JP2020163549A - Cutter and cutting control method - Google Patents

Cutter and cutting control method Download PDF

Info

Publication number
JP2020163549A
JP2020163549A JP2019068805A JP2019068805A JP2020163549A JP 2020163549 A JP2020163549 A JP 2020163549A JP 2019068805 A JP2019068805 A JP 2019068805A JP 2019068805 A JP2019068805 A JP 2019068805A JP 2020163549 A JP2020163549 A JP 2020163549A
Authority
JP
Japan
Prior art keywords
cutting
tool
target
power
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019068805A
Other languages
Japanese (ja)
Other versions
JP7177744B2 (en
Inventor
服部 達也
Tatsuya Hattori
達也 服部
邦夫 益田
Kunio Masuda
邦夫 益田
国広 神谷
Kunihiro Kamiya
国広 神谷
水野 辰哉
Tatsuya Mizuno
辰哉 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2019068805A priority Critical patent/JP7177744B2/en
Publication of JP2020163549A publication Critical patent/JP2020163549A/en
Application granted granted Critical
Publication of JP7177744B2 publication Critical patent/JP7177744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a cutter which can secure cutting accuracy without applying a trial and error to a cutting condition at each cutting processing even if a secular change of cutting resistance occurs due to the repetition of the cutting processing, and its cutting control method.SOLUTION: A control part 41 sets target cutting power for setting a deflection amount of a tip part when cutting a cut product by pushing a blade tip part 25 to a tool 21 to a preset target deflection amount. Also, the control part 41 adjusts a set value of a machining allowance so that a peak value of succeeding cutting power reaches target cutting power on the basis of a peak value of the cutting power which is measured everytime the cutting processing is performed, and the target cutting power. The control part 41 controls a push operation at the cutting processing by the tool 21 on the basis of the adjusted set value.SELECTED DRAWING: Figure 1

Description

本発明は、切削装置及びその切削制御方法に関する。 The present invention relates to a cutting device and a cutting control method thereof.

片持ち支持された工具を被加工物の回転軸方向に送りつつ、回転軸方向と直交する方向に切り込んで被加工物を切削加工する切削装置(旋盤)では、片持ち支持された工具の撓みが切削精度に影響することが知られている。これは、長尺状をなす被加工物が片持ち支持され、その被加工物の外周を切削加工する場合も同様である。そのため、被加工物の撓みを許容範囲内に維持すべく、被加工物の剛性に関する理論式を用いて、切削加工中に、逐次、切込み量(取り代)を調整するようにした技術が提案されている(特許文献1参照)。この技術を、工具の側が片持ち支持された場合に適用し、工具の撓みを許容範囲内に調整することも考え得る。 In a cutting device (lathe) that cuts a work piece by cutting in a direction orthogonal to the direction of the rotation axis while feeding the cantilever-supported tool in the direction of the rotation axis of the work piece, the cantilever-supported tool bends. Is known to affect cutting accuracy. This also applies when a long workpiece is cantilevered and the outer circumference of the workpiece is cut. Therefore, in order to maintain the deflection of the work piece within the permissible range, a technique has been proposed in which the depth of cut (removal allowance) is sequentially adjusted during cutting using a theoretical formula related to the rigidity of the work piece. (See Patent Document 1). It is also conceivable to apply this technique when the side of the tool is cantilevered and adjust the deflection of the tool within an acceptable range.

特開2006−231420号公報Japanese Unexamined Patent Publication No. 2006-231420

ところで、切削加工を繰り返し実施することにより、工具の刃先部先端が摩耗し、切削抵抗が変化する等の経時変化が生じる。ところが、上記技術は、切削加工の繰り返しによる切削抵抗の経時変化が考慮されない。そのため、結局のところ、切削加工ごとに切込み量や送り量等の切削条件の設定を試行錯誤しなければ、切削精度を確保することができないという問題がある。 By the way, by repeatedly performing the cutting process, the tip of the cutting edge of the tool is worn, and a change with time such as a change in cutting resistance occurs. However, the above technique does not take into account changes in cutting resistance over time due to repeated cutting processes. Therefore, after all, there is a problem that the cutting accuracy cannot be ensured unless the cutting conditions such as the depth of cut and the feed amount are set by trial and error for each cutting process.

そこで、本発明は、切削加工の繰り返しによる切削抵抗の経時変化があっても、切削加工ごとに切削条件を試行錯誤することなく、切削精度を確保することができる切削装置及びその切削制御方法を提供することを主たる目的とする。 Therefore, the present invention provides a cutting device and a cutting control method thereof that can ensure cutting accuracy without trial and error of cutting conditions for each cutting process even if the cutting resistance changes with time due to repeated cutting processes. The main purpose is to provide.

上記課題を解決すべく、第1の発明では、
刃物台から突出した工具の先端部に刃先部が設けられ、前記刃先部が前記工具の突出方向と交差する方向へ向いており、前記刃先部が被加工物に押し当てられることにより前記被加工物を切削加工する切削装置であって、
前記工具を前記被加工物に押し当てて切削加工する場合における前記先端部の撓み量を、予め設定された目標撓み量とするための目標切削動力を設定する目標切削動力設定手段と、
前記工具を用いて切削加工が行われるごとに測定された切削動力のピーク値と前記目標切削動力とに基づいて、次回の切削動力のピーク値が前記目標切削動力となるように、取り代及び送り量のうち少なくとも一方の設定を調整する調整手段と、
前記調整手段により調整された設定値に基づいて、前記工具による切削加工時の押し当て動作を制御する制御手段と、
を備えたことを特徴とする。
In order to solve the above problems, in the first invention,
A cutting edge portion is provided at the tip end portion of the tool protruding from the tool post, the cutting edge portion faces in a direction intersecting the protruding direction of the tool, and the cutting edge portion is pressed against the workpiece to be machined. A cutting device that cuts objects
A target cutting power setting means for setting a target cutting power for setting the bending amount of the tip portion to a preset target bending amount when the tool is pressed against the workpiece for cutting.
Based on the peak value of cutting power measured each time cutting is performed using the tool and the target cutting power, the allowance and the allowance so that the peak value of the next cutting power becomes the target cutting power. An adjustment means to adjust the setting of at least one of the feed amounts, and
A control means for controlling a pressing operation during cutting by the tool based on a set value adjusted by the adjusting means, and a control means.
It is characterized by having.

第2の発明の切削装置では、
前記目標切削動力設定手段は、前記目標撓み量を、背分力F(N)と撓み量μ(mm)との関係を前記工具について示す関係式(1)「μ=kF」(kは係数)に代入して求めた目標背分力を、背分力Fと切削動力P(KW)との関係を示す関係式(2)「F=α×60,000×P/V」(αは背分力換算係数、V(m/min)は切削速度)に代入して目標切削動力を算出することを特徴とする。
In the cutting apparatus of the second invention,
The target cutting power setting means has a relational expression (1) “μ = kF” (k is a coefficient) indicating the relationship between the back component force F (N) and the bending amount μ (mm) for the target bending amount. The target back component force obtained by substituting into) is the relational expression (2) “F = α × 60,000 × P / V” (α is) showing the relationship between the back component force F and the cutting power P (KW). It is characterized in that the target cutting power is calculated by substituting the back component force conversion coefficient, V (m / min) into the cutting speed).

第3の発明の切削装置では、
前記関係式(1)の係数kは、前記刃物台に設置された前記工具の前記先端部に切削加工時の背分力を想定した力を加え、その時の撓み量を測定することにより求められることを特徴とする。
In the cutting apparatus of the third invention,
The coefficient k of the relational expression (1) is obtained by applying a force assuming a back component force during cutting to the tip of the tool installed on the tool post and measuring the amount of deflection at that time. It is characterized by that.

