heat of combustion of each organic substance is the heat of combustion per unit mass of the organic substance and the organic substance per unit area. It is a value multiplied by the mass of. The heat of combustion of an organic substance does not differ greatly even if the type of the organic substance is different, so that the heat of combustion is related to the amount of the organic component. That is, the heat of combustion is an index of the amount of organic components.

耐熱断熱シート10に占める有機成分の量は、燃焼熱が0.75MJ/m以下となる量であることが好ましく、0.5MJ/m以下となる量であることがより好ましい。
燃焼熱が上記範囲に制御されていれば、高温に曝露されても発熱や発火をしにくい。また、仮に発熱しても発熱量が小さい。そのため、不燃性に優れ、1つの単電池が発熱又は発火しても、その影響が、隣接する単電池に及ぶことを防止しやすい。
上記、シートの燃焼熱は、ISO 5660−1:2002に定義されるコーンカロリメーターによる燃焼熱の測定により測定される燃焼熱である。
The amount of the organic component in the heat-resistant heat insulating sheet 10 is preferably an amount such that the heat of combustion is 0.75 MJ / m 2 or less, and more preferably 0.5 MJ / m 2 or less.
If the heat of combustion is controlled within the above range, it is difficult to generate heat or ignite even when exposed to high temperatures. Moreover, even if heat is generated, the amount of heat generated is small. Therefore, it is excellent in nonflammability, and even if one cell generates heat or ignites, it is easy to prevent the influence from affecting the adjacent cell.
The heat of combustion of the sheet is the heat of combustion measured by the measurement of the heat of combustion by the cone calorimeter defined in ISO 5660-1: 2002.

(第2実施形態)
図2は、第2実施形態に係る耐熱断熱シートの断面図である。図1は説明の便宜上、厚さ方向を強調している。
図2に示すように、本実施形態の耐熱断熱シート11は、低密度層1と、低密度層1の第1の面に設けられた第1高密度層2とを備えている。すなわち、第2高密度層3が存在しない点が第1実施形態の耐熱断熱シート10と異なる。
低密度層1と第1高密度層2は、取り扱いの便宜上一体化されていることが好ましいが、単に積層されているだけでも差し支えない。
(Second Embodiment)
FIG. 2 is a cross-sectional view of the heat-resistant heat-insulating sheet according to the second embodiment. FIG. 1 emphasizes the thickness direction for convenience of explanation.
As shown in FIG. 2, the heat-resistant heat-insulating sheet 11 of the present embodiment includes a low-density layer 1 and a first high-density layer 2 provided on the first surface of the low-density layer 1. That is, it differs from the heat-resistant heat-insulating sheet 10 of the first embodiment in that the second high-density layer 3 does not exist.
The low-density layer 1 and the first high-density layer 2 are preferably integrated for convenience of handling, but may be simply laminated.

低密度層1と第1高密度層2の境界は、第1実施形態について説明したのと同様にして、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合によって決められる。
各層における無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合の求め方、好ましい割合の範囲も、第1実施形態で説明したのと同様である。
低密度層1と第1高密度層2の境界はできるだけ明確であることが好ましい点も同様である。
The boundary between the low-density layer 1 and the first high-density layer 2 is determined by the ratio of the clay mineral content to the total content of the inorganic fiber and the clay mineral, as described in the first embodiment.
The method for determining the ratio of the content of the clay mineral to the total content of the inorganic fiber and the clay mineral in each layer and the range of the preferable ratio are also the same as those described in the first embodiment.
Similarly, it is preferable that the boundary between the low-density layer 1 and the first high-density layer 2 is as clear as possible.

低密度層1と第1高密度層2の境界から、低密度層1の第1高密度層2と反対側の表面までの距離が低密度層1の厚さとなる。また、低密度層1と第1高密度層2の境界から第1高密度層2の低密度層1と反対側の表面までの距離が第1高密度層2の厚さとなる。
各々の厚さの求め方は、第1実施形態で説明したのと同様である。
The distance from the boundary between the low-density layer 1 and the first high-density layer 2 to the surface of the low-density layer 1 opposite to the first high-density layer 2 is the thickness of the low-density layer 1. Further, the distance from the boundary between the low-density layer 1 and the first high-density layer 2 to the surface of the first high-density layer 2 opposite to the low-density layer 1 is the thickness of the first high-density layer 2.
The method of obtaining each thickness is the same as that described in the first embodiment.

低密度層1の厚さは、第1実施形態において説明したのと同様に、耐熱断熱シート11全体の厚さの範囲でできるだけ厚いことが好ましい。具体的には、耐熱断熱シート11全体の厚さより0.05mm薄い厚さを上限として、0.3mm以上であることが好ましく、0.5mm以上であることがより好ましい。
第1高密度層2の厚さは、低密度層1の厚さ以下であり、かつ、0.05mm以上である。第1高密度層2の好ましい厚さは、第1実施形態と同様である。
耐熱断熱シート11全体の厚さは、0.1〜2.5mmであり、好ましい厚さは、第1実施形態の耐熱断熱シート10と同様である。
The thickness of the low-density layer 1 is preferably as thick as possible within the range of the thickness of the entire heat-resistant heat-insulating sheet 11 as described in the first embodiment. Specifically, the upper limit is 0.05 mm thinner than the thickness of the entire heat-resistant heat insulating sheet 11, and the thickness is preferably 0.3 mm or more, and more preferably 0.5 mm or more.
The thickness of the first high-density layer 2 is equal to or less than the thickness of the low-density layer 1 and is 0.05 mm or more. The preferred thickness of the first high-density layer 2 is the same as that of the first embodiment.
The total thickness of the heat-resistant heat-insulating sheet 11 is 0.1 to 2.5 mm, and the preferable thickness is the same as that of the heat-resistant heat-insulating sheet 10 of the first embodiment.

低密度層1の好ましい坪量は第1実施形態と同様である。
各層の坪量の求め方は、第1実施形態で説明したのと同様である。
低密度層1と第1高密度層2の好ましい密度とその求め方も第1実施形態と同様である。
The preferred basis weight of the low density layer 1 is the same as that of the first embodiment.
The method of obtaining the basis weight of each layer is the same as that described in the first embodiment.
The preferable densities of the low-density layer 1 and the first high-density layer 2 and the method for obtaining them are the same as those in the first embodiment.

低密度層1に占める無機成分の含有量は80質量%以上であることが好ましく、85質量%以上であることが好ましく、90質量%以上であることがより好ましい。
第1高密度層2に占める無機成分の含有量は90質量%以上であることが好ましく、94質量%以上であることがより好ましく、96質量%以上であることがさらに好ましく、100質量%であってもよい。
各層における無機成分の含有量の求め方は、第1実施形態で説明したのと同様である。
耐熱断熱シート11を構成する無機繊維と粘土鉱物としては、耐熱断熱シート10を構成する無機繊維と粘土鉱物と同様のものが使用でき、好ましい態様も同様である。
The content of the inorganic component in the low-density layer 1 is preferably 80% by mass or more, preferably 85% by mass or more, and more preferably 90% by mass or more.
The content of the inorganic component in the first high-density layer 2 is preferably 90% by mass or more, more preferably 94% by mass or more, further preferably 96% by mass or more, and 100% by mass. There may be.
The method of determining the content of the inorganic component in each layer is the same as that described in the first embodiment.
As the inorganic fibers and clay minerals constituting the heat-resistant heat insulating sheet 11, the same inorganic fibers and clay minerals constituting the heat-resistant heat insulating sheet 10 can be used, and the preferred embodiment is also the same.

耐熱断熱シート11を構成する無機繊維と粘土鉱物以外の成分としては、第1実施形態で説明したのと同様の無機、又は有機の各種バインダーが挙げられる。
また、耐熱断熱シート11に占める有機成分の割合に関する制限は、耐熱断熱シート10に占める有機成分の割合に関する制限と同様である。好ましい燃焼熱の範囲も同様である。
Examples of the components other than the inorganic fibers and clay minerals constituting the heat-resistant heat insulating sheet 11 include various inorganic or organic binders similar to those described in the first embodiment.
Further, the limitation regarding the ratio of the organic component in the heat-resistant heat-insulating sheet 11 is the same as the limitation regarding the ratio of the organic component in the heat-resistant heat-insulating sheet 10. The range of preferred combustion heat is similar.

第1実施形態の耐熱断熱シート10、及び第2実施形態の耐熱断熱シート11は、少なくとも1つの厚さ0.05mm以上の高密度層を備える。この高密度層は、無機繊維間の空隙を粘土鉱物が閉鎖しているため、火炎や高温ガスの透過を抑制する機能を備える。
そのため、単電池の間に、耐熱断熱シート10又は耐熱断熱シート11を挿入すれば、1つの単電池が発火した場合、隣の単電池への延焼を防止しやすい。
また、高密度層の厚さが低密度層の厚さ以下に制限されているため、全体の質量が過大とならない。
The heat-resistant heat-insulating sheet 10 of the first embodiment and the heat-resistant heat-insulating sheet 11 of the second embodiment include at least one high-density layer having a thickness of 0.05 mm or more. Since clay minerals close the voids between the inorganic fibers, this high-density layer has a function of suppressing the permeation of flames and high-temperature gas.
Therefore, if the heat-resistant heat-insulating sheet 10 or the heat-resistant heat-insulating sheet 11 is inserted between the cells, it is easy to prevent the fire from spreading to the adjacent cells when one cell ignites.
Further, since the thickness of the high-density layer is limited to the thickness of the low-density layer or less, the total mass is not excessive.

また、高密度層以上の厚さを有する低密度層を備え、かつ、低密度層に存在する粘土鉱物が少ない。この低密度層は、無機繊維間の空隙が確保されているため、断熱層としての機能を備える。
そのため、全体の厚さが抑制されているにもかかわらず、優れた断熱性を得られる。
したがって、単電池の間に、耐熱断熱シート10又は耐熱断熱シート11を挿入すれば、1つの単電池が発熱しても、隣の単電池が、その熱の影響により劣化することを防止しやすい。
また、全体の厚さが薄いため、耐熱断熱シート10を使用した組電池全体の厚さを抑制できる。
また、主に無機成分で構成されているため、不燃性を確保しやすい。
In addition, it has a low-density layer having a thickness equal to or higher than the high-density layer, and there are few clay minerals present in the low-density layer. This low-density layer has a function as a heat insulating layer because the voids between the inorganic fibers are secured.
Therefore, excellent heat insulating properties can be obtained even though the overall thickness is suppressed.
Therefore, if the heat-resistant heat-insulating sheet 10 or the heat-resistant heat-insulating sheet 11 is inserted between the cells, even if one cell generates heat, it is easy to prevent the adjacent cell from deteriorating due to the influence of the heat. ..
Further, since the overall thickness is thin, the thickness of the entire assembled battery using the heat-resistant heat insulating sheet 10 can be suppressed.
Moreover, since it is mainly composed of inorganic components, it is easy to secure nonflammability.

[耐熱断熱シートの製造方法]
本発明の耐熱断熱シートの製造方法に特に限定はないが、例えば、以下の製法1と製法2が好適に適用できる。
[Manufacturing method of heat-resistant heat insulating sheet]
The method for producing the heat-resistant heat-insulating sheet of the present invention is not particularly limited, but for example, the following production methods 1 and 2 can be preferably applied.

