JP2020164382A - Carbon nanotube wire - Google Patents

Carbon nanotube wire Download PDF

Info

Publication number
JP2020164382A
JP2020164382A JP2019068765A JP2019068765A JP2020164382A JP 2020164382 A JP2020164382 A JP 2020164382A JP 2019068765 A JP2019068765 A JP 2019068765A JP 2019068765 A JP2019068765 A JP 2019068765A JP 2020164382 A JP2020164382 A JP 2020164382A
Authority
JP
Japan
Prior art keywords
carbon nanotube
cnt
wire rod
nanotube wire
cnts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019068765A
Other languages
Japanese (ja)
Other versions
JP7316822B2 (en
Inventor
沙和 境
Sawa SAKAI
沙和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019068765A priority Critical patent/JP7316822B2/en
Publication of JP2020164382A publication Critical patent/JP2020164382A/en
Application granted granted Critical
Publication of JP7316822B2 publication Critical patent/JP7316822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

To provide a carbon nanotube wire that includes a relatively long carbon nanotube and is excellent in orientation, electroconductivity, and strength.SOLUTION: A carbon nanotube wire 10 comprises a carbon nanotube aggregate 11 composed of a plurality of carbon nanotubes 11a. The plurality of carbon nanotubes 11a has an average length of 15 μm or more. In the carbon nanotube wire 10, the Herman's orientation coefficient on the outer side of the carbon nanotube wire is 0.75 or more and the absolute value of the difference between the Herman's orientation coefficient on the outer side and the Herman's orientation coefficient on the inner side is 0.05 or less. A ratio G/D being a ratio of a D band derived from crystallinity to a G band of Raman spectrum in the carbon nanotube wire 10 is 70 or more.SELECTED DRAWING: Figure 1

Description

本発明は、カーボンナノチューブ線材に関し、特に、平均長さが15μm以上である複数のカーノンナノチューブを含み、且つ、配向性、導電性及び強度に優れたカーボンナノチューブ線材に関する。 The present invention relates to a carbon nanotube wire rod, and more particularly to a carbon nanotube wire rod containing a plurality of carnon nanotubes having an average length of 15 μm or more and having excellent orientation, conductivity and strength.

カーボンナノチューブ(以下、「CNT」ということがある。)は、様々な特性を有する素材であり、多くの分野への応用が期待されている。 Carbon nanotubes (hereinafter sometimes referred to as "CNTs") are materials having various properties and are expected to be applied to many fields.

例えば、CNTは、軽量であると共に、導電性、熱伝導性、機械的強度等の諸特性に優れるため、線材の材料として用いることが考えられる。 For example, CNT is considered to be used as a material for wire rods because it is lightweight and has excellent properties such as conductivity, thermal conductivity, and mechanical strength.

CNTを線材として使用する場合、CNTの高配向化・高密度化が高導電化に寄与することが知られている。また、アスペクト比が高いCNTは、CNT単体の導電性が高いことも公知であり、高いアスペクト比を有するCNTの使用は高い導電性のCNT線材の作製に有効であると考えられる。しかしながら、アスペクト比が高い、すなわち長いCNTを使用すると、CNT同士の絡まりが強いため、さらなる高導電化、高強度化が期待できる一方で、高配向化が難しい。そのため、高いアスペクト比を有するCNTを高配向化させる技術の開発が望まれている。 When CNTs are used as wire rods, it is known that high orientation and high density of CNTs contribute to high conductivity. It is also known that CNTs having a high aspect ratio have high conductivity of CNTs alone, and it is considered that the use of CNTs having a high aspect ratio is effective for producing highly conductive CNT wires. However, when CNTs having a high aspect ratio, that is, long CNTs are used, the CNTs are strongly entangled with each other, so that higher conductivity and higher strength can be expected, but higher orientation is difficult. Therefore, it is desired to develop a technique for highly orienting CNTs having a high aspect ratio.

また、CNT線材の製造方法の1つに、CNTを含む分散液を作製し、その分散液を凝固液(溶剤)中にてノズル等を介して吐出し、固化しながら繊維化する湿式紡糸が知られている。湿式紡糸では、凝固液中でCNT分散液を押出(吐出)して糸状のCNT線材を形成させるため、低粘度のCNT分散液を用いることも可能である。しかしながら、電線用途として高導電性のCNT線を作製するためには、長いCNTを分散させた高濃度のCNT分散液を用いてCNT密度の高い線材を作製する必要がある。また、通常の湿式紡糸で作製したCNTはランダムに配向しているため、高濃度のCNT分散液を用いた場合、CNTが絡まりやすく、配向性がランダムとなる傾向がより顕著になる。さらに、ノズル内での流速の違い、凝固の速さの違い等により、押出の際、糸状のCNT線材の外側と中心部では配向度の差が生じやすく、また、押出により凝固液中に気泡が発生すると、これに起因して空隙率の増大を招き、配向ムラ・密度ムラが生じるおそれがある。そのため、従来の湿式紡糸では、高い配向性を有するCNT線材の作製は困難であった。 In addition, one of the methods for manufacturing CNT wire rods is wet spinning in which a dispersion liquid containing CNTs is prepared, and the dispersion liquid is discharged in a coagulating liquid (solvent) through a nozzle or the like to form fibers while solidifying. Are known. In wet spinning, since the CNT dispersion liquid is extruded (discharged) in the coagulation liquid to form a thread-like CNT wire rod, it is also possible to use a low-viscosity CNT dispersion liquid. However, in order to produce a highly conductive CNT wire for electric wires, it is necessary to produce a wire having a high CNT density using a high-concentration CNT dispersion liquid in which long CNTs are dispersed. Further, since the CNTs produced by ordinary wet spinning are randomly oriented, when a high-concentration CNT dispersion liquid is used, the CNTs are likely to be entangled and the orientation tends to be random. Further, due to the difference in the flow velocity in the nozzle, the difference in the speed of solidification, etc., the difference in orientation is likely to occur between the outside and the center of the filamentous CNT wire during extrusion, and bubbles are likely to occur in the coagulating liquid by extrusion. If this occurs, the void ratio may increase due to this, and uneven orientation and uneven density may occur. Therefore, it has been difficult to produce a CNT wire having high orientation by conventional wet spinning.

特許文献1には、長尺でアスペクト比が高いCNTを含む分散液は、CNTが互いに絡み合いネットワーク構造を容易に形成するため、粘度が高く、また、せん断応を加えるとネットワーク構造が解体され、CNT分散液の粘度が下がることが記載されている。しかしながら、CNTの配向性については記載されていない。また、CNT分散液中に導電性を阻害する要因である樹脂が含まれているため、導電性が劣ってしまうことが予想される。 According to Patent Document 1, a dispersion liquid containing CNTs, which is long and has a high aspect ratio, has a high viscosity because the CNTs are entangled with each other to easily form a network structure, and the network structure is disassembled when shearing is applied. It is described that the viscosity of the CNT dispersion liquid decreases. However, the orientation of CNTs is not described. Further, since the CNT dispersion liquid contains a resin that is a factor that inhibits the conductivity, it is expected that the conductivity will be inferior.

非特許文献1には、CNTに高いせん断力を加えて作製した水平配向膜が記載されている。しかしながら、使用したCNTは、平均長さが420nm以下の短いCNTであるため、平均長さが10μm以上の長いCNTを含む配向膜は得られていない。そのため、CNT同士の絡まりは比較的弱く、導電性、強度をさらに向上させる余地がある。 Non-Patent Document 1 describes a horizontally oriented film prepared by applying a high shearing force to CNT. However, since the CNTs used are short CNTs having an average length of 420 nm or less, an alignment film containing a long CNT having an average length of 10 μm or more has not been obtained. Therefore, the entanglement between the CNTs is relatively weak, and there is room for further improving the conductivity and strength.

国際公開第2016/080327号International Publication No. 2016/080327

X.He,et al., Nature Nanotechnology 11,(2016)633X.He, et al., Nature Nanotechnology 11, (2016) 633

上記事情に鑑み、本発明の目的は、比較的長いカーボンナノチューブを含み、配向性、導電性及び強度に優れたカーボンナノチューブ線材を提供することである。 In view of the above circumstances, an object of the present invention is to provide a carbon nanotube wire rod containing a relatively long carbon nanotube and having excellent orientation, conductivity and strength.

本発明者は、上記問題に対して鋭意検討を行った結果、カーボンナノチューブを含む分散液に高いせん断力を負荷しながらカーボンナノチューブの塗布膜を作製することにより、比較的長いカーボンナノチューブ同士が絡まった状態で、これらがせん断方向に沿って配向されるとの知見を得た。また、得られた塗布膜を、該塗布膜に含まれるカーボンナノチューブの配向方向がカーボンナノチューブ線材の長手方向と平行になるように半乾きの状態でロール状に巻くことで、カーボンナノチューブ線材の外側と内側で配向度の差がほとんどなく、隣り合ったカーボンナノチューブ層同士がカーボンナノチューブのファンデルワールス力により強固に結合するとの知見を得た。このような製法により得られたカーボンナノチューブ線材は、空隙率が少ない上、配向性が高く、さらには、比較的長いカーボンナノチューブ同士が互いに強く絡み合ったネットワーク構造を形成するため、導電性及び強度に優れたカーボンナノチューブ線材が得られることを見出した。 As a result of diligent studies on the above problems, the present inventor has made a coating film of carbon nanotubes while applying a high shear force to a dispersion liquid containing carbon nanotubes, whereby relatively long carbon nanotubes are entangled with each other. It was found that these are oriented along the shear direction in this state. Further, by winding the obtained coating film in a semi-dry state so that the orientation direction of the carbon nanotubes contained in the coating film is parallel to the longitudinal direction of the carbon nanotube wire, the outside of the carbon nanotube wire is wound. It was found that there is almost no difference in the degree of orientation inside and inside, and that adjacent carbon nanotube layers are firmly bonded to each other by the van der Waals force of carbon nanotubes. The carbon nanotube wire rods obtained by such a manufacturing method have a low void ratio, high orientation, and form a network structure in which relatively long carbon nanotubes are strongly entangled with each other, resulting in high conductivity and strength. It has been found that an excellent carbon nanotube wire rod can be obtained.

