JP2020163319A - Manufacturing method to convert inorganic sludge into recycled soil - Google Patents

Manufacturing method to convert inorganic sludge into recycled soil Download PDF

Info

Publication number
JP2020163319A
JP2020163319A JP2019067410A JP2019067410A JP2020163319A JP 2020163319 A JP2020163319 A JP 2020163319A JP 2019067410 A JP2019067410 A JP 2019067410A JP 2019067410 A JP2019067410 A JP 2019067410A JP 2020163319 A JP2020163319 A JP 2020163319A
Authority
JP
Japan
Prior art keywords
slope
soil
work
solidified product
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019067410A
Other languages
Japanese (ja)
Other versions
JP6689429B1 (en
Inventor
惠久 田畑
Shigehisa Tabata
惠久 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019067410A priority Critical patent/JP6689429B1/en
Application granted granted Critical
Publication of JP6689429B1 publication Critical patent/JP6689429B1/en
Publication of JP2020163319A publication Critical patent/JP2020163319A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for inexpensively producing recycled soil of a required particle size, without the need for the conventional work of depositing and raising solidified sludge on a flat ground and loosening it with a backhoe, etc., and further without using a particle size separator/crusher for the recycled soil.SOLUTION: Sludge, cement-based solidifying material, and water are put into a granulating and solidifying processing machine 1 of a work vehicle C in a required weight ratio, an uncured and fluid solidified product of the granulating and solidifying processing machine 1 is carried by the work vehicle C to a sloping ground 2, the solidified material is dropped from above an upper end of the sloping ground 2 by a sloping discharge conveyor 13, and the solidified product KM is slid down and agitated on a surface of the slope 2, so that recycled soil with a small particle size is classified above the slope and recycled soil with a large particle size is classified and deposited on a lower side of the slope, and recycled soil is prepared in layers on the surface of the slope depending on a size of the particle.SELECTED DRAWING: Figure 4

Description

本発明は、土木建設作業で発生した有機物成分が少ない無機性汚泥(以下、単に汚泥又は建設汚泥ともいう)を、造粒固化処理機で固化材と所要の水と混練して固化処理して所定の硬化強度を発現させて再生土として再利用できるようにする製造方法に関する。 In the present invention, inorganic sludge (hereinafter, also simply referred to as sludge or construction sludge) having a small amount of organic matter generated in civil engineering construction work is kneaded with a solidifying material and required water with a granulation solidification processing machine to solidify the sludge. It relates to a manufacturing method which develops a predetermined hardening strength so that it can be reused as recycled soil.

従来は、土木建設作業で発生する無機性の汚泥は、造粒固化処理機に投入されて、所要重量比で粉状のセメント系固化材と所要の水とを混入されて混練された後、流動性ある混練された固化処理物を固化処理調整置場の平地上に3〜5m程の高さに盛り上げ(積み上げ)、固化材の硬化反応によって硬化させ、途中でバックホウ等でよりほぐし作業を行って、所定の固化(硬化強度)状態に調整して再生土を作製するものとしている(図6参照)。 Conventionally, inorganic sludge generated in civil engineering construction work is put into a granulation and solidification processing machine, mixed with a powdery cement-based solidifying material and required water at a required weight ratio, and then kneaded. The fluid kneaded solidified product is piled up (stacked) on the flat ground of the solidification treatment adjustment yard to a height of about 3 to 5 m, cured by the curing reaction of the solidifying material, and further loosened with a back hoe etc. on the way. Therefore, the recycled soil is prepared by adjusting it to a predetermined solidification (curing strength) state (see FIG. 6).

従来の造粒固化処理と調整処理によって製造される再生土は、汚泥に含まれる粒度が異なる複数の汚泥成分(細粒分・中粒分・粗粒分・礫・ガラ等の未改良塊等)と粉状の固化材が均一に混練された成分となり、再生土は汚泥の粒度構成の再生土であり、その再生土は汚泥と基本的に略同じ粒度構成を有するため、その使用用途がその粒度に制限されて狭いものとなっていた。 Recycled soil produced by conventional granulation and solidification treatment and adjustment treatment contains multiple sludge components (fine grain, medium grain, coarse grain, gravel, gala, etc.) with different particle sizes. ) And the powdery solidifying material are uniformly kneaded, and the recycled soil is a recycled soil with a particle size composition of sludge, and the recycled soil has basically the same particle size composition as the sludge, so its intended use is It was limited by its particle size and was narrow.

更に、固化処理調整置場の平地上で未硬化の固化処理物を盛り上げた後4週間程硬化させるが、その間にバックホウ等でよりほぐし作業を必要としていたため、手間時間のかかる作業であった。 Further, the uncured solidified product was heaped up on the flat ground of the solidification treatment adjustment yard and then cured for about 4 weeks, but during that time, more loosening work was required with a backhoe or the like, so it was a laborious work.