第4の発明では、
刃物台から突出した工具の先端部に刃先部が設けられ、前記刃先部が前記工具の突出方向と交差する方向へ向いており、前記刃先部が被加工物に押し当てられることにより前記被加工物を切削加工する切削装置の切削制御方法であって、
前記刃物台に設置された前記工具の前記先端部に切削加工時の背分力を想定した力を加え、その時の前記先端部の撓み量を測定することにより、背分力F(N)と撓み量μ(mm)との関係を前記工具について示す関係式(1)「μ=kF」(kは係数)を求め、
予め設定された目標撓み量を前記関係式(1)に代入して目標背分力を求め、
前記目標背分力を、背分力Fと切削動力P(KW)との関係を示す関係式(2)「F=α×60,000×P/V」(αは背分力換算係数、V(m/min)は切削速度)に代入して目標切削動力を算出し、
前記工具を用いて切削加工が行われるごとに測定された切削動力のピーク値と前記目標切削動力の値とに基づいて、次回の切削動力のピーク値が前記目標切削動力の値となるように、取り代及び送り量のうち少なくとも一方の設定を調整し、
その調整された設定値に基づいて、前記工具による切削加工時の押し当て動作を制御することを特徴とする。
In the fourth invention,
A cutting edge portion is provided at the tip portion of the tool protruding from the tool post, the cutting edge portion faces in a direction intersecting the protruding direction of the tool, and the cutting edge portion is pressed against the workpiece to be machined. It is a cutting control method for cutting equipment that cuts objects.
By applying a force assuming a back component force during cutting to the tip portion of the tool installed on the tool post and measuring the amount of deflection of the tip portion at that time, the back component force F (N) is obtained. The relational expression (1) "μ = kF" (k is a coefficient) which shows the relation with the bending amount μ (mm) about the said tool was obtained.
Substituting the preset target deflection amount into the relational expression (1) to obtain the target back component force,
The target back component force is the relational expression (2) “F = α × 60,000 × P / V” (α is the back component force conversion coefficient, which indicates the relationship between the back component force F and the cutting power P (KW). V (m / min) is substituted for cutting speed) to calculate the target cutting power.
Based on the peak value of the cutting power measured each time cutting is performed using the tool and the value of the target cutting power, the peak value of the next cutting power is set to the value of the target cutting power. , Adjust the settings of at least one of the allowance and feed amount,
It is characterized in that the pressing operation at the time of cutting by the tool is controlled based on the adjusted set value.

第5の発明の切削制御方法では、
前記目標撓み量は、切削加工が連続切削である場合は、許容される公差からその「1/N」(Nは2以上の自然数)に設定し、切削加工が断続切削である場合は、許容される真円度からその「1/N」(Nは2以上の自然数)に設定することを特徴とする。
In the cutting control method of the fifth invention,
The target amount of deflection is set to "1 / N" (N is a natural number of 2 or more) from the allowable tolerance when the cutting process is continuous cutting, and is allowed when the cutting process is intermittent cutting. It is characterized in that it is set to "1 / N" (N is a natural number of 2 or more) from the roundness to be obtained.

第1の発明によれば、予め設定された目標撓み量となる切削動力が目標切削動力として設定される。工具を用いて切削加工を行うごとに切削動力が測定され、そのピーク値と目標切削動力とに基づいて、次回の切削動力のピーク値が目標切削動力となるように、取り代や送り量が調整される。これにより、切削加工の繰り返しによる切削抵抗の経時変化があっても、切削加工ごとに取り代や送り量の切削条件を試行錯誤することなく、切削精度を確保することができる。 According to the first invention, a cutting power having a preset target deflection amount is set as a target cutting power. The cutting power is measured each time cutting is performed using a tool, and based on the peak value and the target cutting power, the allowance and feed amount are set so that the peak value of the next cutting power becomes the target cutting power. It will be adjusted. As a result, even if the cutting resistance changes with time due to repeated cutting, the cutting accuracy can be ensured without trial and error of the cutting conditions of the cutting allowance and the feed amount for each cutting.

第2の発明によれば、背分力Fと撓み量μとの関係を工具について示す関係式(1)や背分力Fと切削動力P(KW)との関係を示す関係式(2)に基づいて、目標切削動力を好適に算出できる。 According to the second invention, the relational expression (1) showing the relationship between the back component force F and the bending amount μ for the tool and the relational expression (2) showing the relationship between the back component force F and the cutting power P (KW). The target cutting power can be preferably calculated based on the above.

第3の発明によれば、関係式(1)における係数kは、切削加工に使用する工具が刃物台に設置された状態で、工具の刃先部に切削加工時の背分力Fを想定した力を加え、その時の撓み量μを測定することにより求められている。そのため、関係式(1)における係数kは、切削加工を実行しようとするその工具を有する工具側部品の固有値として求められている。切削加工時における工具の撓みは、工具を保持する側の剛性の影響も受けるため、それを考慮して目標切削動力が設定される。これにより、切削精度をさらに高めることができる。 According to the third invention, the coefficient k in the relational expression (1) assumes a back component force F at the time of cutting at the cutting edge of the tool in a state where the tool used for cutting is installed on the tool post. It is obtained by applying a force and measuring the amount of deflection μ at that time. Therefore, the coefficient k in the relational expression (1) is obtained as an eigenvalue of the tool-side part having the tool for which the cutting process is to be executed. Since the deflection of the tool during cutting is also affected by the rigidity of the side that holds the tool, the target cutting power is set in consideration of this. As a result, the cutting accuracy can be further improved.

第4の発明の制御方法によれば、第1の発明や第2の発明における切削装置によって得られる効果と同様に、切削加工の繰り返しによる切削抵抗の経時変化があっても、切削加工ごとに取り代や送り量の切削条件を試行錯誤することなく、切削精度を確保することができる。 According to the control method of the fourth invention, similar to the effect obtained by the cutting device in the first invention and the second invention, even if the cutting resistance changes with time due to the repetition of the cutting process, each cutting process is performed. Cutting accuracy can be ensured without trial and error in the cutting conditions of the allowance and feed amount.

連続切削では、切削加工中、工具の撓みが常時生じ、切削加工が繰り返されるたびに撓みも恒常的なものとなり、被加工物の切削加工部分における公差に影響を与える。また、断続切削では、切削加工時に工具の揺動が生じるため、被加工物を切削する場合に、その真円度に影響を及ぼす。断続切削が繰り返されれば工具の揺動量も変化し、真円度に影響を及ぼす。この点、第5の発明によれば、連続切削の場合は公差を基準に目標撓み量を設定し、断続切削の場合は真円度を基準に目標撓み量を設定することで、撓みによる公差への影響や揺動による真円度への影響を低減できる。 In continuous cutting, the tool is constantly bent during cutting, and the bending becomes constant each time the cutting is repeated, which affects the tolerance in the cut portion of the workpiece. Further, in intermittent cutting, the tool swings during cutting, which affects the roundness of the workpiece when it is cut. If the intermittent cutting is repeated, the swing amount of the tool also changes, which affects the roundness. In this regard, according to the fifth invention, in the case of continuous cutting, the target deflection amount is set based on the tolerance, and in the case of intermittent cutting, the target deflection amount is set based on the roundness, so that the tolerance due to the deflection is set. The effect on the roundness and the effect on the roundness due to the swing can be reduced.

切削装置の制御システムを示すブロック図。The block diagram which shows the control system of a cutting apparatus. 工具に関する撓み量の測定を行う様子を説明する説明図。Explanatory drawing explaining how the amount of bending about a tool is measured. 撓み量の測定により得られた力‐撓み線図を示すグラフ。A graph showing a force-deflection diagram obtained by measuring the amount of deflection. 切削装置の切削制御処理を示すフローチャート。The flowchart which shows the cutting control processing of a cutting apparatus. 工具が撓む様子を示す概略図であり、(a)は連続切削を行う場合を示し、(b)は断続切削を行う場合を示している。It is a schematic diagram which shows the state of bending of a tool, (a) shows the case of performing continuous cutting, and (b) shows the case of performing intermittent cutting.