すなわち、本発明の要旨構成は、以下の通りである。
[1] 複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体からなるカーボンナノチューブ線材であって、
前記複数のカーボンナノチューブの平均長さが15μm以上であり、
前記カーボンナノチューブ線材において、前記カーボンナノチューブ線材の円相当半径をR、同心円でR/√2の半径を有する部分の範囲をカーボンナノチューブ線材の内側、同心円で前記カーボンナノチューブ線材の内側を除いた部分の範囲をカーボンナノチューブ線材の外側としたとき、走査型電子顕微鏡で観察し得られた画像を高速フーリエ変換した画像を解析し算出されるヘルマンの配向係数が、前記カーボンナノチューブ線材の外側で0.75以上であり、且つ前記カーボンナノチューブ線材の外側におけるヘルマンの配向係数と前記カーボンナノチューブ線材の内側におけるヘルマンの配向係数との差の絶対値が0.05以下であり、かつ、
前記カーボンナノチューブ線材において、ラマンスペクトルのGバンドに対する結晶性に由来するDバンドの比であるG/D比が70以上であることを特徴とするカーボンナノチューブ線材。
[2] カーボンナノチューブ線材の径方向における任意の断面積に対する空隙率が10%以下である、[1]に記載のカーボンナノチューブ線材。
[3] 密度が1.4g/cm以上である、[1]又は[2]に記載のカーボンナノチューブ線材。
[4] 前記G/D比が80以上である、[1]乃至[3]までのいずれかに記載のカーボンナノチューブ線材。
[5] 前記複数のカーボンナノチューブの平均長さが20μm以上60μm以下である、[1]乃至[4]までのいずれかに記載のカーボンナノチューブ線材。
[6] 空隙の分散度が5.0以下である、[1]乃至[5]までのいずれかに記載のカーボンナノチューブ線材。
That is, the gist structure of the present invention is as follows.
[1] A carbon nanotube wire rod composed of an aggregate of carbon nanotubes composed of a plurality of carbon nanotubes.
The average length of the plurality of carbon nanotubes is 15 μm or more, and the average length is 15 μm or more.
In the carbon nanotube wire rod, the circle-equivalent radius of the carbon nanotube wire rod is R, the range of the portion having a radius of R / √2 in the concentric circle is the inside of the carbon nanotube wire rod, and the portion of the concentric circle excluding the inside of the carbon nanotube wire rod. When the range is outside the carbon nanotube wire, the Hermann orientation coefficient calculated by analyzing the image obtained by high-speed Fourier conversion of the image obtained by the scanning electron microscope is 0.75 outside the carbon nanotube wire. The absolute value of the difference between the Hermann orientation coefficient outside the carbon nanotube wire rod and the Hermann orientation coefficient inside the carbon nanotube wire rod is 0.05 or less, and
The carbon nanotube wire rod is characterized in that the G / D ratio, which is the ratio of the D band derived from crystallinity to the G band of the Raman spectrum, is 70 or more.
[2] The carbon nanotube wire rod according to [1], wherein the void ratio with respect to an arbitrary cross-sectional area in the radial direction of the carbon nanotube wire rod is 10% or less.
[3] The carbon nanotube wire rod according to [1] or [2], which has a density of 1.4 g / cm 3 or more.
[4] The carbon nanotube wire rod according to any one of [1] to [3], wherein the G / D ratio is 80 or more.
[5] The carbon nanotube wire rod according to any one of [1] to [4], wherein the average length of the plurality of carbon nanotubes is 20 μm or more and 60 μm or less.
[6] The carbon nanotube wire rod according to any one of [1] to [5], wherein the degree of dispersion of voids is 5.0 or less.

本発明によれば、比較的長いカーボンナノチューブ同士が互いに強く絡み合った状態で配向し、カーボンナノチューブ線材の外側と内側で配向度の差がほとんどなく、隣り合ったカーボンナノチューブ層同士がカーボンナノチューブのファンデルワールス力により強固に結合している。そのため、高配向化が図れると共に、長いカーボンナノチューブ同士がより高密度で結合する。これにより、比較的長いカーボンナノチューブを含みつつ、配向性、導電性及び強度に優れたカーボンナノチューブ線材を提供することができる。 According to the present invention, relatively long carbon nanotubes are oriented in a state of being strongly entangled with each other, there is almost no difference in the degree of orientation between the outside and the inside of the carbon nanotube wire rod, and the adjacent carbon nanotube layers are carbon nanotube fans. It is firmly connected by the Delwars force. Therefore, high orientation can be achieved, and long carbon nanotubes are bonded to each other at a higher density. Thereby, it is possible to provide a carbon nanotube wire rod having excellent orientation, conductivity and strength while containing a relatively long carbon nanotube.

図1は、本発明の実施形態例に係るカーボンナノチューブ線材の構成の一例を示す概略図である。FIG. 1 is a schematic view showing an example of the configuration of a carbon nanotube wire rod according to an embodiment of the present invention. 図2は、本発明の実施形態例に係るカーボンナノチューブ線材における配向度の測定を説明するための概略図であり、図2(a)は、カーボンナノチューブ線材の短軸方向の断面図であり、図2(b)は、カーボンナノチューブ線材の長軸方向の断面図である。FIG. 2 is a schematic view for explaining the measurement of the degree of orientation in the carbon nanotube wire rod according to the embodiment of the present invention, and FIG. 2A is a cross-sectional view of the carbon nanotube wire rod in the minor axis direction. FIG. 2B is a cross-sectional view of the carbon nanotube wire rod in the long axis direction.

以下に、本発明の実施形態例に係るカーボンナノチューブ線材について、図面を用いながら詳細に説明する。 Hereinafter, the carbon nanotube wire rod according to the embodiment of the present invention will be described in detail with reference to the drawings.

<カーボンナノチューブ線材>
図1に示されるように、本発明に係るカーボンナノチューブ線材10は、複数のCNT11a,11a,・・・で構成されるCNT集合体11からなる。CNT集合体11は、1層以上の層構造を有する複数のCNT11a,11a,・・・で構成されており、CNT線材10は、CNT集合体11の単数から、または複数が束ねられて形成されている。ここで、CNT線材とはCNTの割合が90質量%以上のCNT線材を意味する。なお、CNT線材におけるCNT割合の算定においては、メッキとドーパントは除かれる。CNT集合体11の長手方向が、CNT線材10の長手方向を形成しているため、CNT集合体11は、線状となっている。CNT線材10における複数のCNT集合体11,11,・・・は、その長軸方向がほぼ揃って配向している。CNT線材10は、1本のCNT線材10からなる素線(単線)である。素線としてのCNT線材10の直径は、特に限定されないが、例えば、0.005mm以上4.0mm以下である。また、複数本のCNT線材10をさらに撚り合わせることにより、CNT線材10の撚り線を形成することができる。
<Carbon nanotube wire>
As shown in FIG. 1, the carbon nanotube wire rod 10 according to the present invention is composed of a CNT aggregate 11 composed of a plurality of CNTs 11a, 11a, .... The CNT aggregate 11 is composed of a plurality of CNTs 11a, 11a, ... Having a layer structure of one or more layers, and the CNT wire rod 10 is formed from a single number of the CNT aggregates 11 or a bundle of a plurality of the CNT aggregates 11. ing. Here, the CNT wire rod means a CNT wire rod having a CNT ratio of 90% by mass or more. In addition, plating and dopants are excluded in the calculation of the CNT ratio in the CNT wire rod. Since the longitudinal direction of the CNT aggregate 11 forms the longitudinal direction of the CNT wire rod 10, the CNT aggregate 11 is linear. The plurality of CNT aggregates 11, 11, ... In the CNT wire rod 10 are oriented so that their major axis directions are substantially aligned. The CNT wire rod 10 is a wire (single wire) composed of one CNT wire rod 10. The diameter of the CNT wire rod 10 as a wire is not particularly limited, but is, for example, 0.005 mm or more and 4.0 mm or less. Further, by further twisting the plurality of CNT wire rods 10, the stranded wire of the CNT wire rod 10 can be formed.

ラマン分光法を用いて炭素系の物質を解析すると、ラマンシフト1590cm−1付近に、Gバンドと呼ばれる、六員環の面内振動に由来するスペクトルのピークが検出される。一方、Dバンドは、ラマンシフト1350cm−1付近に現れ、欠陥に由来するスペクトルのピークともいえる。CNT線材10における欠陥量の指標として、ラマンスペクトルのGバンドに対する結晶性に由来するDバンドの比であるG/D比が用いられる。G/D比が大きい程、CNT線材10に欠陥が少ないと判断できる。CNT線材10において、G/D比は70以上であり、80以上であることが好ましい。G/D比が70以上であることにより、欠陥が少なく、導電性及び強度に優れたCNT線材10を得ることができる。 When a carbon-based substance is analyzed using Raman spectroscopy, a peak of a spectrum derived from in-plane vibration of a six-membered ring called a G band is detected near Raman shift 1590 cm -1 . On the other hand, the D band appears near Raman shift 1350 cm -1 , and can be said to be the peak of the spectrum derived from the defect. As an index of the amount of defects in the CNT wire rod 10, the G / D ratio, which is the ratio of the D band derived from the crystallinity to the G band of the Raman spectrum, is used. It can be determined that the larger the G / D ratio, the fewer defects the CNT wire rod 10 has. In the CNT wire rod 10, the G / D ratio is 70 or more, preferably 80 or more. When the G / D ratio is 70 or more, it is possible to obtain the CNT wire rod 10 having few defects and excellent conductivity and strength.