(製法1)
製法1は、無機繊維と粘土鉱物の合計含有量が80質量%以上であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満である低密度シートの第1の面と第2の面の少なくとも一方に、前記低密度シートより密度が大きく、無機繊維と粘土鉱物の合計含有量が90質量%以上であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%以上である高密度シートを積層する方法である。
(Manufacturing method 1)
In the production method 1, the total content of the inorganic fiber and the clay mineral is 80% by mass or more, and the ratio of the clay mineral content to the total content of the inorganic fiber and the clay mineral is less than 50% by mass. The density is higher than that of the low-density sheet on at least one of the first surface and the second surface, and the total content of the inorganic fiber and the clay mineral is 90% by mass or more, which is the total content of the inorganic fiber and the clay mineral. This is a method of laminating high-density sheets having a clay mineral content of 50% by mass or more.

低密度シートは、無機繊維のみで構成されていてもよいし、無機繊維の他にバインダー等の任意成分を含んでいてもよい。また、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満である範囲で粘土鉱物を含んでもよい。低密度シートは、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が低い方が好ましく、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましい。粘土鉱物を含まないことが最も好ましい。但し、粘土鉱物を含むことにより、有機バインダーの使用量を減らすことができるため、粘土鉱物の含有量はシートの引っ張り強度、繊維の保持力等を勘案して適宜調節される。 The low-density sheet may be composed of only inorganic fibers, or may contain an optional component such as a binder in addition to the inorganic fibers. Further, the clay mineral may be contained in a range in which the ratio of the content of the clay mineral to the total content of the inorganic fiber and the clay mineral is less than 50% by mass. In the low-density sheet, the ratio of the content of the clay mineral to the total content of the inorganic fiber and the clay mineral is preferably low, preferably 40% by mass or less, and more preferably 30% by mass or less. It is more preferably 20% by mass or less, and particularly preferably 10% by mass or less. Most preferably, it does not contain clay minerals. However, since the amount of the organic binder used can be reduced by including the clay mineral, the content of the clay mineral is appropriately adjusted in consideration of the tensile strength of the sheet, the holding power of the fiber, and the like.

低密度シートにおける無機繊維と粘土鉱物の合計含有量(粘土鉱物を含まない場合は、無機繊維の含有量)は80質量%以上であり、85質量%以上であることが好ましい。低密度シートの強度を得やすくするために、有機バインダーを使用する場合は、低密度シートにおける無機繊維と粘土鉱物の合計含有量(粘土鉱物を含まない場合は、無機繊維の含有量)は、90質量%以下であってもよい。 The total content of the inorganic fiber and the clay mineral in the low-density sheet (the content of the inorganic fiber when the clay mineral is not contained) is 80% by mass or more, preferably 85% by mass or more. When using an organic binder to facilitate the strength of the low density sheet, the total content of the inorganic fiber and clay mineral in the low density sheet (or the content of the inorganic fiber if the clay mineral is not contained) is It may be 90% by mass or less.

低密度シートは、主として耐熱断熱シート10又は耐熱断熱シート11における低密度層1を構成する部分となるため、低密度シートの好ましい厚さ、坪量、密度、及び低密度シートを構成する無機繊維、バインダー等の構成材料の好ましい態様は、耐熱断熱シートの実施形態における低密度層1について説明したのと同様である。 Since the low-density sheet is mainly a portion constituting the low-density layer 1 in the heat-resistant heat insulating sheet 10 or the heat-resistant heat insulating sheet 11, the preferable thickness, basis weight, density of the low-density sheet, and the inorganic fibers constituting the low-density sheet. , A preferred embodiment of the constituent material such as a binder is the same as that described for the low density layer 1 in the embodiment of the heat resistant heat insulating sheet.

低密度シートは、乾式法又は湿式法により無機繊維の不織布を形成することにより製造できる。中でも湿式法が、無機繊維を折損することが少なく、また地合いが良好なシートを形成しやすいため好ましい。
湿式法では、無機繊維、必要に応じてさらにバインダー等の任意成分を含むスラリーを抄紙することにより無機繊維の不織布が得られる。
バインダー以外の任意成分としては、分散剤、保液剤、粘度調整剤、pH調整剤、充填剤等が挙げられる。
The low density sheet can be produced by forming a non-woven fabric of inorganic fibers by a dry method or a wet method. Of these, the wet method is preferable because it is less likely to break the inorganic fibers and it is easy to form a sheet having a good texture.
In the wet method, a non-woven fabric of inorganic fibers can be obtained by papermaking a slurry containing inorganic fibers and, if necessary, an optional component such as a binder.
Examples of the optional component other than the binder include a dispersant, a liquid retaining agent, a viscosity regulator, a pH regulator, a filler and the like.

得られた不織布における無機繊維は、熱溶融タイプのバインダーを含む場合は、サーマルボンド法により結合できる。
熱溶融タイプのバインダーを含まない場合は、フィブリル化繊維の添加、微細繊維の添加、ニードルパンチ、ウォータジェットによる水流交絡などで、繊維間を交絡させることにより、シートを形成できる。
The inorganic fibers in the obtained non-woven fabric can be bonded by a thermal bond method when a heat-melt type binder is contained.
When the heat-melting type binder is not included, a sheet can be formed by entwining the fibers by adding fibrillated fibers, adding fine fibers, needle punching, water flow entanglement by a water jet, or the like.

高密度シートは、無機繊維と粘土鉱物のみで構成されていてもよいし、無機繊維と粘土鉱物の他にバインダー等の任意成分を含んでいてもよい。無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合は50質量%以上である。
高密度シートにおける無機繊維と粘土鉱物の合計含有量は90質量%以上であり、100質量%であってもよい。
バインダー以外の任意成分としては、分散剤、保液剤、粘度調整剤、pH調整剤、充填剤等が挙げられる。
The high-density sheet may be composed of only inorganic fibers and clay minerals, or may contain optional components such as a binder in addition to the inorganic fibers and clay minerals. The ratio of the content of clay minerals to the total content of inorganic fibers and clay minerals is 50% by mass or more.
The total content of the inorganic fiber and the clay mineral in the high-density sheet is 90% by mass or more, and may be 100% by mass.
Examples of the optional component other than the binder include a dispersant, a liquid retaining agent, a viscosity regulator, a pH regulator, a filler and the like.

高密度シートは、主として耐熱断熱シート10又は耐熱断熱シート11における第1高密度層2又は第2高密度層3を構成する部分となるため、高密度シートの好ましい厚さ、坪量、密度、及び高密度シートを構成する無機繊維、粘土鉱物、バインダー等の構成材料の好ましい態様は、耐熱断熱シートの実施形態における第1高密度層2又は第2高密度層3について説明したのと同様である。 Since the high-density sheet is mainly a portion constituting the first high-density layer 2 or the second high-density layer 3 in the heat-resistant heat insulating sheet 10 or the heat-resistant heat insulating sheet 11, the preferred thickness, basis weight, and density of the high-density sheet are determined. The preferred embodiment of the constituent materials such as the inorganic fibers, clay minerals, and binders constituting the high-density sheet is the same as that described for the first high-density layer 2 or the second high-density layer 3 in the embodiment of the heat-resistant heat insulating sheet. is there.

高密度シートは、乾式法又は湿式法により無機繊維の不織布のシートを形成し、その後粘土鉱物のスラリーを含浸、塗布、印刷することにより製造できる。
不織布を形成するには、湿式法が無機繊維を折損することが少なく、また地合いが良好なシートを形成しやすいため好ましい。
湿式法では、無機繊維、必要に応じてさらにバインダー等の任意成分を含むスラリーを抄紙することにより無機繊維の不織布が得られる。
バインダー以外の任意成分としては、分散剤、保液剤、粘度調整剤、pH調整剤、充填剤等が挙げられる。
無機繊維スラリーを湿式抄紙する工程では、公知の抄紙機を用いることができる。抄紙機としては、円網抄紙機、傾斜型抄紙機、長網抄紙機、短網抄紙機が挙げられ、これら抄紙機の同種または異種を組み合わせて多層抄紙を行ってもよい。
The high-density sheet can be produced by forming a non-woven fabric sheet of inorganic fibers by a dry method or a wet method, and then impregnating, applying, and printing a slurry of clay minerals.
In order to form a non-woven fabric, the wet method is preferable because the inorganic fibers are less likely to be broken and a sheet having a good texture is easily formed.
In the wet method, a non-woven fabric of inorganic fibers can be obtained by papermaking a slurry containing inorganic fibers and, if necessary, an optional component such as a binder.
Examples of the optional component other than the binder include a dispersant, a liquid retaining agent, a viscosity regulator, a pH regulator, a filler and the like.
A known paper machine can be used in the step of wet-making the inorganic fiber slurry. Examples of the paper machine include a circular net paper machine, an inclined paper machine, a long net paper machine, and a short net paper machine, and the same type or a different type of these paper machines may be combined to perform multi-layer paper making.

得られた不織布における無機繊維は、熱溶融タイプのバインダーを含む場合は、サーマルボンド法により結合できる。
熱溶融タイプのバインダーを含まない場合は、フィブリル化繊維の添加、微細繊維の添加、ニードルパンチ、ウォータジェットによる水流交絡などで、繊維間を交絡させることにより、シートを形成できる。
The inorganic fibers in the obtained non-woven fabric can be bonded by a thermal bond method when a heat-melt type binder is contained.
When the heat-melting type binder is not included, a sheet can be formed by entwining the fibers by adding fibrillated fibers, adding fine fibers, needle punching, water flow entanglement by a water jet, or the like.

製法1では、粘土鉱物のスラリーを、得られた不織布のシートに均質に含浸させることが好ましい。そのため、粘土鉱物のスラリーの25℃におけるブルックフィールド型(B型)粘度計による粘度は、1〜1000mPa・sであることが好ましく、10〜200mPa・sであることがより好ましい。 In the production method 1, it is preferable to uniformly impregnate the obtained non-woven fabric sheet with the clay mineral slurry. Therefore, the viscosity of the clay mineral slurry at 25 ° C. by the Brookfield type (B type) viscometer is preferably 1 to 1000 mPa · s, and more preferably 10 to 200 mPa · s.

上記好ましい粘度としながら、必要な粘土鉱物担持量を得るため、例えば粘土鉱物がβ型セピオライトの場合、スラリーの固形分濃度は、1〜30質量%であることが好ましく、5〜20質量%であることがより好ましい。
粘土鉱物のスラリーには、分散剤、保液剤、粘度調整剤、pH調整剤、有機バインダー、無機バインダー、充填剤等を必要に応じて添加してもよい。
In order to obtain the required clay mineral carrying amount while maintaining the above-mentioned preferable viscosity, for example, when the clay mineral is β-type sepiolite, the solid content concentration of the slurry is preferably 1 to 30% by mass, preferably 5 to 20% by mass. More preferably.
Dispersants, liquid retention agents, viscosity regulators, pH regulators, organic binders, inorganic binders, fillers and the like may be added to the clay mineral slurry as necessary.