又、特許文献1には建設汚泥のリサイクル方法が開示されているが、建設汚泥に酸化カルシウム,二酸化ケイ素,三酸化硫黄,酸化アルミニウムを含んだセメント系固化材で固化して、養生後に使用目的に応じて所要の大きさに破砕して再生土として使用する。これによれば、固化した後破砕して所定大きさにするため、破砕処理行程が必要であるため、再生土のリサイクル費用が高くなるという欠点がある。 Further, Patent Document 1 discloses a method for recycling construction sludge, which is solidified with a cement-based solidifying material containing calcium oxide, silicon dioxide, sulfur trioxide, and aluminum oxide in the construction sludge, and is used after curing. It is crushed to the required size and used as recycled soil. According to this, since the material is solidified and then crushed to a predetermined size, a crushing process is required, which has a drawback that the recycling cost of the recycled soil is high.

特許文献2,3にも、汚泥と固化材とで混合して固化させた後、破砕する工程を有し、特許文献1同様の欠点がある。その上、特許文献2の発明では二酸化炭素含有ガスを使用しての中和工程が必要であり、再生土の製造コストが嵩むものとなっている。更に、特許文献3の再生処理方法は大規模処理設備である。いずれの特許文献1,2,3も破砕せずに所要の粒度の再生土を得ることができない。又、硬化途中でのほぐし作業及び破砕作業を必要として安価な再生方法ではなかった。 Patent Documents 2 and 3 also have a step of mixing sludge and a solidifying material to solidify and then crushing the sludge, and have the same drawbacks as those of Patent Document 1. In addition, the invention of Patent Document 2 requires a neutralization step using a carbon dioxide-containing gas, which increases the production cost of recycled soil. Further, the regeneration processing method of Patent Document 3 is a large-scale processing facility. Recycled soil having a required particle size cannot be obtained without crushing any of Patent Documents 1, 2 and 3. In addition, it was not an inexpensive regeneration method because it required loosening work and crushing work during curing.

特開平10−495号公報JP-A No. 10-495 特開2009−28639号公報Japanese Unexamined Patent Publication No. 2009-28639 特開平10−244297号公報JP-A-10-244297

従来の造粒固化処理機で固化材・水と汚泥とを混練して、図6に示すように平地に盛り上げて途中でバックホウ等でよりほぐす作業処理するものでは、よりほぐす作業処理を必要として手間労力がかかり、更に汚泥の粒度成分で再生土の粒度構成が定まり、一定粒度構成の再生土しか製造できないので、種々の用途での再生土の利用が制限的となっている。又、高含水比の汚泥の場合は固化処理物は大きな塊になり易く、破砕機で破砕して再生土として使用していた。 As shown in Fig. 6, the solidifying material / water and sludge are kneaded with a conventional granulation and solidification processing machine, raised on a flat surface, and then loosened with a backhoe or the like on the way, which requires more loosening work. It takes time and effort, and the particle size composition of the recycled soil is determined by the particle size component of the sludge, and only the recycled soil having a constant particle size composition can be produced. Therefore, the use of the recycled soil for various purposes is limited. Further, in the case of sludge having a high water content, the solidified product tends to form a large lump, which is crushed by a crusher and used as recycled soil.

本願発明が解決しようとする課題は、従来の再生土の製造では平地での盛り上げ作業・よりほぐし作業が必要であったがこれを不要とし、効率的に調整作業できるとともに汚泥の粒度構成が異なるように分級された再生土を自動的に製造できて、再生土の使用用途を拡げることができ、更に再生土の製造コストは破砕工程もなく、又ほぐし作業も不要にでき、きわめて安価に製造できる再生土の製造方法を提供することにある。 The problem to be solved by the present invention is that the conventional production of recycled soil requires heaping work and more loosening work on flat ground, but this is not required, efficient adjustment work can be performed, and the grain size composition of sludge is different. Recycled soil classified in this way can be automatically manufactured, the usage of recycled soil can be expanded, and the manufacturing cost of recycled soil is extremely low because there is no crushing process and no loosening work is required. The purpose is to provide a method for producing recycled soil that can be produced.