[CNT集合体]
CNT集合体11は、複数のCNT11aの束であり、CNT11aの長手方向が、CNT集合体11の長手方向を形成している。CNT集合体11における複数のCNT11a,11a,・・・は、その長軸方向がほぼ揃って配向している。CNT集合体11の円相当直径は、例えば、20nm以上1000nm以下であり、より典型的には、20nm以上80nm以下である。
[CNT aggregate]
The CNT aggregate 11 is a bundle of a plurality of CNTs 11a, and the longitudinal direction of the CNTs 11a forms the longitudinal direction of the CNT aggregates 11. The plurality of CNTs 11a, 11a, ... In the CNT aggregate 11 are oriented so that their major axis directions are substantially aligned. The equivalent circle diameter of the CNT aggregate 11 is, for example, 20 nm or more and 1000 nm or less, and more typically 20 nm or more and 80 nm or less.

[CNT]
CNT集合体11を構成するCNT11aは、単層構造又は複層構造を有する筒状体が糸状に形成された物質であり、単層構造のCNTはSWNT(single-walled nanotube)、複層構造のCNTはMWNT(multi-walled nanotube)と呼ばれる。図1では、便宜
上、2層構造を有するCNT11aのみを記載しているが、CNT集合体11には、3層構造を有するCNTまたは単層構造の層構造を有するCNTも含まれていてもよく、3層構造を有するCNTまたは単層構造の層構造を有するCNTから形成されていてもよい。但し、CNTが4層構造以上であると、CNTの径のサイズおよび分布が大きくなり、CNT同士が絡みにくくなる。そのため、CNTは、単層構造、2層構造または3層構造であることが好ましく、単層構造または2層構造であることがより好ましく、2層構造であることがさらに好ましい。
[CNT]
The CNT 11a constituting the CNT aggregate 11 is a substance in which a tubular body having a single-walled structure or a multi-walled structure is formed in a thread shape, and the CNT having a single-walled structure is a SWNT (single-walled nanotube) having a multi-walled structure. CNTs are called MWNTs (multi-walled nanotubes). In FIG. 1, for convenience, only CNTs 11a having a two-layer structure are shown, but the CNT aggregate 11 may also include CNTs having a three-layer structure or CNTs having a single-walled structure. It may be formed from CNTs having a three-layer structure or CNTs having a single-walled structure. However, when the CNTs have a four-layer structure or more, the size and distribution of the diameters of the CNTs become large, and the CNTs are less likely to be entangled with each other. Therefore, the CNT preferably has a single-layer structure, a two-layer structure, or a three-layer structure, more preferably a single-layer structure or a two-layer structure, and further preferably a two-layer structure.

2層構造を有するCNT11aでは、六角形格子の網目構造を有する2つの筒状体T1、T2が略同軸で配された3次元網目構造体となっており、DWNT(double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。 The CNT11a having a two-layer structure is a three-dimensional network structure in which two tubular bodies T1 and T2 having a hexagonal lattice network structure are arranged substantially coaxially, and is called a DWNT (double-walled nanotube). .. The hexagonal lattice, which is a constituent unit, is a six-membered ring in which carbon atoms are arranged at its vertices, and these are continuously bonded adjacent to other six-membered rings.

CNT11aの性質は、上記筒状体のカイラリティ(chirality)に依存する。カイラ
リティは、アームチェア型、ジグザグ型、及びカイラル型に大別され、アームチェア型は金属性、ジグザグ型は半導体性および半金属性、カイラル型は半導体性および半金属性の挙動を示す。従って、CNT11aの導電性は、筒状体がいずれのカイラリティを有するかによって大きく異なる。
The properties of CNT11a depend on the chirality of the tubular body. Chirality is roughly classified into an armchair type, a zigzag type, and a chiral type. The armchair type exhibits metallic behavior, the zigzag type exhibits semiconductor and semimetallic behavior, and the chiral type exhibits semiconductor and semimetallic behavior. Therefore, the conductivity of the CNT 11a varies greatly depending on which chirality the tubular body has.

一方で、半導体性の挙動を示すカイラル型のCNT11aに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、カイラル型のCNT11aが金属性の挙動を示すことが分かっている。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性の挙動を示すCNT11aに異種元素をドープした場合には、導電性の低下を引き起こす。 On the other hand, it is known that the chiral type CNT11a exhibits metallic behavior by doping the chiral type CNT11a exhibiting semiconducting behavior with a substance (dissimilar element) having electron donating property or electron accepting property. .. Further, in a general metal, by doping a dissimilar element, conduction electrons are scattered inside the metal and the conductivity is lowered. Similarly, CNT11a exhibiting a metallic behavior is doped with a dissimilar element. If so, it causes a decrease in conductivity.

[CNTの長さ]
複数のCNT11a,11a,・・・において、複数のCNT11a,11a,・・・の平均長さ(以下、単に「平均長さ」ともいう)の下限値は15μm以上であり、20μm以上であることが好ましい。平均長さが15μm未満であると、長いCNTが少な過ぎるため、CNT線材10において、長さ方向(長手方向)の導電パスが短く、優れた導電性を得ることが困難である。また、長いCNT同士の繋がりが少ないため、優れた強度を得ることも困難となる。一方、CNTの平均長さが長いほど、高アスペクト比を有するCNT同士が互いに絡まって繋がりを形成しやすい。これにより、CNT線材10の長さ方向(長手方向)に沿って安定して導電性が付与され、また、CNT同士の絡み合いにより強度も向上する。複数のCNT11a,11a,・・・において、平均長さの上限値は特に制限はないが、長いCNT同士が過剰に絡み合うことを抑制するため、平均長さの上限値は120μm以下であることが好ましく、60μm以下であることが好ましい。特に、複数のCNT11a,11a,・・・の平均長さが20μm以上60μm以下であることにより、CNT線材10の長さ方向(長手方向)の導電パスが高まるため、優れた導電性を確保しやすく、また、複数のCNT11a,11a,・・・が一定の方向に適度に配向しやすい長さであるため、後述する配向性を高めることができる。
[Length of CNT]
In a plurality of CNTs 11a, 11a, ..., The lower limit of the average length of the plurality of CNTs 11a, 11a, ... (hereinafter, also simply referred to as "average length") is 15 μm or more, and 20 μm or more. Is preferable. If the average length is less than 15 μm, there are too few long CNTs, so that the conductive path in the length direction (longitudinal direction) is short in the CNT wire rod 10, and it is difficult to obtain excellent conductivity. Further, since there are few connections between long CNTs, it is difficult to obtain excellent strength. On the other hand, the longer the average length of CNTs, the easier it is for CNTs having a high aspect ratio to be entangled with each other to form a connection. As a result, conductivity is stably imparted along the length direction (longitudinal direction) of the CNT wire rod 10, and the strength is also improved by the entanglement of the CNTs. The upper limit of the average length of a plurality of CNTs 11a, 11a, ... Is not particularly limited, but the upper limit of the average length may be 120 μm or less in order to prevent excessive entanglement of long CNTs. It is preferably 60 μm or less. In particular, when the average length of the plurality of CNTs 11a, 11a, ... Is 20 μm or more and 60 μm or less, the conductive path in the length direction (longitudinal direction) of the CNT wire rod 10 is enhanced, so that excellent conductivity is ensured. It is easy, and since the plurality of CNTs 11a, 11a, ... Are long enough to be appropriately oriented in a certain direction, the orientation described later can be enhanced.

[CNTの径]
複数のCNT11a,11a,・・・において、複数のCNT11a,11a,・・・
の平均径(以下、単に「平均径」ともいう)は特に限定されるものではないが、2.0nm以下であることが好ましい。これにより、高アスペクト比を有するCNTの割合が増大し、長いCNT同士が互いに絡まって繋がったネットワーク構造を形成しやすくなる。複数のCNT11a,11a,・・・において、平均径の下限値は特に制限はないが、1.0nm以上であることが好ましい。
[Diameter of CNT]
In a plurality of CNTs 11a, 11a, ..., A plurality of CNTs 11a, 11a, ...
The average diameter of the above (hereinafter, also simply referred to as “average diameter”) is not particularly limited, but is preferably 2.0 nm or less. As a result, the proportion of CNTs having a high aspect ratio increases, and it becomes easy to form a network structure in which long CNTs are entwined and connected to each other. In the plurality of CNTs 11a, 11a, ..., The lower limit of the average diameter is not particularly limited, but is preferably 1.0 nm or more.

