JP2020164638A - Rubber or resin additive - Google Patents

Rubber or resin additive Download PDF

Info

Publication number
JP2020164638A
JP2020164638A JP2019066121A JP2019066121A JP2020164638A JP 2020164638 A JP2020164638 A JP 2020164638A JP 2019066121 A JP2019066121 A JP 2019066121A JP 2019066121 A JP2019066121 A JP 2019066121A JP 2020164638 A JP2020164638 A JP 2020164638A
Authority
JP
Japan
Prior art keywords
group
carbon
rubber
resin
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019066121A
Other languages
Japanese (ja)
Other versions
JP7438671B2 (en
Inventor
阪本 浩規
Hiroki Sakamoto
浩規 阪本
山口 直樹
Naoki Yamaguchi
直樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2019066121A priority Critical patent/JP7438671B2/en
Publication of JP2020164638A publication Critical patent/JP2020164638A/en
Application granted granted Critical
Publication of JP7438671B2 publication Critical patent/JP7438671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a rubber or resin additive that is easy to be dispersed in rubber or thermoplastic resin and can improve tensile strength of rubber or thermoplastic resin.SOLUTION: A rubber or resin additive contains flaky carbon with a thickness of 1-100 nm, and an organic compound having a hydrophilic group and a hydrophobic group with high carbon affinity.SELECTED DRAWING: None

Description

本発明は、ゴム又は樹脂用添加剤に関する。 The present invention relates to additives for rubber or resins.

自動車の燃費向上やスポーツのパフォーマンス向上のために、複合樹脂及びゴムの強度向上と軽量化の両立が望まれている。樹脂及びゴムに添加剤を入れるほど弾性率は向上する(例えば、特許文献1参照)が、柔軟性が損なわれて強度が向上しなかったり、比重が増したりする問題がある。 In order to improve the fuel efficiency of automobiles and the performance of sports, it is desired to improve the strength and weight of composite resins and rubbers at the same time. Although the elastic modulus improves as the additive is added to the resin and rubber (see, for example, Patent Document 1), there is a problem that the flexibility is impaired and the strength is not improved or the specific gravity is increased.

一方、グラフェンシートは、炭素原子がハニカム格子状に並んだ2次元単層シートであり、グラファイト、フラーレン、カーボンナノチューブ等の構成単位でもある。このグラフェンシートが厚み100nm以下程度に積層された薄片状カーボン(本発明において、グラフェンシートも含む概念である)は、その特異な諸物性を有していることから、様々な材料に使用される新たな材料として注目を浴びている。 On the other hand, the graphene sheet is a two-dimensional single-walled sheet in which carbon atoms are arranged in a honeycomb lattice, and is also a constituent unit of graphite, fullerenes, carbon nanotubes, and the like. The flaky carbon in which the graphene sheet is laminated to a thickness of about 100 nm or less (in the present invention, the concept including the graphene sheet) has various unique physical properties, and is therefore used for various materials. It is attracting attention as a new material.

特開2015−183132号公報JP-A-2015-183132

しかしながら、薄片状カーボンのようなナノカーボン材料は微細な構造のものほど凝集しやすく、そのポテンシャルをいかんなく発揮することが難しく、十分に強度を向上させることはできなかった。 However, nanocarbon materials such as flaky carbon are more likely to aggregate as they have a finer structure, and it is difficult to fully exert their potential, and the strength cannot be sufficiently improved.

本発明は、ゴム又は熱可塑性樹脂中に分散しやすく、且つゴム又は熱可塑性樹脂の引張強度を向上させることができるゴム又は樹脂用添加剤を提供することを目的とする。 An object of the present invention is to provide an additive for rubber or resin that can be easily dispersed in rubber or thermoplastic resin and can improve the tensile strength of rubber or thermoplastic resin.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、厚みが1〜100nmである薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含有することで、ゴム又は熱可塑性樹脂中に分散しやすく、且つゴム又は熱可塑性樹脂の引張強度を向上させることができるゴム又は樹脂用添加剤が得られることを見出した。本発明者らは、当該知見に基づきさらに研究を重ね、本発明を完成するに至った。即ち、本発明は以下の構成を包含する。
項1.厚みが1〜100nmである薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含有する、ゴム又は樹脂用添加剤。
項2.前記薄片状カーボン1質量部に対して、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物を0.01〜0.9質量部含有する、項1に記載のゴム又は樹脂用添加剤。
項3.前記親水基が、一般式(1)〜(4):
As a result of diligent research to achieve the above object, the present inventors include flaky carbon having a thickness of 1 to 100 nm and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon. As a result, it has been found that an additive for rubber or resin that can be easily dispersed in rubber or thermoplastic resin and can improve the tensile strength of rubber or thermoplastic resin can be obtained. The present inventors have further studied based on the findings and have completed the present invention. That is, the present invention includes the following configurations.
Item 1. An additive for rubber or resin, which contains flaky carbon having a thickness of 1 to 100 nm and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon.
Item 2. Item 2. Addition for rubber or resin according to Item 1, wherein 0.01 to 0.9 parts by mass of an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon is contained in 1 part by mass of the flaky carbon. Agent.
Item 3. The hydrophilic group is a general formula (1) to (4):

[式中、−OHはアルコール性水酸基又はフェノール性水酸基を示す。Rは2価の有機基を示す。Xは水素原子、アルカリ金属、NH又は有機アンモニウムを示す。Xは水素原子、アルカリ金属、NH、有機アンモニウム又はアルキル基を示す。一般式(2)の酸素原子はエーテル結合である。]
で表される少なくとも1種である、項1又は2に記載のゴム又は樹脂用添加剤。
項4.前記親水基が、フェノール性水酸基及び/又はポリオキシエチレン基である、項1〜3のいずれか1項に記載のゴム又は樹脂用添加剤。
項5.前記疎水基が、アルキル基、アルケニル基、シクロアルキル基、アリール基、及び炭素数3以上のポリオキシアルキレン基よりなる群から選ばれる少なくとも1種である、項1〜4のいずれか1項に記載のゴム又は樹脂用添加剤。
項6.前記疎水基が、2個以上の芳香環を有するアリール基である、項1〜5のいずれか1項に記載のゴム又は樹脂用添加剤。
項7.項1〜6のいずれか1項に記載のゴム又は樹脂用添加剤の製造方法であって、
(1)前記薄片状カーボンと、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物と、溶媒とを含有する分散体から溶媒を除去する工程を備える、製造方法。
項8.前記溶媒を除去する工程が、前記分散体を濃縮する工程である、項7に記載の製造方法。
項9.前記溶媒が水である、項7又は8に記載の製造方法。
項10.項1〜6のいずれか1項に記載の熱伝導材料と、熱可塑性樹脂、ゴム及び熱可塑性エラストマーよりなる群から選ばれる少なくとも1種とを含有する、ゴム又は樹脂強化組成物。
項11.前記熱可塑性樹脂、ゴム及び熱可塑性エラストマーが、芳香族高分子化合物である、項10に記載のゴム又は樹脂強化組成物。
項12.項10又は11に記載のゴム又は樹脂強化組成物の製造方法であって、
(2)前記ゴム又は樹脂用添加剤、並びに溶媒を含む分散体と、熱可塑性樹脂、ゴム及び熱可塑性エラストマーよりなる群から選ばれる少なくとも1種とを混合する工程
を備える、製造方法。
[In the formula, -OH represents an alcoholic hydroxyl group or a phenolic hydroxyl group. R represents a divalent organic group. X 1 represents a hydrogen atom, alkali metal, NH 4 or organic ammonium. X 2 represents a hydrogen atom, alkali metal, NH 4 , organic ammonium or alkyl group. The oxygen atom of the general formula (2) is an ether bond. ]
Item 3. The additive for rubber or resin according to Item 1 or 2, which is at least one kind represented by.
Item 4. Item 2. The additive for rubber or resin according to any one of Items 1 to 3, wherein the hydrophilic group is a phenolic hydroxyl group and / or a polyoxyethylene group.
Item 5. Item 2. Any one of Items 1 to 4, wherein the hydrophobic group is at least one selected from the group consisting of an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and a polyoxyalkylene group having 3 or more carbon atoms. The described rubber or resin additive.
Item 6. Item 6. The additive for rubber or resin according to any one of Items 1 to 5, wherein the hydrophobic group is an aryl group having two or more aromatic rings.
Item 7. Item 2. The method for producing an additive for rubber or resin according to any one of Items 1 to 6.
(1) A production method comprising a step of removing a solvent from a dispersion containing the flaky carbon, the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, and a solvent.
Item 8. Item 7. The production method according to Item 7, wherein the step of removing the solvent is a step of concentrating the dispersion.
Item 9. Item 7. The production method according to Item 7 or 8, wherein the solvent is water.
Item 10. A rubber or resin reinforced composition containing the heat conductive material according to any one of Items 1 to 6 and at least one selected from the group consisting of a thermoplastic resin, rubber and a thermoplastic elastomer.
Item 11. Item 2. The rubber or resin reinforced composition according to Item 10, wherein the thermoplastic resin, rubber and thermoplastic elastomer are aromatic polymer compounds.
Item 12. Item 10. The method for producing a rubber or resin reinforced composition according to Item 10.
(2) A production method comprising a step of mixing the dispersion containing the rubber or resin additive and solvent with at least one selected from the group consisting of thermoplastic resins, rubbers and thermoplastic elastomers.

本発明によれば、ゴム又は熱可塑性樹脂中に分散しやすく、且つゴム又は熱可塑性樹脂の引張強度を向上させることができるゴム又は樹脂用添加剤を得ることができる。 According to the present invention, it is possible to obtain an additive for rubber or resin that can be easily dispersed in rubber or thermoplastic resin and can improve the tensile strength of rubber or thermoplastic resin.

親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が少ない場合(薄片状カーボンの表面に親水基及び炭素と親和性の高い疎水基を有する有機化合物が被覆されている場合)の本発明のゴム又は樹脂用添加剤の構成を示す。When the content of the organic compound having a hydrophobic group having a high affinity with a hydrophilic group and carbon is small (when the surface of the flaky carbon is coated with an organic compound having a hydrophobic group having a high affinity with a hydrophilic group and carbon) The composition of the additive for rubber or resin of the present invention is shown. 親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が多い場合(炭素と親和性の高い疎水基を有する有機化合物中に薄片状カーボンが分散している場合)の本発明のゴム又は樹脂用添加剤の構成を示す。The present invention of the present invention when the content of an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon is large (when flaky carbon is dispersed in an organic compound having a hydrophobic group having a high affinity with carbon). The composition of the additive for rubber or resin is shown. 実施例2で得られた薄片状カーボンの断面の透過型電子顕微鏡像を示す。The transmission electron microscope image of the cross section of the flaky carbon obtained in Example 2 is shown.

本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A〜B」で示す場合、A以上B以下を意味する。 As used herein, "contains" is a concept that includes any of "comprise," "consist essentially of," and "consist of." Further, in the present specification, when the numerical range is indicated by "A to B", it means A or more and B or less.

以下、本発明の実施形態を説明するが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。 Hereinafter, embodiments of the present invention will be described, but various modifications of the embodiments and details are possible without departing from the spirit and scope of the claims.

1.ゴム又は樹脂用添加剤
本発明のゴム又は樹脂用添加剤は、厚みが1〜100nmである薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含有する。
1. 1. Additives for rubber or resin The additive for rubber or resin of the present invention contains flaky carbon having a thickness of 1 to 100 nm and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon.

(1−1)薄片状カーボン
薄片状カーボンとしては、薄いほうがゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性に優れるため好ましいが、その厚みは1〜100nm、好ましくは1〜20nmである。また、同様に、厚みが1〜10nmである薄片状カーボンの含有割合は、薄片状カーボンの総数を100%として、80%以上が好ましく、90%以上がより好ましい。つまり、厚みが大きい薄片状カーボンが含まれてもよいが、多数の薄片状カーボンの厚みは10nm以下であることが好ましい。なお、薄片状カーボンの厚みは、透過型電子顕微鏡(TEM)観察により測定する。
(1-1) Flaky carbon As the flaky carbon, the thinner one is preferable because it has excellent strengthening properties such as tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin, but the thickness thereof is 1 to 100 nm, preferably 1 to 20 nm. Is. Similarly, the content ratio of flaky carbon having a thickness of 1 to 10 nm is preferably 80% or more, more preferably 90% or more, assuming that the total number of flaky carbons is 100%. That is, although flaky carbon having a large thickness may be contained, the thickness of a large number of flaky carbons is preferably 10 nm or less. The thickness of the flaky carbon is measured by observation with a transmission electron microscope (TEM).

薄片状カーボンは、薄いほうがゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性に優れるため好ましいが、300層以下(つまり1〜300層)のグラフェンが積層した層状構造を有する薄片状カーボンが好ましく、1〜60層のグラフェンが積層した層状構造を有する薄片状カーボンがより好ましい。また、同様に、積層数が1〜30層である薄片状カーボンの含有割合は、薄片状カーボンの総数を100%として、80%以上が好ましく、90%以上がより好ましい。つまり、厚みが大きい薄片状カーボンが含まれてもよいが、多数の薄片状カーボンの厚みは30層以下であることが好ましい。なお、薄片状カーボンの積層は、透過型電子顕微鏡(TEM)観察により測定した厚みにより算出する。 The thin piece of carbon is preferable because it has excellent strengthening properties such as tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin. However, the thin piece of carbon has a layered structure in which 300 layers or less (that is, 1 to 300 layers) of graphene are laminated. Carbon is preferable, and flaky carbon having a layered structure in which 1 to 60 layers of graphene are laminated is more preferable. Similarly, the content ratio of flaky carbon having 1 to 30 layers is preferably 80% or more, more preferably 90% or more, assuming that the total number of flaky carbons is 100%. That is, although flaky carbon having a large thickness may be contained, the thickness of a large number of flaky carbons is preferably 30 layers or less. The lamination of flaky carbon is calculated from the thickness measured by observation with a transmission electron microscope (TEM).

薄片状カーボンは、通常、多くの凸角と凹角を有する平面形状をしているため、厚み以外のサイズは一概には規定しにくい。本明細書では、一枚の薄片状カーボンにおいて最も離れている凸角間の距離をその薄片状カーボンの大きさとする。 Since flaky carbon usually has a planar shape having many convex and concave angles, it is difficult to unconditionally specify a size other than the thickness. In the present specification, the distance between the most distant convex angles in one flaky carbon is defined as the size of the flaky carbon.

このような薄片状カーボンの大きさは、20nm以上が好ましく、100nm以上がより好ましく、200nm以上がさらに好ましい。このような大きさの薄片状カーボンを使用することにより、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性をさらに向上させやすい。なお、薄片状カーボンの大きさは、大きい方がゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性に優れており好ましいため、大きさの上限は限定されないが、通常100μmである。また、薄片状カーボンの大きさは、透過型電子顕微鏡(TEM)観察により測定する。 The size of such flaky carbon is preferably 20 nm or more, more preferably 100 nm or more, and even more preferably 200 nm or more. By using flaky carbon of such a size, it is easy to further improve the strengthening characteristics such as tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin. The size of the flaky carbon is preferably 100 μm because the larger the size is, the better the reinforcing characteristics such as tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin are, and the upper limit of the size is not limited. The size of flaky carbon is measured by observation with a transmission electron microscope (TEM).

本発明のゴム又は樹脂用添加剤において、薄片状カーボンの含有量は、特に制限されないが、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性の観点から、本発明のゴム又は樹脂用添加剤の総量を100質量%として、50〜99.5質量%が好ましく、60〜99.2質量%がより好ましい。 The content of flaky carbon in the additive for rubber or resin of the present invention is not particularly limited, but from the viewpoint of strengthening properties such as tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin, the rubber or resin of the present invention. The total amount of the additives for use is 100% by mass, preferably 50 to 99.5% by mass, more preferably 60 to 99.2% by mass.

(1−2)親水基及び炭素と親和性の高い疎水基を有する有機化合物
本発明においては、親水基及び炭素と親和性の高い疎水基を有する有機化合物を使用することにより、グラフェン構造を維持した薄片状カーボンが凝集することなく、本発明のゴム又は樹脂用添加剤中の薄片状カーボンを均一分散した状態で維持することができる。なお、親水基及び炭素と親和性の高い疎水基を有する有機化合物は、薄片状カーボンを均一分散させるための分散剤としても機能し得る。
(1-2) Organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon In the present invention, the graphene structure is maintained by using an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon. The flaky carbon in the rubber or resin additive of the present invention can be maintained in a uniformly dispersed state without agglomeration of the flaky carbon. An organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can also function as a dispersant for uniformly dispersing flaky carbon.

このような親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、特に制限されるわけではなく、薄片状カーボンの分散剤として機能し得る種々多様な有機化合物(特に水溶性化合物)を使用し得る。 The organic compound having such a hydrophilic group and a hydrophobic group having a high affinity for carbon is not particularly limited, and various organic compounds (particularly water-soluble compounds) that can function as a dispersant for flaky carbon are used. Can be used.

なかでも、親水基及び炭素と親和性の高い疎水基を有する有機化合物が有する疎水基としては、特に制限はないが、アルキル基、アルケニル基、シクロアルキル基、アリール基、炭素数3以上のポリオキシアルキレン基等が好ましい。親水基及び炭素と親和性の高い疎水基を有する有機化合物は、このような疎水基を、1種又は2種以上含むことができる。また、複数の疎水基を使用する場合には、同じ疎水基を複数用いてもよいし、同じ疎水基を複数用いてもよいし、異なる疎水基を複数用いてもよい。 Among them, the hydrophobic group contained in the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is not particularly limited, but is an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and a poly having 3 or more carbon atoms. An oxyalkylene group or the like is preferable. An organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can contain one or more such hydrophobic groups. When a plurality of hydrophobic groups are used, the same hydrophobic group may be used, a plurality of the same hydrophobic group may be used, or a plurality of different hydrophobic groups may be used.