かかる課題を解決した本発明の構成は、
1) 土木建設現場から発生する無機性の汚泥に対して所定の重量割合で固化材と水とを併せて造粒固化処理機へ投入し、前記造粒固化処理機によって前記汚泥と前記固化材と前記水とを混練して固化処理物を作製するとともに、作製されて未硬化で流動性ある状態の前記固化処理物を所定角度の傾斜地の上端の上方の位置から連続的又は間欠的に落下させ、前記上端の上方から落下させることで前記固化処理物を前記傾斜地の斜面表面に沿って転がりながらほぐし且つ比重分離を働かせることによって落下させた前記固化処理物を撹拌させながら前記固化処理物の粒度が小さい成分が傾斜面の上部に、粒度が大きい成分は傾斜面の下部に堆積するように前記固化処理物の粒度に応じて上下に分級するように傾斜地の斜面に堆積させた状態で固化を進め、前記固化処理物を傾斜地の上端上方から繰り返し落下させることで、傾斜地の斜面位置及びその上端の位置が固化処理物の堆積で傾斜地の初期の位置から開放された方向へ移動して傾斜地に粒度で上下に分級された状態で再生土を層状に堆積させ、堆積した再生土を前記傾斜地の所要の高さから掘削することで所要の粒度の再生土をそのまま出荷できるようにしたことを特徴とする、無機性汚泥を再生土にする製造方法
2) 前記造粒固化処理機を自走できる車両に装置し、前記造粒固化処理機で混練して作製された造粒固化処理物を外側の上方高く持ち上げて落下排出できる傾斜排出コンベヤを前記車両に設けた作業車を用意し、前記作業車の造粒固化処理機に無機性汚泥と所定重量割合の固化材と水とを投入して混練して固化処理物を作製させながら前記作業車を傾斜地のある現場の投入位置まで移動させて停車させ、前記作業車にある前記傾斜排出コンベヤによって造粒固化処理機で作製された未硬化の固化処理物を持ち上げて前記傾斜排出コンベヤの上端のコンベヤリターン部から傾斜地の上端に向けて落下排出させて、傾斜地の斜面に再生土を層状に堆積させるようにした、前記1)記載の無機性汚泥を再生土にする製造方法
3) 傾斜地の崖に沿って所定巾の作業範囲で傾斜地の上端上方から固化処理物の落下作業を1回又は複数回行って、傾斜地の斜面及び上端が堆積して傾斜地の開放された方向に前進すると、その後傾斜地の崖に沿って処理した所定巾の前記作業範囲の崖に沿ってその左右の隣の所定巾の領域を落下処理作業の次の作業範囲とし、前記同様に1回又は複数回の固化処理物の落下作業を行った後傾斜地の崖に沿って更に左右の隣の所定巾の新しい領域を次の作業範囲として固化処理物の落下作業を同様に繰り返すことで傾斜地の傾斜面の崖に沿って広い巾の層状の堆積層を形成させ、所定粒度の堆積層の再生土の掘削も崖に沿って行うことで、落下処理作業と掘削排出処理作業を効率的にできることを特徴とする、前記1)又は2)記載の無機性汚泥を再生土にする製造方法
4) 前記傾斜地での固化処理物を落下開始する前の傾斜地の上端と傾斜下端との初期高低差は12m以上で且つ傾斜地上部の初期傾斜角度は50°〜75°の範囲のものである、前記1)〜3)いずれか記載の無機性汚泥を再生土にする製造方法
にある。
The configuration of the present invention that solves this problem is
1) With respect to the inorganic sludge generated from the civil engineering construction site, the solidifying material and water are put into the granulation solidification processing machine at a predetermined weight ratio, and the sludge and the solidifying material are charged by the granulation solidification processing machine. And the water are kneaded to prepare a solidified product, and the solidified product in a uncured and fluid state is continuously or intermittently dropped from a position above the upper end of a sloped ground at a predetermined angle. The solidified product is loosened while rolling along the slope surface of the sloping ground by dropping from above the upper end, and the solidified product dropped by exerting specific gravity separation while stirring the solidified product. The components with a small particle size are deposited on the upper part of the slope, and the components with a large particle size are deposited on the slope of the slope so as to be classified up and down according to the particle size of the solidified product. By repeatedly dropping the solidified material from above the upper end of the sloping land, the slope position of the sloping land and the position of the upper end of the sloping land move in the direction released from the initial position of the sloping land due to the deposition of the solidified material. The reclaimed soil was deposited in layers in a state where it was classified into upper and lower grades according to the grain size, and the reclaimed soil with the required grain size could be shipped as it was by excavating the deposited reclaimed soil from the required height of the slope. Characteristic manufacturing method for converting inorganic sludge into recycled soil 2) The granulated and solidified product produced by mounting the granulated and solidifying treatment machine on a self-propelled vehicle and kneading with the granulating and solidifying processing machine. Prepare a work vehicle equipped with an inclined discharge conveyor that can be lifted high above the outside and discharge the vehicle, and put inorganic sludge, a solidifying material of a predetermined weight ratio, and water into the granulation and solidification processing machine of the work vehicle. While kneading and kneading to produce a solidified product, the work vehicle is moved to a loading position on a site with a slope and stopped, and the uncured product produced by the granulation and solidification processing machine by the slope discharge conveyor in the work vehicle. The inorganic material according to 1) above, wherein the solidified material of the above is lifted and dropped and discharged from the conveyor return portion at the upper end of the inclined discharge conveyor toward the upper end of the inclined ground so that the recycled soil is deposited in layers on the slope of the inclined ground. Manufacturing method to turn sex sludge into reclaimed soil 3) The slope and upper end of the sloping land are deposited by dropping the solidified material once or multiple times from above the upper end of the sloping land within a working range of a predetermined width along the cliff of the sloping land. Then, when moving forward in the open direction of the sloping land, the area of the predetermined width adjacent to the cliff of the work range of the predetermined width processed along the cliff of the sloping land is dropped along the cliff and the next work range of the processing work. And said Similarly, after performing the dropping work of the solidified product once or a plurality of times, the dropping work of the solidified product is repeated in the same manner with a new area of a predetermined width adjacent to the left and right as the next work range along the cliff of the sloped land. By forming a wide layered sedimentary layer along the cliff on the slope of the sloping land and excavating the reclaimed soil of the sedimentary layer of a predetermined particle size along the cliff, drop treatment work and excavation discharge treatment work can be performed. The method for producing recycled soil from the inorganic sludge according to the above 1) or 2), which is characterized by being able to be performed efficiently. 4) The upper end and the lower end of the slope before the solidified product on the slope starts to fall. The method for producing recycled soil from the inorganic sludge according to any one of 1) to 3) above, wherein the initial height difference is 12 m or more and the initial inclination angle of the inclined above-ground portion is in the range of 50 ° to 75 °.