[CNTの配向性]
CNT線材10において、複数のCNT11a,11a,・・・の配向性は、ヘルマンの配向係数により評価することができる。図2にCNT線材10における配向性の測定部分を示す。図2(a)は、CNT線材10の短軸方向(径方向)の断面図であり、図2(b)は、CNT線材10の長軸方向(長さ方向)の断面図である。具体的には、CNT線材10において、CNT線材10の円相当半径をR、同心円でR/√2の半径を有する部分の範囲をCNT線材10の内側20、同心円でCNT線材10の内側20を除いた部分、すなわち、R−(R/√2)の厚さを有する中空円部分の範囲をCNT線材10の外側30としたとき、CNT線材10の外側30における配向度と、CNT線材10の外側30における配向度とCNT線材10の内側20における配向度の差を測定する。これらの配向度は、ヘルマンの配向係数によって評価される。CNT線材10において、ヘルマンの配向係数が、CNT線材10の外側30で0.75以上であり、且つCNT線材10の外側30におけるヘルマンの配向係数とCNT線材10の内側20におけるヘルマンの配向係数との差の絶対値が0.05以下であることにより、CNT線材10は高い配向性を有していると判断される。ヘルマンの配向係数の上限値は1未満であり、ヘルマンの配向係数が1に近いほど高い配向性を有していることを意味する。また、CNT線材10の外側30におけるヘルマンの配向係数とCNT線材10の内側20におけるヘルマンの配向係数との差の絶対値が0に近いほど、複数のCNT11a,11a・・・がCNT線材10の外側30と内側20のそれぞれで均一に配向していると判断できる。CNT線材10の外側30におけるヘルマン配向係数および内側20におけるヘルマンの配向係数は、走査型電子顕微鏡で観察し得られた画像(SEM画像)を高速フーリエ変換した画像を解析(FFT解析)して算出される。例えば、イオンミリングを用いてCNT線材10を長軸方向に沿って切断し、その切断面をSEM(走査型電子顕微鏡)で観察し、当該切断面におけるSEM画像のFFT配向解析を行うことでこれらの配向係数を測定できる。
[Orientation of CNT]
In the CNT wire rod 10, the orientation of the plurality of CNTs 11a, 11a, ... Can be evaluated by the orientation coefficient of Hermann. FIG. 2 shows a measurement portion of orientation in the CNT wire rod 10. FIG. 2A is a cross-sectional view of the CNT wire rod 10 in the minor axis direction (diameter direction), and FIG. 2B is a cross-sectional view of the CNT wire rod 10 in the major axis direction (longitudinal direction). Specifically, in the CNT wire 10, the circle-equivalent radius of the CNT wire 10 is R, the range of the concentric circles having a radius of R / √2 is the inside 20 of the CNT wire 10, and the concentric circles are the inside 20 of the CNT wire 10. When the range of the excluded portion, that is, the hollow circular portion having a thickness of R- (R / √2) is defined as the outer side 30 of the CNT wire rod 10, the degree of orientation of the CNT wire rod 10 on the outer side 30 and the degree of orientation of the CNT wire rod 10 The difference between the degree of orientation on the outer side 30 and the degree of orientation on the inner side 20 of the CNT wire rod 10 is measured. These degrees of orientation are evaluated by Hermann's alignment coefficient. In the CNT wire 10, the Hermann orientation coefficient is 0.75 or more on the outside 30 of the CNT wire 10, and the Hermann orientation coefficient on the outside 30 of the CNT wire 10 and the Hermann orientation coefficient on the inside 20 of the CNT wire 10. It is judged that the CNT wire rod 10 has high orientation when the absolute value of the difference between the two is 0.05 or less. The upper limit of the Hermann orientation coefficient is less than 1, and the closer the Hermann orientation coefficient is to 1, the higher the orientation. Further, the closer the absolute value of the difference between the Hermann orientation coefficient on the outer side 30 of the CNT wire 10 and the Hermann orientation coefficient on the inner side 20 of the CNT wire 10 is to 0, the more a plurality of CNTs 11a, 11a ... It can be determined that the outer side 30 and the inner side 20 are uniformly oriented. The Hermann orientation coefficient on the outer side 30 and the Hermann orientation coefficient on the inner side 20 of the CNT wire 10 are calculated by analyzing (FFT analysis) an image obtained by fast Fourier transforming an image (SEM image) obtained by observing with a scanning electron microscope. Will be done. For example, the CNT wire rod 10 is cut along the long axis direction using ion milling, the cut surface is observed with an SEM (scanning electron microscope), and the FFT orientation analysis of the SEM image on the cut surface is performed. Orientation coefficient can be measured.

CNT線材10の外側30におけるヘルマンの配向係数が0.75以上であることにより、CNT線材10の外側30では、平均長さが15μm以上の複数のCNT11a,11a,・・・がCNT線材10の長軸方向にほぼ揃って配向していると判断できる。すなわち、CNT線材10の外側30には、高い配向性が付与されている。また、CNT線材10の外側30におけるヘルマンの配向係数とCNT線材10の内側20におけるヘルマンの配向係数との差の絶対値が0.05以下であることにより、CNT線材10の外側30と内側20において、複数のCNT11a,11a,・・・が均一に配向されていると判断できる。すなわち、CNT線材10の空隙率が低く、平均長さが15μm以上の複数のCNT11a,11a,・・・がより高密度に配向されている。このように、CNT線材10が所定の配向性を満たすことにより、導電性及び強度に優れたCNT線材10を得ることができる。特に、CNT線材10の外側30におけるヘルマンの配向係数が0.85以上であり、且つCNT線材10の外側30におけるヘルマンの配向係数とCNT線材10の内側20におけるヘルマンの配向係数との差の絶対値が0.03以下であることにより、より配向性に優れたCNT線材10を得ることができ、CNT11aの平均長さが20μm以上60μm以下の場合、効果がより顕著になる。 Since the orientation coefficient of Hermann on the outer side 30 of the CNT wire 10 is 0.75 or more, on the outer side 30 of the CNT wire 10, a plurality of CNTs 11a, 11a, ... With an average length of 15 μm or more are formed on the CNT wire 10. It can be judged that the orientation is almost aligned in the long axis direction. That is, the outer side 30 of the CNT wire rod 10 is provided with high orientation. Further, since the absolute value of the difference between the Hermann orientation coefficient on the outer side 30 of the CNT wire 10 and the Hermann orientation coefficient on the inner side 20 of the CNT wire 10 is 0.05 or less, the outer 30 and the inner 20 of the CNT wire 10 are 20 or less. It can be determined that the plurality of CNTs 11a, 11a, ... Are uniformly oriented. That is, a plurality of CNTs 11a, 11a, ... With a low void ratio of the CNT wire rod 10 and an average length of 15 μm or more are oriented at a higher density. By satisfying the predetermined orientation of the CNT wire 10 in this way, the CNT wire 10 having excellent conductivity and strength can be obtained. In particular, the Hermann orientation coefficient on the outer side 30 of the CNT wire 10 is 0.85 or more, and the absolute difference between the Hermann orientation coefficient on the outer side 30 of the CNT wire 10 and the Hermann orientation coefficient on the inner side 20 of the CNT wire 10 is absolute. When the value is 0.03 or less, the CNT wire rod 10 having more excellent orientation can be obtained, and when the average length of the CNT 11a is 20 μm or more and 60 μm or less, the effect becomes more remarkable.

[密度]
CNT線材10は、密度が0.8g/cm以上であることが好ましく、1.0g/cm以上であることがより好ましく、1.4g/cm以上であることがさらに好ましい
。密度が0.8g/cm以上であれば、CNT線材10に優れた強度を付与することができ、密度が1.0g/cm以上であることにより、より強度を向上させることができ、特に、密度が1.4g/cm以上であることにより、顕著に優れた強度が付与される。
[density]
The density of the CNT wire rod 10 is preferably 0.8 g / cm 3 or more, more preferably 1.0 g / cm 3 or more, and further preferably 1.4 g / cm 3 or more. When the density is 0.8 g / cm 3 or more, excellent strength can be imparted to the CNT wire rod 10, and when the density is 1.0 g / cm 3 or more, the strength can be further improved. In particular, when the density is 1.4 g / cm 3 or more, remarkably excellent strength is imparted.

[CNT線材の製造方法]
CNT11aは、浮遊触媒法(特許第5819888号公報)、基板法(特許第5590603号公報)等の方法により作製することができ、好ましくは浮遊触媒法により作製される。浮遊触媒法の条件は、特に限定されるものではなく、従来公知の方法により適宜設計することができる。これにより、複数のCNT11a,11a,・・・を含む分散液が作製される。
[Manufacturing method of CNT wire]
CNT11a can be produced by a method such as a floating catalyst method (Patent No. 5819888) or a substrate method (Patent No. 5590603), and is preferably produced by a floating catalyst method. The conditions of the floating catalyst method are not particularly limited, and can be appropriately designed by a conventionally known method. As a result, a dispersion liquid containing a plurality of CNTs 11a, 11a, ... Is produced.

CNT線材10の製造方法は、CNT分散液を作製する工程と、塗布膜を作製する工程と、CNTを線材化する工程を含む。CNT分散液を作製する工程では、例えば、上述の浮遊触媒法で作製した複数のCNT11a,11a,・・・を使用してもよい。CNT分散液には、溶媒としての水と、所定の平均長さを有する複数のCNT11a,11a,・・・と、所定量の分散剤(界面活性剤)とが含まれている。但し、CNT分散液には、導電性が阻害され、配向性を劣化させる要因となるポリビニルピロリドン(PVP)等の樹脂、危険が伴う硫酸、クロロスルホン酸等の強酸は含まない。これらを含む溶液を超音波分散等の分散処理を行うことによりCNT分散液を作製する。CNT分散液中に含まれる複数のCNT11a,11a,・・・の含有量は、水の量(100質量%)に対して0.05質量%以上5.0質量%以下であることが好ましい。また、CNT分散液は、水の量(100質量)に対して0.5質量%以上10質量%以下の分散剤を含んでいる。 The method for producing the CNT wire rod 10 includes a step of preparing a CNT dispersion liquid, a step of preparing a coating film, and a step of converting CNT into a wire rod. In the step of producing the CNT dispersion liquid, for example, a plurality of CNTs 11a, 11a, ... Produced by the above-mentioned floating catalyst method may be used. The CNT dispersion liquid contains water as a solvent, a plurality of CNTs 11a, 11a, ... Having a predetermined average length, and a predetermined amount of a dispersant (surfactant). However, the CNT dispersion liquid does not contain a resin such as polyvinylpyrrolidone (PVP), which inhibits conductivity and causes deterioration of orientation, and a strong acid such as sulfuric acid and chlorosulfonic acid, which are dangerous. A CNT dispersion liquid is prepared by subjecting a solution containing these to a dispersion treatment such as ultrasonic dispersion. The content of the plurality of CNTs 11a, 11a, ... Contained in the CNT dispersion is preferably 0.05% by mass or more and 5.0% by mass or less with respect to the amount of water (100% by mass). Further, the CNT dispersion liquid contains 0.5% by mass or more and 10% by mass or less of the dispersant with respect to the amount of water (100% by mass).

分散剤として使用される界面活性剤は、特に限定されるものではないが、例えば、陰イオン性界面活性剤等が挙げられ、特にコール酸ナトリウムが好ましい。このような界面活性剤は、1種単独であってもよく、2種以上を併用してもよい。 The surfactant used as the dispersant is not particularly limited, and examples thereof include anionic surfactants, and sodium cholic acid is particularly preferable. Such a surfactant may be used alone or in combination of two or more.