得られた高密度シートは、未乾燥状態のまま低密度シートに重ね、その後加熱乾燥することが好ましい。低密度シートに重ねてから乾燥することにより、低密度シートと高密度シートとを一体化できる。
乾燥には、一般的な、接触、非接触の乾燥方法を用いることができる。具体的には熱風乾燥、赤外線乾燥、誘導乾燥、多筒ドライヤー乾燥、シリンダードライヤー乾燥等を用いることができる。乾燥温度は、100〜180℃が好ましく、100〜150℃がより好ましい。乾燥時間は粘土鉱物スラリー中の水分量、乾燥手段によって適宜調節されるが、0.5〜30分が好ましく、1〜10分がより好ましい。
なお、低密度シートの両面に高密度シートを積層すれば耐熱断熱シート10が得られる。また、一方の面のみに高密度シートを積層すれば耐熱断熱シート11が得られる。
It is preferable that the obtained high-density sheet is stacked on the low-density sheet in an undried state and then heat-dried. The low-density sheet and the high-density sheet can be integrated by stacking them on the low-density sheet and then drying them.
For drying, a general contact or non-contact drying method can be used. Specifically, hot air drying, infrared drying, induction drying, multi-cylinder dryer drying, cylinder dryer drying and the like can be used. The drying temperature is preferably 100 to 180 ° C, more preferably 100 to 150 ° C. The drying time is appropriately adjusted depending on the amount of water in the clay mineral slurry and the drying means, but is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
The heat-resistant heat-insulating sheet 10 can be obtained by laminating the high-density sheets on both sides of the low-density sheet. Further, if the high-density sheet is laminated only on one surface, the heat-resistant heat-insulating sheet 11 can be obtained.

(製法2)
製法2は、無機繊維と粘土鉱物の合計含有量が80質量%以上であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満である低密度シートの第1の面と第2の面の少なくとも一方に、粘土鉱物のスラリー層を形成する方法である。
(Manufacturing method 2)
In the production method 2, the total content of the inorganic fiber and the clay mineral is 80% by mass or more, and the ratio of the content of the clay mineral to the total content of the inorganic fiber and the clay mineral is less than 50% by mass. This is a method of forming a clay mineral slurry layer on at least one of the first surface and the second surface.

低密度シートは、無機繊維のみで構成されていてもよいし、無機繊維の他にバインダー等の任意成分を含んでいてもよい。また、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満である範囲で粘土鉱物を含んでもよい。低密度シートは、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が低い方が好ましく、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましい。粘土鉱物を含まないことが最も好ましい。但し、粘土鉱物を含むことにより、有機バインダーの使用量を減らすことができるため、粘土鉱物の含有量はシートの引っ張り強度、繊維の保持力等を勘案して適宜調節される。 The low-density sheet may be composed of only inorganic fibers, or may contain an optional component such as a binder in addition to the inorganic fibers. Further, the clay mineral may be contained in a range in which the ratio of the content of the clay mineral to the total content of the inorganic fiber and the clay mineral is less than 50% by mass. In the low-density sheet, the ratio of the content of the clay mineral to the total content of the inorganic fiber and the clay mineral is preferably low, preferably 40% by mass or less, and more preferably 30% by mass or less. It is more preferably 20% by mass or less, and particularly preferably 10% by mass or less. Most preferably, it does not contain clay minerals. However, since the amount of the organic binder used can be reduced by including the clay mineral, the content of the clay mineral is appropriately adjusted in consideration of the tensile strength of the sheet, the holding power of the fiber, and the like.

低密度シートにおける無機繊維と粘土鉱物の合計含有量(粘土鉱物を含まない場合は、無機繊維の含有量)は80質量%以上であり、85質量%以上であることが好ましい。有機バインダーを使用して、低密度シートの強度を得やすくするために、低密度シートにおける無機繊維と粘土鉱物の合計含有量(粘土鉱物を含まない場合は、無機繊維の含有量)は、90質量%以下であることが好ましい。
バインダー以外の任意成分としては、分散剤、保液剤、粘度調整剤、pH調整剤、充填剤等が挙げられる。
The total content of the inorganic fiber and the clay mineral in the low-density sheet (the content of the inorganic fiber when the clay mineral is not contained) is 80% by mass or more, preferably 85% by mass or more. In order to facilitate the strength of the low density sheet using the organic binder, the total content of the inorganic fiber and clay mineral in the low density sheet (or the content of the inorganic fiber if the clay mineral is not contained) is 90. It is preferably mass% or less.
Examples of the optional component other than the binder include a dispersant, a liquid retaining agent, a viscosity regulator, a pH regulator, a filler and the like.

低密度シートは、耐熱断熱シート10又は耐熱断熱シート11における低密度層1を構成する部分となるため、低密度シートの好ましい坪量、密度は、耐熱断熱シートの実施形態における低密度層1について説明したのと同様である。
但し、粘土鉱物のスラリーが低密度シートに含浸した場合は、含浸の度合いに応じて、低密度層1の厚さは低密度シートの厚さよりも多少薄くなる。
Since the low-density sheet is a part constituting the low-density layer 1 in the heat-resistant heat-insulating sheet 10 or the heat-resistant heat-insulating sheet 11, the preferable basis weight and density of the low-density sheet are the low-density layer 1 in the embodiment of the heat-resistant heat insulating sheet. It is the same as explained.
However, when the clay mineral slurry is impregnated in the low-density sheet, the thickness of the low-density layer 1 becomes slightly thinner than the thickness of the low-density sheet, depending on the degree of impregnation.

製法2の低密度シートに使用する無機繊維は、繊維径10μm以下の無機繊維を含むことが好ましく、繊維径3〜10μmの無機繊維を含むことがより好ましい。
繊維径10μm以下の無機繊維を含むことにより、無機繊維間の空隙が狭くなるため、形成する粘土鉱物のスラリー層が、低密度シートの表面近傍に留まりやすくなる。
スラリー層が、低密度シートの表面近傍に留まると、スラリー層が高密度となりやすく、高い遮蔽能力を有する高密度層を得やすい。
低密度シートを構成する無機繊維、バインダー等の構成材料のその他の好ましい態様は、低密度層1の構成材料の好ましい態様と同様である。
低密度シートは、製法1の低密度シートと同様にして得ることができる。
The inorganic fiber used in the low-density sheet of the production method 2 preferably contains an inorganic fiber having a fiber diameter of 10 μm or less, and more preferably contains an inorganic fiber having a fiber diameter of 3 to 10 μm.
By containing the inorganic fibers having a fiber diameter of 10 μm or less, the voids between the inorganic fibers are narrowed, so that the slurry layer of the clay mineral to be formed tends to stay near the surface of the low-density sheet.
When the slurry layer stays near the surface of the low-density sheet, the slurry layer tends to have a high density, and a high-density layer having a high shielding ability can be easily obtained.
Other preferred embodiments of the constituent materials such as the inorganic fibers and binders constituting the low-density sheet are the same as the preferred embodiments of the constituent materials of the low-density layer 1.
The low-density sheet can be obtained in the same manner as the low-density sheet of Production Method 1.

粘土鉱物のスラリー層を形成する方法としては、粘土鉱物のスラリーを直接塗布、印刷するか、あるいは一旦形成した粘土鉱物のスラリーの塗布層を転写する方法が挙げられる。
低密度シート上へ粘土鉱物のスラリーを塗布、印刷する方法としては、スプレー塗布、カーテン塗布、ロール塗布、バー塗布、ブレード塗布、フレキソ印刷、グラビア印刷、スクリーン印刷、オフセット印刷等、一般的な塗布、印刷方法が挙げられる。
一旦形成した粘土鉱物のスラリーの塗布層を転写する場合、離型シート上に粘土鉱物のスラリーを塗布することによって、粘土鉱物のスラリーの塗布層を一旦形成することができる。
離型シートとしては、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、フッ素樹脂フィルム、シリコン樹脂フィルム、離型紙等が好適に使用できる。
離型シート上へ粘土鉱物のスラリーを塗布する方法としては、スプレー塗布、カーテン塗布、ロール塗布、バー塗布、ブレード塗布、フレキソ印刷、グラビア印刷、スクリーン印刷、オフセット印刷等、一般的な塗布、印刷方法が挙げられる。
Examples of the method for forming the clay mineral slurry layer include a method of directly applying and printing the clay mineral slurry, or a method of transferring the once formed clay mineral slurry coating layer.
As a method of applying and printing a clay mineral slurry on a low-density sheet, general coating such as spray coating, curtain coating, roll coating, bar coating, blade coating, flexographic printing, gravure printing, screen printing, offset printing, etc. , Printing method can be mentioned.
When the coating layer of the clay mineral slurry once formed is transferred, the coating layer of the clay mineral slurry can be once formed by coating the clay mineral slurry on the release sheet.
As the release sheet, a polyester film, a polyethylene film, a polypropylene film, a fluororesin film, a silicon resin film, a release paper and the like can be preferably used.
As a method of applying a clay mineral slurry on a release sheet, general coating and printing such as spray coating, curtain coating, roll coating, bar coating, blade coating, flexographic printing, gravure printing, screen printing, offset printing, etc. The method can be mentioned.

粘土鉱物のスラリー層は、低密度シートの表面のみに留まることが好ましい。そのため、塗布、印刷、又は転写する際の塗布層の25℃における回転円錐―平板レオメーターによる粘度は、20〜100000mPa・sであることが好ましく、100〜10000mPa・sであることがより好ましい。 The clay mineral slurry layer preferably stays only on the surface of the low density sheet. Therefore, the viscosity of the coating layer at 25 ° C. by a rotating cone-plate rheometer during coating, printing, or transfer is preferably 20 to 100,000 mPa · s, more preferably 100 to 10,000 mPa · s.

上記好ましい粘度を得るため、粘土鉱物の固形分濃度は高い方が好ましい。例えば粘土鉱物がβ型セピオライトの場合、スラリーの固形分濃度は、10〜40質量%であることが好ましく、15〜30質量%であることがより好ましい。
但し、スラリーの固形分濃度を10質量%未満とし、粘度調整剤をスラリーに適量添加することにより上記好ましい粘度を得ることも可能である。
また、離型シート上に形成した塗布層を、いったん静置して流動性を低下させたのち、低密度シート上に転写してもよい。さらにまた、塗布したスラリーを半乾燥させ、粘度を高めてから転写してもよい。
粘土鉱物のスラリーには、分散剤、保液剤、粘度調整剤、pH調整剤、有機バインダー、無機バインダー、充填剤等を必要に応じて添加してもよい。
In order to obtain the above-mentioned preferable viscosity, it is preferable that the solid content concentration of the clay mineral is high. For example, when the clay mineral is β-type sepiolite, the solid content concentration of the slurry is preferably 10 to 40% by mass, more preferably 15 to 30% by mass.
However, it is also possible to obtain the above-mentioned preferable viscosity by setting the solid content concentration of the slurry to less than 10% by mass and adding an appropriate amount of the viscosity modifier to the slurry.
Further, the coating layer formed on the release sheet may be allowed to stand once to reduce the fluidity, and then transferred onto the low-density sheet. Furthermore, the applied slurry may be semi-dried to increase its viscosity before transfer.
Dispersants, liquid retention agents, viscosity regulators, pH regulators, organic binders, inorganic binders, fillers and the like may be added to the clay mineral slurry as necessary.

転写により得られた塗布層は、未乾燥状態のまま、または半乾燥状態で低密度シートに重ね、その後加熱乾燥してから、離型シートを剥離することが好ましい。低密度シートに重ねてから乾燥することにより、低密度シートに塗布層が転写される。
好ましい乾燥条件は、製法1における乾燥条件と同様である。
なお、低密度シートの両面に粘土鉱物のスラリー層を転写等によって形成すれば耐熱断熱シート10が得られる。また、一方の面のみに粘土鉱物のスラリー層を転写等によって形成すれば耐熱断熱シート11が得られる。
It is preferable that the coating layer obtained by transfer is laminated on a low-density sheet in an undried state or in a semi-dried state, then heat-dried, and then the release sheet is peeled off. The coating layer is transferred to the low-density sheet by stacking it on the low-density sheet and then drying it.
The preferred drying conditions are the same as the drying conditions in the production method 1.
The heat-resistant heat-insulating sheet 10 can be obtained by forming a clay mineral slurry layer on both sides of the low-density sheet by transfer or the like. Further, if a clay mineral slurry layer is formed on only one surface by transfer or the like, the heat-resistant heat insulating sheet 11 can be obtained.