アルキル基としては、鎖状アルキル基でも分岐鎖状アルキル基でもよいが、炭素との親和性の観点から、鎖状アルキル基が好ましい。また、アルキル基の炭素数は、炭素との親和性の観点から、2以上が好ましく、3〜22がより好ましく、4〜18がさらに好ましい。このようなアルキル基としては、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ウンデシル基、ドデシル基(又はラウリル基)、トリデシル基、テトラデシル基(又はミリスチル基)、ペンタデシル基、ヘキサデシル基(又はセチル基)、オクタデシル基等が挙げられる。 The alkyl group may be a chain alkyl group or a branched chain alkyl group, but a chain alkyl group is preferable from the viewpoint of affinity with carbon. The number of carbon atoms of the alkyl group is preferably 2 or more, more preferably 3 to 22, and even more preferably 4 to 18 from the viewpoint of affinity with carbon. Such alkyl groups include butyl group, pentyl group, hexyl group, octyl group, decyl group, undecyl group, dodecyl group (or lauryl group), tridecyl group, tetradecyl group (or myristyl group), pentadecyl group and hexadecyl group. (Or a cetyl group), an octadecyl group and the like can be mentioned.

このアルキル基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、シクロアルキル基、アリール基、アラルキル基等が挙げられる。なお、シクロアルキル基及びアリール基としては、後述のものが例示される。 This alkyl group may or may not have a substituent. Examples of such a substituent include a cycloalkyl group, an aryl group, an aralkyl group and the like. Examples of the cycloalkyl group and the aryl group will be described later.

アルキル基の置換基としてのアラルキル基としては、後述のアリール基と炭素数1〜6のアルキル基を有する炭素数7〜14のアラルキル基が好ましく、具体的には、ベンジル基、フェネチル基等が好ましい。 As the aralkyl group as the substituent of the alkyl group, an aralkyl group having 7 to 14 carbon atoms having an aryl group and an alkyl group having 1 to 6 carbon atoms, which will be described later, is preferable, and specifically, a benzyl group, a phenethyl group and the like are used. preferable.

なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、薄片状カーボンとの相溶性を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。 The substituent is not limited to the above, and may have a group derived from a fluorene structure (fluorenyl group or the like). In particular, when water solubility is important, a phenyl group or the like is preferable as a substituent, and when compatibility with flaky carbon is important, a naphthyl group, a fluorenyl group or the like is preferable as a substituent.

アルケニル基としては、炭素との親和性と水溶性の観点から、炭素数は2以上が好ましく、3〜100がより好ましく、4〜30がさらに好ましい。このようなアルケニル基としては、例えば、ブテニル基、ヘキセニル基、オクテニル基、デセニル基、ドデセニル基、オレイル基、リノレイル基等が挙げられる。 The alkenyl group preferably has 2 or more carbon atoms, more preferably 3 to 100 carbon atoms, and even more preferably 4 to 30 carbon atoms from the viewpoint of affinity with carbon and water solubility. Examples of such an alkenyl group include a butenyl group, a hexenyl group, an octenyl group, a decenyl group, a dodecenyl group, an oleyl group, a linoleyl group and the like.

このアルケニル基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基等が挙げられる。なお、アラルキル基としては前記したものが例示され、シクロアルキル基及びアリール基としては、後述のものが例示される。 This alkenyl group may or may not have a substituent. Examples of such a substituent include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group and the like. Examples of the aralkyl group include those described above, and examples of the cycloalkyl group and the aryl group include those described below.

アルケニル基の置換基としてのアルキル基としては、炭素数1〜6のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、tert−ブチル基等が好ましい。 As the alkyl group as the substituent of the alkenyl group, an alkyl group having 1 to 6 carbon atoms is preferable, and specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a tert-butyl group and the like are preferable.

なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、薄片状カーボンとの相溶性を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。 The substituent is not limited to the above, and may have a group derived from a fluorene structure (fluorenyl group or the like). In particular, when water solubility is important, a phenyl group or the like is preferable as a substituent, and when compatibility with flaky carbon is important, a naphthyl group, a fluorenyl group or the like is preferable as a substituent.

シクロアルキル基としては、炭素数5〜10(好ましくは5〜8、特に5〜6)のシクロアルキル基が好ましく、具体的には、シクロペンチル基、シクロへキシル基等が好ましい。 As the cycloalkyl group, a cycloalkyl group having 5 to 10 carbon atoms (preferably 5 to 8, particularly 5 to 6) is preferable, and specifically, a cyclopentyl group, a cyclohexyl group and the like are preferable.

このシクロアルキル基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、アルキル基、アリール基、アラルキル基等が挙げられる。 This cycloalkyl group may or may not have a substituent. Examples of such a substituent include an alkyl group, an aryl group, an aralkyl group and the like.

シクロアルキル基の置換基としてのアルキル基としては、炭素数1〜6のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、tert−ブチル基等が好ましい。 As the alkyl group as the substituent of the cycloalkyl group, an alkyl group having 1 to 6 carbon atoms is preferable, and specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a tert-butyl group and the like are preferable.

シクロアルキル基の置換基としてのアリール基及びアラルキル基としては、前記例示したものが挙げられる。 Examples of the aryl group and the aralkyl group as the substituent of the cycloalkyl group include those exemplified above.

なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、薄片状カーボンとの相溶性を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。 The substituent is not limited to the above, and may have a group derived from a fluorene structure (fluorenyl group or the like). In particular, when water solubility is important, a phenyl group or the like is preferable as a substituent, and when compatibility with flaky carbon is important, a naphthyl group, a fluorenyl group or the like is preferable as a substituent.

アリール基としては、炭素数6〜22(特に6〜18)のアリール基が好ましく、単環アリール基、縮環アリール基及び多環アリール基のいずれも採用でき、例えば、フェニル基、ナフチル基、アントラセニル基、テトラセニル基、フェナントレニル基、ビフェニル基、ターフェニル基、フルオレニル基、アセナフテニル基、アセナフチレニル基、ピレニル基、クリセニル基、トリフェニレニル基等が挙げられる。なお、炭素との親和性の観点から、2個以上の芳香環を有するアリール基(縮環アリール基及び多環アリール基)が好ましい。 As the aryl group, an aryl group having 6 to 22 carbon atoms (particularly 6 to 18) is preferable, and any monocyclic aryl group, condensed ring aryl group or polycyclic aryl group can be adopted, for example, a phenyl group, a naphthyl group, etc. Examples thereof include anthrasenyl group, tetrasenyl group, phenanthrenyl group, biphenyl group, terphenyl group, fluorenyl group, acenaphthenyl group, acenaphthylenyl group, pyrenyl group, chrysenyl group, triphenylenyl group and the like. From the viewpoint of affinity with carbon, an aryl group having two or more aromatic rings (condensed aryl group and polycyclic aryl group) is preferable.

このアリール基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、アルキル基、シクロアルキル基、アラルキル基等が挙げられる。 This aryl group may or may not have a substituent. Examples of such a substituent include an alkyl group, a cycloalkyl group, an aralkyl group and the like.

アリール基の置換基としてのアルキル基としては、炭素数1〜6のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、tert−ブチル基等が好ましい。 As the alkyl group as the substituent of the aryl group, an alkyl group having 1 to 6 carbon atoms is preferable, and specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a tert-butyl group and the like are preferable.

アリール基の置換基としてのシクロアルキル基及びアラルキル基としては、前記例示したものが挙げられる。 Examples of the cycloalkyl group and the aralkyl group as the substituent of the aryl group include those exemplified above.

なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。 The substituent is not limited to the above, and may have a group derived from a fluorene structure (fluorenyl group or the like).

ポリオキシエチレン基は通常親水性であるが、ポリオキシプロピレン基、ポリオキシブチレン基等、炭素数3以上のポリオキシアルキレン基は重合度が上がるほど疎水性が増し、疎水基として機能する。特に重合度4以上のポリオキシプロピレン基、重合度3以上のポリオキシブチレン基が好ましい。ただし、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性の観点では、重合度は1000以下が好ましい。例えば、ポリオキシエチレン−ポリオキシプロピレンやポリオキシエチレン−ポリオキシブチレンを親水基及び炭素と親和性の高い疎水基を有する有機化合物として使用した場合には、ポリオキシプロピレン基及びポリオキシブチレン基も疎水基として機能し得る。 The polyoxyethylene group is usually hydrophilic, but the polyoxyalkylene group having 3 or more carbon atoms, such as a polyoxypropylene group and a polyoxybutylene group, becomes more hydrophobic as the degree of polymerization increases and functions as a hydrophobic group. In particular, a polyoxypropylene group having a degree of polymerization of 4 or more and a polyoxybutylene group having a degree of polymerization of 3 or more are preferable. However, the degree of polymerization is preferably 1000 or less from the viewpoint of strengthening properties such as tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin. For example, when polyoxyethylene-polyoxypropylene or polyoxyethylene-polyoxybutylene is used as an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, the polyoxypropylene group and the polyoxybutylene group are also used. Can function as a hydrophobic group.

この炭素数3以上のポリオキシアルキレン基は、置換基を有していてもよいし有していなくてもよい。このような置換基としては、アルキル基、シクロアルキル基、アラルキル基、アリール基等が挙げられる。 This polyoxyalkylene group having 3 or more carbon atoms may or may not have a substituent. Examples of such a substituent include an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group and the like.

炭素数3以上のポリオキシアルキレン基の置換基としてのアルキル基としては、炭素数1〜6のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、tert−ブチル基等が好ましい。 As the alkyl group as a substituent of the polyoxyalkylene group having 3 or more carbon atoms, an alkyl group having 1 to 6 carbon atoms is preferable, and specifically, a methyl group, an ethyl group, a propyl group, a butyl group and a tert-butyl group. Groups and the like are preferred.

炭素数3以上のポリオキシアルキレン基の置換基としてのシクロアルキル基、アラルキル基及びアリール基としては、前記例示したものが挙げられる。 Examples of the cycloalkyl group, the aralkyl group and the aryl group as the substituent of the polyoxyalkylene group having 3 or more carbon atoms include those exemplified above.

なお、置換基としては、上記のみに制限されず、フルオレン構造由来の基(フルオレニル基等)を有していてもよい。特に、水溶性を重視する場合は置換基としてフェニル基等が好ましく、薄片状カーボンとの相溶性を重視する場合は置換基としてナフチル基、フルオレニル基等が好ましい。 The substituent is not limited to the above, and may have a group derived from a fluorene structure (fluorenyl group or the like). In particular, when water solubility is important, a phenyl group or the like is preferable as a substituent, and when compatibility with flaky carbon is important, a naphthyl group, a fluorenyl group or the like is preferable as a substituent.

このような疎水基としては、炭素との親和性や、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の観点から、アリール基及び炭素数3以上のポリオキシアルキレン基が好ましく、アリール基がより好ましく、2個以上の芳香環を有するアリール基(縮環アリール基及び多環アリール基)がさらに好ましい。具体的には、ナフチル基、アントラセニル基、テトラセニル基、フェナントレニル基、ビフェニル基、ターフェニル基、フルオレニル基、アセナフテニル基、アセナフチレニル基、ピレニル基、クリセニル基、トリフェニレニル基、重合度4以上のポリオキシプロピレン基、重合度3以上のポリオキシブチレン基等が好ましい。 As such a hydrophobic group, an aryl group and a polyoxyalkylene group having 3 or more carbon atoms are preferable from the viewpoints of affinity with carbon, tensile strength to rubber or resin, tensile elongation, elastic modulus and other reinforcing properties. , Aryl groups are more preferred, and aryl groups having two or more aromatic rings (condensed aryl groups and polycyclic aryl groups) are even more preferred. Specifically, a naphthyl group, an anthrasenyl group, a tetrasenyl group, a phenanthrenyl group, a biphenyl group, a terphenyl group, a fluorenyl group, an acenaphthenyl group, an acenaphthylenyl group, a pyrenyl group, a chrysenyl group, a triphenylenyl group, and a polyoxypropylene having a degree of polymerization of 4 or more. A group, a polyoxybutylene group having a degree of polymerization of 3 or more, and the like are preferable.

また、親水基及び炭素と親和性の高い疎水基を有する有機化合物が有する親水基としては、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物の水に対する溶解度を上昇させることができるものであれば特に制限はないが、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の観点から、一般式(1)〜(4): Further, as the hydrophilic group of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, the solubility of the organic compound having a hydrophobic group having a high affinity for the hydrophilic group and carbon in water can be increased. There is no particular limitation as long as it is, but the water solubility of the organic compound having a hydrophobic group having a high affinity with the hydrophilic group and carbon, the dispersibility of flaky carbon, the tensile strength to rubber or resin, the tensile elongation, the elastic coefficient, etc. From the viewpoint of the strengthening characteristics of the above, general formulas (1) to (4):

[式中、−OHはアルコール性水酸基又はフェノール性水酸基を示す。Rは2価の有機基を示す。Xは水素原子、アルカリ金属、NH又は有機アンモニウムを示す。Xは水素原子、アルカリ金属、NH、有機アンモニウム又はアルキル基を示す。一般式(2)の酸素原子はエーテル結合である。]
で表される親水基が好ましい。親水基及び炭素と親和性の高い疎水基を有する有機化合物は、このような親水基を、1種又は2種以上含むことができる。また、複数の親水基を使用する場合には、同じ親水基を複数用いてもよいし、同じ一般式で表される親水基を複数種用いてもよいし、異なる一般式で表される親水基を複数種用いてもよい。
[In the formula, -OH represents an alcoholic hydroxyl group or a phenolic hydroxyl group. R represents a divalent organic group. X 1 represents a hydrogen atom, alkali metal, NH 4 or organic ammonium. X 2 represents a hydrogen atom, alkali metal, NH 4 , organic ammonium or alkyl group. The oxygen atom of the general formula (2) is an ether bond. ]
The hydrophilic group represented by is preferable. The organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can contain one or more such hydrophilic groups. When a plurality of hydrophilic groups are used, the same hydrophilic group may be used more than once, a plurality of types of hydrophilic groups represented by the same general formula may be used, or hydrophilicity represented by different general formulas may be used. A plurality of types of groups may be used.

一般式(1)において、−OHはアルコール性水酸基及びフェノール性水酸基のいずれも採用し得る。親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の観点からは、アルコール性水酸基が好ましいものの、フェノール性水酸基を含む場合(特に、複数のフェノール性水酸基を含む場合)は、必然的に疎水性に優れたベンゼン環も含むこととなり、全体としてゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等に優れるため好ましい。 In the general formula (1), -OH may be either an alcoholic hydroxyl group or a phenolic hydroxyl group. From the viewpoints of water solubility of organic compounds having hydrophilic groups and hydrophobic groups having a high affinity for carbon, dispersibility of flaky carbon, tensile strength with respect to rubber or resin, tensile elongation, strengthening properties such as elastic coefficient, etc., it is alcoholic. When a hydroxyl group is preferable, but a phenolic hydroxyl group is contained (particularly, when a plurality of phenolic hydroxyl groups are contained), a benzene ring having excellent hydrophobicity is inevitably included, and the tensile strength and tension with respect to rubber or resin as a whole are included. It is preferable because it has excellent strengthening properties such as elongation and elasticity.

特に、ベンゼントリオール構造(ピロガロール構造、ヒドロキシキノール構造、フロログルシノール構造等)、ベンゼンジオール構造(カテコール構造、レゾルシノール構造、ヒドロキノン構造)等を有する場合(特に2個以上有する場合)には、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性に特に優れ、スチレン・ブタジエンゴム等のゴムに対する引張強度、引張伸び、弾性率等の強化に特に有効である。このような構造を有する親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、人工的に合成した化合物のみならず、天然由来のポリフェノールを使用することもできる。 In particular, when it has a benzenetriol structure (pyrogallol structure, hydroxyquinol structure, fluoroglusinol structure, etc.), a benzenediol structure (catechol structure, resorcinol structure, hydroquinone structure, etc.) (especially when it has two or more), rubber or It is particularly excellent in strengthening properties such as tensile strength, tensile elongation and elastic modulus with respect to resin, and is particularly effective for strengthening tensile strength, tensile elongation and elastic modulus with respect to rubber such as styrene / butadiene rubber. As the organic compound having a hydrophilic group having such a structure and a hydrophobic group having a high affinity for carbon, not only an artificially synthesized compound but also a naturally occurring polyphenol can be used.

ポリフェノールは、多価フェノールとも呼ばれる化合物の総称であり、芳香族炭化水素の2個以上の水素がヒドロキシル基で置換された化合物、又はそれらの混合物の総称を意味する。このようなポリフェノールとしては、特に制限はなく、例えば、カテキン、エピカテキン、ガロカテキン、エピガロカテキン、カテキンガレート、エピカテキンガレート、ガロカテキンガレート、エピガロカテキンガレート、クエルセチン、ヘスペリジン、タンニン酸、テアフラビン、プロシアニジン、ロイコアントシアニジン、ルチン等が挙げられる。これらのなかでも、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、片状カーボンの分散性、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の観点から、タンニン酸、カテキン等が好ましい。 Polyphenol is a general term for compounds also called polyphenols, and means a general term for compounds in which two or more hydrogens of aromatic hydrocarbons are substituted with hydroxyl groups, or a mixture thereof. Such polyphenols are not particularly limited, and are, for example, catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, epigallocatechin gallate, quercetin, hesperidin, tannic acid, teaflavin, etc. Examples thereof include procyanidin, leukoanthocyanidin, and rutin. Among these, viewpoints such as water solubility of organic compounds having hydrophilic groups and hydrophobic groups having high affinity with carbon, dispersibility of flake carbon, tensile strength to rubber or resin, tensile elongation, elastic modulus and other strengthening properties. Therefore, tannic acid, catechin and the like are preferable.

これらのポリフェノールは、多くの植物中に存在しているため、植物をそのまま使用してもよいし、植物抽出物を使用してもよい。一方、ポリフェノールを常法により精製して使用してもよい。特に、安定した親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の効果が得られることから、精製物(アルコール精製物等)を使用することが好ましい。 Since these polyphenols are present in many plants, the plants may be used as they are, or plant extracts may be used. On the other hand, polyphenol may be purified by a conventional method and used. In particular, the effects of water solubility of an organic compound having a stable hydrophilic group and a hydrophobic group having a high affinity for carbon, dispersibility of flaky carbon, and strengthening properties such as tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin are effective. Since it can be obtained, it is preferable to use a purified product (purified alcohol product or the like).

一般式(2)において、Rで示される2価の有機基としては、特に制限されず、2価の炭化水素基が好ましい。2価の炭化水素基としては、脂肪族炭化水素基(アルキレン基(又はアルキリデン基)、シクロアルキレン基、アルキレン(又はアルキリデン)−シクロアルキレン基、ビ又はトリシクロアルキレン基等)、芳香族炭化水素基(アリーレン基、アルキレン(又はアルキリデン)−アリーレン基等)等が挙げられる。 In the general formula (2), the divalent organic group represented by R is not particularly limited, and a divalent hydrocarbon group is preferable. Examples of the divalent hydrocarbon group include an aliphatic hydrocarbon group (alkylene group (or alkylidene group), cycloalkylene group, alkylene (or alkylidene) -cycloalkylene group, bi or tricycloalkylene group, etc.), aromatic hydrocarbon. Examples thereof include a group (arylene group, alkylene (or alkylidene) -arylene group, etc.).