本発明によれば、土木建設作業現場から発生する無機性の汚泥に所要の重量割合で固化材と水とを造粒固化処理機に投入し、汚泥と固化材と水とを混練した固化処理物を未硬化の流動性がある状態で、傾斜地の上端の上方から落下させて固化処理物を傾斜面の表面に沿って転がしながら撹拌して下方へ滑落させる。これによって、固化処理物の大きい粒度の成分は粘性に勝って強く転がりながら下方へ移動し、粒度の小さい成分はあまり転がらず、傾斜地の斜面上部に付着して堆積する。又、粒度の大きいものは重量が大きく且つ粒径が大きく転がり易いので下方まで落下して粒度が大きいものは下方で堆積する。このように、粒度によって堆積位置が上下に分級されるように堆積する。傾斜地上端の上方からの固化処理物を前後方向又は左右方向あるいはその組み合せ方向に位置を変えて繰り返し落下投入することで傾斜地の斜面には固化処理物の再生土が粒度別に層状に堆積続ける。 According to the present invention, a solidifying material and water are put into a granulation and solidifying processing machine at a required weight ratio for inorganic sludge generated from a civil engineering construction work site, and the sludge, the solidifying material and water are kneaded and solidified. The material is dropped from above the upper end of the sloping ground in a state of uncured fluidity, and the solidified material is agitated while rolling along the surface of the sloping surface and slid downward. As a result, the large-grained components of the solidified product move downward while rolling strongly over the viscosity, and the small-grained components do not roll much and adhere to and deposit on the upper part of the slope of the slope. Further, since the one having a large particle size has a large weight and the particle size is large and is easy to roll, the one having a large particle size falls to the lower side and is deposited in the lower part. In this way, the deposition positions are classified vertically according to the particle size. By repeatedly dropping and throwing the solidified product from above the sloped ground edge in the front-rear direction, the left-right direction, or the combination direction thereof, the recycled soil of the solidified product continues to be deposited in layers according to the particle size on the slope of the slope.

これによって、傾斜面に落下して堆積した固化処理物は粒度が小さい成分が上方に粒度が大きい成分は下方になるように上下で分級した層状に堆積され、硬化が進んで層状の再生土となる。 As a result, the solidified material that has fallen and accumulated on the inclined surface is deposited in layers that are classified vertically so that the components with small particle size are on the upper side and the components with large particle size are on the lower side, and the hardening progresses to form a layered recycled soil. Become.

よって、粒度が大きい再生土が必要な場合は傾斜地の下部に堆積した層から再生土を採掘して、トラック・ダンプカー等を用いて必要な埋立地の現場に運んで現場に埋立てられればよい。同様に粒度が小さい再生土を必要とする場合は傾斜地の上方からバックホウ・シャベル作業車・バケット作業車等で採掘して運送すればよい。このように、所要の粒度の多い再生土を利用したい場合は所要の高さの再生土の層を採掘して運送すればよい。
例えば、粒度が小さい再生土が要望されていればその傾斜面の高い層の斜面で露出した部分に近い部位から採掘すればよく、粒度が大きいものはその層の下方のものを採掘すれば所望の粒度の再生土が得られる。
Therefore, when reclaimed soil with a large grain size is required, the reclaimed soil may be mined from the layer deposited at the bottom of the sloping land, transported to the site of the required landfill site using a truck, dump truck, etc., and buried at the site. .. Similarly, when recycled soil with a small grain size is required, it may be mined and transported from above the slope with a backhoe, shovel work vehicle, bucket work vehicle, or the like. In this way, when it is desired to use the reclaimed soil having a large required particle size, a layer of reclaimed soil having a required height may be mined and transported.
For example, if reclaimed soil with a small grain size is required, it may be mined from a part close to the exposed part on the slope of the layer with a high slope, and if the grain size is large, it is desirable to mine the soil below the layer. Recycled soil with the same grain size can be obtained.