(その他の製法)
その他、低密度シートと高密度シートを単に重ねる方法、低密度シートと高密度シートを接着剤で接着する方法が挙げられる。
(Other manufacturing methods)
In addition, a method of simply stacking a low-density sheet and a high-density sheet, and a method of adhering the low-density sheet and the high-density sheet with an adhesive can be mentioned.

[組電池]
図3は一実施形態に係る組電池100の構成図である。本実施形態の組電池は、図3に示すように、複数のラミネート形単電池20の間に耐熱断熱シート10が挿入されている。また、最下層と最上層のラミネート形単電池20(最外層に積層されたラミネート形単電池20)の外側には、耐熱断熱シート11が配置されている。耐熱断熱シート11は、各々第1高密度層2がラミネート形単電池20側となるように配置されている。
組電池100は、金属の外装体等に収容され、バッテリーパックが形成される。
[Battery set]
FIG. 3 is a configuration diagram of the assembled battery 100 according to the embodiment. In the assembled battery of the present embodiment, as shown in FIG. 3, a heat-resistant heat insulating sheet 10 is inserted between a plurality of laminated cell batteries 20. Further, a heat-resistant heat insulating sheet 11 is arranged on the outside of the laminated cell 20 (laminated cell 20 laminated on the outermost layer) of the lowermost layer and the uppermost layer. The heat-resistant heat-insulating sheet 11 is arranged so that the first high-density layer 2 is on the side of the laminated cell 20.
The assembled battery 100 is housed in a metal outer body or the like to form a battery pack.

ラミネート形単電池20は、ラミネートフィルム内に電極群と電解液が収容されてるい公知のラミネート形単電池であり。図3に示すように、正極タブ21と負極タブ22とがラミネートフィルム外に設けられている。
耐熱断熱シート10は、各ラミネート形単電池20の間を、面方向全体にわたって遮断するように挿入されているが、正極タブ21と負極タブ22とは、耐熱断熱シート10の外側まで導出されている。
The laminated cell 20 is a known laminated cell in which an electrode group and an electrolytic solution are housed in a laminate film. As shown in FIG. 3, the positive electrode tab 21 and the negative electrode tab 22 are provided outside the laminated film.
The heat-resistant heat-insulating sheet 10 is inserted so as to block between the laminated cell cells 20 over the entire surface direction, but the positive electrode tab 21 and the negative electrode tab 22 are led out to the outside of the heat-resistant heat-insulating sheet 10. There is.

組電池100は、各ラミネート形単電池20の間に耐熱断熱シート10が挿入されているので、1つのラミネート形単電池20に発熱等の不具合が生じても、その不具合が隣接するラミネート形単電池20に悪影響を及ぼすことを防止または遅延させることができる。
また、最下層または最上層のラミネート形単電池20に発熱等の不具合が生じても、その不具合が他のバッテリーパックに悪影響を及ぼすことを防止または遅延させることができる。
Since the heat-resistant heat-insulating sheet 10 is inserted between the laminated batteries 20 in the assembled battery 100, even if a problem such as heat generation occurs in one laminated battery 20, the problem is adjacent to the laminated battery 100. It is possible to prevent or delay the adverse effect on the battery 20.
Further, even if a defect such as heat generation occurs in the lowermost layer or the uppermost layer laminated cell 20, it is possible to prevent or delay the defect from adversely affecting other battery packs.

なお、本実施形態の組電池は、単電池がラミネート形単電池20である態様としたが、単電池はラミネート形単電池に限定されず、例えば金属ケースに電極群と電解液が収容されている単電池であってもよい。ただし、ラミネート形単電池は、熱の影響を受けやすいため、本発明の効果をより活かす観点では、ラミネート形単電池であることが好ましい。 The assembled battery of the present embodiment has an embodiment in which the cell is a laminated cell 20. However, the cell is not limited to the laminated cell, and the electrode group and the electrolytic solution are housed in, for example, a metal case. It may be a single battery. However, since the laminated cell is easily affected by heat, it is preferable to use the laminated cell from the viewpoint of further utilizing the effects of the present invention.

また、本実施形態では、各ラミネート形単電池20間に1枚の耐熱断熱シート10を挿入する態様としたが、1枚の耐熱断熱シート11を挿入してもよい。
ただし、耐熱断熱シート10を用いた方が、いずれの側のラミネート形単電池20に問題が生じた場合にも、火炎や高温ガスの透過を抑制しやすい。1枚の耐熱断熱シート11を挿入した場合には、低密度層1が接する側のラミネート形単電池20に問題が生じた場合に、火炎や高温ガスの透過を抑制する効果が弱くなりやすい。
Further, in the present embodiment, one heat-resistant heat-insulating sheet 10 is inserted between each laminated cell 20, but one heat-resistant heat-insulating sheet 11 may be inserted.
However, it is easier to suppress the permeation of flames and high-temperature gas when the heat-resistant heat-insulating sheet 10 is used, even if a problem occurs in the laminated cell 20 on either side. When one heat-resistant heat-insulating sheet 11 is inserted, the effect of suppressing the permeation of flame or high-temperature gas tends to be weakened when a problem occurs in the laminated cell 20 on the side in which the low-density layer 1 is in contact.

各ラミネート形単電池20間には、複数枚重ねた耐熱断熱シートを挿入してもよい。複数枚重ねる場合、耐熱断熱シート10のみを重ねてもよいし、耐熱断熱シート11のみを重ねてもよいし、耐熱断熱シート10と耐熱断熱シート11を重ねてもよい。
組電池100全体の厚さを抑制する観点からは、1枚の耐熱断熱シートのみを挿入することが好ましく、複数枚重ねる場合は、2枚の耐熱断熱シート11を重ねることが好ましい。2枚の耐熱断熱シート11を重ねる場合は、互いの低密度層1が内側となるように重ねることが好ましい。
A plurality of stacked heat-resistant heat insulating sheets may be inserted between the laminated cell batteries 20. When a plurality of sheets are stacked, only the heat-resistant heat-insulating sheet 10 may be stacked, only the heat-resistant heat-insulating sheet 11 may be stacked, or the heat-resistant heat-insulating sheet 10 and the heat-resistant heat-insulating sheet 11 may be stacked.
From the viewpoint of suppressing the thickness of the entire assembled battery 100, it is preferable to insert only one heat-resistant heat-insulating sheet, and when a plurality of heat-resistant heat-insulating sheets are stacked, it is preferable to stack two heat-resistant heat-insulating sheets 11. When two heat-resistant heat-insulating sheets 11 are stacked, it is preferable to stack them so that the low-density layers 1 are on the inside.

最下層と最上層のラミネート形単電池20の外側には、耐熱断熱シート11に代えて耐熱断熱シート10を配置してもよい。また、複数枚重ねた耐熱断熱シートを配置してもよい。組電池100全体の厚さを抑制する観点からは、1枚の耐熱断熱シートのみを配置することが好ましい。
また、最下層と最上層のラミネート形単電池20の外側には、耐熱断熱シートを配置しなくてもよい。
A heat-resistant heat-insulating sheet 10 may be arranged in place of the heat-resistant heat-insulating sheet 11 on the outside of the lowermost layer and the uppermost layer of the laminated cell 20. Further, a plurality of heat-resistant heat-insulating sheets may be arranged. From the viewpoint of suppressing the thickness of the entire assembled battery 100, it is preferable to arrange only one heat-resistant heat-insulating sheet.
Further, it is not necessary to arrange the heat-resistant heat insulating sheet on the outside of the laminated cell 20 of the lowermost layer and the uppermost layer.

以下、実施例により本発明を詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、%は特に断りのない限り質量%である。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples. In addition,% is mass% unless otherwise specified.

[測定方法、評価方法]
(低密度層と高密度層の境界面位置の決定)
各例の耐熱断熱シートでは、垂直断面の電子顕微鏡写真において高密度層と低密度層の境界が明瞭であったため、電子顕微鏡写真の観察画像から、直接低密度層と高密度層の境界面位置を決定した。
[Measurement method, evaluation method]
(Determining the position of the interface between the low-density layer and the high-density layer)
In the heat-insulating heat-insulating sheet of each example, the boundary between the high-density layer and the low-density layer was clear in the electron micrograph of the vertical cross section. It was determined.

(坪量、厚さ、密度)
精密スライサーによって、低密度層と高密度層の境界面において層間剥離し、低密度層と高密度層を分離した。
各分離した層の坪量をJIS P 8124:2011に規定される方法に準拠し測定し、続いて同じ層の厚さをJIS L1086規定の不織布、織物用定圧厚み計(測定圧力0.35N以下、測定直径25.2mm)で測定した。坪量を厚さで除した値を、密度とした。
なお、高密度層については、低密度層から剥離した2枚の高密度層の平均値とした。
また、耐熱断熱シート全体の坪量と厚さは、各層の合計値とし、耐熱断熱シート全体の密度は、全体の坪量を全体の厚さで除した値とした。
(Basis weight, thickness, density)
A precision slicer was used to delaminate the interface between the low-density layer and the high-density layer to separate the low-density layer and the high-density layer.
The basis weight of each separated layer is measured according to the method specified in JIS P 8124: 2011, and then the thickness of the same layer is measured for non-woven fabrics and woven fabrics (measured pressure 0.35 N or less) specified in JIS L1086. , Measurement diameter 25.2 mm). The value obtained by dividing the basis weight by the thickness was defined as the density.
For the high-density layer, the average value of the two high-density layers separated from the low-density layer was used.
The basis weight and thickness of the entire heat-resistant heat-insulating sheet were taken as the total value of each layer, and the density of the entire heat-resistant heat-insulating sheet was taken as the value obtained by dividing the total basis weight by the total thickness.

(無機繊維、粘土鉱物、および有機バインダー量)
各層の無機繊維、粘土鉱物、および有機バインダー量は、処方と、測定した坪量の値から、計算により求めた。
耐熱断熱シート全体の無機繊維、粘土鉱物、および有機バインダー量は、各層について求めた値の合計量とした。
(Amount of inorganic fiber, clay mineral, and organic binder)
The amounts of inorganic fibers, clay minerals, and organic binders in each layer were calculated from the formulation and the measured basis weight values.
The amounts of inorganic fibers, clay minerals, and organic binders in the entire heat-resistant heat-insulating sheet were the total amount of values obtained for each layer.

(燃焼熱)
ISO 5660−1:2002に定義されるコーンカロリメーターにより測定した。
(Heat of combustion)
Measured by a cone calorimeter as defined in ISO 5660-1: 2002.