以下、本発明を具体化した一実施の形態について、図面を参照しながら説明する。 Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings.

図1に示すように、切削装置10は旋盤装置であり、工具側ユニット11と、被加工物側ユニット12と、制御コントローラ13とを備えている。工具側ユニット11では、工具21(バイト)を保持し、切削加工のために当該工具21を移動させる。被加工物側ユニット12は被加工物Wを保持し、切削加工時に被加工物Wを回転させる。制御コントローラ13は、工具側ユニット11や被加工物側ユニット12の動作を制御する。なお、本実施形態では、被加工物Wは鋳物により形成された円筒状部品を想定し、その内周面を切削加工する場合を例とする。 As shown in FIG. 1, the cutting device 10 is a lathe device, and includes a tool side unit 11, a work piece side unit 12, and a control controller 13. The tool-side unit 11 holds the tool 21 (bite) and moves the tool 21 for cutting. The work piece side unit 12 holds the work piece W and rotates the work piece W during cutting. The control controller 13 controls the operation of the tool side unit 11 and the workpiece side unit 12. In the present embodiment, the work piece W is assumed to be a cylindrical part formed by casting, and the case where the inner peripheral surface thereof is cut is taken as an example.

工具側ユニット11は、工具21(バイト)と、工具ホルダ22と、刃物台23とを有している。工具21は長尺状をなすシャンク24を備え、シャンク24の先端部には刃先部25(チップ)が設けられている。刃先部25は、シャンク24の軸方向と交差する方向へ向いている。工具ホルダ22は、工具21の基端部を保持し、それにより、工具21は工具ホルダ22によって片持ち支持されている。刃物台23には、工具ホルダ22が取り付けられている。刃物台23は、往復台や送り装置等の刃物台駆動部26と連絡されている。刃物台駆動部26により、刃物台23は、被加工物Wの回転軸方向(Z軸方向)に往復移動したり、当該回転軸方向と直交する切込み方向(X軸方向)へ移動したりする。 The tool side unit 11 has a tool 21 (bite), a tool holder 22, and a tool post 23. The tool 21 includes a long shank 24, and a cutting edge portion 25 (tip) is provided at the tip of the shank 24. The cutting edge portion 25 faces in a direction intersecting the axial direction of the shank 24. The tool holder 22 holds the base end of the tool 21, whereby the tool 21 is cantilevered by the tool holder 22. A tool holder 22 is attached to the tool post 23. The tool post 23 is in contact with a tool post drive unit 26 such as a reciprocating table and a feeding device. The tool post drive unit 26 reciprocates the tool post 23 in the rotation axis direction (Z-axis direction) of the workpiece W, or moves in the cutting direction (X-axis direction) orthogonal to the rotation axis direction. ..

被加工物側ユニット12は、主軸31と、主軸モータ32とを備えている。主軸31は回転可能に支持された回転軸を有し、回転軸の先端部にはチャック33が設けられている。チャック33により、被加工物Wが、その中心軸線を主軸31と一致させた状態で保持されている。そのため、主軸31は、被加工物Wをその中心軸線を中心として回転可能に保持する。主軸モータ32は、その回転軸が主軸31の回転軸とベルト34で連結されており、主軸モータ32の回転により、主軸31に保持された被加工物Wは、その中心軸線を中心として回転する。回転する被加工物Wの内周面に対し、工具21の刃先部25が押し当てられ、それによって被加工物Wが切削加工される。 The workpiece side unit 12 includes a spindle 31 and a spindle motor 32. The main shaft 31 has a rotating shaft that is rotatably supported, and a chuck 33 is provided at the tip of the rotating shaft. The work piece W is held by the chuck 33 in a state where its central axis is aligned with the main shaft 31. Therefore, the spindle 31 rotatably holds the workpiece W about its central axis. The rotating shaft of the spindle motor 32 is connected to the rotating shaft of the spindle 31 by a belt 34, and the workpiece W held by the spindle 31 rotates about the central axis by the rotation of the spindle motor 32. .. The cutting edge portion 25 of the tool 21 is pressed against the inner peripheral surface of the rotating workpiece W, whereby the workpiece W is cut.

制御コントローラ13は、主軸モータ32及び刃物台駆動部26の各動作を制御する制御部41を有している。制御部41は、CPU等を有する周知のマイクロコンピュータを主体に構成され、記憶部42を有している。記憶部42には、切削装置10の制御プログラムが記憶されている。制御部41は、主軸モータ32及び刃物台駆動部26とそれぞれ接続されており、記憶部42に記憶された制御プログラムに基づいて、主軸モータ32や刃物台駆動部26の動作制御を行う。つまり、制御部41は、被加工物Wの切削速度V(m/min)が所定の設定値となるように、主軸モータ32による回転速度を制御したり、工具21による切削加工時の取り代(切込み量)ap(mm)や回転軸方向への送り量f(mm/rev)が所定の設定値となるように、刃物台駆動部26を制御したりする。制御プログラムを実施するにあたって使用されたり、生成されたりする数値やデータは、逐次、記憶部42に記憶される。 The control controller 13 has a control unit 41 that controls each operation of the spindle motor 32 and the tool post drive unit 26. The control unit 41 is mainly composed of a well-known microcomputer having a CPU or the like, and has a storage unit 42. The storage unit 42 stores the control program of the cutting device 10. The control unit 41 is connected to the spindle motor 32 and the tool post drive unit 26, respectively, and controls the operation of the spindle motor 32 and the tool post drive unit 26 based on the control program stored in the storage unit 42. That is, the control unit 41 controls the rotation speed by the spindle motor 32 so that the cutting speed V (m / min) of the workpiece W becomes a predetermined set value, or the removal allowance at the time of cutting by the tool 21. The tool post drive unit 26 is controlled so that the (cutting amount) ap (mm) and the feed amount f (mm / rev) in the rotation axis direction become predetermined set values. Numerical values and data used or generated in executing the control program are sequentially stored in the storage unit 42.

また、制御部41には、切削加工を行っている時の切削動力P(KW)が逐次入力されるようになっている。制御部41に入力された切削動力データは、記憶部42に記憶される。1品の被加工物Wに対する切削加工が終了するたびに、制御部41は、制御プログラムに基づいて、終了した切削加工について取得した切削動力データから、次回の切削加工における取り代apや送り量fの設定値を演算し、その設定値を更新する。制御部41は、次回の切削加工時には、更新された設定値となるように、刃物台駆動部26の動作を制御する。 Further, the cutting power P (KW) at the time of cutting is sequentially input to the control unit 41. The cutting power data input to the control unit 41 is stored in the storage unit 42. Each time the cutting process for the workpiece W of one product is completed, the control unit 41 uses the cutting power data acquired for the completed cutting process based on the control program to obtain the allowance ap and the feed amount in the next cutting process. The set value of f is calculated and the set value is updated. The control unit 41 controls the operation of the tool post drive unit 26 so that the set value will be updated at the next cutting process.

記憶部42には、設定値を更新するために制御部41が演算するための関係式が記憶されている。関係式は、下記式(1)のとおりであり、刃物台23に設置された工具21について、背分力F(N)と工具21の撓み量μ(mm)との関係を示している。 The storage unit 42 stores a relational expression for the control unit 41 to calculate in order to update the set value. The relational expression is as shown in the following equation (1), and shows the relationship between the back component force F (N) and the bending amount μ (mm) of the tool 21 for the tool 21 installed on the tool post 23.