CNT線材10が、15μm以上の平均長さを有する複数のCNT11a,11a,・・・から形成されるようにするため、CNT分散液中に含まれる複数のCNT11a,11a,・・・の平均長さは15μm以上である。CNT分散液中に含まれる複数のCNT11a,11a,・・・の大きさは、CNT分散液中で制御してもよく、複数のCNT11a,11a,・・・の作製段階で制御してもよい。このように、CNT分散液は、比較的長い複数のCNT11a,11a,・・・を含むため、ゲル状またはペースト状の比較的高粘度のCNT分散液として存在する。尚、後述する塗布膜の作製工程において負荷する所定のせん断力にはCNT同士の絡まりを解き、高配向化させる効果があるが、CNTの短尺化には影響を与えないことを確認している。したがって、分散液中のCNTの平均長さと塗布膜に含まれるCNTが有する平均長さは実質変化しない。 The average length of the plurality of CNTs 11a, 11a, ... Contained in the CNT dispersion liquid so that the CNT wire 10 is formed of the plurality of CNTs 11a, 11a, ... With an average length of 15 μm or more. The size is 15 μm or more. The size of the plurality of CNTs 11a, 11a, ... Contained in the CNT dispersion liquid may be controlled in the CNT dispersion liquid, or may be controlled at the production stage of the plurality of CNTs 11a, 11a, ... .. As described above, since the CNT dispersion liquid contains a plurality of relatively long CNTs 11a, 11a, ..., It exists as a gel-like or paste-like relatively high-viscosity CNT dispersion liquid. It has been confirmed that the predetermined shearing force applied in the process of producing the coating film, which will be described later, has the effect of untangling the CNTs and making them highly oriented, but does not affect the shortening of the CNTs. .. Therefore, the average length of the CNTs in the dispersion and the average length of the CNTs contained in the coating film do not substantially change.

塗布膜を作製する工程では、得られたCNT分散液を、フッ素樹脂等の基材上に所定のせん断力を負荷しながら塗布し、CNT11a,11a,・・・がせん断方向に沿って配向された膜を作製する。所定のせん断力を負荷しつつCNT分散液を塗布する方法は、特に限定されるものではないが、例えば、バーコーター塗工法等の一般的に公知の方法において、塗布速度を調整することにより、塗布膜に負荷されるせん断力を変更することができる。また、塗布膜の厚さは、その後の乾燥工程における乾燥時間および剥離工程における剥離の容易さの点から、10μm以上1000μm以下であることが好ましく、50μm以上500μm以下であることがより好ましい。 In the step of producing the coating film, the obtained CNT dispersion liquid is applied onto a base material such as fluororesin while applying a predetermined shearing force, and the CNTs 11a, 11a, ... Are oriented along the shearing direction. Shear membrane is prepared. The method of applying the CNT dispersion liquid while applying a predetermined shearing force is not particularly limited, but for example, in a generally known method such as a bar coater coating method, by adjusting the coating rate, the CNT dispersion liquid is applied. The shear force applied to the coating film can be changed. The thickness of the coating film is preferably 10 μm or more and 1000 μm or less, and more preferably 50 μm or more and 500 μm or less, from the viewpoint of the drying time in the subsequent drying step and the ease of peeling in the peeling step.

CNT分散液は、高いせん断速度域で低粘度を示す。低いせん断速度域では、複数のCNT11a,11a,・・・同士が絡み合っているものの、高いせん断速度域では、せん
断により絡み合いが適度に解れ、せん断方向に沿ってCNTが配向する。これにより、複数のCNT11a,11a,・・・同士が適度に絡まった状態で、これらがせん断方向に沿って配向した高配向膜を得ることができる。塗布膜の形成の際、高いせん断力を負荷させるため、塗布速度は0.001m/s以上5m/s以下であることが好ましい。尚、高いせん断速度とは、低いせん断速度よりも大きいことを意味し、低いせん断速度は、0.1[1/s]以上1[1/s]未満の範囲を意味する。
The CNT dispersion liquid exhibits low viscosity in a high shear rate range. In the low shear rate range, a plurality of CNTs 11a, 11a, ... Are entangled with each other, but in the high shear rate range, the entanglement is appropriately disentangled by shearing, and the CNTs are oriented along the shear direction. As a result, it is possible to obtain a highly oriented film in which a plurality of CNTs 11a, 11a, ... Are appropriately entangled with each other and oriented along the shear direction. When forming the coating film, a high shearing force is applied, so that the coating speed is preferably 0.001 m / s or more and 5 m / s or less. The high shear rate means that the shear rate is higher than the low shear rate, and the low shear rate means a range of 0.1 [1 / s] or more and less than 1 [1 / s].

CNTを線材化する工程では、得られた塗布膜を半乾きの状態にし、塗布膜に含まれる複数のCNT11a,11a,・・・の配向方向がCNT線材10の長手方向と平行(同じ方向)になるようにロール状に巻く。例えば、まず、得られた塗布膜を一晩乾燥させる。その後、塗布膜の淵をピンセット等で剥がし、ピンセットを用いて塗布膜をロール状に巻く。ロール状の塗布膜を蒸留水に浸して引き上げ、乾燥させる。乾燥条件は、特に限定されるものではないが、例えば、室温(25℃前後)で1時間〜一晩放置させる自然乾燥が挙げられる。 In the step of converting the CNT into a wire, the obtained coating film is made semi-dry, and the orientation directions of the plurality of CNTs 11a, 11a, ... Contained in the coating film are parallel to the longitudinal direction of the CNT wire 10 (the same direction). Roll it into a roll so that it becomes. For example, first, the obtained coating film is dried overnight. After that, the edge of the coating film is peeled off with tweezers or the like, and the coating film is rolled into a roll using tweezers. The roll-shaped coating film is immersed in distilled water, pulled up, and dried. The drying conditions are not particularly limited, and examples thereof include natural drying in which the product is left to stand at room temperature (around 25 ° C.) for 1 hour to overnight.

塗布膜に含まれる複数のCNT11a,11a,・・・の配向方向は、得られるCNT線材10の長手方向と平行(同じ)であり、塗布膜の配向性に従いCNT線材10には高配向性が付与される。また、塗布膜を半乾きの状態でロール状に巻き、乾燥させることにより、隣り合ったCNT層同士がCNTのファンデルワールス力により強固に結合する。塗布膜が濡れている状態では、CNT層表面に水層が存在するため、ファンデルワールス力による引力が阻害される。一方、塗布膜が乾燥して水分が抜けることにより、CNTのファンデルワールス力によりCNT層間の距離が縮まり、最終的にはCNT層同士が絡まって、ファンデルワールス力により強固に結合する。また、樹脂等の接着剤を用いることなくCNT層同士が強固に結合するため、導電性も阻害されない。 The orientation direction of the plurality of CNTs 11a, 11a, ... Contained in the coating film is parallel (same) to the longitudinal direction of the obtained CNT wire rod 10, and the CNT wire rod 10 has high orientation according to the orientation of the coating film. Granted. Further, by winding the coating film in a roll shape in a semi-dry state and drying it, adjacent CNT layers are firmly bonded to each other by the van der Waals force of CNT. When the coating film is wet, an aqueous layer is present on the surface of the CNT layer, so that the attractive force due to the Van der Waals force is inhibited. On the other hand, when the coating film dries and moisture is removed, the distance between the CNT layers is shortened by the van der Waals force of the CNTs, and finally the CNT layers are entangled with each other and are firmly bonded by the van der Waals force. Further, since the CNT layers are firmly bonded to each other without using an adhesive such as a resin, the conductivity is not impaired.

従来の湿式紡糸では、押出で糸状のCNT線材を作製すると、ノズル内での流速の違い、凝固速度の違いにより糸状のCNT線材の外側と内側で密度及び配向度の差が生じやすい。また、押出で糸状のCNT線材を作製する湿式紡糸では、大きな気泡(断面観察において数十μμmの直径)がCNT線材に混入し、空隙率が高くなりやすい。そのため、CNT線材の切断箇所によって、配向ムラ、密度のムラが生じる傾向にあった。これに対し、本発明におけるCNT線材10の製造方法では、一様に作製した塗布膜を巻いて糸状のCNT線材を作製するため、CNT線材10の外側30と内側20で配向度の差が生じにくい。さらに、本発明におけるCNT線材10の製造方法では、CNT線材10内に大きな気泡が混入しにくく、仮にCNT線材10内に気泡が混入しても、配向膜の厚内に存在する数μm程度の大きさに抑えられる。また、せん断力を負荷しながら塗布膜を作製するため、CNT線材10の外側30と内側20で複数のCNT11a,11a,・・・がほぼ均一に配向している。そのため、CNT線材10の切断箇所に応じた、配向ムラ、密度のムラが抑制される。 In conventional wet spinning, when a thread-like CNT wire is produced by extrusion, a difference in density and degree of orientation is likely to occur between the outside and the inside of the thread-like CNT wire due to a difference in flow velocity in the nozzle and a difference in solidification rate. Further, in wet spinning in which a thread-like CNT wire is produced by extrusion, large bubbles (diameter of several tens of μm in cross-sectional observation) are mixed in the CNT wire, and the void ratio tends to be high. Therefore, there is a tendency for uneven orientation and uneven density to occur depending on the cut portion of the CNT wire rod. On the other hand, in the method for producing the CNT wire rod 10 in the present invention, since the uniformly prepared coating film is wound to prepare the filamentous CNT wire rod, a difference in the degree of orientation occurs between the outer side 30 and the inner side 20 of the CNT wire rod 10. Hateful. Further, in the method for producing the CNT wire 10 in the present invention, it is difficult for large bubbles to be mixed in the CNT wire 10, and even if the bubbles are mixed in the CNT wire 10, it is about several μm existing in the thickness of the alignment film. It can be suppressed to a size. Further, in order to prepare the coating film while applying a shearing force, a plurality of CNTs 11a, 11a, ... Are oriented substantially uniformly on the outer side 30 and the inner side 20 of the CNT wire rod 10. Therefore, uneven orientation and uneven density depending on the cut portion of the CNT wire rod 10 are suppressed.