(火炎に対する熱遮蔽性の測定)
各例の耐熱断熱シートを試験片として、ISO 9151:1995,JIS T 8021:2005に規定された「熱伝達性(火炎ばく露)試験」を行った。すなわち、試験片表面を一定の熱流束(80kW/m)の火炎にばく露した状態で、試験片裏面に設置したセンサーで温度上昇を計測し、計測した温度上昇のデータを基に、試験片の裏面の温度が32℃から56℃に上昇するまでの時間(秒)を求め、熱伝達指数(HTI24)を求めた。HTI24を試料の厚さで除して、火炎に対する熱遮蔽性(HTI24/厚さ:秒/mm)を求めた。
(Measurement of heat shielding property against flame)
Using the heat-resistant heat-insulating sheet of each example as a test piece, the "heat transfer (flame exposure) test" specified in ISO 9151: 1995, JIS T 8021: 2005 was performed. That is, with the surface of the test piece exposed to a flame of a constant heat flux (80 kW / m 2 ), the temperature rise is measured by a sensor installed on the back of the test piece, and the test is performed based on the measured temperature rise data. The time (seconds) until the temperature of the back surface of the piece rises from 32 ° C. to 56 ° C. was determined, and the heat transfer index (HTI24) was determined. HTI24 was divided by the thickness of the sample to determine the heat shielding property against flame (HTI24 / thickness: seconds / mm).

得られた測定値を以下の基準で評価した。
○:火炎に対する熱遮蔽性(HTI24)が7.0秒/mm以上。
×:火炎に対する熱遮蔽性(HTI24)が7.0秒/mm未満。
The obtained measured values were evaluated according to the following criteria.
◯: The heat shielding property (HTI24) against flame is 7.0 seconds / mm or more.
X: The heat shielding property (HTI24) against flame is less than 7.0 seconds / mm.

(高温熱遮蔽性の測定)
各例の耐熱断熱シートを試験片として、ISO 12127−1「接触熱による熱伝達性試験」を行った。すなわち、試験片の表面に300℃に加熱したシリンダを接触させ、試験片の裏面に設置したセンサーで温度上昇を計測し、計測した温度上昇のデータを基に、試験片の裏面の温度が10℃上昇するまでの時間(秒)を求め、試料の厚さで除して、高温に対する熱遮蔽性(秒/mm)を求めた。
(Measurement of high temperature heat shielding property)
Using the heat-resistant heat-insulating sheet of each example as a test piece, ISO 12127-1 “heat transfer test by contact heat” was performed. That is, a cylinder heated to 300 ° C. is brought into contact with the front surface of the test piece, the temperature rise is measured by a sensor installed on the back surface of the test piece, and the temperature of the back surface of the test piece is 10 based on the measured temperature rise data. The time (seconds) until the temperature rises was determined, and the heat shielding property against high temperature (seconds / mm) was determined by dividing by the thickness of the sample.

得られた測定値を以下の基準で評価した。
○:高温に対する熱遮蔽性が10.0秒/mm以上。
×:高温に対する熱遮蔽性が10.0秒/mm未満。
The obtained measured values were evaluated according to the following criteria.
◯: Heat shielding property against high temperature is 10.0 seconds / mm or more.
X: Heat shielding property against high temperature is less than 10.0 seconds / mm.

(耐熱性)
前記高温熱遮蔽性の測定後に、耐熱断熱シートを挟んでいたシリンダを外した際に、シートの形状を保てたものは○、崩壊してしまったものは×とした。
(Heat-resistant)
After the measurement of the high-temperature heat-shielding property, when the cylinder sandwiching the heat-resistant heat-insulating sheet was removed, the one that maintained the shape of the sheet was marked with ◯, and the one that collapsed was marked with x.

[実施例1]
(低密度シートの作成)
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を88質量部、バインダー成分としてポリビニルアルコール繊維(クラレ製)6質量部および芯鞘熱融着ポリエステル繊維ソフィットN720(クラレ製)6質量部を水中に投入した。
[Example 1]
(Creation of low density sheet)
88 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 10 μm and a fiber length of 10 mm, 6 parts by mass of polyvinyl alcohol fiber (manufactured by Kuraray) as a binder component, and core-sheath heat-sealed polyester fiber Sofit N720 (manufactured by Kuraray) 6 parts by mass was put into water.

さらに、水に溶解したポリオキシエチレンモノステアレート(花王製、「エマノーン 3199」)をガラス繊維に対して固形分として0.5%となるように添加し、攪拌してガラス繊維を分散させ、ガラス繊維を1.0%濃度で含むガラス繊維スラリーを得た。
得られたガラス繊維スラリーを傾斜ワイヤーマシンで湿式抄紙し、130℃のシリンダードライヤーで2分加熱して乾燥し、低密度シートを得た。得られた低密度シートは、厚さ0.68mm、坪量100g/mで、密度は0.15g/cmであった。
Further, polyoxyethylene monostearate (manufactured by Kao, "Emanone 3199") dissolved in water was added to the glass fibers so as to have a solid content of 0.5%, and the glass fibers were dispersed by stirring. A glass fiber slurry containing glass fibers at a concentration of 1.0% was obtained.
The obtained glass fiber slurry was wet-made with an inclined wire machine, heated with a cylinder dryer at 130 ° C. for 2 minutes and dried to obtain a low-density sheet. The obtained low-density sheet had a thickness of 0.68 mm, a basis weight of 100 g / m 2 , and a density of 0.15 g / cm 3 .

(高密度シートの形成)
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を44質量部、繊維径6μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を44質量部、バインダー成分としてポリビニルアルコール繊維(クラレ製)6質量部および芯鞘熱融着ポリエステル繊維ソフィットN720(クラレ製)6質量部を水中に投入した。
(Formation of high-density sheet)
44 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 10 μm and a fiber length of 10 mm, 44 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 6 μm and a fiber length of 10 mm, polyvinyl as a binder component 6 parts by mass of alcohol fiber (manufactured by Kuraray) and 6 parts by mass of core-sheath heat-sealed polyester fiber Sofit N720 (manufactured by Kuraray) were put into water.

さらに、水に溶解したポリオキシエチレンモノステアレート(花王製、「エマノーン 3199」)をガラス繊維に対して固形分として0.5%となるように添加し、攪拌してガラス繊維を分散させ、ガラス繊維を1.0%濃度で含むガラス繊維スラリーを得た。 Further, polyoxyethylene monostearate (manufactured by Kao, "Emanone 3199") dissolved in water was added to the glass fibers so as to have a solid content of 0.5%, and the glass fibers were dispersed by stirring. A glass fiber slurry containing glass fibers at a concentration of 1.0% was obtained.

得られたガラス繊維スラリーを傾斜ワイヤーマシンで湿式抄紙し、130℃のシリンダードライヤーで2分加熱して乾燥し、前駆体シートを得た。得られた前駆体シートは厚さ0.2mm、坪量30.9g/mで、密度は0.15g/cmであった。
上記前駆体シートに、25℃にて、スペイン産β型セピオライト(結晶性シリカ検出限界(0.1%)以下)の15%スラリー(25℃におけるB型粘度計による粘度38mPa・s)を、前駆体シート1mあたり252g含浸させて、未乾燥の高密度シートを得た。
The obtained glass fiber slurry was wet-made with an inclined wire machine, heated with a cylinder dryer at 130 ° C. for 2 minutes and dried to obtain a precursor sheet. The obtained precursor sheet had a thickness of 0.2 mm, a basis weight of 30.9 g / m 2 , and a density of 0.15 g / cm 3 .
A 15% slurry of β-type sepiolite (crystalline silica detection limit (0.1%) or less) produced in Spain (viscosity 38 mPa · s by a B-type viscometer at 25 ° C.) was applied to the precursor sheet at 25 ° C. By impregnating 252 g per 1 m 2 of the precursor sheet, an undried high-density sheet was obtained.

(低密度シートと高密度シートの積層)
得られた未乾燥の高密度シートを、前記低密度シートの両面にそれぞれ一枚ずつ積層したのち110℃の温風で10分間乾燥し、両表層に高密度層をもつ実施例1の耐熱断熱シートを得た。
(Lamination of low-density sheet and high-density sheet)
The obtained undried high-density sheet was laminated on both sides of the low-density sheet one by one, dried with warm air at 110 ° C. for 10 minutes, and heat-insulated in Example 1 having high-density layers on both surface layers. I got a sheet.

図4に、実施例1の耐熱断熱シートの表面の電子顕微鏡写真を示す。セピオライトによって、ガラス繊維間の空隙の大部分が閉鎖されていることがわかる。
また、図5に、実施例1の耐熱断熱シートの断面の電子顕微鏡写真を示す。内側が低密度になっており、その両側が厚さ0.16mmの高密度層となっていることがわかる。
FIG. 4 shows an electron micrograph of the surface of the heat-resistant heat-insulating sheet of Example 1. It can be seen that sepiolite closes most of the voids between the glass fibers.
Further, FIG. 5 shows an electron micrograph of a cross section of the heat-resistant heat-insulating sheet of Example 1. It can be seen that the inside has a low density, and both sides thereof are high-density layers having a thickness of 0.16 mm.

また、図6に実施例1の耐熱断熱シートの断面に対するエックス線電子マイクロアナライザ(XMA)によるマグネシウム元素の存在確率像を示す。セピオライトに含まれるMgが表面の高密度層に偏在しており、その厚さが0.16mmであることから、セピオライトは、表面の高密度層に偏在しており、それがガラス繊維間の空隙を閉塞していることがわかる。 Further, FIG. 6 shows an image of the existence probability of magnesium element by an X-ray electron microanalyzer (XMA) with respect to the cross section of the heat-resistant heat-insulating sheet of Example 1. Since Mg contained in sepiolite is unevenly distributed in the high-density layer on the surface and its thickness is 0.16 mm, sepiolite is unevenly distributed in the high-density layer on the surface, which is a gap between glass fibers. It can be seen that the

[実施例2]
(低密度シートの作成)
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を88質量部、バインダー成分としてポリビニルアルコール繊維(クラレ製)6質量部および芯鞘熱融着ポリエステル繊維ソフィットN720(クラレ製)6質量部を水中に投入した。
[Example 2]
(Creation of low density sheet)
88 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 10 μm and a fiber length of 10 mm, 6 parts by mass of polyvinyl alcohol fiber (manufactured by Kuraray) as a binder component, and core-sheath heat-sealed polyester fiber Sofit N720 (manufactured by Kuraray) 6 parts by mass was put into water.

さらに、水に溶解したポリオキシエチレンモノステアレート(花王製、「エマノーン 3199」)をガラス繊維に対して固形分として0.5%となるように添加し、攪拌してガラス繊維を分散し、ガラス繊維を1.0%濃度で含むガラス繊維スラリーを得た。
得られたガラス繊維スラリーを傾斜ワイヤーマシンで湿式抄紙し、130℃のシリンダードライヤーで2分加熱して乾燥し、低密度シートを得た。得られた低密度シートは厚さ1.0mm、坪量150g/mで、密度は0.15g/cmであった。
Further, polyoxyethylene monostearate (manufactured by Kao, "Emanone 3199") dissolved in water was added to the glass fibers so as to have a solid content of 0.5%, and the glass fibers were dispersed by stirring. A glass fiber slurry containing glass fibers at a concentration of 1.0% was obtained.
The obtained glass fiber slurry was wet-made with an inclined wire machine, heated with a cylinder dryer at 130 ° C. for 2 minutes and dried to obtain a low-density sheet. The obtained low-density sheet had a thickness of 1.0 mm, a basis weight of 150 g / m 2 , and a density of 0.15 g / cm 3 .

(高密度層の形成)
スペイン産β型セピオライト(結晶性シリカ検出限界(0.1%)以下)の15%スラリーにセピオライト固形分対比0.005質量%の増粘剤(SNシックナー929(サンノプコ製))を添加した。得られた塗料の粘度は回転円錐―平板レオメーターによる25℃環境での測定において12Pa・sであった。この塗料をアプリケーターで塗布量1000g/mとなるように塗布し、セピオライトの塗布層を形成した。
(Formation of high-density layer)
A thickener (SN Thickener 929 (manufactured by San Nopco)) having a solid content of Sepiolite of 0.005% by mass was added to a 15% slurry of β-type sepiolite produced in Spain (within the detection limit of crystalline silica (0.1%)). The viscosity of the obtained coating material was 12 Pa · s as measured in a 25 ° C. environment with a rotating cone-flat rheometer. This paint was applied with an applicator so as to have a coating amount of 1000 g / m 2, and a coating layer of sepiolite was formed.