「μ=kF」(kは係数)・・・(1)
上記式(1)の係数kは、図2に示すように、刃物台23に設置された工具21について、最初の切削加工を行う前、つまり、切削加工を一度も実施していない状態で、撓み量μを計測することで求められる。撓み量μの計測作業では、切削加工時の背分力Fを想定し、刃先部25が設けられた先端部に対してその切込み方向(工具21の突出方向と交差する方向)へ力を付与し、その時の工具21の撓み量μを測定する。測定点数は任意(例えば、図3のように5点)であり、測定点数ごとに異なる力F(N)を付与し、その都度、撓み量μ(mm)を測定する。作業者は、付与した力Fの数値と測定された撓み量μの数値とを、制御部41に接続された入力部43を用いて入力する。これらの数値が入力されると、制御部41は、図3に示す力−撓み線図を作成し、これに基づいて式(1)の係数kを求める。
"Μ = kF" (k is a coefficient) ... (1)
As shown in FIG. 2, the coefficient k of the above equation (1) is the tool 21 installed on the tool post 23 before the first cutting process, that is, in a state where the cutting process has never been performed. It is obtained by measuring the amount of deflection μ. In the measurement work of the amount of deflection μ, a back component force F at the time of cutting is assumed, and a force is applied to the tip portion provided with the cutting edge portion 25 in the cutting direction (direction intersecting the protruding direction of the tool 21). Then, the amount of deflection μ of the tool 21 at that time is measured. The number of measurement points is arbitrary (for example, 5 points as shown in FIG. 3), and a different force F (N) is applied to each measurement point, and the amount of deflection μ (mm) is measured each time. The operator inputs the numerical value of the applied force F and the numerical value of the measured deflection amount μ by using the input unit 43 connected to the control unit 41. When these numerical values are input, the control unit 41 creates a force-deflection diagram shown in FIG. 3, and obtains a coefficient k of the equation (1) based on the force-deflection diagram.

工具21が新しいものに交換されるなど、従前の工具21とは別の工具21が刃物台23に取り付けられて交換されると、係数kも変化する。そのため、工具21が交換されるたびに、交換後の工具21について、最初の切削加工を行う前に、所定の力Fに対する撓み量μの測定作業や数値入力作業を行う。制御部41は、力Fと撓み量μの新たな数値が入力されると、その都度、係数kを求めてそれを記憶部42に記憶し、係数kの値を更新する。そのため、式(1)における係数kは、切削加工を実行しようとするその工具21が使用される場合に、当該工具21を有する工具側ユニット11の固有値として求められている。 When a tool 21 different from the conventional tool 21 is attached to the tool post 23 and replaced, such as when the tool 21 is replaced with a new one, the coefficient k also changes. Therefore, every time the tool 21 is replaced, the replaced tool 21 is subjected to a measurement work of a bending amount μ with respect to a predetermined force F and a numerical value input work before the first cutting process is performed. Each time a new numerical value of the force F and the amount of deflection μ is input, the control unit 41 obtains the coefficient k, stores it in the storage unit 42, and updates the value of the coefficient k. Therefore, the coefficient k in the equation (1) is obtained as an eigenvalue of the tool side unit 11 having the tool 21 when the tool 21 to execute the cutting process is used.

次に、切削装置10の制御プログラムにおける切削制御処理について、図4を参照しながら説明する。切削制御処理は、制御部41により実行される。 Next, the cutting control process in the control program of the cutting device 10 will be described with reference to FIG. The cutting control process is executed by the control unit 41.

ここで、切削加工における取り代ap及び送り量fは、予め初期設定値が設定されている。そのうち取り代apの初期設定値については、鋳造後に鋳型から取り出された素形材としての被加工物Wと、その製品図面の寸法との差によって定められている。一般に、切削加工工程では、荒加工と仕上げ加工との2段階、又は、荒加工と中間加工と仕上げ加工との3段階を経る。そのため、被加工物Wとその製品図面の寸法との差が加工段階ごとに分割され、加工段階ごとの取り代apがそれぞれ設定されている。荒加工や中間加工の段階では、切削加工の精度はそれほど要求されないため、本実施形態における切削制御は、主として仕上げ加工時に行われる。 Here, initial setting values are set in advance for the take-off allowance a and the feed amount f in the cutting process. The initial setting value of the take-off allowance ap is determined by the difference between the workpiece W as the raw material taken out from the mold after casting and the dimensions of the product drawing. Generally, the cutting process goes through two stages of roughing and finishing, or three stages of roughing, intermediate processing and finishing. Therefore, the difference between the workpiece W and the dimensions of the product drawing is divided for each machining stage, and the allowance ap for each machining step is set. Since the accuracy of cutting is not required so much at the stage of roughing and intermediate machining, the cutting control in this embodiment is mainly performed at the time of finishing.

図4に示すように、最初のステップS11にて、目標背分力Fa(N)を算出する。目標背分力Faの算出には、記憶部42に記憶された式(1)が用いられる。目標背分力Faを算出するにあたっては、目標撓み量(許容撓み量)μa(mm)がまず設定される。目標撓み量μaは、被加工物Wにおける切削加工部位の公差又は真円度の「1/N(Nは2以上の自然数)」として設定される。この場合の「N」は、入力部43を用いて作業者によって予め入力されている。 As shown in FIG. 4, in the first step S11, the target back component force Fa (N) is calculated. The equation (1) stored in the storage unit 42 is used to calculate the target back component force Fa. In calculating the target back component force Fa, the target deflection amount (allowable deflection amount) μa (mm) is first set. The target amount of deflection μa is set as “1 / N (N is a natural number of 2 or more)” of the tolerance or roundness of the machined portion in the workpiece W. In this case, "N" is input in advance by the operator using the input unit 43.

片持ち支持された工具21は、その先端部に設けられた刃先部25が、切削加工中に被加工物Wから背分力Fを受けて撓む。図5(a)に示すように、被加工物Wの内周面を連続的に切削する連続切削の場合、工具21の撓みは切削加工中、常時生じる。このような工具21の撓みが生じると、設定された取り代apで切り込んだとしても、取り代apの精度を確保できず、連続切削の場合には被加工物Wの内周面寸法の精度を悪化させる要因となる。なお、図5(a)では、工具21の撓む様子をわかりやすくするため、撓みが強調されている。 In the cantilever-supported tool 21, the cutting edge portion 25 provided at the tip portion thereof bends by receiving a back component force F from the workpiece W during cutting. As shown in FIG. 5A, in the case of continuous cutting in which the inner peripheral surface of the workpiece W is continuously cut, the tool 21 is constantly bent during the cutting process. When such bending of the tool 21 occurs, the accuracy of the cutting allowance a cannot be ensured even if the cutting is made with the set cutting allowance ap, and in the case of continuous cutting, the accuracy of the inner peripheral surface dimension of the workpiece W It becomes a factor that worsens. In FIG. 5A, the bending is emphasized in order to make it easy to understand how the tool 21 bends.

工具21の撓みは、切削加工時だけでなく、切削加工が繰り返されることによっても生じる。工具21の刃先部25は、切削加工のたびに背分力Fを受けることから、切削加工が繰り返されると、徐々に撓みが恒常的なものとなる。そのため、工具21は、非加工時においても撓んだ状態で刃物台23に保持されるようになる。また、切削加工が繰り返されると、刃先部25が摩耗して切削抵抗が増加するため、その切削抵抗の増加によっても工具21の撓み量μに影響を与える。したがって、切削加工が繰り返されることによって生じる工具21の撓みが被加工物Wの内周面寸法の精度を悪化させる大きな要因となる。 The bending of the tool 21 occurs not only during cutting but also due to repeated cutting. Since the cutting edge portion 25 of the tool 21 receives a back component force F each time the cutting process is performed, the bending gradually becomes constant as the cutting process is repeated. Therefore, the tool 21 is held by the tool post 23 in a bent state even during non-machining. Further, when the cutting process is repeated, the cutting edge portion 25 is worn and the cutting resistance is increased. Therefore, the increase in the cutting resistance also affects the bending amount μ of the tool 21. Therefore, the bending of the tool 21 caused by repeated cutting is a major factor that deteriorates the accuracy of the inner peripheral surface dimension of the workpiece W.