<特性>
[導電性]
本発明に係るCNT線材10は、導電性として、体積抵抗率が8.0×10−5Ω・cm未満であることが好ましく、4.0×10−5Ω・cm未満であることがより好ましく、1.0×10−5Ω・cm未満であることがさらに好ましい。体積抵抗率が8.0×10−5Ω・cm未満であれば、導電性に優れていると評価できる。
<Characteristics>
[Conductivity]
The CNT wire rod 10 according to the present invention preferably has a volume resistivity of less than 8.0 × 10-5 Ω · cm and more preferably less than 4.0 × 10-5 Ω · cm in terms of conductivity. It is preferably less than 1.0 × 10-5 Ω · cm, even more preferably. If the volume resistivity is less than 8.0 × 10-5 Ω · cm, it can be evaluated that the conductivity is excellent.

[強度]
本発明に係るCNT線材10は、引張強度が100MPa以上であることが好ましく、150MPa以上であることがより好ましく、200MPa以上であることがさらに好ましい。引張強度が100MPa以上であれば、強度に優れていると評価できる。
[Strength]
The CNT wire rod 10 according to the present invention preferably has a tensile strength of 100 MPa or more, more preferably 150 MPa or more, and even more preferably 200 MPa or more. If the tensile strength is 100 MPa or more, it can be evaluated that the strength is excellent.

[空隙率]
本発明に係るCNT線材10は、CNT線材10の径方向(短軸方向)における任意の断面積に対する空隙率が10%以下であることが好ましく、8%以下であることがより好ましい。空隙率が10%以下であれば、CNT線材10において、空隙に起因する導電パスの妨げを抑制することができ、また、局所的に強度が低い箇所が少なくなるため、CNT線材10の強度、耐久性が向上する。
[Void ratio]
In the CNT wire rod 10 according to the present invention, the void ratio with respect to an arbitrary cross-sectional area in the radial direction (minor axis direction) of the CNT wire rod 10 is preferably 10% or less, and more preferably 8% or less. When the void ratio is 10% or less, the CNT wire 10 can suppress the obstruction of the conductive path due to the voids, and the strength of the CNT wire 10 is reduced because the number of locally low strength points is reduced. Durability is improved.

[空隙の分散]
本発明に係るCNT線材10は、空隙の分散度が5.0以下であることが好ましく、4.0以下であることがより好ましい。空隙の分散度が5.0以下であれば、CNT線材10において、空隙に起因する導電パスの妨げを抑制することができ、また、局所的に強度が低い箇所が少なくなるため、CNT線材10の強度、耐久性が向上する。尚、CNT線材10における空隙の分散度は、例えば、上記の空隙率を、CNT線材10の径方向における任意の5箇所の断面で測定し、その標準偏差から算出できる。
[Dispersion of voids]
The CNT wire rod 10 according to the present invention preferably has a void dispersion degree of 5.0 or less, and more preferably 4.0 or less. When the degree of dispersion of the voids is 5.0 or less, the CNT wire 10 can suppress the obstruction of the conductive path due to the voids, and the number of locally low strength points is reduced. Strength and durability are improved. The degree of dispersion of voids in the CNT wire 10 can be calculated from, for example, the above-mentioned void ratio measured at any five cross sections in the radial direction of the CNT wire 10 and its standard deviation.

本発明に係るCNT線材は、自動車、電気機器、制御機器等の様々な分野における電力線、信号線としての電線を構成する導体として使用することができ、特に、車両用のワイヤハーネス、モーター等の一般電線の導体としての使用に好適である。 The CNT wire rod according to the present invention can be used as a conductor constituting an electric wire as a power line or a signal line in various fields such as automobiles, electric devices, control devices, etc., and in particular, wire harnesses for vehicles, motors, etc. Suitable for use as a conductor for general electric wires.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

<CNT線材の作製>
実施例1〜12、比較例1〜7について、以下のようにしてCNT線材を作製した。
<Manufacturing of CNT wire rod>
For Examples 1 to 12 and Comparative Examples 1 to 7, CNT wire rods were prepared as follows.

[実施例1〜12、比較例1、5〜7について]
浮遊触媒法でCNTを作製した。得られたCNTを遠心分離し、さらにフィルタを介して分画することにより、平均長さが異なる複数のCNTサンプルを作製した。分画した複数のCNTサンプルの平均長さをそれぞれ測定した。このように長さが調整された複数のCNTサンプル25mgを、5mlの水と、分散剤として含有量を変化させたコール酸ナトリウム(富士フィルム和光純薬社製)が溶解されている溶液に加え、超音波分散機(「NR−50M」 マイクロテック・ニチオン社製)により、25(室温)℃で1時間分散処理をし、CNT分散液を作製した。作製したCNT分散液をテフロン(登録商標)板上に数滴滴下し、バーコーターを用いて所定の塗布速度でCNT分散液を塗布し、塗布膜を形成した。得られた塗布膜を25℃で1時間自然乾燥させて半乾きの状態にした後、乾燥した塗布膜の淵をピンセットで剥がして、ピンセットを用いて塗布膜をロール状に巻き、さらに、一晩自然乾燥させることにより、CNT線材を作製した。各実施例及び各比較例における分散剤の含有量、複数のCNTサンプルの平均長さ(CNTの平均長さ)及び塗布速度を表1に示す。尚、表1中、このような製法をロール糸と表記する。
[About Examples 1-12 and Comparative Examples 1 and 5-7]
CNTs were prepared by the floating catalyst method. The obtained CNTs were centrifuged and further fractionated through a filter to prepare a plurality of CNT samples having different average lengths. The average lengths of the plurality of fractionated CNT samples were measured. A plurality of 25 mg of CNT samples whose lengths have been adjusted in this manner are added to a solution in which 5 ml of water and sodium cholic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) having a varied content as a dispersant are dissolved. , An ultrasonic disperser (“NR-50M” manufactured by Microtech Nithion Co., Ltd.) was used for dispersion treatment at 25 (room temperature) ° C. for 1 hour to prepare a CNT dispersion solution. A few drops of the prepared CNT dispersion were dropped onto a Teflon (registered trademark) plate, and the CNT dispersion was applied at a predetermined coating rate using a bar coater to form a coating film. The obtained coating film is naturally dried at 25 ° C. for 1 hour to make it semi-dry, then the edge of the dried coating film is peeled off with tweezers, and the coating film is rolled into a roll using tweezers. The CNT wire was prepared by air-drying at night. Table 1 shows the content of the dispersant, the average length of the plurality of CNT samples (average length of CNTs), and the coating rate in each Example and each Comparative Example. In Table 1, such a manufacturing method is referred to as a roll yarn.

[比較例2〜4]
比較例2〜4では、上記のような工程を経て作製したCNT分散液をシリンジに入れ、0.1ml/分の吐出速度でイソプロパノールの凝固液(富士フィルム和光純薬社製)に吐出し、CNTが凝固するまで数分放置し、糸状のCNT紡糸線を作製した。その後、得られた糸状のCNT紡糸線を取り出し、一晩自然乾燥させることにより、CNT線材を作製した。複数のCNTサンプルの平均長さは、上記の実施例1〜12及び比較例1、5〜7と同様にそれぞれ測定した。比較例2〜4における分散剤の含有量及び複数のCNTサンプルの平均長さ(CNTの平均長さ)を表1に示す。尚、表1中、このような製法を湿
式紡糸と表記する。
[Comparative Examples 2 to 4]
In Comparative Examples 2 to 4, the CNT dispersion liquid prepared through the above steps was put into a syringe and discharged into a coagulating liquid of isopropanol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) at a discharge rate of 0.1 ml / min. It was left for several minutes until the CNT solidified to prepare a thread-like CNT spun wire. Then, the obtained filamentous CNT spun wire was taken out and air-dried overnight to prepare a CNT wire. The average lengths of the plurality of CNT samples were measured in the same manner as in Examples 1 to 12 and Comparative Examples 1 and 5 to 7, respectively. Table 1 shows the content of the dispersant in Comparative Examples 2 to 4 and the average length of a plurality of CNT samples (average length of CNT). In Table 1, such a manufacturing method is referred to as wet spinning.

<測定項目>
[CNTの平均長さ]
実施例1〜12および比較例1〜6で使用したCNTの平均長さは、CNT分散液中に存在するCNTを、SEM(走査型電子顕微鏡)を用いてSEM画像から算出した。具体的には、倍率が10000倍であるSEM画像に存在する任意のCNTの長さを測定した。これを別のCNTでも同様に行い、200本のCNTの長さの平均値を平均長さとして算出した。尚、CNT分散液中に存在するCNTの平均長さとCNT線材に存在するCNTの平均長さは、紡糸の影響を受けないため同等であると評価した。
<Measurement item>
[Average length of CNT]
The average length of the CNTs used in Examples 1 to 12 and Comparative Examples 1 to 6 was calculated from the SEM image of the CNTs present in the CNT dispersion liquid using an SEM (scanning electron microscope). Specifically, the length of any CNT present in the SEM image having a magnification of 10000 times was measured. This was done in the same manner for another CNT, and the average value of the lengths of 200 CNTs was calculated as the average length. The average length of CNTs present in the CNT dispersion liquid and the average length of CNTs present in the CNT wire rod were evaluated to be equivalent because they were not affected by spinning.

[密度]
CNT線材の密度を測定した。具体的には、超高速・高精度寸法測定器(KEYENCE社製)を用いてCNT線材の素線径を測定し、さらに、ノギスでCNT線材の長さを測定してCNT線材の体積を計算した。得られた体積の値と、分析てんびん(「XP6」 METTLER TOLEDO社製)で測定したCNT線材の重さからCNT線材の密度を算出した。
[density]
The density of the CNT wire was measured. Specifically, the wire diameter of the CNT wire is measured using an ultra-high-speed, high-precision dimensional measuring device (manufactured by KEYENCE), and the length of the CNT wire is measured with a caliper to calculate the volume of the CNT wire. did. The density of the CNT wire was calculated from the value of the obtained volume and the weight of the CNT wire measured with an analytical balance (“XP6” manufactured by METTLER TOLEDO).