一般式(2)において、基Rで示されるアルキレン基(又はアルキリデン基)としては、アルキレン基が好ましく、C1−8アルキレン基がより好ましく、C1−4アルキレン基がさらに好ましく、C2−4アルキレン基が特に好ましく、C2−3アルキレン基が最も好ましい。具体的には、メチレン基、エチレン基、エチリデン基、トリメチレン基、プロピレン基、プロピリデン基、テトラメチレン基、エチルエチレン基、ブタン−2−イリデン基、1,2−ジメチルエチレン基、ペンタメチレン基、ペンタン−2,3−ジイル基等が例示できる。 In the general formula (2), as the alkylene group (or alkylidene group) represented by the group R, an alkylene group is preferable, a C 1-8 alkylene group is more preferable, a C 1-4 alkylene group is further preferable, and a C 2- A 4- alkylene group is particularly preferable, and a C 2-3 alkylene group is most preferable. Specifically, methylene group, ethylene group, ethylidene group, trimethylene group, propylene group, propyridene group, tetramethylene group, ethylethylene group, butane-2-idene group, 1,2-dimethylethylene group, pentamethylene group, Examples thereof include a pentane-2,3-diyl group.

一般式(2)において、基Rで示されるシクロアルキレン基としては、C5−10シクロアルキレン基が好ましく、C5−8シクロアルキレン基がより好ましい。具体的には、シクロペンチレン基、シクロへキシレン基、メチルシクロへキシレン基、シクロへプチレン基等が例示できる。 In the general formula (2), as the cycloalkylene group represented by the group R, a C 5-10 cycloalkylene group is preferable, and a C 5-8 cycloalkylene group is more preferable. Specifically, a cyclopentylene group, a cyclohexylene group, a methylcyclohexanelen group, a cycloheptylene group and the like can be exemplified.

一般式(2)において、基Rで示されるアルキレン(又はアルキリデン)−シクロアルキレン基としては、アルキレン−シクロアルキレン基が好ましく、C1−6アルキレン−C5−10シクロアルキレン基がより好ましく、C1−4アルキレン−C5−8シクロアルキレン基がさらに好ましい。具体的には、メチレン−シクロへキシレン基、エチレン−シクロへキシレン基、エチレン−メチルシクロへキシレン基、エチリデン−シクロへキシレン基等が例示できる。 In the general formula (2), as the alkylene (or alkylidene) -cycloalkylene group represented by the group R, an alkylene-cycloalkylene group is preferable, a C 1-6 alkylene-C 5-10 cycloalkylene group is more preferable, and C A 1-4 alkylene-C 5-8 cycloalkylene group is more preferred. Specifically, methylene-cyclohexylene group, ethylene-cyclohexylene group, ethylene-methylcyclohexylene group, ethylidene-cyclohexylene group and the like can be exemplified.

一般式(2)において、基Rで示されるビ又はトリシクロアルキレン基としては、具体的には、ノルボルナン−ジイル基等が例示できる。 In the general formula (2), a norbornane-diyl group or the like can be specifically exemplified as the bi or tricycloalkylene group represented by the group R.

一般式(2)において、基Rで示されるアリーレン基としては、C6−10アリーレン基が好ましい。具体的には、フェニレン基、ナフタレンジイル基等が例示できる。 In the general formula (2), the C 6-10 arylene group is preferable as the arylene group represented by the group R. Specifically, a phenylene group, a naphthalene diyl group and the like can be exemplified.

一般式(2)において、基Rで示されるアルキレン(又はアルキリデン)−アリーレン基としては、アルキレン−アリーレン基が好ましく、C1−6アルキレン−C6−20アリーレン基がより好ましく、C1−4アルキレン−C6−10アリーレン基がさらに好ましく、C1−2アルキレン−フェニレン基が特に好ましい。具体的には、メチレン−フェニレン基、エチレン−フェニレン基、エチレン−メチルフェニレン基、エチリデンフェニレン基等が例示できる。 In the general formula (2), as the alkylene (or alkylidene) -arylene group represented by the group R, an alkylene-arylene group is preferable, a C 1-6 alkylene-C 6-20 arylene group is more preferable, and C 1-4. An alkylene-C 6-10 arylene group is more preferable, and a C 1-2 alkylene-phenylene group is particularly preferable. Specifically, a methylene-phenylene group, an ethylene-phenylene group, an ethylene-methylphenylene group, an ethylidene phenylene group and the like can be exemplified.

これらのうち、2価の脂肪族炭化水素基、特に、アルキレン基(例えば、メチレン基、エチレン基等のC1−4アルキレン基等)が好ましい。 Of these, a divalent aliphatic hydrocarbon group, particularly an alkylene group (for example, a C 1-4 alkylene group such as a methylene group or an ethylene group) is preferable.

なお、アルキレン(若しくはアルキリデン)−シクロアルキレン基並びにアルキレン(アルキリデン)−アリーレン基とは、−Ra−Rb−(式中、Raは、一般式(2)において、それぞれ別個の酸素原子に結合したアルキレン基又はアルキリデン基、Rbはシクロアルキレン基又はアリーレン基を示す)で表される基を示す。 The alkylene (or alkylidene) -cycloalkylene group and the alkylene (alkylidene) -arylene group are -Ra-Rb- (in the formula, Ra is an alkylene bonded to a separate oxygen atom in the general formula (2). A group or an alkylidene group, Rb indicates a cycloalkylene group or an arylene group).

このような一般式(2)で表される親水基としては、特に制限されず、例えば、−OCO−、−OCO−、−OCHO−等が使用され得る。これらを複数(好ましくは3〜100個)有するものも好ましく使用することができ、例えば、トリオキシエチレン基、テトラオキシエチレン基、ポリオキシメチレン基、ポリオキシエチレン基、ポリオキシプロピレン基等を使用することができる。特に一般式(2)で表される親水基が3つ以上重合した構造を有する場合は、Rの炭素が多いほど(例えば炭素数3以上)親水性が下がり疎水性を増すため、重合度が増しても親水性を保持できる−OCO−、−OCHO−が好ましい。 The hydrophilic group represented by the general formula (2) is not particularly limited, and for example, -OC 2 H 4 O-, -OC 3 H 6 O-, -OCH 2 O- and the like can be used. .. Those having a plurality of these (preferably 3 to 100) can also be preferably used, and for example, a trioxyethylene group, a tetraoxyethylene group, a polyoxymethylene group, a polyoxyethylene group, a polyoxypropylene group and the like are used. can do. In particular, when the hydrophilic group represented by the general formula (2) has a structure in which three or more are polymerized, the more carbons in R (for example, three or more carbon atoms), the lower the hydrophilicity and the more hydrophobic, so the degree of polymerization is high. -OC 2 H 4 O- and -OCH 2 O-, which can maintain hydrophilicity even when increased, are preferable.

このような一般式(2)で表される親水基、特にポリオキシアルキレン基、さらにはポリオキシエチレン基を有する場合は、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性に特に優れ、ポリプロピレン等の樹脂に対する引張強度、引張伸び、弾性率等の強化に特に有効である。 When having such a hydrophilic group represented by the general formula (2), particularly a polyoxyalkylene group, and further a polyoxyethylene group, the reinforcing properties such as tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin It is excellent and is particularly effective for strengthening tensile strength, tensile elongation, elastic modulus, etc. with respect to resins such as polypropylene.

一般式(3)において、Xで示されるアルカリ金属としては、特に制限されず、ナトリウム、カリウム、リチウム等が挙げられる。 In the general formula (3), the alkali metal represented by X 1 is not particularly limited, and examples thereof include sodium, potassium, lithium and the like.

一般式(3)において、Xで示される有機アンモニウムとしては、第四級アンモニウムが好適であり、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム等が好適に使用され得る。 In the general formula (3), quaternary ammonium is preferable as the organic ammonium represented by X 1 , and tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium and the like can be preferably used.

このような一般式(3)で表される親水基としては、特に制限されないが、例えば、−SO 、−SO Na、−SO 、−SO Li、−SO NH 、−SO N(CH 、−SO N(C 、−SO N(C 、−SO N(C 等が挙げられる。 The hydrophilic group represented by the general formula (3) is not particularly limited, but is, for example, −SO 3 H + , −SO 3 Na + , −SO 3 K + , −SO 3 Li. + , -SO 3 - NH 4 + , -SO 3 - N (CH 3 ) 4 + , -SO 3 - N (C 2 H 5 ) 4 + , -SO 3 - N (C 3 H 7 ) 4 + , −SO 3 N (C 4 H 9 ) 4 + and the like can be mentioned.

一般式(4)において、Xで示されるアルカリ金属及び有機アンモニウムとしては、上記例示したものが挙げられる。 In the general formula (4), examples of the alkali metal and organic ammonium represented by X 2 include those exemplified above.

一般式(4)において、Xで示されるアルキル基としては、鎖状アルキル基でも分岐鎖状アルキル基でもよいが、炭素との親和性や、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性の観点から、鎖状アルキル基が好ましい。また、アルキル基の炭素数は、炭素との親和性や、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性の観点から、1〜2が好ましい。 In the general formula (4), the alkyl group represented by X 2 may be a chain alkyl group or a branched chain alkyl group, but has an affinity for carbon, tensile strength with respect to rubber or resin, tensile elongation, and elastic modulus. A chain alkyl group is preferable from the viewpoint of strengthening properties such as. The number of carbon atoms of the alkyl group is preferably 1 to 2 from the viewpoint of affinity with carbon and strengthening properties such as tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin.

このような一般式(4)で表される親水基としては、特に制限されないが、例えば、−COOH、−COONa、−COOK、−COOLi、−COONH、−COON(CH、−COON(C、−COON(C 、−COON(C 等が挙げられる。 The hydrophilic group represented by the general formula (4) is not particularly limited, but is, for example, -COOH, -COONa, -COOK, -COOLi, -COONH 4 , -COON (CH 3 ) 4 , -COON. (C 2 H 5 ) 4 , -COON (C 3 H 7 ) 4 + , -COON (C 4 H 9 ) 4 + and the like can be mentioned.

これら親水基のなかでも、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、pHによらない安定性、薄片状カーボンの分散性、や、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の観点から、一般式(1)又は(2)で表される親水基が好ましい。 Among these hydrophilic groups, the water solubility of organic compounds having a hydrophilic group and a hydrophobic group having a high affinity for carbon, stability regardless of pH, dispersibility of flaky carbon, tensile strength to rubber or resin, tension From the viewpoint of strengthening properties such as elongation and elastic modulus, the hydrophilic group represented by the general formula (1) or (2) is preferable.

ただし、一般式(2)で表される同じ親水基を複数有する、つまり重合した構造を有する場合、炭素数2以下は重合度が増すほど水溶性化合物の親水性は高くなるが、炭素数3以上の場合は重合度が増すほど疎水性が増す可能性がある。 However, when the water-soluble compound has a plurality of the same hydrophilic groups represented by the general formula (2), that is, has a polymerized structure, the hydrophilicity of the water-soluble compound increases as the degree of polymerization increases when the number of carbon atoms is 2 or less, but the number of carbon atoms is 3. In the above cases, the hydrophobicity may increase as the degree of polymerization increases.

また、本発明において、親水基及び炭素と親和性の高い疎水基を有する有機化合物として、非イオン系材料(ノニオン界面活性剤等)を使用する場合には、そのHLB値は、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物の水溶性、薄片状カーボンの分散性、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の観点から、12以上が好ましく、13〜19がより好ましい。なお、疎水基を同じとした場合(薄片状カーボンとの親和性が同程度の場合)には、HLB値は高いほど好ましい。 Further, in the present invention, when a nonionic material (nonionic surfactant or the like) is used as the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, the HLB value thereof is the hydrophilic group and the HLB value. From the viewpoints of water solubility of an organic compound having a hydrophobic group having a high affinity with carbon, dispersibility of flaky carbon, and strengthening properties such as tensile strength, tensile elongation, and elasticity with respect to rubber or resin, 12 or more is preferable, and 13 ~ 19 is more preferable. When the hydrophobic groups are the same (when the affinity with flaky carbon is about the same), the higher the HLB value is, the more preferable.

上記のような条件を満たす親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、特に制限はないが、芳香族水溶性化合物を使用してもよいし、非芳香族水溶性化合物を使用してもよいが、芳香族水溶性化合物が好ましい。親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシプロピレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシプロピレンラウリルエーテル、ポリオキシプロピレンナフチルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシプロピレンミリスチルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシプロピレンセチルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシプロピレンオクチルフェニルエーテル、ポリオキシエチレンウンデシルフェニルエーテル、ポリオキシプロピレンウンデシルフェニルエーテル、ポリオキシエチレントリデシルフェニルエーテル、ポリオキシプロピレントリデシルフェニルエーテル、ポリオキシエチレンペンタデシルフェニルエーテル、ポリオキシプロピレンペンタデシルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシプロピレンポリグリセリルエーテル、コール酸ナトリウム、コール酸カリウム、ドデシルスルホン酸ナトリウム、ドデシルスルホン酸カリウム、ジラウロイルグルタミン酸リシンナトリウム、ジラウロイルグルタミン酸リシンカリウム、デカグリセリンラウリン酸エステル、n−デシルアルコール、カテキン(緑茶由来ポリフェノール等)、エピカテキン、ガロカテキン、エピガロカテキン、カテキンガレート、エピカテキンガレート、ガロカテキンガレート、エピガロカテキンガレート、クエルセチン、ヘスペリジン、タンニン酸、テアフラビン、プロシアニジン、ロイコアントシアニジン、ルチン等が挙げられる。 The organic compound having a hydrophilic group satisfying the above conditions and a hydrophobic group having a high affinity with carbon is not particularly limited, but an aromatic water-soluble compound may be used, or a non-aromatic water-soluble compound may be used. May be used, but aromatic water-soluble compounds are preferred. Examples of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon include polyoxyethylene lauryl ether, polyoxyethylene decyl ether, polyoxypropylene decyl ether, polyoxyethylene lauryl ether, and polyoxyethylene naphthyl ether. Polyoxypropylene lauryl ether, polyoxypropylene naphthyl ether, polyoxyethylene myristyl ether, polyoxypropylene myristyl ether, polyoxyethylene cetyl ether, polyoxypropylene cetyl ether, polyoxyethylene octylphenyl ether, polyoxypropylene octylphenyl ether, Polyoxyethylene undecylphenyl ether, polyoxypropylene undecylphenyl ether, polyoxyethylene tridecylphenyl ether, polyoxypropylene tridecylphenyl ether, polyoxyethylene pentadecylphenyl ether, polyoxypropylene pentadecylphenyl ether, polyoxy Ethylene polyoxypropylene glycol, polyoxypropylene polyglyceryl ether, sodium colate, potassium colate, sodium dodecylsulfonate, potassium dodecylsulfonate, sodium dilauroyl glutamate lysine, potassium dilauroyl glutamate lysine, decaglycerin laurate ester, n- Decyl alcohol, catechin (polyphenol derived from green tea, etc.), epicatechin, galocatechin, epigalocatechin, catechin gallate, epicatechin gallate, galocatechin gallate, epigalocatechin gallate, quercetin, hesperidin, tannic acid, theaflavin, procyanidin, leukoanthocyanidin, Rutin and the like can be mentioned.

このような親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、例えば、エマルゲン103、エマルゲン104P、エマルゲン105、エマルゲン106、エマルゲン108、エマルゲン109P、エマルゲン120、エマルゲン123P、エマルゲン130K、エマルゲン147、エマルゲン150、エマルゲン210P、エマルゲン220(以上、花王(株)製ポリオキシエチレンアルキルエーテル類)、トリトンX−100、トリトンX−114、トリトンX−305、トリトンX−405(ダウケミカル社製ポリオキシエチレンオクチルフェニルエーテル類)、ノイゲンEN、ノイゲンEN−10(第一工業製薬(株)製ポリオキシエチレンナフチルエーテル)、タンニン酸、カテキン類(エピカテキン、エピガロカテキン、エピカテキンガレート。エピガロカテキンガレート、カテキン、ガロカテキン、カテキンガレート、ガロカテキンガレート等、ポリフェノール類を含む)、没食子酸、没食子酸エステル、柿渋(タンニン類を含む)等を使用できる。 Examples of the organic compound having such a hydrophilic group and a hydrophobic group having a high affinity for carbon include Emargen 103, Emargen 104P, Emargen 105, Emargen 106, Emargen 108, Emargen 109P, Emargen 120, Emargen 123P, and Emargen 130K. Emalgen 147, Emalgen 150, Emalgen 210P, Emalgen 220 (above, polyoxyethylene alkyl ethers manufactured by Kao Co., Ltd.), Triton X-100, Triton X-114, Triton X-305, Triton X-405 (Dow Chemical Co., Ltd.) Polyoxyethylene octylphenyl ethers manufactured by), Neugen EN, Neugen EN-10 (polyoxyethylene naphthyl ether manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), tannic acid, catechins (epicatechin, epigallocatechin, epicatechin gallate). Epigallocatechin gallate, catechin, galocatechin, catechin gallate, galocatechin gallate, etc., including polyphenols), epigallocatechin gallate, epigallocatechin gallate, persimmon astringent (including tannins), etc. can be used.