図5(b)に示すように、溝部Waが形成された被加工物Wの内周面を断続的に切削する断続切削の場合でも、内周面の切削中に工具21の撓みが生じる。その上、刃先部25が溝部Waに至ると、切削加工中の撓みが解消されて工具21は元の状態に戻る。溝部Waが複数形成された被加工物Wでは、撓みと元の状態への復帰とが繰り返され、工具21が揺動する。工具21の揺動が生じると、設定した取り代apで切り込んだとしても、取り代apの精度を確保できず、断続切削の場合には被加工物Wの内周面の真円度に影響を及ぼす。そして、断続切削の場合でも、上記連続切削の場合と同様、切削加工が繰り返されるとそれが工具21の撓み量μ、ひいては工具21が揺動する量に影響を及ぼし、真円度の精度を悪化させる大きな要因となる。なお、図5(b)でも、工具21の撓む様子をわかりやすくするため、撓みが強調されている。 As shown in FIG. 5B, even in the case of intermittent cutting in which the inner peripheral surface of the workpiece W on which the groove Wa is formed is intermittently cut, the tool 21 is bent during cutting of the inner peripheral surface. Further, when the cutting edge portion 25 reaches the groove portion Wa, the bending during the cutting process is eliminated and the tool 21 returns to the original state. In the workpiece W in which a plurality of groove portions Wa are formed, bending and returning to the original state are repeated, and the tool 21 swings. When the tool 21 swings, the accuracy of the cutting allowance a cannot be ensured even if the cutting is made with the set cutting allowance ap, and in the case of intermittent cutting, the roundness of the inner peripheral surface of the workpiece W is affected. To exert. And even in the case of intermittent cutting, as in the case of the above continuous cutting, when the cutting process is repeated, it affects the amount of deflection μ of the tool 21, and eventually the amount of swing of the tool 21, and the accuracy of roundness is improved. It is a major factor that makes it worse. Also in FIG. 5B, the bending is emphasized in order to make it easy to understand how the tool 21 bends.

そこで、前述したように、連続切削の場合は公差の「1/N(Nは2以上の自然数)」を、断続切削の場合は真円度の「1/N(Nは2以上の自然数)」を、許容できる撓み量(揺動量)μとして設定する。設定された撓み量(揺動量)μを目標撓み量μaとし、これを式(1)に代入し、図3に示すように、目標背分力Fa(N)を算出する。目標背分力Faとは、許容される撓み量(揺動量)μの上限値以下に撓み量(揺動量)μを収めるには、背分力Fが最大どの程度の数値となっていることが好ましいかを示すものである。使用する工具21が刃物台23に取り付けられた状態で予め測定された上記式(1)を用いて、当該工具21が使用される場合の工具側ユニット11の固有値として算出する。 Therefore, as described above, in the case of continuous cutting, the tolerance is "1 / N (N is a natural number of 2 or more)", and in the case of intermittent cutting, the roundness is "1 / N (N is a natural number of 2 or more)". Is set as the allowable deflection amount (swing amount) μ. The set deflection amount (swing amount) μ is set as the target deflection amount μa, and this is substituted into the equation (1) to calculate the target back component force Fa (N) as shown in FIG. The target back component force Fa is the maximum value of the back component force F in order to keep the deflection amount (swing amount) μ below the upper limit of the allowable deflection amount (swing amount) μ. Indicates whether is preferable. Using the above formula (1) measured in advance with the tool 21 to be used attached to the tool post 23, it is calculated as an eigenvalue of the tool side unit 11 when the tool 21 is used.

続くステップS12では、背分力Fと切削動力Pとの関係を示す次式(2)に基づいて、目標背分力Faとなるための目標切削動力Paを求める。なお、F(N)は背分力、αは背分力換算係数、P(W)は切削動力、V(m/min)は切削速度である。切削背分力換算係数αは、工具21の種類、刃物台23や工具ホルダ22の材質や形状等の各種切削条件によって変わるものであり、所定値が予め設定される。切削速度Vや切削背分力換算係数αは所定の数値に設定されているため、式(2)に目標背分力Faを代入すれば、目標切削動力Paを算出できる。なお、ステップS12は、目標切削動力設定手段に相当する。 In the following step S12, the target cutting power Pa for achieving the target back component Fa is obtained based on the following equation (2) showing the relationship between the back component force F and the cutting power P. F (N) is the back component force, α is the back component force conversion coefficient, P (W) is the cutting power, and V (m / min) is the cutting speed. The cutting back component force conversion coefficient α varies depending on various cutting conditions such as the type of the tool 21, the material and shape of the tool post 23 and the tool holder 22, and a predetermined value is set in advance. Since the cutting speed V and the cutting back component conversion coefficient α are set to predetermined values, the target cutting force Pa can be calculated by substituting the target back component force Fa into the equation (2). Note that step S12 corresponds to the target cutting power setting means.

「F = α×60,000×P/V」・・・(2)
次のステップS13では、予め設定された取り代ap及び送り量fの初期設定値に基づいて刃物台駆動部26を制御し、初品の被加工物Wに対する切削加工を実施する。
"F = α x 60,000 x P / V" ... (2)
In the next step S13, the tool post drive unit 26 is controlled based on the preset take-up allowance a and the initial setting value of the feed amount f, and the cutting work is performed on the first work piece W.

次のステップS14では、次回の切削加工を実施する前に、取り代apや送り量fの再設定を行う。ここで、切削加工における所要電力を示す次式(3)より、切削動力Pは取り代apや送り量fに比例することが知られている。なお、Ks(kgf/mm2)は比切削抵抗、ηは機械効率である。 In the next step S14, the take-off allowance a and the feed amount f are reset before the next cutting process is performed. Here, it is known that the cutting power P is proportional to the take-off allowance a and the feed amount f from the following equation (3) indicating the required power in the cutting process. Ks (kgf / mm2) is the specific cutting resistance, and η is the mechanical efficiency.

「P = Ks×V×ap×f/6.120×η」 ・・・(3)
初品の切削加工時に測定された切削動力Pのデータからピーク値を抽出し、そのピーク値が目標切削動力Paとなるように、取り代apや送り量fの設定値を調整する。なお、目標切削電力Paとの比較対象となる切削動力Pの値として、測定された切削動力Pのピーク値が用いられる。これは、上記式(2)より、切削動力Pと背分力Fとは比例関係にあるため、切削動力Pのピーク値では、工具21の刃先部25が最も大きい背分力Fを受けて撓み量(揺動量)μが最も大きくなっているからである。
"P = Ks x V x ap x f / 6.120 x η" ... (3)
A peak value is extracted from the data of the cutting power P measured at the time of cutting the first product, and the set values of the take-off allowance a and the feed amount f are adjusted so that the peak value becomes the target cutting power Pa. The measured peak value of the cutting power P is used as the value of the cutting power P to be compared with the target cutting power Pa. This is because the cutting power P and the back component force F are in a proportional relationship according to the above equation (2). Therefore, at the peak value of the cutting power P, the cutting edge portion 25 of the tool 21 receives the largest back component force F. This is because the amount of deflection (amount of swing) μ is the largest.

一般的には、切削動力Pは、初品の切削加工時から目標切削動力Paよりも大きくなっていることが多い。そのため、両差の差に基づいて取り代apや送り量fを調整する場合は、その数値を小さくするように調整する。なお、ステップS14は、調整手段に相当する。 In general, the cutting power P is often larger than the target cutting power Pa from the time of cutting the first product. Therefore, when adjusting the take-off allowance a and the feed amount f based on the difference between the two differences, the values are adjusted to be small. Note that step S14 corresponds to the adjusting means.