このように、本発明によれば傾斜地の斜面に堆積される再生土は粒度に応じて上下に分級できているので、固化処理物の硬化反応(通常4週間程度)で粒度で分れた層状の再生土となり、その後所定の粒度の再生土はその粒度の高さの層を掘削すれば容易に採掘して利用できる状態となる。しかも、この傾斜面に堆積される再生土は粒度別に層状に形成されるので、特定の粒度の再生土の回収には何らの粒度による分離の特別の機械装置を必要なく、更に固化処理物の特別のほぐし作業及び破砕作業も不要であり、きわめて安価に製造できる。 As described above, according to the present invention, the reclaimed soil deposited on the slope of the sloping ground can be classified up and down according to the particle size, so that the solidified product is layered by the particle size in the curing reaction (usually about 4 weeks). After that, the reclaimed soil of a predetermined particle size can be easily mined and used by excavating a layer having a high particle size. Moreover, since the reclaimed soil deposited on this inclined surface is formed in layers according to the particle size, recovery of the reclaimed soil having a specific particle size does not require a special mechanical device for separation by any particle size, and further, the solidified product. No special loosening work or crushing work is required, and it can be manufactured at extremely low cost.

図1は本発明の実施例で使用する自走できる造粒固化処理機の側面図である。FIG. 1 is a side view of a self-propelled granulation and solidification processing machine used in an embodiment of the present invention. 図2は実施例の造粒固化処理機の平面図である。FIG. 2 is a plan view of the granulation and solidification processing machine of the embodiment. 図3は実施例の造粒固化処理機の背面図である。FIG. 3 is a rear view of the granulation and solidification processing machine of the embodiment. 図4は実施例における固化処理物の傾斜地で落下滑落の状態と粒度による分級と層状形成を示す説明図である。FIG. 4 is an explanatory diagram showing the state of falling and sliding down and the classification and layer formation according to the particle size on the slope of the solidified product in the example. 図5は崖に沿って固化処理物の落下処理の作業範囲を左右方向に変えて崖に沿って長い層状の再生土の堆積斜面を形成させる作業手順を示す説明図である。FIG. 5 is an explanatory view showing a work procedure in which the work range of the drop treatment of the solidified material is changed in the left-right direction along the cliff to form a long layered sedimentary slope of recycled soil along the cliff. 図6は従来の固化処理物の固化処理調整置場での盛り上げ状態を示す説明図である。FIG. 6 is an explanatory diagram showing a raised state of a conventional solidified product in a solidification treatment adjustment yard.

本発明の傾斜地の高さ(上下差)は高低差が小さいと充分な分級ができないので12m以上が実用的であり、好ましくは15〜30m程で、傾斜地上部の初期(落下投入する前の)傾斜面の傾斜角は50°以上が実用的であり、50°以下であれば固化処理物の転がりながらの滑落現象が生起しにくく粒度による上下分級が弱まり、又傾斜面途中でコブ状・棚状に滞留しがちとなり、分級・層形成が不完全となる。又、80°以上の急傾斜となれば、傾斜面での転がりながらの滑落から急激落下となり、やはり転がることによる粒度による分級も弱まり、粒度の層形成も不充分となる。50°〜75°が初期傾斜角として好ましい実用的な初期傾斜角である。又、固化処理物の落下投入とともに傾斜地の傾斜面の角度は初期傾斜角より斜面堆積により斜面傾斜角度は小さくなっていく傾向がある。
又、固化処理物の落下させる高さは20〜40m程が固化処理物の転がり、分級の斜面長さを確保し、又層形成後の所定粒度の再生土の採掘が容易であり、且つ傾斜地の崩壊の危険性もなく実用的である。
The height (vertical difference) of the sloping ground of the present invention is practically 12 m or more because sufficient classification cannot be performed if the height difference is small, preferably about 15 to 30 m at the initial stage of the sloping ground portion (before dropping). It is practical that the inclination angle of the inclined surface is 50 ° or more, and if it is 50 ° or less, the sliding phenomenon of the solidified product while rolling is unlikely to occur, the upper and lower classification due to the particle size is weakened, and the hump-like / shelf is formed in the middle of the inclined surface. It tends to stay in a state, and classification and layer formation are incomplete. Further, if the inclination is 80 ° or more, the sliding down while rolling on the inclined surface causes a sudden drop, the classification by the particle size due to the rolling is also weakened, and the layer formation of the particle size becomes insufficient. A practical initial tilt angle of 50 ° to 75 ° is preferable as the initial tilt angle. In addition, the angle of the slope of the sloped land tends to be smaller than the initial slope due to the slope accumulation as the solidified material is dropped.
In addition, the height at which the solidified product is dropped is about 20 to 40 m, which ensures the rolling of the solidified product and the slope length of the classification, and it is easy to mine the reclaimed soil of a predetermined particle size after layer formation, and the sloped land. It is practical without the risk of collapse.