本発明のゴム又は樹脂用添加剤中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性の観点から、本発明のゴム又は樹脂用添加剤の総量を100質量%として、0.5〜50質量%が好ましく、0.8〜40質量%がより好ましい。また、本発明のゴム又は樹脂用添加剤中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性の観点から、薄片状カーボン1質量部に対して、0.01〜0.9質量部が好ましく、0.02〜0.8質量部がより好ましい。なお、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が少ない場合には、本発明のゴム又は樹脂用添加剤は、薄片状カーボンの表面に親水基及び炭素と親和性の高い疎水基を有する有機化合物が被覆されている構成を有する(図1)。一方、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が多い場合には、本発明のゴム又は樹脂用添加剤は、炭素と親和性の高い疎水基を有する有機化合物中に薄片状カーボンが分散している構成を有する(図2)。いずれの場合も、親水基及び炭素と親和性の高い疎水基を有する有機化合物が薄片状カーボンの周囲に介在することで、薄片状カーボンの凝集を抑制し、ゴム又は樹脂に対する引張強度、引張伸び、弾性率に優れた材料を得ることができる。 The content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon in the additive for rubber or resin of the present invention is not particularly limited, but the tensile strength, tensile elongation, elastic modulus, etc. with respect to rubber or resin are not particularly limited. From the viewpoint of reinforcing properties, the total amount of the rubber or resin additive of the present invention is 100% by mass, preferably 0.5 to 50% by mass, and more preferably 0.8 to 40% by mass. The content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon in the additive for rubber or resin of the present invention is not particularly limited, but has tensile strength, tensile elongation, and elastic modulus with respect to rubber or resin. From the viewpoint of strengthening characteristics such as, 0.01 to 0.9 parts by mass is preferable, and 0.02 to 0.8 parts by mass is more preferable with respect to 1 part by mass of flaky carbon. When the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is small, the additive for rubber or resin of the present invention has an affinity with the hydrophilic group and carbon on the surface of the flaky carbon. It has a structure in which an organic compound having a high hydrophobic group is coated (Fig. 1). On the other hand, when the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is large, the additive for rubber or resin of the present invention is contained in the organic compound having a hydrophobic group having a high affinity with carbon. It has a structure in which flaky carbon is dispersed in (Fig. 2). In either case, an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon intervenes around the flaky carbon to suppress aggregation of the flaky carbon, and has tensile strength and tensile elongation with respect to rubber or resin. , A material having an excellent elastic modulus can be obtained.

(1−3)他の成分
本発明のゴム又は樹脂用添加剤において、薄片状カーボン及び親水基及び炭素と親和性の高い疎水基を有する有機化合物以外にも、他の成分を含ませてもよい。このような他の成分としては、例えば、カーボンファイバー(特に繊維径500nm以下のカーボンナノファイバー)、活性炭、カーボンブラック(アセチレンブラック、オイルファーネスブラック等;特に導電性が高く、比表面積が大きいケッチェンブラック)、ガラス状カーボン、カーボンマイクロコイル、フラーレン、バイオマス系炭素材料(バガス、ソルガム、木くず、おがくず、竹、木皮、稲ワラ、籾殻、コーヒーかす、茶殻、おからかす、米糠、パルプくず等を原料としたもの;リグニンから製造したカーボンファイバー等)、セルロースナノファイバー、窒化ホウ素、モリブデン化合物(二硫化モリブデン、有機モリブデン等)、二硫化タングステン、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等)、メラミンシアヌレート、フタロシアニン、酸化鉛、フッ化カルシウム、層状鉱物(マイカ、タルク等)等を、本発明の効果を損なわない範囲で使用することもできる。
(1-3) Other components In the rubber or resin additive of the present invention, other components may be contained in addition to flaky carbon and organic compounds having a hydrophilic group and a hydrophobic group having a high affinity for carbon. Good. Examples of such other components include carbon fibers (particularly carbon nanofibers having a fiber diameter of 500 nm or less), activated carbon, carbon black (acetylene black, oil furnace black, etc .; particularly high conductivity and large specific surface area). Black), glassy carbon, carbon microcoil, fullerene, biomass-based carbon materials (bagas, sorghum, wood chips, shavings, bamboo, bark, rice straw, paddy husks, coffee husks, tea husks, tea husks, rice bran, pulp waste, etc. Raw materials; carbon fibers manufactured from lignin, etc.), cellulose nanofibers, boron nitride, molybdenum compounds (molybdenum disulfide, organic molybdenum, etc.), tungsten disulfide, fluororesins (polytetrafluoroethylene (PTFE), tetrafluoro) Ethylene / perfluoroalkyl vinyl ether copolymer (PFA), etc.), melamine cyanurate, phthalocyanine, lead oxide, calcium fluoride, layered minerals (mica, talc, etc.), etc. are used as long as the effects of the present invention are not impaired. You can also do it.

ただし、ゴム又は樹脂中に分散させやすく、塗布する際の塗膜の均一性、密着性等をさらに向上させ、ゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性をさらに向上させる観点からは、他の成分の含有量は少ないことが好ましく、本発明のゴム又は樹脂用添加剤の総量を100質量%として、0.01〜10質量%が好ましく、0.02〜5質量%がより好ましい。 However, from the viewpoint that it is easy to disperse in rubber or resin, the uniformity and adhesion of the coating film when applied are further improved, and the strengthening properties such as tensile strength, tensile elongation and elastic modulus with respect to rubber or resin are further improved. Therefore, the content of other components is preferably small, preferably 0.01 to 10% by mass, and 0.02 to 5% by mass, where the total amount of the rubber or resin additive of the present invention is 100% by mass. More preferred.

このような本発明のゴム又は樹脂用添加剤の形状としては、特に制限はなく、塗膜、シート、塊状体等を挙げることができる。 The shape of the rubber or resin additive of the present invention is not particularly limited, and examples thereof include a coating film, a sheet, and a lump.

このような本発明のゴム又は樹脂用添加剤は、上記のとおり、ゴム又は熱可塑性樹脂中に分散しやすく、且つ樹脂又はゴムの引張強度、引張伸び、弾性率等を強化することができる材料であり、従来の添加剤においては、弾性率は向上するものの引張強度や引張伸びが低下していたのと比較すると、ゴム又は樹脂の強化に有利な材料である。 As described above, such an additive for rubber or resin of the present invention is a material that can be easily dispersed in rubber or thermoplastic resin and can enhance the tensile strength, tensile elongation, elastic modulus, etc. of the resin or rubber. Therefore, in the conventional additive, although the elastic modulus is improved, the tensile strength and the tensile elongation are decreased, which is an advantageous material for strengthening rubber or resin.

このような本発明のゴム用添加剤は、タイヤ、靴底、運動用品、床タイル、ベルト、ホース、耐衝撃容器、防振ゴム、ロール、電線被覆、塗料、シール材、パッキン、ガスケット、窓やドアの枠、ウェザーストリップ、帯電防止シート、ダイヤフラム、コーキング材、手すり、熱可塑性エラストマー添加剤等、樹脂用添加剤は、各種射出成形品、押出成形品、シート成形品、ブロー成形品、圧縮成形品等の用途に用いることができる。 Such rubber additives of the present invention include tires, shoe soles, athletic supplies, floor tiles, belts, hoses, impact-resistant containers, anti-vibration rubber, rolls, wire coatings, paints, sealing materials, packings, gaskets, windows. Resin additives such as door frames, weather strips, antistatic sheets, diaphragms, coking materials, handrails, and thermoplastic elastomer additives include various injection molded products, extrusion molded products, sheet molded products, blow molded products, and compression products. It can be used for applications such as molded products.

2.ゴム又は樹脂用添加剤の製造方法
本発明のゴム又は樹脂用添加剤は、例えば、
(1)前記薄片状カーボンと、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物と、溶媒とを含有する分散体から溶媒を除去する工程
により製造することができる。
2. Method for Producing Additive for Rubber or Resin The additive for rubber or resin of the present invention is, for example,
(1) It can be produced by a step of removing a solvent from a dispersion containing the flaky carbon, the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, and a solvent.

(2−1)分散体(薄片状カーボン分散体)
薄片状カーボンと、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物と、溶媒とを含有する分散体(薄片状カーボン分散体)において、薄片状カーボンと、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物については、上記した説明を採用することができる。また、薄片状カーボン分散体には、必要に応じて、上記した他の成分を含ませることもできる。
(2-1) Dispersion (flammed carbon dispersion)
In a dispersion containing a flake carbon, an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, and a solvent (flake carbon dispersion), the flake carbon, the hydrophilic group and carbon The above description can be adopted for an organic compound having a hydrophobic group having a high affinity. Further, the flaky carbon dispersion may contain the above-mentioned other components, if necessary.

この薄片状カーボン分散体は、分散液として形成してもよいし、基板上に塗膜として形成してもよい。この際、薄片状カーボン分散体(薄片状カーボン分散液又は薄片状カーボン塗膜)を作製するために使用される溶媒としては、薄片状カーボンの分散性、得られるゴム又は樹脂用添加剤におけるゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の観点から、水を主溶媒として用いることが好ましい。 This flaky carbon dispersion may be formed as a dispersion liquid or as a coating film on a substrate. At this time, as the solvent used for producing the flaky carbon dispersion (fluffy carbon dispersion liquid or flaky carbon coating film), the dispersibility of the flaky carbon, the obtained rubber or the rubber in the resin additive Alternatively, it is preferable to use water as the main solvent from the viewpoint of strengthening properties such as tensile strength, tensile elongation, and elastic modulus with respect to the resin.

使用する溶媒中の水の含有量は、特に制限されないが、薄片状カーボンの分散性、得られるゴム又は樹脂用添加剤におけるゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の観点から、溶媒の総量を100質量%として、70質量%以上(70〜100質量%)が好ましく、75〜100質量%がより好ましい。 The content of water in the solvent used is not particularly limited, but the dispersibility of flaky carbon, the tensile strength of the obtained rubber or resin additive to the rubber or resin, the tensile elongation, the reinforcing properties such as elastic modulus, etc. From the viewpoint, the total amount of the solvent is 100% by mass, and it is preferably 70% by mass or more (70 to 100% by mass), more preferably 75 to 100% by mass.

なお、本発明において、溶媒としては、水のみを使用してもよく、有機溶媒は必ずしも使用しなくてもよいが、親水基及び炭素と親和性の高い疎水基を有する有機化合物の水への溶解性をより向上させるために、メタノール、エタノール、2−プロパノール、tert−ブチルアルコール等のアルコール;エチレングリコール等のグリコール;グリセリン;2−メトキシエタノール等の有機溶媒を使用してもよい。 In the present invention, only water may be used as the solvent, and an organic solvent may not necessarily be used, but an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can be added to water. In order to further improve the solubility, alcohols such as methanol, ethanol, 2-propanol and tert-butyl alcohol; glycols such as ethylene glycol; glycerin; and organic solvents such as 2-methoxyethanol may be used.

使用する溶媒中の有機溶媒の含有量は、親水基及び炭素と親和性の高い疎水基を有する有機化合物の溶解度、得られるゴム又は樹脂用添加剤におけるゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の観点から、溶媒の総量を100質量%として、30質量%以下(0〜30質量%)が好ましく、5〜25質量%がより好ましい。 The content of the organic solvent in the solvent used is the solubility of an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, the tensile strength, tensile elongation, and elasticity of the obtained rubber or resin additive with respect to the rubber or resin. From the viewpoint of strengthening characteristics such as rate, the total amount of the solvent is 100% by mass, and it is preferably 30% by mass or less (0 to 30% by mass), more preferably 5 to 25% by mass.

上記薄片状カーボン分散体において、薄片状カーボンの含有量は、特に制限されないが、本発明のゴム又は樹脂用添加剤の組成としやすい観点から、薄片状カーボン分散体の総量を100質量%として、20質量%以下が好ましく、0.0001〜15質量%がより好ましく、0.001〜10質量%がさらに好ましい。また、同様に、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、本発明のゴム又は樹脂用添加剤の組成としやすい観点から、薄片状カーボン分散体の総量を100質量%として、0.000001〜30質量%が好ましく、0.00001〜15質量%がより好ましく、0.001〜10質量%がさらに好ましい。同様に、上記薄片状カーボン分散体中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、本発明のゴム又は樹脂用添加剤の組成としやすい観点から、薄片状カーボン1質量部に対して、0.01〜0.9質量部が好ましく、0.02〜0.8質量部がより好ましい。さらに、溶媒の含有量は、特に制限されないが、本発明のゴム又は樹脂用添加剤の組成としやすい観点から、薄片状カーボン分散体の総量を100質量%として、40〜99.9998質量%が好ましく、63〜99.998質量%がより好ましく、85〜99.98質量%がさらに好ましい。 In the above-mentioned flaky carbon dispersion, the content of flaky carbon is not particularly limited, but from the viewpoint of easy composition of the rubber or resin additive of the present invention, the total amount of flaky carbon dispersion is set to 100% by mass. It is preferably 20% by mass or less, more preferably 0.0001 to 15% by mass, still more preferably 0.001 to 10% by mass. Similarly, the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon is not particularly limited, but from the viewpoint of easy composition of the additive for rubber or resin of the present invention, flaky carbon dispersion. Assuming that the total amount of the body is 100% by mass, 0.000001 to 30% by mass is preferable, 0.00001 to 15% by mass is more preferable, and 0.001 to 10% by mass is further preferable. Similarly, the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon in the flaky carbon dispersion is not particularly limited, but the composition of the additive for rubber or resin of the present invention can be easily obtained. Therefore, 0.01 to 0.9 parts by mass is preferable, and 0.02 to 0.8 parts by mass is more preferable with respect to 1 part by mass of flaky carbon. Further, the content of the solvent is not particularly limited, but from the viewpoint that the composition of the rubber or resin additive of the present invention can be easily obtained, the total amount of the flaky carbon dispersion is 100% by mass, and 40 to 99.9998% by mass. Preferably, 63 to 99.998% by mass is more preferable, and 85 to 99.98% by mass is further preferable.

(2−2)薄片状カーボン分散体の製造方法
本発明において、上記薄片状カーボン分散体の製造方法は、特に制限されず、溶媒に対して薄片状カーボン及び親水基及び炭素と親和性の高い疎水基を有する有機化合物を投入することもできる。具体的には、親水基及び炭素と親和性の高い疎水基を有する有機化合物の分散体に薄片状カーボンを投入することもできるし、薄片状カーボンの分散体に親水基及び炭素と親和性の高い疎水基を有する有機化合物を投入することもできる。また、溶媒中に、薄片状カーボン及び親水基及び炭素と親和性の高い疎水基を有する有機化合物を同時に投入することもできる。
(2-2) Method for producing flaky carbon dispersion In the present invention, the method for producing the flaky carbon dispersion is not particularly limited, and has high affinity for flaky carbon, hydrophilic groups and carbon with respect to the solvent. An organic compound having a hydrophobic group can also be added. Specifically, flaky carbon can be added to a dispersion of an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, or a dispersion of flaky carbon having an affinity for a hydrophilic group and carbon. It is also possible to add an organic compound having a high hydrophobic group. Further, flaky carbon and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can be simultaneously added to the solvent.

ただし、薄片状カーボンの分散性をより向上させて凝集しにくくし、得られる本発明のゴム又は樹脂用添加剤のゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性をさらに高める観点からは、回転する回転盤と、前記回転盤と略平行に設置された盤との間に、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物を設置し、前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記組成物中の炭素質材料に対してせん断を加えることが好ましい(磨砕法)。 However, from the viewpoint of further improving the dispersibility of flaky carbon to make it difficult to aggregate, and further enhancing the strengthening properties such as tensile strength, tensile elongation, elastic modulus, etc. of the obtained rubber or resin additive of the present invention with respect to rubber or resin. From the above, a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon between the rotating rotating disk and the disk installed substantially parallel to the rotating disk. It is preferable to apply shear to the carbonaceous material in the composition while installing the composition containing the above and adjusting the shortest distance between the rotating disk and the disk to be 200 μm or less (grinding method). ..

また、薄片状カーボン分散体は、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物に対して、30MPa以上の加圧処理を行うことによっても好ましく製造することができる(高圧分散法)。 Further, the flaky carbon dispersion is subjected to a pressure treatment of 30 MPa or more on a composition containing a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon. It can also be preferably produced (high pressure dispersion method).

従来は、湿式法にて薄片状カーボンを作製する場合、薄片状カーボンの酸化物及び水性溶媒を含む水分散体に還元処理を施していたが、この方法ではグラフェン構造を維持することが困難であるとともに、得られる薄片状カーボンが激しく凝集してしまうため、薄片状カーボン水分散体を得ることは困難であった。また、安全性の観点でも問題があった。一方、本発明においては、親水基及び炭素と親和性の高い疎水基を有する有機化合物を使用することにより、グラフェン構造を維持した薄片状カーボンが凝集することなく、均一分散した状態(薄片状カーボン分散体)で薄片状カーボンを得ることができ、得られる薄片状カーボンも破壊されにくく、短時間で薄片状カーボンを得ることもできるうえに剥離し損ねた塊も残存しにくい。この際、親水基及び炭素と親和性の高い疎水基を有する有機化合物は、薄片状カーボンを均一分散させるための分散剤としても機能し得る。 Conventionally, when flaky carbon is produced by a wet method, an aqueous dispersion containing an oxide of flaky carbon and an aqueous solvent has been subjected to a reduction treatment, but it is difficult to maintain the graphene structure by this method. At the same time, it was difficult to obtain a flaky carbon aqueous dispersion because the obtained flaky carbon aggregated violently. There was also a problem from the viewpoint of safety. On the other hand, in the present invention, by using an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, the flaky carbon maintaining the graphene structure is uniformly dispersed without agglomeration (flaky carbon). The flaky carbon can be obtained from the dispersion), the obtained flaky carbon is not easily destroyed, the flaky carbon can be obtained in a short time, and the lumps that have failed to be peeled off are hard to remain. At this time, the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can also function as a dispersant for uniformly dispersing flaky carbon.

また、せん断方法によれば、力のかかる方向が層状構造を有する炭素質材料の面方向と平行であり、且つ、狭い空間で処理するため、従来の高速攪拌、超音波処理等による製造方法と比較して、破壊が少なく、大きめのサイズの薄片状カーボン(例えば、大きさが1μm以上の薄片状カーボン)を得ることができ、剥離の効率がよく短時間(少ないパス回数)で処理を行うことができるとともに、剥離し損ねた厚みのある塊が残りにくい。 Further, according to the shearing method, since the direction in which the force is applied is parallel to the plane direction of the carbonaceous material having a layered structure and the processing is performed in a narrow space, it is different from the conventional manufacturing method by high-speed stirring, ultrasonic treatment, etc. In comparison, flaky carbon with less fracture and a larger size (for example, flaky carbon with a size of 1 μm or more) can be obtained, and the peeling efficiency is good and the treatment is performed in a short time (small number of passes). In addition to being able to do so, it is difficult for thick lumps that have failed to peel off to remain.