連続切削の場合には、取り代ap及び送り量fのうち少なくとも一方の設定値を調整することが可能である。もっとも、送り量fが小さくなるように調整されると、その分、切削加工に要する時間が余分にかかることになり、加工効率が下がる。そのため、加工効率をできるだけ維持するため、送り量fよりも取り代apが優先して調整される。 In the case of continuous cutting, it is possible to adjust the set value of at least one of the take-off allowance a and the feed amount f. However, if the feed amount f is adjusted to be small, the time required for the cutting process will be increased accordingly, and the processing efficiency will be lowered. Therefore, in order to maintain the processing efficiency as much as possible, the allowance ap is adjusted in preference to the feed amount f.

断続切削の場合には取り代apの設定値を調整する。断続切削では、工具21の揺動が真円度に影響を与えている以上、送り量fを調整しても工具21の揺動に対してほとんど影響しない。その一方で、取り代apを調整することにより工具21の揺動に影響するため、取り代apのみを調整する。 In the case of intermittent cutting, the set value of the take-off allowance ap is adjusted. In intermittent cutting, since the swing of the tool 21 affects the roundness, adjusting the feed amount f has almost no effect on the swing of the tool 21. On the other hand, adjusting the take-off allowance a affects the swing of the tool 21, so only the take-off allowance ap is adjusted.

続くステップS15では、前のステップS14で再設定された取り代ap及び送り量fに基づいて、刃物台駆動部26を制御し、第2品目の切削加工を実施する。これにより、次回の切削加工時の切削動力Pが下げられて工具21の撓みや揺動が少なくなり、切削加工時における工具21の撓みや揺動の範囲が許容される目標撓み量μaに近づけられる。その結果、工具保持側の剛性の影響や切削加工の繰り返しによる刃先部25の切削抵抗の経時変化があっても、切削加工ごとに取り代apや送り量fの切削条件を試行錯誤することなく、切削精度を確保することができる。なお、ステップS15は、制御手段に相当する。 In the following step S15, the tool post drive unit 26 is controlled based on the take-off allowance a and the feed amount f reset in the previous step S14, and the second item is cut. As a result, the cutting power P during the next cutting process is reduced to reduce the deflection and swing of the tool 21, and the range of the deflection and swing of the tool 21 during the cutting process approaches the allowable target deflection amount μa. Be done. As a result, even if the cutting resistance of the cutting edge portion 25 changes with time due to the influence of the rigidity on the tool holding side or the repetition of cutting, the cutting conditions of the allowance a and the feed amount f are not tried and errored for each cutting. , Cutting accuracy can be ensured. Note that step S15 corresponds to the control means.

第2品目の切削加工が終了すると、次のステップS16にて、工具21の交換が実施されたか否かが判定され、いまだ交換されていない場合は判定を否定して先のステップS14に戻る。そして、第2品目の切削加工時に測定された切削動力Pのデータからピーク値を抽出し、そのピーク値が目標切削動力Paとなるように、取り代apや送り量fの設定値を再び調整し、再設定する。このような制御を、工具21が交換されるまで繰り返しながら、被加工物Wを繰り返して切削加工する。 When the cutting of the second item is completed, it is determined in the next step S16 whether or not the tool 21 has been replaced, and if it has not been replaced yet, the determination is denied and the process returns to the previous step S14. Then, the peak value is extracted from the data of the cutting power P measured at the time of cutting of the second item, and the set values of the take-off allowance a and the feed amount f are adjusted again so that the peak value becomes the target cutting power Pa. And reset. While repeating such control until the tool 21 is replaced, the workpiece W is repeatedly cut.

工具21が交換された場合には、ステップS16の判定を肯定して、制御処理をいったん終了する。新たな工具21が刃物台23に取り付けられた後には、最初の切削加工を行う前に工具21の撓み量μの測定作業を行い、改めて数値を入力し直し、図3に示すように力−撓み線図を新たに作成し、記憶部42に記憶させる。その上で、再度ステップS11からの制御処理を実施する。 When the tool 21 is replaced, the determination in step S16 is affirmed, and the control process is temporarily terminated. After the new tool 21 is attached to the tool post 23, the bending amount μ of the tool 21 is measured before the first cutting process, and the numerical value is input again. As shown in FIG. 3, the force- A new deflection diagram is created and stored in the storage unit 42. Then, the control process from step S11 is performed again.

なお、鋳型から取り出した状態の素形材としての被加工物Wに対し、切削加工する取り代apの全体量は、仕上げ段階での取り代apを調整しても変わらない。そのため、仕上げ加工段階における取り代apの設定値を調整した場合、荒加工段階や中間加工段階における取り代apも、併せて調整されることになる。 It should be noted that the total amount of the cutting allowance ap for the workpiece W as the raw material taken out from the mold does not change even if the taking allowance ap at the finishing stage is adjusted. Therefore, when the set value of the allowance a in the finish machining stage is adjusted, the allowance a in the roughing step and the intermediate machining stage is also adjusted.

以上詳述したように、本実施形態における切削装置10及びその切削制御処理によれば、次のような作用効果を得ることができる。 As described in detail above, according to the cutting device 10 and the cutting control process thereof in the present embodiment, the following effects can be obtained.

(1)予め設定された目標撓み量μaとなる切削動力Pが、目標切削動力Paとして設定される。工具21を用いて切削加工を行うごとに切削動力Pが測定され、そのピーク値と目標切削動力Paとに基づいて、次回の切削動力Pのピーク値が目標切削動力Paとなるように、取り代apや送り量fが調整される。これにより、切削加工の繰り返しによる刃先部25の経時変化があっても、切削加工ごとに取り代apや送り量fの切削条件を試行錯誤することなく、切削精度を確保することができる。 (1) The cutting power P having a preset target bending amount μa is set as the target cutting power Pa. The cutting power P is measured each time cutting is performed using the tool 21, and based on the peak value and the target cutting power Pa, the peak value of the next cutting power P is set to the target cutting power Pa. The allowance a and the feed amount f are adjusted. As a result, even if the cutting edge portion 25 changes with time due to repeated cutting, the cutting accuracy can be ensured without trial and error of the cutting conditions of the allowance a and the feed amount f for each cutting.

(2)背分力Fと撓み量μとの関係を示す式(1)に、予め設定された目標撓み量μaを代入し目標背分力Faを求め、当該目標背分力Faを、背分力Fと切削動力Pとの関係を示す式(2)に代入することにより、目標切削動力Paを算出している。これにより、目標切削動力Paを好適に算出できる。 (2) The target back component force Fa is obtained by substituting the preset target deflection amount μa into the equation (1) showing the relationship between the back component force F and the deflection amount μ, and the target back component force Fa is used as the back component force Fa. The target cutting power Pa is calculated by substituting into the equation (2) showing the relationship between the component force F and the cutting power P. Thereby, the target cutting power Pa can be preferably calculated.

(3)上記式(1)における係数kは、刃物台23に設置された工具21について、最初の切削加工を行う前に、先端部に切削加工時の背分力Fを想定した力を加え、その時の撓み量μを測定することにより求められている。そのため、式(1)における係数kは、切削加工を実行しようとする工具21を備えた工具側ユニット11の固有値として求められている。切削加工時における工具21の撓みは、工具ホルダ22やその周辺部位など、工具保持側の剛性の影響を受けるため、これらを考慮して目標背分力Faが設定される。これにより、切削精度をさらに高めることができる。 (3) The coefficient k in the above formula (1) is obtained by applying a force assuming a back component force F at the time of cutting to the tip of the tool 21 installed on the tool post 23 before performing the first cutting. , It is obtained by measuring the amount of deflection μ at that time. Therefore, the coefficient k in the equation (1) is obtained as an eigenvalue of the tool side unit 11 including the tool 21 for executing the cutting process. Since the deflection of the tool 21 during cutting is affected by the rigidity of the tool holder 22 and its peripheral parts on the tool holding side, the target back component force Fa is set in consideration of these. As a result, the cutting accuracy can be further improved.