又、固化材としては、酸化カルシウム,二酸化ケイ素,酸化アルミニウム等のセメント系固化材を使用できる。その汚泥との混入の重量割合は汚泥に応じて適切な重量比で混入する。 Further, as the solidifying material, a cement-based solidifying material such as calcium oxide, silicon dioxide, or aluminum oxide can be used. The weight ratio of the mixture with the sludge is an appropriate weight ratio according to the sludge.

造粒固化処理機と傾斜排出コンベヤはクローラ等で自走できる作業車に装置させ、作業車の造粒固化処理機に汚泥と固化材と水とを投入して混練して固化処理物を作製しながら傾斜地の落下投入場の落下投入位置まで移動させて、車両に装置した傾斜排出コンベヤで造粒固化処理機で固化処理して未硬化の流動性ある状態で固化処理物を傾斜地の上端上方から落下させる方法がある。
又は、造粒固化処理機は投入場の近くに固定的に配置し、同造粒固化処理機で作製された固化処理物を別の固化処理物の運送車で現場へ運送し、傾斜地の傾斜コンベヤを有する専用の投入装置で傾斜地に落下投入させてもよい。又は、別の長尺の搬送コンベヤを用いて傾斜地の投入現場まで搬送し、傾斜地の投入場に設置した固化物の投入専用の傾斜コンベヤに移載して落下投入作業を行ってもよい。あるいは、落下投入専用の傾斜排出コンベヤを有するコンベヤと固化処理物の一時収容タンクとを具備した運送車を用意して造粒固化処理機から排出される未硬化の流動性ある固化処理物を受け取って搬送して、傾斜地の投入位置に停止してから同コンベヤにより傾斜地の上端の上方から落下排出するようにもできる。勿論、前記の如く造粒固化処理機と傾斜排出コンベヤを走行車両に装置して、造粒固化処理と傾斜地での落下投入させることでもよい。
The granulation and solidification processing machine and the inclined discharge conveyor are installed in a work vehicle that can run by itself with a crawler or the like, and sludge, a solidifying material, and water are put into the granulation and solidification processing machine of the work vehicle and kneaded to prepare a solidification processed product. While moving to the drop-in position of the drop-in place on the sloping ground, the uncured discharge conveyor installed in the vehicle solidifies the solidified product with the granulation solidification processing machine, and the solidified product is placed above the upper end of the sloping ground in a uncured and fluid state. There is a way to drop it from.
Alternatively, the granulation and solidification processing machine is fixedly placed near the loading site, and the solidification processed product produced by the same granulation and solidification processing machine is transported to the site by another solidification processing product transport vehicle, and the slope of the sloped land is inclined. It may be dropped onto a sloping ground with a dedicated loading device having a conveyor. Alternatively, another long transport conveyor may be used to transport the conveyor to the loading site on the sloping ground, and the conveyor may transfer the solidified material to the loading site on the sloping ground to perform the drop-loading operation. Alternatively, a transport vehicle equipped with a conveyor having an inclined discharge conveyor dedicated to drop-in and a temporary storage tank for the solidified product is prepared to receive the uncured fluid solidified product discharged from the granulation solidification processing machine. It is also possible to carry the machine, stop at the loading position on the sloping ground, and then use the conveyor to drop and discharge from above the upper end of the sloping ground. Of course, as described above, the granulation and solidification processing machine and the inclined discharge conveyor may be installed in the traveling vehicle to perform the granulation and solidification processing and drop-in on the inclined ground.

以下、本発明の実施例を図面に基づいて説明する。
本実施例の造粒固化処理機1はクローラC1をもって自走できる作業車Cに装置され、その車両フレームC2に汚泥と固化材と水とを混練する造粒固化処理機1の汚泥・固化材・水の投入口10を車両の後方に設け、又車両の前方には前記した造粒固化処理機1で混練した流動性ある固化処理物を送り込んで前方へ持ち上げてその車両接地面から3〜6m程の高さにある先端のリターン部131から傾斜地2の上端21へ落下排出する傾斜排出コンベヤ13を設けている。
傾斜地2の投入場の高さは約17m程の高さがあり、その傾斜地2の初期傾斜角は略70°程となっていて、傾斜地2の投入場4には前記作業車Cが安全に出入できるように整地又はコンクリート道路面が敷設される。
更に、外部からの建設汚泥は傾斜地から離れた位置に設けた汚泥受入ピット(図示せず)で一時受け入れる。バックホウ等で汚泥受入ピットから所要時に造粒固化処理機1へ供給するようにした例である。再生する無機性汚泥は建設現場から発生する無機性の汚泥で有機成分が少ない汚泥で建設汚泥といわれるものである。
Hereinafter, examples of the present invention will be described with reference to the drawings.
The granulation and solidification processing machine 1 of this embodiment is installed in a work vehicle C capable of self-propelling with a crawler C1, and the sludge and solidification material of the granulation and solidification processing machine 1 in which sludge, a solidifying material, and water are kneaded into the vehicle frame C2. A water inlet 10 is provided at the rear of the vehicle, and a fluid solidified product kneaded by the granulation / solidification processing machine 1 described above is sent to the front of the vehicle and lifted forward from the vehicle ground plane 3 to 3 to An inclined discharge conveyor 13 is provided which drops and discharges from the return portion 131 at the tip at a height of about 6 m to the upper end 21 of the inclined ground 2.
The height of the input site of the slope 2 is about 17 m, and the initial inclination angle of the slope 2 is about 70 °, so that the work vehicle C can safely enter the input site 4 of the slope 2. Leveling or concrete road surface is laid so that access can be made.
Furthermore, construction sludge from the outside is temporarily received in a sludge receiving pit (not shown) provided at a position away from the slope. This is an example in which a backhoe or the like is used to supply the sludge from the sludge receiving pit to the granulation / solidification processing machine 1 when necessary. Recycled inorganic sludge is an inorganic sludge generated from a construction site and has a small amount of organic components, and is called construction sludge.