層状構造を有する炭素質材料
層状構造を有する炭素質材料としては、特に制限はないが、天然黒鉛、人造黒鉛、膨張黒鉛、土状黒鉛、酸化黒鉛等が挙げられる。酸化黒鉛とは、例えば、硫酸、硝酸、過マンガン酸カリウム、過酸化水素等の1種以上の酸化剤により酸化された黒鉛が使用され得る。例えば、ハマーズ法により酸化黒鉛を得る場合には、黒鉛を濃硫酸中に浸し、過マンガン酸カリウムを加えて黒鉛を酸化させた後、反応物を希硫酸及び/又は過酸化水素でクエンチし、その後、蒸留水で洗浄すること等により、炭素原子に酸素原子が結合し、層間に酸素原子が導入されて酸化黒鉛を得ることができる。
Carbonaceous material having a layered structure The carbonaceous material having a layered structure is not particularly limited, and examples thereof include natural graphite, artificial graphite, expanded graphite, earthy graphite, and graphite oxide. As the graphite oxide, for example, graphite oxidized by one or more kinds of oxidizing agents such as sulfuric acid, nitric acid, potassium permanganate, and hydrogen peroxide can be used. For example, when graphite oxide is obtained by the Hammers method, the graphite is immersed in concentrated sulfuric acid, potassium permanganate is added to oxidize the graphite, and then the reaction product is quenched with dilute sulfuric acid and / or hydrogen peroxide. After that, by washing with distilled water or the like, oxygen atoms are bonded to carbon atoms, and oxygen atoms are introduced between the layers to obtain graphite oxide.

なかでも、酸素等の異種原子を含まない純度の高い薄片状カーボンを得ようとする場合には、黒鉛を原料として用いることが好ましく、天然黒鉛及び膨張黒鉛がより好ましい。なお、膨張黒鉛を使用する場合は、グラフェン構造の酸化が少ない膨張黒鉛を採用することが好ましい。また、膨張黒鉛を使用する場合は、300〜1000℃程度で10秒〜5時間程度加熱処理を加えてから用いてもよい。これにより、適度に膨張させた膨張黒鉛とすることも可能である。 Among them, in the case of obtaining highly pure flaky carbon containing no heteroatoms such as oxygen, it is preferable to use graphite as a raw material, and natural graphite and expanded graphite are more preferable. When expanded graphite is used, it is preferable to use expanded graphite with less oxidation of the graphene structure. When expanded graphite is used, it may be used after being heat-treated at about 300 to 1000 ° C. for about 10 seconds to 5 hours. This makes it possible to obtain expanded graphite that has been appropriately expanded.

また、製造の容易さを重視する場合には、酸化黒鉛を使用してもよい。酸化黒鉛を使用することにより、層間に溶媒分子が挿入されやすく、層方向にのみ剥離させることが容易であり、薄片化効率及び分散性が向上するため、処理時間をより短くすることが可能である。ただし、酸化黒鉛を使用する場合には、後に還元処理が必要となり、グラフェン構造、導電性及び強度をより維持する観点からは、他の材料(天然黒鉛、人造黒鉛、膨張黒鉛、土状黒鉛)が好ましい。 Further, when importance is attached to ease of production, graphite oxide may be used. By using graphite oxide, solvent molecules are easily inserted between the layers, it is easy to exfoliate only in the layer direction, and the thinning efficiency and dispersibility are improved, so that the treatment time can be shortened. is there. However, when graphite oxide is used, a reduction treatment is required later, and from the viewpoint of maintaining the graphene structure, conductivity and strength, other materials (natural graphite, artificial graphite, expanded graphite, earthy graphite) Is preferable.

一方、分散性をより向上させるために、土状黒鉛を採用することも可能である。ただし、結晶性、純度及び構造維持の観点からは、他の材料(天然黒鉛、人造黒鉛、膨張黒鉛、酸化黒鉛)が好ましい。 On the other hand, it is also possible to use earth-like graphite in order to further improve the dispersibility. However, from the viewpoint of crystallinity, purity and structure maintenance, other materials (natural graphite, artificial graphite, expanded graphite, graphite oxide) are preferable.

また、得られる薄片状カーボンの結晶性、強度、構造維持等を重視する場合には、人造黒鉛を使用することもできる。 Further, when the crystallinity, strength, structure maintenance and the like of the obtained flaky carbon are emphasized, artificial graphite can also be used.

本発明において、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物における層状構造を有する炭素質材料の含有量は、特に制限されないが、薄片状カーボン分散体を製造するために用いられる組成物の総量を100質量%として、20質量%以下が好ましく、0.0001〜15質量%がより好ましく、0.001〜10質量%がさらに好ましい。なお、層状構造を有する炭素質材料の含有量は、薄いほうが薄片化(層間剥離)がより起こりやすいために薄片状カーボンをより効率的に得られ、処理回数をより少なくできる傾向があるとともに、粘度を適切に維持してせん断処理等を行いやすい傾向がある。一方、層状構造を有する炭素質材料の含有量が濃いほうがより生産性に優れている。このため、薄片化の効率、粘度、生産性等のバランスの観点から、層状構造を有する炭素質材料の含有量を適宜設定することが好ましい。なお、炭素質材料分散体を使用する場合は、当該薄片状カーボン分散体中の層状構造を有する炭素質材料の含有量を上記範囲内とすることが好ましい。 In the present invention, the content of the carbonaceous material having a layered structure in the composition containing the carbonic material having a layered structure and the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon is not particularly limited. The total amount of the composition used for producing the flaky carbon dispersion is 100% by mass, preferably 20% by mass or less, more preferably 0.0001 to 15% by mass, further preferably 0.001 to 10% by mass. preferable. As for the content of the carbonaceous material having a layered structure, the thinner the material, the more likely it is that flaking (delamination) occurs, so that flaky carbon can be obtained more efficiently, and the number of treatments tends to be reduced. There is a tendency that it is easy to perform shearing treatment while maintaining the viscosity appropriately. On the other hand, the higher the content of the carbonaceous material having a layered structure, the more excellent the productivity. Therefore, from the viewpoint of balancing the efficiency of flaking, viscosity, productivity, etc., it is preferable to appropriately set the content of the carbonaceous material having a layered structure. When a carbonaceous material dispersion is used, it is preferable that the content of the carbonaceous material having a layered structure in the flaky carbon dispersion is within the above range.

親水基及び炭素と親和性の高い疎水基を有する有機化合物
親水基及び炭素と親和性の高い疎水基を有する有機化合物としては、上記したものを採用できる。
Organic compound having a hydrophobic group having a high affinity with a hydrophilic group and carbon As the organic compound having a hydrophobic group having a high affinity with a hydrophilic group and carbon, the above-mentioned ones can be adopted.

本発明において、薄片状カーボン分散体を製造するために用いられる組成物中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、特に制限されないが、薄片状カーボン分散体を製造するために用いられる組成物の総量を100質量%として、0.000001〜30質量%が好ましく、0.0001〜15質量%がより好ましく、0.001〜10質量%がさらに好ましい。一方、本発明において、薄片状カーボン分散体を製造するために用いられる組成物中における親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、層状構造を有する炭素質材料1質量部に対して、0.01〜0.9質量部が好ましく、0.02〜0.8質量部がより好ましい。なお、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量は、薄いほうが相対的に層状構造を有する炭素質材料の含有量が大きくなりゴム又は樹脂に対する引張強度、引張伸び、弾性率等の強化特性等の強化特性が向上しやすいとともに、安価に処理しやすい。一方、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量が濃いほうが薄片化(層間剥離)がより起こりやすいために薄片状カーボンをより効率的に得られる傾向があるが、粘度が高くなると逆に薄片化効率が下がる可能性もある。このため、引張強度、引張伸び、弾性率、コスト、薄片化の効率等のバランスの観点から、親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量を適宜設定することが好ましい。なお、この製造方法において、炭素質材料分散体を使用する場合は、当該炭素質材料分散体中の親水基及び炭素と親和性の高い疎水基を有する有機化合物の含有量を上記範囲内とすることが好ましい。 In the present invention, the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon in the composition used for producing the flaky carbon dispersion is not particularly limited, but the flaky carbon dispersion is not particularly limited. With the total amount of the composition used for producing the above as 100% by mass, 0.000001 to 30% by mass is preferable, 0.0001 to 15% by mass is more preferable, and 0.001 to 10% by mass is further preferable. On the other hand, in the present invention, the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon in the composition used for producing the flaky carbon dispersion is a carbonaceous material 1 having a layered structure. 0.01 to 0.9 parts by mass is preferable, and 0.02 to 0.8 parts by mass is more preferable with respect to parts by mass. As for the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon, the thinner the content, the larger the content of the carbonaceous material having a relatively layered structure, and the tensile strength and tensile elongation with respect to rubber or resin. Reinforcement characteristics such as elastic modulus are easily improved, and processing is easy at low cost. On the other hand, the higher the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, the more likely it is that flaking (delamination) occurs, so flaky carbon tends to be obtained more efficiently. As the viscosity increases, the flaking efficiency may decrease. Therefore, from the viewpoint of balancing tensile strength, tensile elongation, elastic modulus, cost, efficiency of flaking, etc., it is preferable to appropriately set the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon. .. When a carbonaceous material dispersion is used in this production method, the content of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon in the carbonaceous material dispersion is within the above range. Is preferable.

溶媒
上記した薄片状カーボン分散体の製造方法においては、上記のとおり、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物を用いて、特定の処理を行うことが好ましいが、層状構造を有する炭素質材料の薄片化効率、得られるゴム又は樹脂用添加剤の引張強度、引張伸び、弾性率等の観点から、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む炭素質材料分散体に対して、特定の処理を行うことが好ましい。
Solvent In the above-mentioned method for producing a flaky carbon dispersion, as described above, a composition containing a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon is used. Although it is preferable to carry out a specific treatment, carbon having a layered structure is obtained from the viewpoints of fragmentation efficiency of the carbonaceous material having a layered structure, tensile strength, tensile elongation, elastic coefficient, etc. of the obtained additive for rubber or resin. It is preferable to carry out a specific treatment on the carbonaceous material dispersion containing the quality material and the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon.

この炭素質材料分散体としては、分散液として形成してもよいし、基板上に塗膜として形成してもよい。 The carbonaceous material dispersion may be formed as a dispersion liquid or as a coating film on a substrate.

この際、炭素質材料分散体(炭素質材料分散液又は炭素質材料塗膜)を作製するために使用される溶媒としては、上記したものを採用できる。 At this time, the above-mentioned solvent can be adopted as the solvent used for producing the carbonaceous material dispersion (carbonaceous material dispersion liquid or carbonaceous material coating film).

本発明において、溶媒を使用した炭素質材料分散体を用いて特定の処理を行う場合、炭素質材料分散体中の溶媒の総量は、特に制限されないが、層状構造を有する炭素質材料の薄片化効率、親水基及び炭素と親和性の高い疎水基を有する有機化合物の溶解度等の観点から、炭素質材料分散体の総量を100質量%として、40〜99.9998質量%が好ましく、63〜99.998質量%がより好ましく、85〜99.98質量%がさらに好ましい。 In the present invention, when a specific treatment is carried out using a carbonaceous material dispersion using a solvent, the total amount of the solvent in the carbonaceous material dispersion is not particularly limited, but the carbonic material having a layered structure is fragmented. From the viewpoint of efficiency, solubility of an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, etc., the total amount of the carbonaceous material dispersion is 100% by mass, preferably 40 to 99.9998% by mass, and 63 to 99%. .998% by mass is more preferable, and 85 to 99.98% by mass is further preferable.

本発明において、溶媒を使用した炭素質材料分散体を用いて特定の処理を行う場合、炭素質材料分散体は、親水基及び炭素と親和性の高い疎水基を有する有機化合物分散体に層状構造を有する炭素質材料を投入してもよいし、層状構造を有する炭素質材料分散体に親水基及び炭素と親和性の高い疎水基を有する有機化合物を投入してもよい。また、溶媒中に、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを同時に投入してもよい。 In the present invention, when a specific treatment is carried out using a carbonaceous material dispersion using a solvent, the carbonaceous material dispersion has a layered structure on an organic compound dispersion having a hydrophilic group and a hydrophobic group having a high affinity for carbon. A carbonaceous material having a layered structure may be charged, or an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon may be charged into the carbonaceous material dispersion having a layered structure. Further, a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon may be simultaneously added to the solvent.

他の成分
本発明において、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物(例えば、炭素質材料分散体等)には、他の成分を含ませてもよい。これにより、最終的に得られる薄片状カーボン分散体やゴム又は樹脂用添加剤中にも、これら他の成分を含ませることができる。このような他の成分としては、上記したものを採用でき、本発明の効果を損なわない範囲で使用してもよい。ただし、樹脂中に分散させやすく、塗布する際の塗膜の均一性、密着性、引張強度、引張伸び、弾性率等をさらに向上させるゴム又は樹脂用添加剤を得やすい観点からは、他の成分の含有量は少ないことが好ましく、炭素質材料分散体の総量を100質量%として、0.00001〜5質量%が好ましく、0.0001〜2質量%がより好ましい。
Other Ingredients In the present invention, the composition containing a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon (for example, a carbonaceous material dispersion) may be used. Ingredients may be included. As a result, these other components can be contained in the finally obtained flaky carbon dispersion and the additive for rubber or resin. As such other components, those described above can be adopted and may be used as long as the effects of the present invention are not impaired. However, from the viewpoint that it is easy to disperse in the resin and it is easy to obtain an additive for rubber or resin that further improves the uniformity, adhesion, tensile strength, tensile elongation, elastic modulus, etc. of the coating film at the time of application, other methods are used. The content of the component is preferably small, and the total amount of the carbonaceous material dispersion is 100% by mass, preferably 0.00001 to 5% by mass, and more preferably 0.0001 to 2% by mass.

せん断処理(摩砕法)
本発明では、磨砕法を採用する場合、上記のとおり、回転する回転盤と、前記回転盤と略平行に設置された盤との間に、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物を設置し、前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記組成物中の炭素質材料に対してせん断を加える処理を行うことが好ましい。なお、炭素質材料分散体を使用する場合には、回転する回転盤と、前記回転盤と略平行に設置された盤との間に、炭素質材料分散体を設置し、前記回転盤と前記盤との最短距離が200μm以下となるように調整しながら、前記炭素質材料分散体中の炭素質材料に対してせん断を加える処理を行うことが好ましい。
Shearing (grinding method)
In the present invention, when the grinding method is adopted, as described above, a carbonaceous material having a layered structure, a hydrophilic group and carbon are provided between the rotating rotating disk and the disk installed substantially parallel to the rotating disk. A composition containing an organic compound having a hydrophobic group having a high affinity with the above is installed, and the carbonaceous material in the composition is adjusted so that the shortest distance between the rotating disk and the disk is 200 μm or less. On the other hand, it is preferable to perform a process of applying shear. When a carbonaceous material dispersion is used, the carbonaceous material dispersion is installed between the rotating rotating disk and the disk installed substantially parallel to the rotating disk, and the rotating disk and the above-mentioned rotating disk are installed. It is preferable to perform a treatment of applying shear to the carbonaceous material in the carbonaceous material dispersion while adjusting the shortest distance from the board to 200 μm or less.

せん断処理を施すことにより、層状構造を有する炭素質材料の微粒化が起こるために、条件によってはグラフェン構造を維持できない可能性もあるが、層状構造を有する炭素質材料の薄片化を効率よく行うことができ、処理時間を低減することができる。このようなせん断処理を施す際の前記回転盤と前記盤とは略平行に設置されているが、厳密に平行でなくてもよい。具体的には、前記回転盤に垂直な軸と、前記盤に垂直な軸とのなす角は10°以下が好ましく、5°以下がより好ましい。なお、前記回転盤に垂直な軸と、前記盤に垂直な軸とが厳密に平行であることが最も好ましい。このようなせん断処理を施す際の二面間の最短距離は、層状構造を有する炭素質材料の薄片化を十分に行うことができるものであれば特に制限はないが、200μm以下が好ましく、1〜50μmがより好ましく、2〜30μmがさらに好ましい。なお、前記回転盤と前記盤とは略平行に設置されているが、前記回転盤と前記盤との距離は場所によって異なることもある。この場合、前記回転盤と前記盤との最短距離は、前記回転盤と前記盤との間の距離のうち、最も短い箇所の距離を意味する。また、必ずしもあらかじめ前記回転盤と前記盤とを空ける必要はなく、前記回転盤と前記盤との間に処理する材料を挟んでもよく、また、前記回転盤と前記盤とを接触させておき、層状構造を有する炭素質材料が挟まることにより前記回転盤と前記盤との間が広がる状態になってもよい。このようなせん断処理は、盤状のものを回転させる機構があればよく、石臼、振動式ミキサー、スピンコーター、グラインダー等を用いて行い得る。 The graphene structure may not be maintained depending on the conditions because the carbonaceous material having a layered structure is atomized by the shearing treatment, but the carbonaceous material having a layered structure is efficiently sliced. It is possible to reduce the processing time. The rotating disk and the disk when performing such a shearing process are installed substantially in parallel, but they do not have to be strictly parallel. Specifically, the angle formed by the axis perpendicular to the rotating disk and the axis perpendicular to the disk is preferably 10 ° or less, and more preferably 5 ° or less. It is most preferable that the axis perpendicular to the rotating disk and the axis perpendicular to the disk are strictly parallel. The shortest distance between the two surfaces when performing such a shearing treatment is not particularly limited as long as the carbonaceous material having a layered structure can be sufficiently thinned, but is preferably 200 μm or less. ~ 50 μm is more preferable, and 2 to 30 μm is even more preferable. Although the rotating disk and the disk are installed substantially in parallel, the distance between the rotating disk and the disk may differ depending on the location. In this case, the shortest distance between the rotary disc and the disc means the distance of the shortest portion of the distance between the rotary disc and the disc. Further, it is not always necessary to leave the rotary disk and the disk apart in advance, a material to be processed may be sandwiched between the rotary disk and the disk, and the rotary disk and the disk may be brought into contact with each other. By sandwiching the carbonaceous material having a layered structure, the space between the rotating disk and the disk may be widened. Such a shearing process may be performed by using a stone mill, a vibrating mixer, a spin coater, a grinder, or the like, as long as there is a mechanism for rotating a disk-shaped object.

この際使用できる前記回転盤と前記盤の大きさは特に制限はなく、5〜500mmが好ましく、10〜200mmがより好ましい。また、せん断処理を行う際の回転盤の回転数は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる範囲とすることが好ましく、例えば、1000〜10000ppmが好ましく、2000〜5000ppmがより好ましい。 The sizes of the rotating disk and the disk that can be used at this time are not particularly limited, and are preferably 5 to 500 mm, more preferably 10 to 200 mm. The number of rotations of the turntable during the shearing treatment is not particularly limited, and is preferably in the range where the carbonaceous material having a layered structure can be sufficiently thinned, for example, 1000 to 10000 ppm. , 2000-5000 ppm is more preferable.