塗布層が形成された前記ポリエステルフィルムを、前記低密度シートの両面に、それぞれ一枚ずつ塗布層が前記低密度シートに接するように積層した後、110℃で10分温風乾燥した。その後、ポリエステルフィルムを剥離し、前記低密度シートの両表層に高密度を形成し、実施例2の耐熱断熱シートを得た。
た。
The polyester film on which the coating layer was formed was laminated on both sides of the low-density sheet so that the coating layer was in contact with the low-density sheet, and then dried with warm air at 110 ° C. for 10 minutes. Then, the polyester film was peeled off to form high densities on both surface layers of the low-density sheet to obtain the heat-resistant heat-insulating sheet of Example 2.
Ta.

図7に、実施例2の耐熱断熱シートの表面の電子顕微鏡写真を示す。セピオライトの平滑な塗布層で、表面が閉鎖されていることがわかる。
また、図8に、実施例2の耐熱断熱シートの断面の電子顕微鏡写真を示す。内側が低密度層となっており、両表層に厚さ0.085mmの高密度層が形成されていることがわかる。
FIG. 7 shows an electron micrograph of the surface of the heat-resistant heat-insulating sheet of Example 2. It can be seen that the surface is closed with a smooth coating layer of sepiolite.
Further, FIG. 8 shows an electron micrograph of a cross section of the heat-resistant heat-insulating sheet of Example 2. It can be seen that the inside is a low-density layer, and high-density layers with a thickness of 0.085 mm are formed on both surface layers.

[実施例3]
(低密度シートの作成)
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を80質量部、バインダー成分としてポリビニルアルコール繊維(クラレ製)10質量部および芯鞘熱融着ポリエステル繊維ソフィットN720(クラレ製)10質量部を水中に投入した他は、実施例1と同様にして、低密度シートを得た。得られた低密度シートは厚さ0.68mm、坪量100g/mで、密度は0.15g/cmであった。
[Example 3]
(Creation of low density sheet)
80 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 10 μm and a fiber length of 10 mm, 10 parts by mass of polyvinyl alcohol fiber (manufactured by Kuraray) as a binder component, and core-sheath heat-sealed polyester fiber Sofit N720 (manufactured by Kuraray) A low-density sheet was obtained in the same manner as in Example 1 except that 10 parts by mass was put into water. The obtained low-density sheet had a thickness of 0.68 mm, a basis weight of 100 g / m 2 , and a density of 0.15 g / cm 3 .

(高密度シートの形成)
また、繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を40質量部、繊維径6μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を40質量部、バインダー成分としてポリビニルアルコール繊維(クラレ製)10質量部および芯鞘熱融着ポリエステル繊維ソフィットN720(クラレ製)10質量部を使用した他は、実施例1と同様にして、前駆体シートを得た。
得られた前駆体シートは厚さ0.2mm、坪量30.9g/mで、密度は0.15g/cmであった。
上記前駆体シートに、25℃にて、スペイン産β型セピオライト(結晶性シリカ検出限界(0.1%)以下)の15%スラリー(25℃におけるB型粘度計による粘度38mPa・s)を、前駆体シート1mあたり252g含浸させて、未乾燥の高密度シートを得た。
(Formation of high-density sheet)
In addition, 40 parts by mass of E glass fiber (manufactured by Owens Corning) having a fiber diameter of 10 μm and a fiber length of 10 mm, 40 parts by mass of E glass fiber (manufactured by Owens Corning) having a fiber diameter of 6 μm and a fiber length of 10 mm, and a binder component. A precursor sheet was obtained in the same manner as in Example 1 except that 10 parts by mass of polyvinyl alcohol fiber (manufactured by Kuraray) and 10 parts by mass of core-sheath heat-sealed polyester fiber Sofit N720 (manufactured by Kuraray) were used.
The obtained precursor sheet had a thickness of 0.2 mm, a basis weight of 30.9 g / m 2 , and a density of 0.15 g / cm 3 .
A 15% slurry of β-type sepiolite (crystalline silica detection limit (0.1%) or less) produced in Spain (viscosity 38 mPa · s by a B-type viscometer at 25 ° C.) was applied to the precursor sheet at 25 ° C. By impregnating 252 g per 1 m 2 of the precursor sheet, an undried high-density sheet was obtained.

(低密度シートと高密度シートの積層)
得られた未乾燥の高密度シートを、前記低密度シートの両面にそれぞれ一枚ずつ積層したのち110℃の温風で10分間乾燥し、両表層に高密度層をもつ実施例1の耐熱断熱シートを得た。
(Lamination of low-density sheet and high-density sheet)
The obtained undried high-density sheet was laminated on both sides of the low-density sheet one by one, dried with warm air at 110 ° C. for 10 minutes, and heat-insulated in Example 1 having high-density layers on both surface layers. I got a sheet.

[実施例4]
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)に代えて、繊維径15μm、繊維長13mmのバサルト繊維CBF15−12(山西バサルトテクノロジー社製)を用いた他は、実施例1と同様にして、低密度シートを得た。
得られた低密度シートは厚さ0.70mm、坪量100g/mで、密度は0.14g/cmであった。
[Example 4]
Examples except that the basalt fiber CBF15-12 (manufactured by Yamanishi Basalt Technology) having a fiber diameter of 15 μm and a fiber length of 13 mm was used instead of the E glass fiber (manufactured by Owens Corning) having a fiber diameter of 10 μm and a fiber length of 10 mm. A low density sheet was obtained in the same manner as in 1.
The obtained low-density sheet had a thickness of 0.70 mm, a basis weight of 100 g / m 2 , and a density of 0.14 g / cm 3 .

また、実施例1と同様にして未乾燥の高密度シートを作成し、実施例1と同様にして前記低密度シートの両面にそれぞれ一枚ずつ積層したのち110℃の温風で10分間乾燥し、両表層に高密度層をもつ実施例1の耐熱断熱シートを得た。 Further, an undried high-density sheet was prepared in the same manner as in Example 1, one by one was laminated on both sides of the low-density sheet in the same manner as in Example 1, and then dried with warm air at 110 ° C. for 10 minutes. , A heat-resistant heat insulating sheet of Example 1 having high-density layers on both surface layers was obtained.

[比較例1]
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を90質量部、バインダー成分としてポリビニルアルコール繊維(クラレ製)6質量部および芯鞘熱融着ポリエステル繊維ソフィットN720(クラレ製)6質量部を水中に投入した。
[Comparative Example 1]
90 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 10 μm and a fiber length of 10 mm, 6 parts by mass of polyvinyl alcohol fiber (manufactured by Kuraray) as a binder component, and core-sheath heat-sealed polyester fiber Sofit N720 (manufactured by Kuraray) 6 parts by mass was put into water.

さらに、水に溶解したポリオキシエチレンモノステアレート(花王製、「エマノーン 3199」)をガラス繊維に対して固形分として0.5%となるように添加し、攪拌してガラス繊維を分散し、ガラス繊維を1.0%濃度で含むガラス繊維スラリーを得た。
得られたガラス繊維スラリーを傾斜ワイヤーマシンで湿式抄紙し、130℃のシリンダードライヤーで2分加熱して乾燥し、全体が低密度とされた比較例1の耐熱断熱シートを得た。
得られた耐熱断熱シートは厚さ1.2mm、坪量200g/mで、密度は0.17g/cmであった。
Further, polyoxyethylene monostearate (manufactured by Kao, "Emanone 3199") dissolved in water was added to the glass fibers so as to have a solid content of 0.5%, and the glass fibers were dispersed by stirring. A glass fiber slurry containing glass fibers at a concentration of 1.0% was obtained.
The obtained glass fiber slurry was wet-made with an inclined wire machine, heated with a cylinder dryer at 130 ° C. for 2 minutes and dried to obtain a heat-resistant heat-insulating sheet of Comparative Example 1 having a low density as a whole.
The obtained heat-resistant heat-insulating sheet had a thickness of 1.2 mm, a basis weight of 200 g / m 2 , and a density of 0.17 g / cm 3 .

図9に、比較例1の耐熱断熱シートの表面の電子顕微鏡写真を示す。セピオライト等の粘土鉱物を用いていないため、ガラス繊維間の空隙が閉鎖されず、そのまま開口していることがわかる。 FIG. 9 shows an electron micrograph of the surface of the heat-resistant heat-insulating sheet of Comparative Example 1. It can be seen that since the clay mineral such as sepiolite is not used, the voids between the glass fibers are not closed and are opened as they are.

[比較例2]
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を90質量部、バインダー成分としてポリビニルアルコール繊維(クラレ製)6質量部および芯鞘熱融着ポリエステル繊維ソフィットN720(クラレ製)6質量部を水中に投入した。
[Comparative Example 2]
90 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 10 μm and a fiber length of 10 mm, 6 parts by mass of polyvinyl alcohol fiber (manufactured by Kuraray) as a binder component, and core-sheath heat-sealed polyester fiber Sofit N720 (manufactured by Kuraray) 6 parts by mass was put into water.

さらに、水に溶解したポリオキシエチレンモノステアレート(花王製、「エマノーン 3199」)をガラス繊維に対して固形分として0.5%となるように添加し、攪拌してガラス繊維を分散させ、ガラス繊維を1.0%濃度で含むガラス繊維スラリーを得た。 Further, polyoxyethylene monostearate (manufactured by Kao, "Emanone 3199") dissolved in water was added to the glass fibers so as to have a solid content of 0.5%, and the glass fibers were dispersed by stirring. A glass fiber slurry containing glass fibers at a concentration of 1.0% was obtained.

得られたガラス繊維スラリーを傾斜ワイヤーマシンで湿式抄紙し、130℃のシリンダードライヤーで2分加熱して乾燥し、前駆体シートを得た。得られた前駆体シートは厚さ1.24mm、坪量211g/mで、密度は0.17g/cmであった。
上記前駆体シートに、25℃にて、スペイン産β型セピオライト(結晶性シリカ検出限界(0.1%)以下)の15%スラリー(25℃におけるB型粘度計による粘度38mPa・s)を、前駆体シート1mあたり1713g含浸させた。その後130℃の温風で10分間乾燥し、全体が高密度とされた比較例2の耐熱断熱シートを得た。
得られた耐熱断熱シートは厚さ1.1mm、坪量468g/mで、密度は0.43g/cmであった。
The obtained glass fiber slurry was wet-made with an inclined wire machine, heated with a cylinder dryer at 130 ° C. for 2 minutes and dried to obtain a precursor sheet. The obtained precursor sheet had a thickness of 1.24 mm, a basis weight of 211 g / m 2 , and a density of 0.17 g / cm 3 .
A 15% slurry of β-type sepiolite (crystalline silica detection limit (0.1%) or less) produced in Spain (viscosity 38 mPa · s by a B-type viscometer at 25 ° C.) was applied to the precursor sheet at 25 ° C. 1713 g per 1 m 2 of the precursor sheet was impregnated. Then, it was dried with warm air at 130 ° C. for 10 minutes to obtain a heat-resistant heat-insulating sheet of Comparative Example 2 having a high density as a whole.
The obtained heat-resistant heat-insulating sheet had a thickness of 1.1 mm, a basis weight of 468 g / m 2 , and a density of 0.43 g / cm 3 .