(4)取り代apや送り量fの設定値を再設定する場合に、連続切削する場合は取り代apの調整が優先され、断続切削する場合も取り代apの設定が調整される。連続切削においては、送り量fを小さくするように調整する場合、その分、切削加工に要する時間が余分にかかり、加工効率が下がる。そのため、取り代apの設定を調整することで、加工効率を維持することができる。また、断続切削の場合、真円度に影響を与えている工具21の揺動に対してほとんど影響しない送り量fではなく、取り代apを調整することにより、工具21の揺動を低減して真円度の精度を確保することができる。 (4) When resetting the set values of the allowance a and the feed amount f, the adjustment of the allowance ap is prioritized in the case of continuous cutting, and the setting of the allowance ap is adjusted in the case of intermittent cutting. In continuous cutting, when the feed amount f is adjusted to be small, the time required for cutting is extra and the processing efficiency is lowered. Therefore, the machining efficiency can be maintained by adjusting the setting of the allowance ap. Further, in the case of intermittent cutting, the swing of the tool 21 is reduced by adjusting the take-off allowance ap instead of the feed amount f which has almost no effect on the swing of the tool 21 which affects the roundness. The accuracy of roundness can be ensured.

(5)連続切削である場合は、許容される公差からその「1/N」(Nは2以上の自然数)が目標撓み量μaとして設定され、断続切削である場合は、許容される真円度からその「1/N」(Nは2以上の自然数)が目標撓み量μaとして設定される。連続切削では、切削加工中、工具21の撓みが常時生じ、切削加工が繰り返されるたびに撓みも恒常的なものとなるため、被加工物Wの公差に影響を与える。そこで、公差を基準に目標撓み量μaを設定することで、撓みによる公差への影響を低減できる。また、断続切削では、切削加工時に工具21の揺動が生じるため、円形状をなす被加工物Wの内周面を切削する場合に、その真円度に影響を及ぼし、切削加工が繰り返されればその揺動量にも影響する。そこで、真円度を基準に目標撓み量μaを設定することで、揺動による真円度への影響を低減できる。 (5) In the case of continuous cutting, the "1 / N" (N is a natural number of 2 or more) is set as the target deflection amount μa from the allowable tolerance, and in the case of intermittent cutting, the allowable perfect circle. From the degree, the "1 / N" (N is a natural number of 2 or more) is set as the target deflection amount μa. In continuous cutting, the tool 21 is constantly bent during the cutting process, and the deflection becomes constant each time the cutting process is repeated, which affects the tolerance of the workpiece W. Therefore, by setting the target deflection amount μa based on the tolerance, the influence of the deflection on the tolerance can be reduced. Further, in intermittent cutting, since the tool 21 swings during cutting, when cutting the inner peripheral surface of the work piece W having a circular shape, the roundness is affected and the cutting process is repeated. It also affects the amount of vibration of the cutting. Therefore, by setting the target deflection amount μa based on the roundness, the influence of the swing on the roundness can be reduced.

なお、本発明は、上記実施形態の切削装置10やその切削制御処理に限らず、例えば次のように実施してもよい。 The present invention is not limited to the cutting device 10 of the above embodiment and its cutting control process, and may be implemented as follows, for example.

(a)上記実施の形態では、背分力F(N)と撓み量μ(mm)との関係を示す式(1)の係数kを、最初の切削加工を行う前に、工具21の先端部(刃先部25)に切削加工時の背分力Fを想定した力を加え、その時の撓み量μを測定することにより求めている。これに代えて、工具21の材質や形状、工具ホルダ22等の工具保持側が有する剛性等を考慮して予測される係数kを用いてもよい。 (A) In the above embodiment, the coefficient k of the formula (1) showing the relationship between the back component force F (N) and the bending amount μ (mm) is set to the tip of the tool 21 before the first cutting process is performed. It is obtained by applying a force assuming a back component force F during cutting to the portion (cutting edge portion 25) and measuring the amount of deflection μ at that time. Instead of this, a coefficient k predicted in consideration of the material and shape of the tool 21, the rigidity of the tool holding side such as the tool holder 22, and the like may be used.

(b)上記実施の形態では、被加工物Wを円筒状部材とし、その内周面全体を切削加工する場合を想定したが、円筒状部材の内周面の一部のみ(中ぐり)を切削加工したり、外面を切削加工したりする場合に適用してもよい。 (B) In the above embodiment, it is assumed that the workpiece W is a cylindrical member and the entire inner peripheral surface thereof is cut. However, only a part (boring) of the inner peripheral surface of the cylindrical member is formed. It may be applied when cutting or cutting the outer surface.

10…切削装置、21…工具、23…刃物台、41…制御部(目標切削動力設定手段、調整手段、制御手段)。 10 ... cutting device, 21 ... tool, 23 ... tool post, 41 ... control unit (target cutting power setting means, adjusting means, control means).

Claims (5)