このようなせん断処理をすることにより、盤と層状構造を有する炭素質材料、層状構造を有する炭素質材料と層状構造を有する炭素質材料を接触させて層状構造を有する炭素質材料に対して層状構造を有する炭素質材料のグラフェン層と平行方向にせん断をかけることができる。 By performing such a shearing treatment, the plate and the carbonic material having a layered structure, and the carbonic material having a layered structure and the carbonic material having a layered structure are brought into contact with each other to form a layered material with respect to the carbonic material having a layered structure. Shear can be applied in the direction parallel to the graphene layer of the carbonaceous material having a structure.

せん断処理における前記回転盤と前記盤との間の最短距離を小さくし、回転盤の回転速度を早くすることにより、条件をより強くすることが可能であり、層状構造を有する炭素質材料の薄片化をより効率よく行うことができ、処理時間をより低減することができる。このせん断操作は、1回以上、好ましくは3回以上行い得る。 By reducing the shortest distance between the rotating disk and the rotating disk in the shearing process and increasing the rotational speed of the rotating disk, the conditions can be strengthened, and a thin piece of carbonaceous material having a layered structure can be obtained. The conversion can be performed more efficiently, and the processing time can be further reduced. This shearing operation can be performed once or more, preferably three or more times.

せん断処理を行う温度は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる温度とすればよく、0℃以上、さらに0〜100℃、特に20〜95℃とし得る。なお、せん断処理を行う温度は、親水基及び炭素と親和性の高い疎水基を有する有機化合物の溶解度が高い条件がよく、温度が高いほうが溶解度が増す場合は高温のほうが好ましく、曇点を有する水溶性化合物を使用する場合は曇点以下の温度に保持することが好ましい。 The temperature at which the shearing treatment is performed is not particularly limited, and may be a temperature at which the carbonaceous material having a layered structure can be sufficiently thinned, and is 0 ° C. or higher, further 0 to 100 ° C., particularly 20 to 95 ° C. obtain. The temperature at which the shearing treatment is performed is preferably a condition in which the solubility of the organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon is high, and when the higher the temperature, the higher the solubility, the higher the temperature is, and the cloud point is formed. When a water-soluble compound is used, it is preferable to keep the temperature below the cloud point.

上記のせん断処理を行う前に、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とをよく接触させるため、撹拌装置、超音波分散装置等を用いて組成物を作製する前にあらかじめ撹拌し、層状構造を有する炭素質材料表面に、親水基及び炭素と親和性の高い疎水基を有する有機化合物をなじませておいてもよい。 Before performing the above shearing treatment, a stirrer, an ultrasonic disperser, or the like is used in order to bring the carbonaceous material having a layered structure into good contact with the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon. The organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon may be blended on the surface of the carbonaceous material having a layered structure by stirring in advance before preparing the composition.

なお、本発明において、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、上記せん断処理を施した分散体中には、薄片状カーボンの酸化物として存在している。このため、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、後処理として還元処理を施すことが好ましい。還元処理としては、化学還元、電気化学還元等、種々の方法が採用できるが、化学還元が好ましい。なかでも、ヒドラジン、水素化ホウ素ナトリウム等のような還元剤による化学還元が好ましい。還元剤量は、薄片状カーボンの酸化物1質量部に対して、0.01〜10質量部が好ましく、0.1〜5質量部がより好ましく、0.5〜3質量部がさらに好ましい。また、還元時に加熱を行うとより還元しやすくなる。加熱温度は、40〜200℃が好ましく、50〜150℃がより好ましく、60〜120℃がさらに好ましい。還元時間は10分〜64時間が好ましく、30分〜48時間がより好ましく、1〜24時間がさらに好ましい。ただし、グラフェン構造が過度に破壊されない程度とすることが好ましい。 In the present invention, when graphite oxide is used as the carbonaceous material having a layered structure, it exists as an oxide of flaky carbon in the dispersion subjected to the shearing treatment. Therefore, when graphite oxide is used as the carbonaceous material having a layered structure, it is preferable to perform a reduction treatment as a post-treatment. As the reduction treatment, various methods such as chemical reduction and electrochemical reduction can be adopted, but chemical reduction is preferable. Of these, chemical reduction with a reducing agent such as hydrazine or sodium borohydride is preferable. The amount of the reducing agent is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and even more preferably 0.5 to 3 parts by mass with respect to 1 part by mass of the oxide of flaky carbon. Further, if heating is performed at the time of reduction, the reduction becomes easier. The heating temperature is preferably 40 to 200 ° C, more preferably 50 to 150 ° C, and even more preferably 60 to 120 ° C. The reduction time is preferably 10 minutes to 64 hours, more preferably 30 minutes to 48 hours, still more preferably 1 to 24 hours. However, it is preferable that the graphene structure is not excessively destroyed.

上記した製造方法によれば、薄片状カーボンは、上記した薄片状カーボン分散体として得られ得る。この製造方法では、親水基及び炭素と親和性の高い疎水基を有する有機化合物を含んでいるため、薄片状カーボン分散体においても、親水基及び炭素と親和性の高い疎水基を有する有機化合物が含まれている。この親水基及び炭素と親和性の高い疎水基を有する有機化合物は、薄片状カーボン表面に吸着して溶媒中で薄片状カーボンを高濃度に孤立分散させることも可能であるため、薄片状カーボン分散体においては分散剤としても機能する。また、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物は市販品を用いることができ、コスト及び分散性の両方で従来品より優位性がある。さらに、この親水基及び炭素と親和性の高い疎水基を有する有機化合物は、薄片状カーボン表面に残存することによって、十分な引張強度、引張伸び、弾性率等を発揮することができる。 According to the above-mentioned production method, the flaky carbon can be obtained as the above-mentioned flaky carbon dispersion. Since this production method contains an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, even in a flaky carbon dispersion, the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can be contained. include. Since this organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can be adsorbed on the surface of flaky carbon and isolated and dispersed the flaky carbon in a solvent at a high concentration, the flaky carbon is dispersed. It also functions as a dispersant in the body. Further, as the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, a commercially available product can be used, which is superior to the conventional product in terms of both cost and dispersibility. Further, the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can exhibit sufficient tensile strength, tensile elongation, elastic modulus, etc. by remaining on the flaky carbon surface.

また、従来の酸化処理及び還元処理を行う方法においては、還元処理の際にプラスチック基板が加水分解されること、還元処理を施すと薄片状カーボンが凝集するため分散体として存在し得ないこと等から、プラスチック基板上に薄片状カーボン分散体を形成することは不可能であったが、本発明においては、上記親水基及び炭素と親和性の高い疎水基を有する有機化合物を含ませつつ特定の処理を行うことで、ポリエチレンテレフタレート(PET)等のプラスチック基板が加水分解を受けることなく、薄片状カーボン分散体を基板上に形成することも可能である。 Further, in the conventional method of performing the oxidation treatment and the reduction treatment, the plastic substrate is hydrolyzed during the reduction treatment, and the flaky carbon aggregates when the reduction treatment is performed, so that it cannot exist as a dispersion. Therefore, it was impossible to form a flaky carbon dispersion on a plastic substrate, but in the present invention, a specific organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon is contained. By performing the treatment, it is also possible to form a flaky carbon dispersion on the substrate without the plastic substrate such as polyethylene terephthalate (PET) being hydrolyzed.

加圧処理(高圧分散法)
本発明では、高圧分散法を採用する場合、上記のとおり、層状構造を有する炭素質材料と、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含む組成物に対して、30MPa以上の加圧処理を行うことが好ましい。
Pressurization treatment (high pressure dispersion method)
In the present invention, when the high-pressure dispersion method is adopted, as described above, 30 MPa is applied to a composition containing a carbonaceous material having a layered structure and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon. It is preferable to perform the above pressurization treatment.

加圧処理を施すことにより、層状構造を有する炭素質材料の微粒化が起こるために、条件によってはグラフェン構造を維持できない可能性もあるが、層状構造を有する炭素質材料の薄片化を効率よく行うことができ、処理時間を低減することができる。このような加圧処理を施す際の加圧レベルは、層状構造を有する炭素質材料の薄片化を十分に行うことができるものであれば特に制限はないが、30MPa以上が好ましく、50〜400MPaがより好ましく、100〜300MPaがさらに好ましい。このような加圧処理は、高圧分散装置や超臨界水作製装置等を用いて行い得る。高圧分散装置は力学的な圧力をかけることにより分散することができ、超臨界水作製装置においては、水を加熱することにより系の圧力を上げることができる。 The graphene structure may not be maintained depending on the conditions because the carbonaceous material having a layered structure is atomized by the pressure treatment, but the carbonaceous material having a layered structure can be efficiently sliced. This can be done and the processing time can be reduced. The pressure level at the time of performing such a pressure treatment is not particularly limited as long as it can sufficiently thin the carbonaceous material having a layered structure, but is preferably 30 MPa or more, preferably 50 to 400 MPa. Is more preferable, and 100 to 300 MPa is further preferable. Such pressurization treatment can be performed using a high-pressure disperser, a supercritical water preparation device, or the like. The high-pressure disperser can disperse by applying mechanical pressure, and in the supercritical water preparation device, the pressure of the system can be increased by heating water.

このような加圧により、例えば、
(i)2個以上の前記炭素質材料分散体同士を衝突させること、
(ii)前記炭素質材料分散体と金属又はセラミックス材料(炭化ケイ素、アルミナ等高硬度の材料)とを衝突させること、
(iii)前記炭素質材料分散体を断面積1cm以下の空間を通過させること
等の処理を行い得る。
By such pressurization, for example,
(I) Colliding two or more of the carbonaceous material dispersions with each other.
(Ii) Collision of the carbonaceous material dispersion with a metal or ceramic material (material having high hardness such as silicon carbide or alumina).
(Iii) The carbonaceous material dispersion can be passed through a space having a cross-sectional area of 1 cm 2 or less.

上記(i)及び(ii)によれば、加圧条件をより強くすることが可能であり、層状構造を有する炭素質材料の薄片化をより効率よく行うことができ、処理時間をより低減することができる。また、上記(iii)によれば、グラフェン構造をより維持しつつ、層状構造を有する炭素質材料の薄片化をより適切に行うことができる。この加圧操作を1回以上、好ましくは10回以上行うことができる。 According to the above (i) and (ii), the pressurizing condition can be strengthened, the carbonaceous material having a layered structure can be sliced more efficiently, and the processing time can be further reduced. be able to. Further, according to the above (iii), it is possible to more appropriately thin the carbonaceous material having a layered structure while maintaining the graphene structure more appropriately. This pressurizing operation can be performed once or more, preferably 10 times or more.

加圧温度は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる温度とすればよく、上記(i)及び(ii)の場合は0〜100℃、特に20〜95℃とし得る。また、上記(iii)の場合、力学的に圧力をかける場合は、0〜100℃が好ましく、水の超臨界状態により圧力を生み出す場合は、373〜700℃が好ましく、380〜450℃がより好ましい。 The pressurizing temperature is not particularly limited and may be a temperature at which the carbonaceous material having a layered structure can be sufficiently thinned. In the cases of (i) and (ii) above, 0 to 100 ° C., particularly 20 It can be ~ 95 ° C. Further, in the case of (iii) above, 0 to 100 ° C. is preferable when mechanically applying pressure, 373 to 700 ° C. is preferable when pressure is generated by the supercritical state of water, and 380 to 450 ° C. is more preferable. preferable.

なお、前記加圧処理を行う際には、予備処理(前処理)として、超音波分散処理を行い、層状構造を有する炭素質材料の微粒化を行っておくことが好ましい。これにより、目詰まり防止等の効果を有し得る。 When the pressure treatment is performed, it is preferable to perform an ultrasonic dispersion treatment as a preliminary treatment (pretreatment) to atomize the carbonaceous material having a layered structure. This can have an effect of preventing clogging and the like.

超音波分散処理を施す際の出力は特に制限はないが、層状構造を有する炭素質材料の薄片化の観点から、通常行われる超音波分散処理(40〜50W程度)よりも強力なものとすることが好ましい。具体的には、超音波分散処理の出力は、100W以上が好ましく、300〜20000Wがより好ましく、400〜18000Wがさらに好ましい。 The output when the ultrasonic dispersion treatment is applied is not particularly limited, but it is stronger than the usual ultrasonic dispersion treatment (about 40 to 50 W) from the viewpoint of thinning the carbonaceous material having a layered structure. Is preferable. Specifically, the output of the ultrasonic dispersion treatment is preferably 100 W or more, more preferably 300 to 20000 W, and even more preferably 400 to 18000 W.

超音波分散温度は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる温度とすればよく、0〜80℃、特に10〜70℃とし得る。超音波分散時間は特に制限はなく、層状構造を有する炭素質材料の薄片化を十分に行うことができる時間とすればよく、1〜600分、特に3〜120分とし得る。 The ultrasonic dispersion temperature is not particularly limited, and may be a temperature at which the carbonaceous material having a layered structure can be sufficiently thinned, and may be 0 to 80 ° C., particularly 10 to 70 ° C. The ultrasonic dispersion time is not particularly limited, and may be a time during which the carbonaceous material having a layered structure can be sufficiently thinned, and may be 1 to 600 minutes, particularly 3 to 120 minutes.

また、これらの処理の前処理又は後処理として、通常の機械的撹拌、乳化装置による分散処理、ビーズミルによる分散処理等の他の分散装置による分散処理を併用してもよい。 Further, as the pretreatment or the posttreatment of these treatments, a dispersion treatment by another dispersion device such as ordinary mechanical stirring, a dispersion treatment by an emulsifying device, and a dispersion treatment by a bead mill may be used in combination.

なお、本発明において、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、上記加圧処理を施した分散体中には、薄片状カーボンの酸化物として存在している。このため、層状構造を有する炭素質材料として、酸化黒鉛を使用する場合には、後処理として還元処理を施すことが好ましい。還元処理としては、化学還元、電気化学還元等、種々の方法が採用できるが、化学還元が好ましい。なかでも、ヒドラジン、水素化ホウ素ナトリウム等のような還元剤による化学還元が好ましい。還元剤量は、薄片状カーボンの酸化物1質量部に対して、0.01〜10質量部が好ましく、0.1〜5質量部がより好ましく、0.5〜3質量部がさらに好ましい。また、還元時に加熱を行うとより還元しやすくなる。加熱温度は、40〜200℃が好ましく、50〜150℃がより好ましく、60〜120℃がさらに好ましい。還元時間は10分〜64時間が好ましく、30分〜48時間がより好ましく、1〜24時間がさらに好ましい。ただし、グラフェン構造が過度に破壊されない程度とすることが好ましい。 In the present invention, when graphite oxide is used as the carbonaceous material having a layered structure, it exists as an oxide of flaky carbon in the dispersion subjected to the pressure treatment. Therefore, when graphite oxide is used as the carbonaceous material having a layered structure, it is preferable to perform a reduction treatment as a post-treatment. As the reduction treatment, various methods such as chemical reduction and electrochemical reduction can be adopted, but chemical reduction is preferable. Of these, chemical reduction with a reducing agent such as hydrazine or sodium borohydride is preferable. The amount of the reducing agent is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and even more preferably 0.5 to 3 parts by mass with respect to 1 part by mass of the oxide of flaky carbon. Further, if heating is performed at the time of reduction, the reduction becomes easier. The heating temperature is preferably 40 to 200 ° C, more preferably 50 to 150 ° C, and even more preferably 60 to 120 ° C. The reduction time is preferably 10 minutes to 64 hours, more preferably 30 minutes to 48 hours, still more preferably 1 to 24 hours. However, it is preferable that the graphene structure is not excessively destroyed.

(2−3)本発明のゴム又は樹脂用添加剤の製造方法
本発明のゴム又は樹脂用添加剤は、上記の薄片状カーボン分散体から溶媒を除去することで得ることができる。
(2-3) Method for Producing Additive for Rubber or Resin of the Present Invention The additive for rubber or resin of the present invention can be obtained by removing the solvent from the above-mentioned flaky carbon dispersion.

溶媒を除去するためには、薄片状カーボン分散体を濃縮する方法が挙げられ、薄片状カーボン分散体の乾燥の他、基板上に薄片状カーボン分散体をスピンコートや塗布後に乾燥する方法、通常の固液分離により本発明の熱伝導材料を回収する方法等により実施することができる。固液分離を行う方法としては、例えば、通常の固液分離に使用されている方法、例えば、濾紙、ガラスフィルター等を用いて濾過する方法;遠心分離後に濾過する方法;減圧濾過器を使用する方法を例示できる。次に、乾燥方法としては、特に限定されず、例えば、温風乾燥機等を用いて50〜200℃程度で1〜24時間程度乾燥させる方法を例示できる。 In order to remove the solvent, a method of concentrating the flaky carbon dispersion can be mentioned. In addition to drying the flaky carbon dispersion, a method of spin-coating the flaky carbon dispersion on a substrate or drying after coating, usually It can be carried out by the method of recovering the heat conductive material of the present invention by solid-liquid separation of the above. As a method for performing solid-liquid separation, for example, a method used for ordinary solid-liquid separation, for example, a method of filtering using a filter paper, a glass filter, or the like; a method of filtering after centrifugation; a vacuum filter is used. The method can be exemplified. Next, the drying method is not particularly limited, and for example, a method of drying at about 50 to 200 ° C. for about 1 to 24 hours using a warm air dryer or the like can be exemplified.

3.薄片状カーボン材料
本発明のゴム又は樹脂用添加剤は、薄片状カーボン表面に親水基及び炭素と親和性の高い疎水基を有する有機化合物で覆われていたり、親水基及び炭素と親和性の高い疎水基を有する有機化合物中に薄片状カーボンが分散している構成を有していたりしても、十分な引張強度、引張伸び、弾性率等を有しているが、必要に応じて、当該親水基及び炭素と親和性の高い疎水基を有する有機化合物を除去することができる。具体的には、親水基及び炭素と親和性の高い疎水基を有する有機化合物は、400〜600℃、好ましくは450〜550℃の熱処理により除去し、本発明の薄片状カーボン材料を得ることができる。
3. 3. Flake carbon material The rubber or resin additive of the present invention has a flake carbon surface covered with an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, or has a high affinity for the hydrophilic group and carbon. Even if it has a structure in which flaky carbon is dispersed in an organic compound having a hydrophobic group, it has sufficient tensile strength, tensile elongation, elastic coefficient, etc., but if necessary, the said It is possible to remove an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon. Specifically, the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon can be removed by heat treatment at 400 to 600 ° C., preferably 450 to 550 ° C. to obtain the flaky carbon material of the present invention. it can.