[比較例3]
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)の44質量部、繊維径6μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)の44質量部に代えて、繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)の88質量部を用いた他は、実施例1と同様にして、前駆体シートを得た。得られた前駆体シートは厚み0.2mm、坪量30.9g/mで、密度は0.15g/cmであった。
上記前駆体シートに、25℃にて、スペイン産β型セピオライト(結晶性シリカ検出限界(0.1%)以下)の15%スラリー(25℃におけるB型粘度計による粘度38mPa・s)を、前駆体シート1mあたり126g含浸させて、未乾燥のやや高密度の低密度シートを得た。
[Comparative Example 3]
Instead of 44 parts by mass of E glass fiber (manufactured by Owens Corning) having a fiber diameter of 10 μm and a fiber length of 10 mm and 44 parts by mass of E glass fiber (manufactured by Owens Corning) having a fiber diameter of 6 μm and a fiber length of 10 mm. A precursor sheet was obtained in the same manner as in Example 1 except that 88 parts by mass of E glass fiber (manufactured by Owens Corning) having a diameter of 10 μm and a fiber length of 10 mm was used. The obtained precursor sheet had a thickness of 0.2 mm, a basis weight of 30.9 g / m 2 , and a density of 0.15 g / cm 3 .
A 15% slurry of β-type sepiolite (crystalline silica detection limit (0.1%) or less) produced in Spain (viscosity 38 mPa · s by a B-type viscometer at 25 ° C.) was applied to the precursor sheet at 25 ° C. 126 g per 1 m 2 of the precursor sheet was impregnated to obtain an undried, slightly high-density low-density sheet.

(低密度シートとやや高密度の低密度シートの積層)
得られた未乾燥のやや高密度の低密度シートを、実施例1と同様に作製した低密度シートの両面にそれぞれ一枚ずつ積層したのち110℃の温風で10分間乾燥し、両表層にやや高密度の低密度層をもつ耐熱断熱シートを得た。
(Lamination of low-density sheet and slightly high-density low-density sheet)
The obtained undried, slightly high-density low-density sheet was laminated on both sides of the low-density sheet prepared in the same manner as in Example 1, and then dried with warm air at 110 ° C. for 10 minutes on both surface layers. A heat-resistant heat insulating sheet having a slightly high-density low-density layer was obtained.

図10に、比較例3の耐熱断熱シートの表面の電子顕微鏡写真を示す。セピオライト等の量が少ないため、ガラス繊維間の空隙が部分的にしか閉鎖されておらず、そのまま開口している部分があることがわかる。 FIG. 10 shows an electron micrograph of the surface of the heat-resistant heat-insulating sheet of Comparative Example 3. Since the amount of sepiolite and the like is small, it can be seen that the gaps between the glass fibers are only partially closed and some parts are open as they are.

[比較例4]
(低密度シートの作成)
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を88質量部、バインダー成分としてポリビニルアルコール繊維(クラレ製)6質量部および芯鞘熱融着ポリエステル繊維ソフィットN720(クラレ製)6質量部を水中に投入し、水に溶解したポリオキシエチレンモノステアレート(花王製、「エマノーン 3199」)をガラス繊維に対して固形分として0.5%となるように添加し、攪拌してガラス繊維を分散させ、ガラス繊維を1.0%濃度で含むガラス繊維スラリーを得た。
[Comparative Example 4]
(Creation of low density sheet)
88 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 10 μm and a fiber length of 10 mm, 6 parts by mass of polyvinyl alcohol fiber (manufactured by Kuraray) as a binder component, and core-sheath heat-sealed polyester fiber Sofit N720 (manufactured by Kuraray) 6 parts by mass was put into water, and polyoxyethylene monostearate (manufactured by Kao, "Emanone 3199") dissolved in water was added to the glass fiber so as to have a solid content of 0.5%, and the mixture was stirred. The glass fibers were dispersed to obtain a glass fiber slurry containing glass fibers at a concentration of 1.0%.

得られたガラス繊維スラリーを傾斜ワイヤーマシンで湿式抄紙し、130℃のシリンダードライヤーで2分加熱して乾燥し、低密度シートを得た。得られた低密度シートは、厚さ0.31mm、坪量45g/mで、密度は0.15g/cmであった。 The obtained glass fiber slurry was wet-made with an inclined wire machine, heated with a cylinder dryer at 130 ° C. for 2 minutes and dried to obtain a low-density sheet. The obtained low-density sheet had a thickness of 0.31 mm, a basis weight of 45 g / m 2 , and a density of 0.15 g / cm 3 .

(高密度シートの形成)
繊維径10μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を44質量部、繊維径6μm、繊維長10mmのEガラス繊維(オーウエンスコーニング社製)を44質量部、バインダー成分としてポリビニルアルコール繊維(クラレ製)6質量部および芯鞘熱融着ポリエステル繊維ソフィットN720(クラレ製)6質量部を水中に投入した。
(Formation of high-density sheet)
44 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 10 μm and a fiber length of 10 mm, 44 parts by mass of E glass fiber (manufactured by Owens Corning) with a fiber diameter of 6 μm and a fiber length of 10 mm, polyvinyl as a binder component 6 parts by mass of alcohol fiber (manufactured by Kuraray) and 6 parts by mass of core-sheath heat-sealed polyester fiber Sofit N720 (manufactured by Kuraray) were put into water.

さらに、水に溶解したポリオキシエチレンモノステアレート(花王製、「エマノーン 3199」)をガラス繊維に対して固形分として0.5%となるように添加し、攪拌してガラス繊維を分散させ、ガラス繊維を1.0%濃度で含むガラス繊維スラリーを得た。 Further, polyoxyethylene monostearate (manufactured by Kao, "Emanone 3199") dissolved in water was added to the glass fibers so as to have a solid content of 0.5%, and the glass fibers were dispersed by stirring. A glass fiber slurry containing glass fibers at a concentration of 1.0% was obtained.

得られたガラス繊維スラリーを傾斜ワイヤーマシンで湿式抄紙し、130℃のシリンダードライヤーで2分加熱して乾燥し、前駆体シートを得た。得られた前駆体シートは、厚さ0.4mm、坪量67.5g/mで、密度は0.17g/cmであった。
上記前駆体シートに、25℃にて、スペイン産β型セピオライト(結晶性シリカ検出限界(0.1%)以下)の15%スラリー(25℃におけるB型粘度計による粘度38mPa・s)を、前駆体シート1mあたり545g含浸させて、未乾燥の高密度シートを得た。
The obtained glass fiber slurry was wet-made with an inclined wire machine, heated with a cylinder dryer at 130 ° C. for 2 minutes and dried to obtain a precursor sheet. The obtained precursor sheet had a thickness of 0.4 mm, a basis weight of 67.5 g / m 2 , and a density of 0.17 g / cm 3 .
A 15% slurry of β-type sepiolite (crystalline silica detection limit (0.1%) or less) produced in Spain (viscosity 38 mPa · s by a B-type viscometer at 25 ° C.) was applied to the precursor sheet at 25 ° C. By impregnating 545 g per 1 m 2 of the precursor sheet, an undried high-density sheet was obtained.

(低密度シートと高密度シートの積層)
得られた未乾燥の高密度シートを、前記低密度シートの両面にそれぞれ一枚ずつ積層したのち110℃の温風で10分間乾燥し、両表層に高密度層をもつ比較例4の耐熱断熱シートを得た。
(Lamination of low-density sheet and high-density sheet)
The obtained undried high-density sheet was laminated on both sides of the low-density sheet one by one, dried with warm air at 110 ° C. for 10 minutes, and heat-insulated in Comparative Example 4 having high-density layers on both surface layers. I got a sheet.

各例の各層の特性、及び評価結果を表1、表2に示す。なお、実施例3におけるやや高密度の低密度層の特性は、便宜上高密度層の欄に記載した。
表1に示すように、実施例の耐熱断熱シートは、火炎に対する熱遮蔽性、高温に対する熱遮蔽性、耐熱性の総ての評価結果が良好であった。これに対して、比較例の耐熱断熱シートは、火炎に対する熱遮蔽性、高温に対する熱遮蔽性、耐熱性の内、いずれか1以上の評価結果で劣っていた。
The characteristics of each layer of each example and the evaluation results are shown in Tables 1 and 2. The characteristics of the slightly high-density low-density layer in Example 3 are described in the column of high-density layer for convenience.
As shown in Table 1, the heat-resistant heat-insulating sheet of the example had good evaluation results of heat-shielding property against flame, heat-shielding property against high temperature, and heat resistance. On the other hand, the heat-resistant heat-insulating sheet of the comparative example was inferior in the evaluation result of any one or more of the heat-shielding property against flame, the heat-shielding property against high temperature, and the heat resistance.

1…低密度層、2…第1高密度層、3…第2高密度層、10…耐熱断熱シート、
11…耐熱断熱シート、
20…ラミネート形単電池、21…正極タブ、22…負極タブ、100…組電池
1 ... low density layer, 2 ... first high density layer, 3 ... second high density layer, 10 ... heat resistant heat insulating sheet,
11 ... Heat resistant heat insulating sheet,
20 ... Laminated cell, 21 ... Positive electrode tab, 22 ... Negative electrode tab, 100 ... Assembly battery

Claims (10)