[G/D比]
ラマン分光装置(Thermo Fisher Scientific社製、「ALMEGA XR」)により、励起レーザ:532nm、レーザ強度:10%に減光、対物レンズ:50倍、露光時間:1秒×60回の条件にて測定し、ラマンスペクトルを得た。次に、スペクトル解析ソフト
ウェア(日本分光社製、「Spectra Manager」)により、ラマンスペクトルの1000〜
2000cm−1のデータを切り出し、この範囲で検出されるピーク群をCurve Fitting
により分離解析を行った。尚、ベースラインは1000cm−1と2000cm−1での検出強度を結んだ線とする。このように切り出したラマンスペクトルにおいて、GバンドとDバンドそれぞれのピークトップ高さ(ピークトップからベースラインの値を差し引いた検出強度)を求め、その値からG/D比の値を算出した。
[G / D ratio]
Measured with a Raman spectrometer ("ALMEGA XR" manufactured by Thermo Fisher Scientific) under the conditions of excitation laser: 532 nm, laser intensity: dimmed to 10%, objective lens: 50 times, exposure time: 1 second x 60 times. Then, a Raman spectrum was obtained. Next, using spectrum analysis software (manufactured by JASCO Corporation, "Spectra Manager"), Raman spectra of 1000 to
Data of 2000 cm -1 is cut out, and the peak group detected in this range is Curve Fitting.
Separation analysis was performed by. The baseline is a line connecting the detection intensities at 1000 cm -1 and 2000 cm -1 . In the Raman spectrum cut out in this way, the peak top heights (detection intensity obtained by subtracting the baseline value from the peak top) of each of the G band and the D band were obtained, and the G / D ratio value was calculated from the values.

[配向性]
CNT線材の円相当半径をR、同心円でR/√2の半径を有する部分の範囲をCNT線材の内側、同心円でR−(R/√2)の厚さを有する中空円部分の範囲をCNT線材の外側として定め、CNT線材の外側におけるヘルマンの配向係数(外側の配向係数)とCNT線材の内側におけるヘルマンの配向係数(内側の配向係数)をそれぞれ測定した。外側の配向係数及び内側の配向係数は、イオンミリングを用いてCNT線材を長軸方向に沿って切断し、その切断面をSEM(走査型電子顕微鏡)で観察し、当該切断面におけるSEM画像をFFT(高速フーリエ変換)処理して配向解析を行うことで算出した。さらに、外側の配向係数と内側の配向係数との差の絶対値(配向係数の内外差)を算出した。
[Orientation]
The equivalent radius of the circle of the CNT wire is R, the range of the concentric circle with a radius of R / √2 is the inside of the CNT wire, and the range of the concentric circle with a thickness of R- (R / √2) is CNT. It was defined as the outside of the wire, and the Hermann's orientation coefficient on the outside of the CNT wire (outer orientation coefficient) and the Hermann's orientation coefficient on the inside of the CNT wire (inner orientation coefficient) were measured. For the outer orientation coefficient and the inner orientation coefficient, the CNT wire is cut along the long axis using ion milling, the cut surface is observed with an SEM (scanning electron microscope), and the SEM image on the cut surface is obtained. It was calculated by performing FFT (Fast Fourier Transform) processing and orientation analysis. Furthermore, the absolute value of the difference between the outer orientation coefficient and the inner orientation coefficient (inner / outer difference of the orientation coefficient) was calculated.

<評価項目>
上記のようにして作製したCNT線材について、以下の評価を行った。
<Evaluation items>
The CNT wire rods produced as described above were evaluated as follows.

[空隙率]
イオンミリングを用いてCNT線材の任意の箇所で径方向に沿って切断し、その切断面をSEM(走査型電子顕微鏡)で観察し、当該切断面におけるSEM画像を解析し、切断面内に存在する全空隙の面積の合計を測定した。すなわち、空隙率は、以下の式により算出される。
[Void ratio]
Cut along the radial direction at any point on the CNT wire using ion milling, observe the cut surface with a SEM (scanning electron microscope), analyze the SEM image on the cut surface, and exist in the cut surface. The total area of all voids was measured. That is, the void ratio is calculated by the following formula.

空隙率[%]=(全空隙の面積の和/CNT線材の断面積)×100 Void ratio [%] = (sum of total void areas / cross-sectional area of CNT wire) x 100

[空隙の分散度]
上記の空隙率の測定法で、任意に5箇所の切断面に対する空隙率をそれぞれ測定し、その標準偏差を算出した。空隙の分散度が5.0以下であれば、CNT線材の外側と内側とで局所的に大きな空隙はほとんどなく、配向ムラが抑制されていると評価した。
[Dispersity of voids]
By the above-mentioned measuring method of void ratio, the void ratio with respect to the cut surface at five points was arbitrarily measured, and the standard deviation thereof was calculated. When the degree of dispersion of the voids was 5.0 or less, it was evaluated that there were almost no large voids locally on the outside and the inside of the CNT wire, and the uneven orientation was suppressed.

[導電性]
CNT線材の導電性の評価として、四端子法により体積抵抗率を測定した。具体的には、抵抗測定機にCNT線材を接続し、四端子法により抵抗測定を実施した。体積抵抗率rは、r=RA/L(R:抵抗、A:CNT線材の断面積、L:測定長さ)の計算式に基づいて算出した。体積抵抗率が1.0×10−5Ω・cm未満の場合を「◎」、1.0×10−5Ω・cm以上4.0×10−5Ω・cm未満の場合を「○」、4.0×10−5Ω・cm以上8.0×10−5Ω・cm未満の場合を「△」、8.0×10−5Ω・cm以上の場合を「×」と評価し、「△」以上であれば、導電性に優れていると評価した。
[Conductivity]
As an evaluation of the conductivity of the CNT wire, the volume resistivity was measured by the four-terminal method. Specifically, the CNT wire was connected to the resistance measuring machine, and the resistance was measured by the four-terminal method. The volume resistivity r was calculated based on the formula of r = RA / L (R: resistance, A: cross-sectional area of CNT wire, L: measurement length). The case where the volume resistivity is less than 1.0 × 10 -5 Ω · cm "◎", the case of less than 1.0 × 10 -5 Ω · cm or more 4.0 × 10 -5 Ω · cm "○" , in the case of less than 4.0 × 10 -5 Ω · cm or more 8.0 × 10 -5 Ω · cm "△", the case of more than 8.0 × 10 -5 Ω · cm was evaluated as "×" , “Δ” or more, it was evaluated as having excellent conductivity.

[強度]
CNT線材の強度の評価として、引張強度を測定した。具体的には、CNT線材の引張強度を万能試験機の引張試験により測定した。ロードセルは100Nとし、試験速度は6mm/minで測定した。マイクロスコープで観察し得たCNT線材の直径から断面積を
求めた。引張強度sは、s=F/A(F:試験力、A:CNT線材の断面積)の計算式に基づいて算出した。引張強度が200MPa以上の場合を「◎」、150MPa以上200MPa未満の場合を「○」、100MPa以上150MPa未満の場合を「△」、100MPa未満の場合を「×」と評価し、「△」以上であれば、強度に優れていると評価した。
[Strength]
Tensile strength was measured as an evaluation of the strength of the CNT wire. Specifically, the tensile strength of the CNT wire was measured by a tensile test of a universal testing machine. The load cell was 100 N, and the test speed was measured at 6 mm / min. The cross-sectional area was determined from the diameter of the CNT wire rod that could be observed with a microscope. The tensile strength s was calculated based on the formula of s = F / A (F: test force, A: cross-sectional area of CNT wire). When the tensile strength is 200 MPa or more, it is evaluated as "◎", when it is 150 MPa or more and less than 200 MPa, it is evaluated as "○", when it is 100 MPa or more and less than 150 MPa, it is evaluated as "△", and when it is less than 100 MPa, it is evaluated as "×". If so, it was evaluated as having excellent strength.

CNT線材の測定および評価結果について、下記表1に示す。 The measurement and evaluation results of the CNT wire rod are shown in Table 1 below.

表1に示すように、平均長さが15μm以上のCNTを含む実施例1〜12で作製したCNT線材は、いずれも外側の配向係数が高く、また、配向係数の内外差も低い値を示した。また、空隙率も少なく、空隙の分散度も5.0以下であるため、CNT線材の外側と内側とで局所的に大きな空隙はほとんどなく、配向ムラも抑制されていた。そのため、得られたCNT線材は、平均長さが15μm以上の比較的長いCNTを含みつつ、配向性、導電性及び強度に優れていた。特に、密度が1.4g/cm以上である実施例7、10においては、顕著に高い強度を示した。 As shown in Table 1, the CNT wires produced in Examples 1 to 12 containing CNTs having an average length of 15 μm or more all have a high outer orientation coefficient and a low inner-outer difference of the orientation coefficient. It was. Further, since the void ratio was small and the degree of dispersion of the voids was 5.0 or less, there were almost no large voids locally on the outside and inside of the CNT wire, and uneven orientation was suppressed. Therefore, the obtained CNT wire rod was excellent in orientation, conductivity and strength while containing a relatively long CNT having an average length of 15 μm or more. In particular, in Examples 7 and 10 having a density of 1.4 g / cm 3 or more, the strength was remarkably high.

一方、比較例1では、CNTの平均長さが15μm未満であり、長いCNTが少な過ぎるため優れた導電性が得られなかった。また、長いCNT同士の繋がりが少ないため、優れた強度も得られなかった。 On the other hand, in Comparative Example 1, the average length of CNTs was less than 15 μm, and the number of long CNTs was too small, so that excellent conductivity could not be obtained. In addition, since there are few connections between long CNTs, excellent strength cannot be obtained.