従来の分散剤は、分散剤分子と薄片状カーボンとの疎水性相互作用を利用して吸着していると考えられ、また分子量が比較的大きいため、その吸着力も大きいと考えられる。他方、本発明で用いる親水基及び炭素と親和性の高い疎水基を有する有機化合物は薄片状カーボンと化学結合はしておらず、また分子量が小さいため従来品と比べて吸着力も弱い。よって、本発明で用いる親水基及び炭素と親和性の高い疎水基を有する有機化合物は従来品よりも本発明のゴム又は樹脂用添加剤から除去し易いという利点がある。 It is considered that the conventional dispersant is adsorbed by utilizing the hydrophobic interaction between the dispersant molecule and the flaky carbon, and since the molecular weight is relatively large, the adsorbing power is also considered to be large. On the other hand, the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon used in the present invention does not chemically bond with flaky carbon and has a small molecular weight, so that the adsorptive power is weaker than that of the conventional product. Therefore, the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon used in the present invention has an advantage that it is easier to remove from the rubber or resin additive of the present invention than the conventional product.

このようにして、薄片状カーボン材料を得ることができるが、この際得られる薄片状カーボンは、分散剤としての親水基及び炭素と親和性の高い疎水基を有する有機化合物が除去された後であっても凝集を抑制することができ、その引張強度、引張伸び、弾性率等を十分に発揮することができる。この点、上記した薄片状カーボン分散体及び本発明のゴム又は樹脂用添加剤を経由するからこそ得られる特性であり、市販の薄片状カーボン等では凝集が避けられない。 In this way, a flaky carbon material can be obtained, and the flaky carbon obtained at this time is obtained after the organic compound having a hydrophilic group as a dispersant and a hydrophobic group having a high affinity with carbon has been removed. Even if there is, aggregation can be suppressed, and its tensile strength, tensile elongation, elastic modulus, etc. can be sufficiently exhibited. In this respect, it is a characteristic obtained only through the above-mentioned flaky carbon dispersion and the additive for rubber or resin of the present invention, and aggregation is unavoidable with commercially available flaky carbon or the like.

4.ゴム又は樹脂強化組成物
本発明のゴム又は樹脂強化組成物は、上記した本発明のゴム又は樹脂用添加剤又は本発明の薄片状カーボン材料と、熱可塑性樹脂、ゴム及び熱可塑性エラストマーよりなる群から選ばれる少なくとも1種とを含有する。
4. Rubber or Resin Reinforced Composition The rubber or resin reinforced composition of the present invention comprises the above-mentioned rubber or resin additive of the present invention or the flaky carbon material of the present invention, and a thermoplastic resin, rubber and thermoplastic elastomer. Contains at least one selected from.

本発明のゴム又は樹脂用添加剤や薄片状カーボン材料は、薄片状カーボンの凝集を抑制しており、他材料(例えばゴム、樹脂等)中に分散しやすい材料であるため、他材料と混合等することにより、薄片状カーボンを含むナノコンポジット等へ適用することが可能である。 The rubber or resin additive and flaky carbon material of the present invention suppress the aggregation of flaky carbon and are easily dispersed in other materials (for example, rubber, resin, etc.), and therefore are mixed with other materials. By doing so, it can be applied to nanocomposites containing flaky carbon and the like.

このような他材料としては、より具体的には、熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、熱可塑性ポリウレタン樹脂、ポリフッ化ビニリデン樹脂、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)樹脂、アクリロニトリル−スチレン共重合体(AS)樹脂、ポリメチルメタクリレート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、環状ポリオレフィン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂等が挙げられ、ゴムとしては、ジエン系ゴム(スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム等)、オレフィン系ゴム(エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム等)、アクリル系ゴム、ブチルゴム、エピクロロヒドリンゴム、シリコーン系ゴム(シリコーンゴム等)、多硫化ゴム、フッ素ゴム等が挙げられ、熱可塑性エラストマーとしては、ポリエチレン構造を有する熱可塑性エラストマー、ポリプロピレン構造を有する熱可塑性エラストマー、ブタジエン構造を有する熱可塑性エラストマー(スチレン・ブタジエン・スチレン共重合体等)、ポリエチレンテレフタレート構造を有する熱可塑性エラストマー、ポリアミド6構造を有する熱可塑性エラストマー、ポリアミド66構造を有する熱可塑性エラストマー、ポリアミド11構造を有する熱可塑性エラストマー、ポリアミド12構造を有する熱可塑性エラストマー等が挙げられる。これらは、単独で用いることもでき、2種以上を組合せて用いることもできる。また、これら他材料は、公知又は市販品を用いることができる。 As such other materials, more specifically, as the thermoplastic resin, for example, a polyethylene resin, a polypropylene resin, a polystyrene resin, a polyvinyl chloride resin, a polyvinylidene chloride resin, a polyvinyl acetate resin, and a thermoplastic polyurethane resin. , Polyfluorinated vinylidene resin, acrylonitrile-butadiene-styrene copolymer (ABS) resin, acrylonitrile-styrene copolymer (AS) resin, polymethylmethacrylate resin, polyamide resin, polyacetal resin, polycarbonate resin, polyarylate resin, polyphenylene ether Examples thereof include resins, polyethylene terephthalate resins, polybutylene terephthalates, cyclic polyolefin resins, polyphenylene sulfide resins, polyether ether ketone resins, thermoplastic polyimide resins, polyamideimide resins, and examples of the rubber include diene rubbers (styrene / butadiene rubbers). , Isoprene rubber, butadiene rubber, chloroprene rubber, etc.), Olefin rubber (ethylene / propylene rubber, ethylene / propylene / diene rubber, etc.), acrylic rubber, butyl rubber, epichlorohydrin rubber, silicone rubber (silicone rubber, etc.), many Examples thereof include rubber sulfide and fluororubber. Examples of the thermoplastic elastomer include a thermoplastic elastomer having a polyethylene structure, a thermoplastic elastomer having a polypropylene structure, and a thermoplastic elastomer having a butadiene structure (styrene / butadiene / styrene copolymer, etc.). , Thermoplastic elastomer having a polyethylene terephthalate structure, a thermoplastic elastomer having a polyamide 6 structure, a thermoplastic elastomer having a polyamide 66 structure, a thermoplastic elastomer having a polyamide 11 structure, a thermoplastic elastomer having a polyamide 12 structure, and the like. These can be used alone or in combination of two or more. In addition, known or commercially available products can be used as these other materials.

これらの熱可塑性樹脂、ゴム及び熱可塑性エラストマーとしては、親水基及び炭素と親和性の高い疎水基を有する有機化合物が有する疎水基と相互作用(例えばπ電子相互作用等)することによって本発明のゴム又は樹脂用添加剤との相溶性をさらに向上させる観点からは、芳香族高分子化合物が好ましい。具体的には、スチレン・ブタジエンゴム、スチレン・ブタジエン・スチレン共重合体等が好ましい。また、炭素材料との親和性の観点から、ポリアミド系の熱可塑性樹脂、熱可塑性エラストマーも好ましい。 These thermoplastic resins, rubbers and thermoplastic elastomers of the present invention are produced by interacting with hydrophobic groups (for example, π-electron interaction) of organic compounds having a hydrophilic group and a hydrophobic group having a high affinity for carbon. From the viewpoint of further improving the compatibility with the rubber or resin additive, the aromatic polymer compound is preferable. Specifically, styrene-butadiene rubber, styrene-butadiene-styrene copolymer and the like are preferable. Further, from the viewpoint of affinity with carbon materials, polyamide-based thermoplastic resins and thermoplastic elastomers are also preferable.

本発明のゴム又は樹脂強化組成物において、上記した他材料の含有量は、特に制限はなく、引張強度、引張伸び、弾性率等の観点から、本発明のゴム又は樹脂用添加剤や薄片状カーボン材料1質量部に対して、0.05〜99質量部が好ましく、0.1〜97質量部がより好ましい。 In the rubber or resin reinforced composition of the present invention, the content of the above-mentioned other materials is not particularly limited, and from the viewpoints of tensile strength, tensile elongation, elastic modulus, etc., the rubber or resin additive of the present invention or flakes It is preferably 0.05 to 99 parts by mass, and more preferably 0.1 to 97 parts by mass with respect to 1 part by mass of the carbon material.

以下、実施例を示して本発明を具体的に説明する。但し本発明は実施例に限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the examples.

実施例1:薄片状カーボン+ポリオキシエチレンナフチルエーテル+ポリプロピレン
500gの人造黒鉛(昭和電工(株)製)、ポリオキシエチレンナフチルエーテル(HLB値18)250g及び水10000gを混合し、600Wの超音波分散装置を用いて5分間分散処理を加え、高圧分散装置を用いて245MPaで分散処理(2個以上の炭素質材料分散液同士を衝突させる)を100回行った。
Example 1: Flake carbon + polyoxyethylene naphthyl ether + polypropylene 500 g of artificial graphite (manufactured by Showa Denko KK), 250 g of polyoxyethylene naphthyl ether (HLB value 18) and 10000 g of water are mixed, and 600 W ultrasonic waves are used. The dispersion treatment was applied for 5 minutes using a disperser, and the dispersion treatment (colliding two or more carbonaceous material dispersions with each other) was performed 100 times at 245 MPa using a high-pressure disperser.

得られた分散液を220℃でスプレードライを行い、直径約50μmのパウダーを得た。 The obtained dispersion was spray-dried at 220 ° C. to obtain a powder having a diameter of about 50 μm.

このパウダーを走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)及びラマン分光で分析したところ、薄片状カーボンが得られていた。この薄片状カーボンは、積層数は平均で4層であり、厚みは平均で1.5nmであった。 When this powder was analyzed by a scanning electron microscope (SEM), a transmission electron microscope (TEM), and Raman spectroscopy, flaky carbon was obtained. The flaky carbon had an average of 4 layers and an average thickness of 1.5 nm.

また、このパウダーを15g(このうち薄片状カーボンが10g)とポリプロピレン(日本ポリプロ(株)製BC6C;以下「PP」と言うこともある)185gとを混合した後、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて210℃で混練を行い、150gのペレットを得た。 Further, after mixing 15 g of this powder (of which 10 g is flaky carbon) and 185 g of polypropylene (BC6C manufactured by Japan Polypropylene Corporation; hereinafter sometimes referred to as "PP"), a twin-screw extruder (Co., Ltd.) ) KZW15TW-30MG-NH manufactured by Technobel, diameter 15 mm, L / D = 30) was kneaded at 210 ° C. to obtain 150 g of pellets.

比較例1:ポリプロピレンのみ
ポリプロピレン(日本ポリプロ(株)製BC6C)200gを、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて210℃で混練を行い、170gのペレットを得た。
Comparative Example 1: Polypropylene only Polypropylene (BC6C manufactured by Japan Polypropylene Corporation) 200 g, using a twin-screw extruder (KZW15TW-30MG-NH manufactured by Technobel Co., Ltd., diameter 15 mm, L / D = 30) at 210 ° C. Kneading was performed to obtain 170 g of pellets.

比較例2:黒鉛+ポリプロピレン
鱗片状黒鉛(伊藤黒鉛工業(株)製)10gとポリプロピレン(日本ポリプロ(株)製BC6C)190gとを混合した後、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて210℃で混練を行い、160gのペレットを得た。
Comparative Example 2: Graphite + polypropylene After mixing 10 g of scaly graphite (manufactured by Ito Graphite Industry Co., Ltd.) and 190 g of polypropylene (manufactured by Nippon Polypropylene Corporation BC6C), a twin-screw extruder (KZW15TW-manufactured by Technobel Co., Ltd.) Kneading was carried out at 210 ° C. using 30 MG-NH, diameter 15 mm, L / D = 30) to obtain 160 g of pellets.

比較例3:カーボンナノファイバー+ポリプロピレン
カーボンナノファイバー(昭和電工(株)製)10gとポリプロピレン(日本ポリプロ(株)製BC6C)190gとを混合した後、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて210℃で混練を行い、150gのペレットを得た。
Comparative Example 3: Carbon Nanofiber + Polypropylene After mixing 10 g of carbon nanofiber (manufactured by Showa Denko KK) and 190 g of polypropylene (manufactured by Nippon Polypropylene Corporation BC6C), a twin-screw extruder (KZW15TW manufactured by Technobel Co., Ltd.) Kneading was carried out at 210 ° C. using −30 MG-NH, diameter 15 mm, L / D = 30) to obtain 150 g of pellets.

比較例4:黒鉛+ポリプロピレン
実施例1で用いた人造黒鉛(昭和電工(株)製)10gとポリプロピレン(日本ポリプロ(株)製BC6C)190gとを混合した後、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて210℃で混練を行い、170gのペレットを得た。
Comparative Example 4: Graphite + Polypropylene After mixing 10 g of artificial graphite (manufactured by Showa Denko Corporation) and 190 g of polypropylene (BC6C manufactured by Japan Polypropylene Corporation) used in Example 1, a twin-screw extruder (manufactured by Nippon Polypro Co., Ltd.) KZW15TW-30MG-NH manufactured by Technobel, diameter 15 mm, L / D = 30) was kneaded at 210 ° C. to obtain 170 g of pellets.

比較例5:黒鉛+ポリプロピレン
球状黒鉛(日本黒鉛工業(株)製)10gとポリプロピレン(日本ポリプロ(株)製BC6C)190gとを混合した後、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて210℃で混練を行い、170gのペレットを得た。
Comparative Example 5: After mixing 10 g of graphite + polypropylene spheroidal graphite (manufactured by Nippon Graphite Industry Co., Ltd.) and 190 g of polypropylene (BC6C manufactured by Japan Polypropylene Corporation), a twin-screw extruder (KZW15TW-30MG manufactured by Technobel Co., Ltd.) Kneading was carried out at 210 ° C. using −NH, diameter 15 mm, L / D = 30) to obtain 170 g of pellets.

比較例6:市販グラフェン+ポリプロピレン
COを原料にして製造されたグラフェン(グラフェンテクノロジー社製)10gとポリプロピレン(日本ポリプロ(株)製BC6C)190gとを混合した後、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて210℃で混練を行い、170gのペレットを得た。
Comparative Example 6: After mixing 10 g of graphene (manufactured by Graphene Technology Co., Ltd.) manufactured from commercially available graphene + polypropylene CO 2 and 190 g of polypropylene (BC6C manufactured by Japan Polypropylene Corporation), a twin-screw extruder (Co., Ltd.) ) KZW15TW-30MG-NH manufactured by Technobel, diameter 15 mm, L / D = 30) was kneaded at 210 ° C. to obtain 170 g of pellets.

試験例1:引張試験(その1)
実施例1及び比較例1〜6で得られたペレットは80℃で24時間乾燥を行った後、射出成形機((株)新興セルビック製C,MOBILE−0813)を用いて、230℃で長さ75mm×平行部幅5mm×平行部長さ35mm×厚さ2mmのダンベル型試験片に成形し、JIS K7161−1:2014に準拠して、引張試験を行った。結果を表1に示す。
Test Example 1: Tensile test (1)
The pellets obtained in Example 1 and Comparative Examples 1 to 6 were dried at 80 ° C. for 24 hours, and then lengthened at 230 ° C. using an injection molding machine (C, MOBILE-0813 manufactured by Shinko Selvik Co., Ltd.). It was formed into a dumbbell-shaped test piece having a size of 75 mm × width of parallel portion 5 mm × length of parallel portion 35 mm × thickness 2 mm, and a tensile test was conducted in accordance with JIS K7161-1: 2014. The results are shown in Table 1.

比較例2〜6は比較例1(PP単体)に対して、引張弾性率は向上するものの、引張強度及び引張伸びは低下していた。つまり、硬くはなるが、脆くなっていると考えられる。これは、カーボン成分とPPとの親和性が悪く、界面からの破断が起こっていると推定される。 In Comparative Examples 2 to 6, the tensile elastic modulus was improved, but the tensile strength and the tensile elongation were decreased as compared with Comparative Example 1 (PP alone). That is, it is considered that the material becomes hard but brittle. It is presumed that this is because the carbon component and PP have a poor affinity and breakage from the interface occurs.

一方、実施例1は比較例1に対して、引張弾性率、引張強度及び引張伸びの全てが向上しており、柔軟性を損なわずに強靭になっていた。これは親水基及び炭素と親和性の高い疎水基を有する有機化合物を表面に吸着した状態で混練したため、PP中に薄片状カーボンが分散し、且つ、界面の親和性が向上したためと推測できる。 On the other hand, in Example 1, the tensile elastic modulus, the tensile strength, and the tensile elongation were all improved as compared with Comparative Example 1, and the toughness was maintained without impairing the flexibility. It can be presumed that this is because the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon was kneaded in a state of being adsorbed on the surface, so that flaky carbon was dispersed in the PP and the affinity of the interface was improved.

実施例2:薄片状カーボン+ポリオキシエチレンナフチルエーテル+スチレン・ブタジエン・スチレン共重合体
500gの天然黒鉛(伊藤黒鉛工業(株)製)、ポリオキシエチレンナフチルエーテル(HLB値18)125g及び水10000gを混合して攪拌することで、混合液を得た。
Example 2: Flake carbon + polyoxyethylene naphthyl ether + styrene-butadiene-styrene copolymer 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), polyoxyethylene naphthyl ether (HLB value 18) 125 g and water 10000 g Was mixed and stirred to obtain a mixed solution.

この混合液を半径300mmのセラミックグラインダーを用いて、1500rpmで30分間のせん断処理を1回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。 This mixed solution was subjected to one shearing treatment at 1500 rpm for 30 minutes using a ceramic grinder having a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 μm.

得られた分散液を90℃減圧下で乾燥し、黒色のフレーク状固体を得た。得られた薄片状カーボンの断面を透過型電子顕微鏡で観察した。結果を図3に示す。 The obtained dispersion was dried under reduced pressure at 90 ° C. to obtain a black flake-like solid. The cross section of the obtained flaky carbon was observed with a transmission electron microscope. The results are shown in FIG.