低密度層と前記低密度層の第1の面と第2の面の少なくとも一方に設けられ、前記低密度層より密度が大きい高密度層とを備える耐熱断熱シートであって、
前記耐熱断熱シート全体の厚さが0.1〜2.5mmであり、
前記耐熱断熱シート全体の燃焼熱が、1MJ/m以下であり、
前記低密度層は、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満の層であり、
前記高密度層は、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%以上の層であり、
前記高密度層の1層あたりの厚さは前記低密度層の厚さ以下であり、かつ、少なくとも1つの前記高密度層の厚さは0.05mm以上である、ことを特徴とする耐熱断熱シート。
A heat-resistant heat-insulating sheet provided on at least one of a low-density layer and a first surface and a second surface of the low-density layer, and provided with a high-density layer having a higher density than the low-density layer.
The total thickness of the heat-resistant heat-insulating sheet is 0.1 to 2.5 mm.
The combustion heat of the entire heat-resistant heat insulating sheet is 1 MJ / m 2 or less.
The low-density layer is a layer in which the ratio of the clay mineral content to the total content of the inorganic fiber and the clay mineral is less than 50% by mass.
The high-density layer is a layer in which the ratio of the clay mineral content to the total content of the inorganic fiber and the clay mineral is 50% by mass or more.
The heat insulation is characterized in that the thickness of the high-density layer per layer is equal to or less than the thickness of the low-density layer, and the thickness of at least one of the high-density layers is 0.05 mm or more. Sheet.
前記無機繊維が、ガラス繊維、炭素繊維、グラスウール、ロックウール、溶融岩石繊維、セラミック繊維、及び炭化ケイ素繊維から選択される1種以上である、請求項1に記載の耐熱断熱シート。 The heat-resistant heat insulating sheet according to claim 1, wherein the inorganic fiber is at least one selected from glass fiber, carbon fiber, glass wool, rock wool, molten rock fiber, ceramic fiber, and silicon carbide fiber. 前記粘土鉱物が、セピオライトである、請求項1又は2に記載の耐熱断熱シート。 The heat-resistant heat-insulating sheet according to claim 1 or 2, wherein the clay mineral is sepiolite. 前記低密度層の密度が、0.1〜0.25g/cmである、請求項1〜3のいずれか一項に記載の耐熱断熱シート。 The heat-resistant heat-insulating sheet according to any one of claims 1 to 3 , wherein the density of the low-density layer is 0.1 to 0.25 g / cm 3 . 前記高密度層の密度が、0.35〜2.5g/cmである、請求項1〜4のいずれか一項に記載の耐熱断熱シート。 The heat-resistant heat-insulating sheet according to any one of claims 1 to 4, wherein the density of the high-density layer is 0.35 to 2.5 g / cm 3 . 前記低密度層における無機成分の含有量が80質量%以上であり、前記高密度層における無機成分の含有量が90質量%以上である、請求項1〜5のいずれか一項に記載の耐熱断熱シート。 The heat resistance according to any one of claims 1 to 5, wherein the content of the inorganic component in the low-density layer is 80% by mass or more, and the content of the inorganic component in the high-density layer is 90% by mass or more. Insulation sheet. 積層された複数の単電池と、前記複数の単電池の各々の間に挿入された請求項1〜6のいずれか一項に記載の耐熱断熱シートとを備える、ことを特徴とする組電池。 An assembled battery comprising a plurality of stacked cells and a heat-resistant heat insulating sheet according to any one of claims 1 to 6, which is inserted between the plurality of cells. さらに、前記複数の単電池の内最外層に積層された単電池の外側に配置された、請求項1〜6のいずれか一項に記載の耐熱断熱シートを備える、請求項7に記載の組電池。 The set according to claim 7, further comprising the heat-resistant heat insulating sheet according to any one of claims 1 to 6, which is arranged outside the cells laminated on the innermost outermost layer of the plurality of cells. battery. 請求項1〜6のいずれか一項に記載の耐熱断熱シートの製造方法であって、
無機繊維と粘土鉱物の合計含有量が80質量%以上であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満である低密度シートの第1の面と第2の面の少なくとも一方に、
前記低密度シートより密度が大きく、無機繊維と粘土鉱物の合計含有量が90質量%以上であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%以上である高密度シートを積層する、耐熱断熱シートの製造方法。
The method for manufacturing a heat-resistant heat-insulating sheet according to any one of claims 1 to 6.
The first surface of the low-density sheet in which the total content of the inorganic fiber and the clay mineral is 80% by mass or more, and the ratio of the content of the clay mineral to the total content of the inorganic fiber and the clay mineral is less than 50% by mass. And on at least one of the second side,
The density is higher than that of the low-density sheet, the total content of inorganic fibers and clay minerals is 90% by mass or more, and the ratio of the content of clay minerals to the total content of inorganic fibers and clay minerals is 50% by mass or more. A method for manufacturing a heat-resistant and heat-insulating sheet by laminating a certain high-density sheet.
請求項1〜6のいずれか一項に記載の耐熱断熱シートの製造方法であって、
無機繊維と粘土鉱物の合計含有量が80質量%以上であり、無機繊維と粘土鉱物の合計含有量に占める粘土鉱物の含有量の割合が50質量%未満である低密度シートの第1の面と第2の面の少なくとも一方に、粘土鉱物のスラリー層を形成する、耐熱断熱シートの製造方法。
The method for manufacturing a heat-resistant heat-insulating sheet according to any one of claims 1 to 6.
The first surface of a low-density sheet in which the total content of inorganic fibers and clay minerals is 80% by mass or more, and the ratio of the content of clay minerals to the total content of inorganic fibers and clay minerals is less than 50% by mass. A method for producing a heat-resistant heat insulating sheet, which forms a clay mineral slurry layer on at least one of the second surface and the second surface.
JP2019069002A 2019-03-29 2019-03-29 Heat-resistant insulation sheet, manufacturing method thereof, and assembled battery Active JP7115395B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019069002A JP7115395B2 (en) 2019-03-29 2019-03-29 Heat-resistant insulation sheet, manufacturing method thereof, and assembled battery
PCT/JP2020/007362 WO2020202901A1 (en) 2019-03-29 2020-02-25 Heat-resistant heat-insulating sheet, method of manufacturing same, and assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069002A JP7115395B2 (en) 2019-03-29 2019-03-29 Heat-resistant insulation sheet, manufacturing method thereof, and assembled battery

Publications (2)

Publication Number Publication Date
JP2020165065A true JP2020165065A (en) 2020-10-08
JP7115395B2 JP7115395B2 (en) 2022-08-09

Family

ID=72667970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069002A Active JP7115395B2 (en) 2019-03-29 2019-03-29 Heat-resistant insulation sheet, manufacturing method thereof, and assembled battery

Country Status (2)

Country Link
JP (1) JP7115395B2 (en)
WO (1) WO2020202901A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021039828A (en) * 2019-08-30 2021-03-11 三菱製紙株式会社 Thermal runaway suppression fireproof sheet
JP2021053856A (en) * 2019-09-27 2021-04-08 三菱製紙株式会社 Thermal runaway suppression fireproof sheet
KR20220025197A (en) * 2020-07-10 2022-03-03 이비덴 가부시키가이샤 Heat transfer suppression sheet and battery pack
KR20220025198A (en) * 2020-07-10 2022-03-03 이비덴 가부시키가이샤 Heat transfer suppression sheet and battery pack
WO2022186289A1 (en) 2021-03-03 2022-09-09 旭化成アドバンス株式会社 Battery unit
WO2022234746A1 (en) * 2021-05-06 2022-11-10 阿波製紙株式会社 Inorganic powder sheet and manufacturing method thereof
WO2023120545A1 (en) * 2021-12-21 2023-06-29 イビデン株式会社 Insulating sheet and battery pack
WO2023171818A1 (en) * 2022-01-31 2023-09-14 イビデン株式会社 Heat transfer suppression sheet production method, heat transfer suppression sheet, and battery pack
WO2023171817A1 (en) * 2022-03-11 2023-09-14 イビデン株式会社 Manufacturing method for heat transfer suppression sheet, heat transfer suppression sheet, and battery pack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116848301A (en) * 2021-03-29 2023-10-03 株式会社巴川制纸所 Inorganic fiber sheet
WO2023276441A1 (en) * 2021-06-29 2023-01-05 住友理工株式会社 Thermal insulation material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241297A (en) * 1997-12-19 1999-09-07 Tokiwa Electric Co Ltd Thermally insulating sheet
JP2009084744A (en) * 2007-09-28 2009-04-23 Hokuetsu Paper Mills Ltd Nonflammable sheet or nonflammable mold, and method for producing the same
JP2014224330A (en) * 2013-05-17 2014-12-04 王子ホールディングス株式会社 Molding processing sheet and method for producing molding processing sheet
JP2018115409A (en) * 2017-01-19 2018-07-26 Kj特殊紙株式会社 Inorganic fiber sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241297A (en) * 1997-12-19 1999-09-07 Tokiwa Electric Co Ltd Thermally insulating sheet
JP2009084744A (en) * 2007-09-28 2009-04-23 Hokuetsu Paper Mills Ltd Nonflammable sheet or nonflammable mold, and method for producing the same
JP2014224330A (en) * 2013-05-17 2014-12-04 王子ホールディングス株式会社 Molding processing sheet and method for producing molding processing sheet
JP2018115409A (en) * 2017-01-19 2018-07-26 Kj特殊紙株式会社 Inorganic fiber sheet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377029B2 (en) 2019-08-30 2023-11-09 三菱製紙株式会社 Thermal runaway suppression fireproof sheet
JP2021039828A (en) * 2019-08-30 2021-03-11 三菱製紙株式会社 Thermal runaway suppression fireproof sheet
JP2021053856A (en) * 2019-09-27 2021-04-08 三菱製紙株式会社 Thermal runaway suppression fireproof sheet
JP7163262B2 (en) 2019-09-27 2022-10-31 三菱製紙株式会社 Thermal runaway suppression refractory sheet
KR20220025197A (en) * 2020-07-10 2022-03-03 이비덴 가부시키가이샤 Heat transfer suppression sheet and battery pack
KR20220025198A (en) * 2020-07-10 2022-03-03 이비덴 가부시키가이샤 Heat transfer suppression sheet and battery pack
KR102434959B1 (en) 2020-07-10 2022-08-22 이비덴 가부시키가이샤 Heat transfer suppression sheet and battery pack
KR102434960B1 (en) 2020-07-10 2022-08-22 이비덴 가부시키가이샤 Heat transfer suppression sheet and battery pack
WO2022186289A1 (en) 2021-03-03 2022-09-09 旭化成アドバンス株式会社 Battery unit
WO2022234746A1 (en) * 2021-05-06 2022-11-10 阿波製紙株式会社 Inorganic powder sheet and manufacturing method thereof
WO2023120545A1 (en) * 2021-12-21 2023-06-29 イビデン株式会社 Insulating sheet and battery pack
WO2023171818A1 (en) * 2022-01-31 2023-09-14 イビデン株式会社 Heat transfer suppression sheet production method, heat transfer suppression sheet, and battery pack
WO2023171817A1 (en) * 2022-03-11 2023-09-14 イビデン株式会社 Manufacturing method for heat transfer suppression sheet, heat transfer suppression sheet, and battery pack
JP7364722B2 (en) 2022-03-11 2023-10-18 イビデン株式会社 Method for manufacturing heat transfer suppressing sheet, heat transfer suppressing sheet and assembled battery

Also Published As

Publication number Publication date
JP7115395B2 (en) 2022-08-09
WO2020202901A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2020202901A1 (en) Heat-resistant heat-insulating sheet, method of manufacturing same, and assembled battery
JPS61179400A (en) Heat absorbing flexible flame resistant fibrous sheet like article
EP3199502A1 (en) Fireproof construction and method for using same
JP2019535094A (en) Thermally conductive electrical insulation material
JP5558518B2 (en) Heat resistant inorganic fiber sheet substrate
JP6355790B1 (en) Fireproof insulation sheet
JP6018498B2 (en) Lithium ion secondary battery separator base material, method for producing lithium ion secondary battery separator base material, and lithium ion secondary battery separator
CN112151918B (en) Heat insulation film and preparation method and application thereof
US10066342B2 (en) Wet-laid nonwoven including thermoplastic fiber
JP2009210072A (en) Vacuum heat insulating material
JP2021008089A (en) Thermal runaway inhibition fire-resistive sheet
JP2022520943A (en) Flame-retardant insulator suitable for battery cells
JP2020191274A (en) Thermal runaway suppression fireproof sheet
JP2008045239A (en) Nonwoven fabric and method for producing nonwoven fabric
WO2023157781A1 (en) Thermal runaway suppression sheet, battery pack using same, and battery pack module
RU95592U1 (en) MULTI-LAYER HEAT-INSULATING MATERIAL
JP2020187990A (en) Lithium-ion battery separator coating liquid and lithium-ion battery separator
US20220290375A1 (en) Multilayered fire-resistant sheet
JP2022091057A (en) Method for manufacturing sheet-like heat-resistant material, and laminate
JP2009173730A (en) Noncombustible tape
JP2022091056A (en) Sheet-like heat-resistant material and laminate
JP2022091058A (en) Method for manufacturing sheet-like heat-resistant material, and laminate
US20220393267A1 (en) Flame resistant materials for electric vehicle battery applications
JP4716307B2 (en) Non-combustible corrugated cardboard and corrugated duct for building air conditioning ducts or building materials
US9984794B1 (en) Refractory insulating sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7115395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150