従来の湿式紡糸によりCNT線材を作製した比較例2〜4では、配向係数の内外差及び空隙率が顕著に高いため、配向ムラが顕著であり、導電性及び強度が劣っていた。 In Comparative Examples 2 to 4 in which the CNT wire rod was produced by conventional wet spinning, the difference between the inside and outside of the orientation coefficient and the void ratio were remarkably high, so that the orientation unevenness was remarkable and the conductivity and strength were inferior.

比較例5、6では、外側の配向係数が小さく、平均長さが15μm以上のCNTの配向性が低いため、CNT線材に高い導電性を付与することができなかった。 In Comparative Examples 5 and 6, high conductivity could not be imparted to the CNT wire rod because the outer orientation coefficient was small and the orientation of the CNTs having an average length of 15 μm or more was low.

比較例7では、G/D比が低いため、欠陥が多く、導電性及び強度が劣っていた。 In Comparative Example 7, since the G / D ratio was low, there were many defects, and the conductivity and strength were inferior.

10 カーボンナノチューブ線材
11 カーボンナノチューブ集合体
11a カーボンナノチューブ
20 内側
30 外側
10 Carbon Nanotube Wire 11 Carbon Nanotube Aggregate 11a Carbon Nanotube 20 Inside 30 Outside

Claims (6)

複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体からなるカーボンナノチューブ線材であって、
前記複数のカーボンナノチューブの平均長さが15μm以上であり、
前記カーボンナノチューブ線材において、前記カーボンナノチューブ線材の円相当半径をR、同心円でR/√2の半径を有する部分の範囲をカーボンナノチューブ線材の内側、同心円で前記カーボンナノチューブ線材の内側を除いた部分の範囲をカーボンナノチューブ線材の外側としたとき、走査型電子顕微鏡で観察し得られた画像を高速フーリエ変換した画像を解析し算出されるヘルマンの配向係数が、前記カーボンナノチューブ線材の外側で0.75以上であり、且つ前記カーボンナノチューブ線材の外側におけるヘルマンの配向係数と前記カーボンナノチューブ線材の内側におけるヘルマンの配向係数との差の絶対値が0.05以下であり、かつ
前記カーボンナノチューブ線材におけるラマンスペクトルのGバンドに対する結晶性に由来するDバンドの比であるG/D比が70以上であることを特徴とするカーボンナノチューブ線材。
It is a carbon nanotube wire rod composed of a carbon nanotube aggregate composed of a plurality of carbon nanotubes.
The average length of the plurality of carbon nanotubes is 15 μm or more, and the average length is 15 μm or more.
In the carbon nanotube wire rod, the circle-equivalent radius of the carbon nanotube wire rod is R, the range of the portion having a radius of R / √2 in the concentric circle is the inside of the carbon nanotube wire rod, and the portion of the concentric circle excluding the inside of the carbon nanotube wire rod. When the range is outside the carbon nanotube wire, the Hermann orientation coefficient calculated by analyzing the image obtained by high-speed Fourier conversion of the image obtained by the scanning electron microscope is 0.75 outside the carbon nanotube wire. The absolute value of the difference between the orientation coefficient of Hermann on the outside of the carbon nanotube wire and the orientation coefficient of Hermann on the inside of the carbon nanotube wire is 0.05 or less, and the Raman spectrum of the carbon nanotube wire. A carbon nanotube wire rod having a G / D ratio of 70 or more, which is the ratio of the D band derived from the crystallinity to the G band.
前記カーボンナノチューブ線材の径方向における任意の断面積に対する空隙率が10%以下である、請求項1に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to claim 1, wherein the void ratio with respect to an arbitrary cross-sectional area in the radial direction of the carbon nanotube wire rod is 10% or less. 密度が1.4g/cm以上である、請求項1又は2に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to claim 1 or 2, which has a density of 1.4 g / cm 3 or more. 前記G/D比が80以上である、請求項1乃至3までのいずれか1項に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to any one of claims 1 to 3, wherein the G / D ratio is 80 or more. 前記複数のカーボンナノチューブの平均長さが20μm以上60μm以下である、請求項1乃至4までのいずれか1項に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to any one of claims 1 to 4, wherein the average length of the plurality of carbon nanotubes is 20 μm or more and 60 μm or less. 空隙の分散度が5.0以下である、請求項1乃至5までのいずれか1項に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to any one of claims 1 to 5, wherein the degree of dispersion of voids is 5.0 or less.
JP2019068765A 2019-03-29 2019-03-29 carbon nanotube wire Active JP7316822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019068765A JP7316822B2 (en) 2019-03-29 2019-03-29 carbon nanotube wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068765A JP7316822B2 (en) 2019-03-29 2019-03-29 carbon nanotube wire

Publications (2)

Publication Number Publication Date
JP2020164382A true JP2020164382A (en) 2020-10-08
JP7316822B2 JP7316822B2 (en) 2023-07-28

Family

ID=72714294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068765A Active JP7316822B2 (en) 2019-03-29 2019-03-29 carbon nanotube wire

Country Status (1)

Country Link
JP (1) JP7316822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044963A1 (en) * 2019-09-03 2021-03-11 住友電気工業株式会社 Carbon nanotube-resin composite body and method for producing carbon nanotube-resin composite body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027961A (en) * 2004-07-16 2006-02-02 Univ Of Tokyo Carbon nanotube dispersion film and light emitting body
JP2009292664A (en) * 2008-06-03 2009-12-17 Sony Corp Method and apparatus for producing thin film and method for manufacturing electronic device
WO2010076885A1 (en) * 2008-12-30 2010-07-08 独立行政法人産業技術総合研究所 Aligned single-walled carbon nanotube assembly, bulk aligned single-walled carbon nanotube assembly, powder-like aligned single-walled carbon nanotube assembly, and method for producing same
WO2015083701A1 (en) * 2013-12-03 2015-06-11 国立大学法人静岡大学 Carbon nanotube twisted yarn, and production method and spinning source for carbon nanotube twisted yarn
JP2017171546A (en) * 2016-03-24 2017-09-28 古河電気工業株式会社 Carbon nanotube wire and carbon nanotube wire-connected structure
WO2018143466A1 (en) * 2017-02-03 2018-08-09 古河電気工業株式会社 Carbon nanotube wire material, method for manufacturing carbon nanotube, and method for manufacturing carbon nanotube wire material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027961A (en) * 2004-07-16 2006-02-02 Univ Of Tokyo Carbon nanotube dispersion film and light emitting body
JP2009292664A (en) * 2008-06-03 2009-12-17 Sony Corp Method and apparatus for producing thin film and method for manufacturing electronic device
WO2010076885A1 (en) * 2008-12-30 2010-07-08 独立行政法人産業技術総合研究所 Aligned single-walled carbon nanotube assembly, bulk aligned single-walled carbon nanotube assembly, powder-like aligned single-walled carbon nanotube assembly, and method for producing same
WO2015083701A1 (en) * 2013-12-03 2015-06-11 国立大学法人静岡大学 Carbon nanotube twisted yarn, and production method and spinning source for carbon nanotube twisted yarn
JP2017171546A (en) * 2016-03-24 2017-09-28 古河電気工業株式会社 Carbon nanotube wire and carbon nanotube wire-connected structure
WO2018143466A1 (en) * 2017-02-03 2018-08-09 古河電気工業株式会社 Carbon nanotube wire material, method for manufacturing carbon nanotube, and method for manufacturing carbon nanotube wire material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044963A1 (en) * 2019-09-03 2021-03-11 住友電気工業株式会社 Carbon nanotube-resin composite body and method for producing carbon nanotube-resin composite body

Also Published As

Publication number Publication date
JP7316822B2 (en) 2023-07-28

Similar Documents

Publication Publication Date Title
US10138580B2 (en) Nanofiber yarns, thread, rope, cables, fabric, articles and methods of making the same
CN101964229B (en) Carbon nano tube stranded wire and preparation method thereof
US9193586B2 (en) Cable
CN102737935A (en) Micro grid of transmission electron microscope
JP7441799B2 (en) Carbon nanotube production method, carbon nanotube assembly wire production method, carbon nanotube assembly wire bundle production method, carbon nanotube production apparatus, carbon nanotube assembly wire production apparatus, and carbon nanotube assembly wire bundle production apparatus
JP7306996B2 (en) Carbon nanotube coated wires and coils
Zhang et al. Metallic conductivity transition of carbon nanotube yarns coated with silver particles
JPWO2019083038A1 (en) Carbon nanotube composite wire, carbon nanotube coated wire and wire harness
JP7316822B2 (en) carbon nanotube wire
US20110305903A1 (en) Sheathed nanotube fiber and method of forming same
JP2010047889A (en) Reinforced carbon nanotube wire
JP7393858B2 (en) Carbon nanotube coated wire, coil and coated wire
JP2020164378A (en) Nanocellulose-nanocarbon composite structure and production method of the same
Yu et al. Investigation of microcombing parameters in enhancing the properties of carbon nanotube yarns
JP7189938B2 (en) carbon nanotube wire
JP2018053408A (en) Metal composite carbon nano-tube twist yarn and method for producing the same
WO2021044964A1 (en) Carbon nanotube assembly wire, and carbon nanotube assembly wire bundle
JP2020164383A (en) Carbon nanotube wire, method for manufacturing the same, and electric wire
JP7306995B2 (en) Carbon nanotube coated wire
WO2019083039A1 (en) Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness
JPWO2019083037A1 (en) Carbon nanotube composite wire, carbon nanotube coated wire, wire harness, robot wiring and train overhead wire
WO2019083025A1 (en) Carbon nanotube-coated electric wire
CN111279434A (en) Carbon nanotube coated wire
JPWO2019083031A1 (en) Carbon nanotube-coated wire
JP7348934B2 (en) carbon nanotube wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230718

R151 Written notification of patent or utility model registration

Ref document number: 7316822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151