(符号の説明)
実施例の図面の符号について説明する。
Cは公知の処理能力が135m/hで最大処理能力は1,080m/日の造粒固化処理機1,傾斜排出コンベヤ13を車両フレームC2に装置し、クローラC1で自走できる作業車である。C1はそのクローラ、C2はその車両フレーム、C3はその運転席である。1は実施例の造粒固化処理機、10は同造粒固化処理機1の後方に設けた汚泥・固化材・水等の投入口、13は造粒固化処理機1で作製された固化処理物KMを3〜6m程持ち上げて先端のリターン部131から落下排出(投入)する車両フレームC2の前方に設けられた傾斜排出コンベヤ、2は傾斜地で、投入場の高さは17m程で初期の傾斜角θは約70°程としている。20は傾斜地2の斜面、21は傾斜地2の上端で、堆積すると高さ約19m程の高さとなる。22a,22b,22c,22dは傾斜地2に形成された粒度の大きさに分級された分級層であって、22aは細粒分を多く含む細粒再生土層、22bは中粉分を多く含む中粒再生土層、22cは粗粒分を多く含む粗粒再生土層、22dは礫・ガラ・未改良塊等を多く含む礫再生土層である。23は傾斜地2の下方に設けた散乱防止用大型ブロック壁である。4は投入場、5は従来の固化処理調整置場、50は従来の固化処理物KMの盛土である。KMは同固化処理調整置場に盛り上げられた固化処理物、Gはガラ、Rは礫である。
(Explanation of sign)
Reference numerals of the drawings of the examples will be described.
C has a known processing capacity of 135 m 2 / h and a maximum processing capacity of 1,080 m 3 / day. A work vehicle capable of self-propelling with a crawler C1 by installing a granulation and solidification processing machine 1 and an inclined discharge conveyor 13 on a vehicle frame C2. Is. C1 is the crawler, C2 is the vehicle frame, and C3 is the driver's seat. 1 is a granulation and solidification processing machine of the embodiment, 10 is an inlet for sludge, a solidifying material, water, etc. provided behind the granulation and solidification processing machine 1, and 13 is a solidification treatment produced by the granulation and solidification processing machine 1. The sludge discharge conveyor provided in front of the vehicle frame C2 that lifts the object KM by about 3 to 6 m and drops and discharges (loads) it from the return portion 131 at the tip, 2 is a sloped ground, and the height of the loading field is about 17 m, which is the initial stage. The inclination angle θ is about 70 °. Reference numeral 20 is the slope of the slope 2 and 21 is the upper end of the slope 2. When deposited, the height becomes about 19 m. 22a, 22b, 22c, 22d are classification layers formed on the slope 2 and classified to the size of the particle size, 22a is a fine-grained recycled soil layer containing a large amount of fine particles, and 22b contains a large amount of medium powder. The medium grain regenerated soil layer, 22c is a coarse grain regenerated soil layer containing a large amount of coarse particles, and 22d is a gravel regenerated soil layer containing a large amount of gravel, gala, unimproved lumps, and the like. Reference numeral 23 denotes a large block wall for preventing scattering provided below the slope 2. 4 is a loading place, 5 is a conventional solidification treatment adjustment storage place, and 50 is an embankment of a conventional solidification treatment product KM. KM is the solidified product raised in the solidification treatment adjustment yard, G is gala, and R is gravel.