刃物台から突出した工具の先端部に刃先部が設けられ、前記刃先部が前記工具の突出方向と交差する方向へ向いており、前記刃先部が被加工物に押し当てられることにより前記被加工物を切削加工する切削装置であって、
前記工具を前記被加工物に押し当てて切削加工する場合における前記先端部の撓み量を、予め設定された目標撓み量とするための目標切削動力を設定する目標切削動力設定手段と、
前記工具を用いて切削加工が行われるごとに測定された切削動力のピーク値と前記目標切削動力とに基づいて、次回の切削動力のピーク値が前記目標切削動力となるように、取り代及び送り量のうち少なくとも一方の設定を調整する調整手段と、
前記調整手段により調整された設定値に基づいて、前記工具による切削加工時の押し当て動作を制御する制御手段と、
を備えたことを特徴とする切削装置。
A cutting edge portion is provided at the tip portion of the tool protruding from the tool post, the cutting edge portion faces in a direction intersecting the protruding direction of the tool, and the cutting edge portion is pressed against the workpiece to be machined. A cutting device that cuts objects
A target cutting power setting means for setting a target cutting power for setting the bending amount of the tip portion to a preset target bending amount when the tool is pressed against the workpiece for cutting.
Based on the peak value of cutting power measured each time cutting is performed using the tool and the target cutting power, the allowance and the allowance so that the peak value of the next cutting power becomes the target cutting power. An adjustment means to adjust the setting of at least one of the feed amounts, and
A control means for controlling a pressing operation during cutting by the tool based on a set value adjusted by the adjusting means, and a control means.
A cutting device characterized by being equipped with.
前記目標切削動力設定手段は、前記目標撓み量を、背分力F(N)と撓み量μ(mm)との関係を前記工具について示す関係式(1)「μ=kF」(kは係数)に代入して求めた目標背分力を、背分力Fと切削動力P(KW)との関係を示す関係式(2)「F=α×60,000×P/V」(αは背分力換算係数、V(m/min)は切削速度)に代入して目標切削動力を算出することを特徴とする請求項1に記載の切削装置。 The target cutting power setting means has a relational expression (1) "μ = kF" (k is a coefficient) indicating the relationship between the back component force F (N) and the bending amount μ (mm) for the target bending amount. ) Is the target back component force obtained by substituting it into), and the relational expression (2) “F = α × 60,000 × P / V” (α is The cutting apparatus according to claim 1, wherein the target cutting power is calculated by substituting the back component force conversion coefficient (V (m / min) is the cutting speed). 前記関係式(1)の係数kは、前記刃物台に設置された前記工具の前記先端部に切削加工時の背分力を想定した力を加え、その時の撓み量を測定することにより求められることを特徴とする請求項2に記載の切削装置。 The coefficient k of the relational expression (1) is obtained by applying a force assuming a back component force at the time of cutting to the tip portion of the tool installed on the tool post and measuring the amount of bending at that time. 2. The cutting apparatus according to claim 2. 刃物台から突出した工具の先端部に刃先部が設けられ、前記刃先部が前記工具の突出方向と交差する方向へ向いており、前記刃先部が被加工物に押し当てられることにより前記被加工物を切削加工する切削装置の切削制御方法であって、
前記刃物台に設置された前記工具の前記先端部に切削加工時の背分力を想定した力を加え、その時の前記先端部の撓み量を測定することにより、背分力F(N)と撓み量μ(mm)との関係を前記工具について示す関係式(1)「μ=kF」(kは係数)を求め、
予め設定された目標撓み量を前記関係式(1)に代入して目標背分力を求め、
前記目標背分力を、背分力Fと切削動力P(KW)との関係を示す関係式(2)「F=α×60,000×P/V」(αは背分力換算係数、V(m/min)は切削速度)に代入して目標切削動力を算出し、
前記工具を用いて切削加工が行われるごとに測定された切削動力のピーク値と前記目標切削動力の値とに基づいて、次回の切削動力のピーク値が前記目標切削動力の値となるように、取り代及び送り量のうち少なくとも一方の設定を調整し、
その調整された設定値に基づいて、前記工具による切削加工時の押し当て動作を制御することを特徴とする切削制御方法。
A cutting edge portion is provided at the tip portion of the tool protruding from the tool post, the cutting edge portion faces in a direction intersecting the protruding direction of the tool, and the cutting edge portion is pressed against the workpiece to be machined. It is a cutting control method for cutting equipment that cuts objects.
By applying a force assuming a back component force during cutting to the tip portion of the tool installed on the tool post and measuring the amount of deflection of the tip portion at that time, the back component force F (N) is obtained. The relational expression (1) "μ = kF" (k is a coefficient) which shows the relation with the bending amount μ (mm) about the said tool was obtained.
Substituting the preset target deflection amount into the relational expression (1) to obtain the target back component force,
The target back component force is the relational expression (2) “F = α × 60,000 × P / V” (α is the back component force conversion coefficient, which indicates the relationship between the back component force F and the cutting power P (KW). V (m / min) is substituted for cutting speed) to calculate the target cutting power.
Based on the peak value of the cutting power measured each time cutting is performed using the tool and the value of the target cutting power, the peak value of the next cutting power is set to the value of the target cutting power. , Adjust the settings of at least one of the allowance and feed amount,
A cutting control method characterized in that the pressing operation during cutting by the tool is controlled based on the adjusted set value.
前記目標撓み量は、切削加工が連続切削である場合は、許容される公差からその「1/N」(Nは2以上の自然数)に設定し、切削加工が断続切削である場合は、許容される真円度からその「1/N」(Nは2以上の自然数)に設定することを特徴とする請求項4に記載の切削制御方法。 The target amount of deflection is set to "1 / N" (N is a natural number of 2 or more) from the allowable tolerance when the cutting process is continuous cutting, and is allowed when the cutting process is intermittent cutting. The cutting control method according to claim 4, wherein the degree of roundness is set to "1 / N" (N is a natural number of 2 or more).
JP2019068805A 2019-03-29 2019-03-29 Cutting device and its cutting control method Active JP7177744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019068805A JP7177744B2 (en) 2019-03-29 2019-03-29 Cutting device and its cutting control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068805A JP7177744B2 (en) 2019-03-29 2019-03-29 Cutting device and its cutting control method

Publications (2)

Publication Number Publication Date
JP2020163549A true JP2020163549A (en) 2020-10-08
JP7177744B2 JP7177744B2 (en) 2022-11-24

Family

ID=72716851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068805A Active JP7177744B2 (en) 2019-03-29 2019-03-29 Cutting device and its cutting control method

Country Status (1)

Country Link
JP (1) JP7177744B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234043A (en) * 1992-02-24 1993-09-10 Sony Corp Method for measuring projecting quantity of rotary magnetic head
JPH05324043A (en) * 1992-05-26 1993-12-07 Okuma Mach Works Ltd Numerical controller provided with work simulation display function
JPH07287612A (en) * 1994-04-19 1995-10-31 Okuma Mach Works Ltd Numerical control information preparing device
JP2003291064A (en) * 2002-03-29 2003-10-14 Toyo Advanced Technologies Co Ltd Grinding method and process
US20040153259A1 (en) * 2002-12-30 2004-08-05 Lee Sang Ho Method and apparatus of detecting tool abnormality in a machine tool
JP2014531332A (en) * 2011-09-22 2014-11-27 アクティエボラゲット・エスコーエッフ In-process compensation of machining operations and machinery
JP2015201112A (en) * 2014-04-10 2015-11-12 三菱電機株式会社 Machining control device of machine tool
US20180133917A1 (en) * 2015-05-29 2018-05-17 Zf Friedrichshafen Ag Control Of A Metal-Cutting Machining Process By Means Of P-Controller And A Load-Dependent Control Factor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234043A (en) * 1992-02-24 1993-09-10 Sony Corp Method for measuring projecting quantity of rotary magnetic head
JPH05324043A (en) * 1992-05-26 1993-12-07 Okuma Mach Works Ltd Numerical controller provided with work simulation display function
JPH07287612A (en) * 1994-04-19 1995-10-31 Okuma Mach Works Ltd Numerical control information preparing device
JP2003291064A (en) * 2002-03-29 2003-10-14 Toyo Advanced Technologies Co Ltd Grinding method and process
US20040153259A1 (en) * 2002-12-30 2004-08-05 Lee Sang Ho Method and apparatus of detecting tool abnormality in a machine tool
JP2014531332A (en) * 2011-09-22 2014-11-27 アクティエボラゲット・エスコーエッフ In-process compensation of machining operations and machinery
JP2015201112A (en) * 2014-04-10 2015-11-12 三菱電機株式会社 Machining control device of machine tool
US20180133917A1 (en) * 2015-05-29 2018-05-17 Zf Friedrichshafen Ag Control Of A Metal-Cutting Machining Process By Means Of P-Controller And A Load-Dependent Control Factor
JP2018516407A (en) * 2015-05-29 2018-06-21 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Control of cutting process using gain according to load and P controller

Also Published As

Publication number Publication date
JP7177744B2 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
TWI661893B (en) Control device of work machine and work machine provided with the control device
CN108025412B (en) Control device for machine tool and machine tool provided with same
JP6744815B2 (en) Machine tool control device and machine tool
WO2012133222A1 (en) Machine tool and machining control device
TW201600219A (en) Control device for machine tool, and machine tool provided with said control device
JP2012213830A5 (en)
JP6732567B2 (en) Machine tool control device and machine tool
KR20210077680A (en) Machine tools and controls
JP6990134B2 (en) Cutting equipment and its control method
JP5929065B2 (en) NC data correction device
JP6581557B2 (en) Machine tool control method
JP7444697B2 (en) Numerical control device, control program and control method
CN112130524B (en) Numerical control device, program recording medium, and control method
JP7036786B2 (en) Numerical control device, program and control method
JP5937891B2 (en) Machine Tools
JP2020163549A (en) Cutter and cutting control method
JP2016215359A (en) Processing system for adjusting processing tool rotation number and work-piece feeding speed
JP2020078831A (en) Gear machining method and gear machining apparatus
JP2010247264A (en) Cutting method
JP2021111026A (en) Machine tool machining control method
JP7073721B2 (en) Gear processing equipment and gear processing method
JP2018147030A (en) Control device of machine-tool and machine-tool
JP2018532605A (en) Method for producing or machining teeth on a workpiece
JP2017111824A (en) Control apparatus and control method for machine tool having c-axis function
JP2020196057A (en) Gear processing device and gear processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150