この固体10gとスチレン・ブタジエン・スチレン共重合体(熱可塑性エラストマー;旭化成ケミカルズ(株)製タフプレンA)190gとを混合し、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて200℃で混練を行い、150gのペレットを得た。 10 g of this solid and 190 g of a styrene-butadiene-styrene copolymer (thermoplastic elastomer; Toughprene A manufactured by Asahi Kasei Chemicals Co., Ltd.) are mixed, and a twin-screw extruder (KZW15TW-30MG-NH manufactured by Technobel Co., Ltd.), diameter 15 mm. , L / D = 30) was kneaded at 200 ° C. to obtain 150 g of pellets.

実施例3:薄片状カーボン+ポリオキシエチレンナフチルエーテル+スチレン・ブタジエン・スチレン共重合体
500gの天然黒鉛(伊藤黒鉛工業(株)製)、ポリオキシエチレンナフチルエーテル(HLB値13)125g及び水10000gを混合して攪拌することで、混合液を得た。この混合液を用いて、以下は実施例2と同様に操作を行い、実施例3のペレットを150g得た。
Example 3: Flake carbon + polyoxyethylene naphthyl ether + styrene-butadiene-styrene copolymer 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), polyoxyethylene naphthyl ether (HLB value 13) 125 g and water 10000 g Was mixed and stirred to obtain a mixed solution. Using this mixed solution, the following operations were carried out in the same manner as in Example 2 to obtain 150 g of pellets of Example 3.

実施例4:薄片状カーボン+ポリオキシエチレンナフチルエーテル+スチレン・ブタジエン・スチレン共重合体
500gの天然黒鉛(伊藤黒鉛工業(株)製)、ポリオキシエチレンナフチルエーテル(HLB値13)250g及び水10000gを混合して攪拌することで、混合液を得た。
Example 4: Flake carbon + polyoxyethylene naphthyl ether + styrene-butadiene-styrene copolymer 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), polyoxyethylene naphthyl ether (HLB value 13) 250 g and water 10000 g Was mixed and stirred to obtain a mixed solution.

この混合液を半径300mmのセラミックグラインダーを用いて、1500rpmで30分間のせん断処理を1回施した。なお、セラミックグラインダーの最短距離は、約10μmであった。 This mixed solution was subjected to one shearing treatment at 1500 rpm for 30 minutes using a ceramic grinder having a radius of 300 mm. The shortest distance of the ceramic grinder was about 10 μm.

得られた分散液を90℃減圧下で乾燥し、黒色のフレーク状固体を得た。 The obtained dispersion was dried under reduced pressure at 90 ° C. to obtain a black flake-like solid.

この固体12gとスチレン・ブタジエン・スチレン共重合体(熱可塑性エラストマー;旭化成ケミカルズ(株)製タフプレンA)188gとを混合し、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて200℃で混練を行い、150gのペレットを得た。 12 g of this solid and 188 g of a styrene-butadiene-styrene copolymer (thermoplastic elastomer; Toughprene A manufactured by Asahi Kasei Chemicals Co., Ltd.) were mixed, and a twin-screw extruder (KZW15TW-30MG-NH manufactured by Technobel Co., Ltd.), diameter 15 mm , L / D = 30) was kneaded at 200 ° C. to obtain 150 g of pellets.

実施例5:薄片状カーボン+タンニン酸+スチレン・ブタジエン・スチレン共重合体
500gの天然黒鉛(伊藤黒鉛工業(株)製)、タンニン酸(キシダ化学(株)製)250g及び水10000gを混合して攪拌することで、混合液を得た。この混合液を用いて、以下は実施例4と同様に操作を行い、実施例5のペレットを150g得た。
Example 5: Flaky carbon + tannic acid + styrene-butadiene-styrene copolymer 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), tannic acid (manufactured by Kishida Chemical Co., Ltd.) 250 g and 10000 g of water are mixed. The mixture was stirred to obtain a mixed solution. Using this mixed solution, the following operations were carried out in the same manner as in Example 4 to obtain 150 g of pellets of Example 5.

実施例6:薄片状カーボン+緑茶由来ポリフェノール+スチレン・ブタジエン・スチレン共重合体
500gの天然黒鉛(伊藤黒鉛工業(株)製)、緑茶由来ポリフェノール((株)ファーマフーズ製)250g及び水10000gを混合して攪拌することで、混合液を得た。この混合液を用いて、以下は実施例4と同様に操作を行い、実施例6のペレットを150g得た。
Example 6: Flake carbon + green tea-derived polyphenol + styrene-butadiene-styrene copolymer 500 g of natural graphite (manufactured by Ito Graphite Industry Co., Ltd.), green tea-derived polyphenol (manufactured by Pharma Foods Co., Ltd.) 250 g and 10000 g of water. A mixed solution was obtained by mixing and stirring. Using this mixed solution, the following operations were carried out in the same manner as in Example 4 to obtain 150 g of pellets of Example 6.

比較例7:スチレン・ブタジエン・スチレン共重合体のみ
スチレン・ブタジエン・スチレン共重合体(熱可塑性エラストマー;旭化成ケミカルズ(株)製タフプレンA)200gのみを、二軸押出機((株)テクノベル製KZW15TW−30MG−NH、直径15mm、L/D=30)を用いて200℃で混練を行い、170gのペレットを得た。
Comparative Example 7: Styrene-butadiene-styrene copolymer only 200 g of styrene-butadiene-styrene copolymer (thermoplastic elastomer; Toughprene A manufactured by Asahi Kasei Chemicals Co., Ltd.), twin-screw extruder (KZW15TW manufactured by Technobel Co., Ltd.) Kneading was carried out at 200 ° C. using −30 MG-NH, diameter 15 mm, L / D = 30) to obtain 170 g of pellets.

試験例2:引張試験(その2)
実施例2〜6及び比較例7で得られたペレットは80℃で24時間乾燥を行った後、射出成形機((株)新興セルビック製C,MOBILE−0813)を用いて、210℃で長さ75mm×平行部幅5mm×平行部長さ35mm×厚さ2mmのダンベル型試験片に成形し、JIS K7161−1:2014に準拠して、引張試験を行った。結果を表2に示す。
Test Example 2: Tensile test (Part 2)
The pellets obtained in Examples 2 to 6 and Comparative Example 7 were dried at 80 ° C. for 24 hours, and then lengthened at 210 ° C. using an injection molding machine (C, MOBILE-0813 manufactured by Shinko Selvik Co., Ltd.). It was formed into a dumbbell-shaped test piece having a size of 75 mm × width of parallel portion 5 mm × length of parallel portion 35 mm × thickness 2 mm, and a tensile test was conducted in accordance with JIS K7161-1: 2014. The results are shown in Table 2.

実施例2〜6はカーボン成分を4質量%と多量に添加しているにもかかわらず、比較例7と比較して、引張強度が向上していた。また、実施例2〜6においては、比較例7と比較して、弾性率も向上していた。このことは、添加剤を添加すると、通常引張強度が低下することからは想定外の結果である。また、実施例3に対して、同じ有機化合物の量を増やした実施例4は引張強度が相対的に低下しているが、実施例4と同じ有機化合物の量でも実施例5及び6は強度が高かった。実施例5及び6に用いた有機化合物は、ポリフェノールであり、実施例2〜4に用いた有機化合物と比較して多い3つ以上のベンゼン環を有する。このベンゼン環とエラストマーのスチレン構造のベンゼン環とπ電子相互作用が発生し、強度が向上したと考えられる。 In Examples 2 to 6, although the carbon component was added in a large amount of 4% by mass, the tensile strength was improved as compared with Comparative Example 7. Further, in Examples 2 to 6, the elastic modulus was also improved as compared with Comparative Example 7. This is an unexpected result because the tensile strength usually decreases when the additive is added. Further, although the tensile strength of Example 4 in which the amount of the same organic compound is increased is relatively lower than that of Example 3, the strength of Examples 5 and 6 is the same as that of Example 4. Was expensive. The organic compounds used in Examples 5 and 6 are polyphenols and have three or more benzene rings, which are larger than those of the organic compounds used in Examples 2-4. It is considered that the strength was improved by the π-electron interaction between the benzene ring and the benzene ring having the styrene structure of the elastomer.

このように、従来はカーボン材料をゴム又は樹脂に複合した場合、弾性率は向上するが、柔軟性が低下するため引張伸びが低下し、その結果引張強度も低下する傾向がみられたが、本発明では、親水基及び炭素と親和性の高い疎水基を有する有機化合物を薄片状カーボンと共存させてゴム又は樹脂への分散を行うことで、ゴム又は樹脂の弾性率及び引張伸びを同時に向上し、その結果引張強度も向上させることができた。 As described above, conventionally, when the carbon material is composited with rubber or resin, the elastic modulus is improved, but the flexibility is lowered, so that the tensile elongation is lowered, and as a result, the tensile strength is also tended to be lowered. In the present invention, the elastic modulus and tensile elongation of rubber or resin are simultaneously improved by coexisting an organic compound having a hydrophilic group and a hydrophobic group having a high affinity with carbon with flaky carbon and dispersing them in rubber or resin. As a result, the tensile strength could be improved.

Claims (12)

厚みが1〜100nmである薄片状カーボンと、親水基及び炭素と親和性の高い疎水基を有する有機化合物とを含有する、ゴム又は樹脂用添加剤。 An additive for rubber or resin, which contains flaky carbon having a thickness of 1 to 100 nm and an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon. 前記薄片状カーボン1質量部に対して、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物を0.01〜0.9質量部含有する、請求項1に記載のゴム又は樹脂用添加剤。 The rubber or resin according to claim 1, wherein 1 part by mass of the flaky carbon contains 0.01 to 0.9 parts by mass of an organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon. Additive. 前記親水基が、一般式(1)〜(4):
[式中、−OHはアルコール性水酸基又はフェノール性水酸基を示す。Rは2価の有機基を示す。Xは水素原子、アルカリ金属、NH又は有機アンモニウムを示す。Xは水素原子、アルカリ金属、NH、有機アンモニウム又はアルキル基を示す。一般式(2)の酸素原子はエーテル結合である。]
で表される少なくとも1種である、請求項1又は2に記載のゴム又は樹脂用添加剤。
The hydrophilic group is a general formula (1) to (4):
[In the formula, -OH represents an alcoholic hydroxyl group or a phenolic hydroxyl group. R represents a divalent organic group. X 1 represents a hydrogen atom, alkali metal, NH 4 or organic ammonium. X 2 represents a hydrogen atom, alkali metal, NH 4 , organic ammonium or alkyl group. The oxygen atom of the general formula (2) is an ether bond. ]
The rubber or resin additive according to claim 1 or 2, which is at least one kind represented by.
前記親水基が、フェノール性水酸基及び/又はポリオキシエチレン基である、請求項1〜3のいずれか1項に記載のゴム又は樹脂用添加剤。 The additive for rubber or resin according to any one of claims 1 to 3, wherein the hydrophilic group is a phenolic hydroxyl group and / or a polyoxyethylene group. 前記疎水基が、アルキル基、アルケニル基、シクロアルキル基、アリール基、及び炭素数3以上のポリオキシアルキレン基よりなる群から選ばれる少なくとも1種である、請求項1〜4のいずれか1項に記載のゴム又は樹脂用添加剤。 Any one of claims 1 to 4, wherein the hydrophobic group is at least one selected from the group consisting of an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and a polyoxyalkylene group having 3 or more carbon atoms. The additive for rubber or resin described in 1. 前記疎水基が、2個以上の芳香環を有するアリール基である、請求項1〜5のいずれか1項に記載のゴム又は樹脂用添加剤。 The additive for rubber or resin according to any one of claims 1 to 5, wherein the hydrophobic group is an aryl group having two or more aromatic rings. 請求項1〜6のいずれか1項に記載のゴム又は樹脂用添加剤の製造方法であって、
(1)前記薄片状カーボンと、前記親水基及び炭素と親和性の高い疎水基を有する有機化合物と、溶媒とを含有する分散体から溶媒を除去する工程を備える、製造方法。
The method for producing an additive for rubber or resin according to any one of claims 1 to 6.
(1) A production method comprising a step of removing a solvent from a dispersion containing the flaky carbon, the organic compound having a hydrophilic group and a hydrophobic group having a high affinity for carbon, and a solvent.
前記溶媒を除去する工程が、前記分散体を濃縮する工程である、請求項7に記載の製造方法。 The production method according to claim 7, wherein the step of removing the solvent is a step of concentrating the dispersion. 前記溶媒が水である、請求項7又は8に記載の製造方法。 The production method according to claim 7 or 8, wherein the solvent is water. 請求項1〜6のいずれか1項に記載の熱伝導材料と、熱可塑性樹脂、ゴム及び熱可塑性エラストマーよりなる群から選ばれる少なくとも1種とを含有する、ゴム又は樹脂強化組成物。 A rubber or resin reinforced composition containing the heat conductive material according to any one of claims 1 to 6 and at least one selected from the group consisting of a thermoplastic resin, a rubber and a thermoplastic elastomer. 前記熱可塑性樹脂、ゴム及び熱可塑性エラストマーが、芳香族高分子化合物である、請求項10に記載のゴム又は樹脂強化組成物。 The rubber or resin reinforced composition according to claim 10, wherein the thermoplastic resin, rubber and thermoplastic elastomer are aromatic polymer compounds. 請求項10又は11に記載のゴム又は樹脂強化組成物の製造方法であって、
(2)前記ゴム又は樹脂用添加剤、並びに溶媒を含む分散体と、熱可塑性樹脂、ゴム及び熱可塑性エラストマーよりなる群から選ばれる少なくとも1種とを混合する工程
を備える、製造方法。
The method for producing a rubber or resin reinforced composition according to claim 10 or 11.
(2) A production method comprising a step of mixing the dispersion containing the rubber or resin additive and solvent with at least one selected from the group consisting of thermoplastic resins, rubbers and thermoplastic elastomers.
JP2019066121A 2019-03-29 2019-03-29 Additives for rubber or resin Active JP7438671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019066121A JP7438671B2 (en) 2019-03-29 2019-03-29 Additives for rubber or resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019066121A JP7438671B2 (en) 2019-03-29 2019-03-29 Additives for rubber or resin

Publications (2)

Publication Number Publication Date
JP2020164638A true JP2020164638A (en) 2020-10-08
JP7438671B2 JP7438671B2 (en) 2024-02-27

Family

ID=72714312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019066121A Active JP7438671B2 (en) 2019-03-29 2019-03-29 Additives for rubber or resin

Country Status (1)

Country Link
JP (1) JP7438671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921028A (en) * 2021-07-07 2022-08-19 水乐涂新材料(广州)有限公司 Elastic brick and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508422A (en) * 1997-12-15 2002-03-19 キャボット コーポレイション Polymer products containing modified carbon products and methods for their production and use
WO2010090343A1 (en) * 2009-02-05 2010-08-12 帝人株式会社 Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
JP2013173843A (en) * 2012-02-24 2013-09-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2015199647A (en) * 2014-03-31 2015-11-12 大阪瓦斯株式会社 Method of producing flaky carbon
JP2018083721A (en) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 Method of manufacturing flaky carbon
JP2018083724A (en) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 Method of manufacturing flaky carbon
WO2018159566A1 (en) * 2017-02-28 2018-09-07 積水化学工業株式会社 Gas barrier material and thermosetting resin composition
WO2020027039A1 (en) * 2018-07-30 2020-02-06 株式会社Adeka Composite material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508422A (en) * 1997-12-15 2002-03-19 キャボット コーポレイション Polymer products containing modified carbon products and methods for their production and use
WO2010090343A1 (en) * 2009-02-05 2010-08-12 帝人株式会社 Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
JP2013173843A (en) * 2012-02-24 2013-09-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2015199647A (en) * 2014-03-31 2015-11-12 大阪瓦斯株式会社 Method of producing flaky carbon
JP2018083721A (en) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 Method of manufacturing flaky carbon
JP2018083724A (en) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 Method of manufacturing flaky carbon
WO2018159566A1 (en) * 2017-02-28 2018-09-07 積水化学工業株式会社 Gas barrier material and thermosetting resin composition
WO2020027039A1 (en) * 2018-07-30 2020-02-06 株式会社Adeka Composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921028A (en) * 2021-07-07 2022-08-19 水乐涂新材料(广州)有限公司 Elastic brick and preparation method and application thereof
CN114921028B (en) * 2021-07-07 2024-04-26 水乐涂新材料(广州)有限公司 Elastic brick and preparation method and application thereof

Also Published As

Publication number Publication date
JP7438671B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
JP5577622B2 (en) Fine cellulose fiber dispersion, polymer cellulose composite, and cellulose fiber defibrating method
Shakun et al. Hard nanodiamonds in soft rubbers: Past, present and future–A review
Jin et al. Recent advances in carbon-nanotube-based epoxy composites
Yue et al. Study on preparation and properties of carbon nanotubes/rubber composites.
CN107880484A (en) A kind of composite modified high polymer material of nano-particle/graphene oxide and its preparation
JP6908050B2 (en) Method for manufacturing slurry, composite resin material and molded product
WO2010004633A1 (en) Process for producing carbon nanofiber, carbon nanofiber, process for producing carbon fiber composite material from carbon nanofiber, and carbon fiber composite material
JP6772040B2 (en) Method of manufacturing flaky carbon
JP2004231796A (en) New composite material using flat cellulose particles or micro-fibrous cellulose
Wang et al. Bacterial cellulose whisker as a reinforcing filler for carboxylated acrylonitrile-butadiene rubber
JP2021014512A (en) Composite material
JP6563226B2 (en) Method for producing flaky carbon
KR20140027192A (en) Composite material containing carbon nanotubes and particles having a core-shell structure
Nayak et al. Dispersion of SiC coated MWCNTs in PEI/silicone rubber blend and its effect on the thermal and mechanical properties
JP7438671B2 (en) Additives for rubber or resin
Divya et al. Dynamic mechanical analysis and optimization of hybrid carbon-epoxy composites wear using taguchi method
Afolabi et al. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application
Shanmugam et al. Effect of graphene on tribology, mechanical, and thermal properties of flax/E‐glass/epoxy hybrid nanocomposites
Yan et al. Effect of graphene oxide with different exfoliation levels on the mechanical properties of epoxy nanocomposites
JP6759070B2 (en) Method of manufacturing flaky carbon
Mehrabi‐Kooshki et al. Preparation of binary and hybrid epoxy nanocomposites containing graphene oxide and rubber nanoparticles: Fracture toughness and mechanical properties
JP2021155294A (en) Durability improver
JP2020164639A (en) Friction and/or wear reducing agent
CN114426674B (en) Preparation method and application of thermosetting resin-based toughened high-thermal-conductivity filler
JP2022157257A (en) Plating solution additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7438671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150