(汚泥の搬入と受け入れ)
建設現場から発生した無機性汚泥(以下、単に汚泥又は建設汚泥という)は、ダンプカー又はトラックに積載されて傾斜地2の近くに設けた汚泥ピット(図示せず)にまず貯留される。又、汚泥ピットの近くに固化材を貯えて所要量排出できるサイロ(図示せず)を設けている。
次に、汚泥ピットに貯えられた建設汚泥から再生土に製造する時点で、汚泥ピットの汚泥をバックホウ等の車両に積載して、再生土の製造を行う作業車Cまで運んで、作業車Cの同造粒固化処理機1の投入口10から所定量投入する。
(Sludge delivery and acceptance)
Inorganic sludge generated from a construction site (hereinafter, simply referred to as sludge or construction sludge) is first loaded on a dump truck or truck and stored in a sludge pit (not shown) provided near the slope 2. In addition, a silo (not shown) that can store the solidifying material and discharge the required amount is provided near the sludge pit.
Next, at the time of producing the recycled soil from the construction sludge stored in the sludge pit, the sludge in the sludge pit is loaded on a vehicle such as a backhoe and carried to the work vehicle C for producing the recycled soil, and the work vehicle C A predetermined amount is charged from the charging port 10 of the same granulation and solidification processing machine 1.

造粒固化処理機1の投入口10に建設汚泥を所定量投入した後、この所定量の建設汚泥に対して所定重量割合でサイロからセメント系固化材と所要量の水も投入して造粒固化処理機1を作動させて、汚泥と固化材と水とを混練して所要の硬化に進んで所要の流動性(粘性)を有する時点で、造粒固化処理機1を装置した作業車Cを動かして傾斜地2のある投入場4の投入位置へ移動し、作業車Cの傾斜排出コンベヤ13が傾斜地2方向に延びる位置にして、傾斜排出コンベヤ13のリターン部131が傾斜地2の上端21の上方に位置するまで作業車C上の位置を調整する。 After a predetermined amount of construction sludge is charged into the inlet 10 of the granulation solidification processing machine 1, a cement-based solidifying material and a required amount of water are also charged from the silo at a predetermined weight ratio to the predetermined amount of construction sludge to granulate. When the solidification processing machine 1 is operated to knead the sludge, the solidifying material, and water to proceed to the required hardening and have the required fluidity (viscosity), the work vehicle C equipped with the granulation solidification processing machine 1 Is moved to the loading position of the loading field 4 where the inclined ground 2 is located, the inclined discharge conveyor 13 of the work vehicle C is set to a position extending in the inclined ground 2 direction, and the return portion 131 of the inclined discharge conveyor 13 is located at the upper end 21 of the inclined ground 2. Adjust the position on the work vehicle C until it is located above.

その後、造粒固化処理機1による混練が充分になされて固化処理物が適度な硬化又は流動性となった時点で傾斜排出コンベヤ13を作動し、造粒固化処理機1の固化処理物KMを傾斜排出コンベヤ13によって上方前方にあるリターン部131まで高く持ち上げて傾斜地2の上端21に向けて落下排出(投入)する。 After that, when the kneading by the granulation solidification processing machine 1 is sufficiently performed and the solidification processed product becomes appropriately hardened or fluid, the inclined discharge conveyor 13 is operated to move the solidification processed product KM of the granulation solidification processing machine 1. The inclined discharge conveyor 13 lifts the return portion 131 upward and forward to the upper end 21 of the inclined ground 2 and drops and discharges (fills in) the return portion 131.

リターン部131から落下する固化処理物KMは傾斜地2の上端21近くの斜面20に沿って落下速度に自重落下の加速を加えて斜面20の表面に落下し、斜面20に沿って斜面20からの抵抗を受けながら滑落する。固化処理物KMの粒度が小さいものは粒の重み・径も小さいことから、斜面20に沿って転がることも少なく、斜面20からの抵抗と固化処理物KMの粘性で滑落(斜面20に沿っての落下)は小さい。これに対し、粒度が大きいものは自重による慣性力も大きく、径も大きいことから落下慣性力と転がりトルクが大きく、粒度が大きいものは下方へ転がりながら下方まで滑落する。
よって、粒度が小さいものは傾斜地2の上部に付着して堆積し、又粒度が大きいものは下方まで滑落して下方に堆積する。更に、傾斜面は下方に多く堆積して、その斜面の下部の傾斜角は小さく緩やかになっていく。
The solidified product KM that falls from the return portion 131 falls on the surface of the slope 20 by adding the acceleration of its own weight fall to the falling speed along the slope 20 near the upper end 21 of the slope 2, and falls from the slope 20 along the slope 20. It slides down while receiving resistance. Since the grain size and diameter of the solidified product KM are small, it rarely rolls along the slope 20 and slides down due to the resistance from the slope 20 and the viscosity of the solidified product KM (along the slope 20). The fall) is small. On the other hand, the one having a large particle size has a large inertial force due to its own weight and the diameter is also large, so that the falling inertial force and the rolling torque are large, and the one having a large particle size slides downward while rolling downward.
Therefore, those having a small grain size adhere to the upper part of the slope 2 and are deposited, and those having a large grain size slide down to the bottom and are deposited downward. Further, many slopes are deposited downward, and the slope angle at the bottom of the slope becomes small and gentle.

この状態を図4に示している。傾斜地2の斜面の最も上方の分級層22aには粒径の細粒分を多く含む固化処理物KMが斜面の上部の約19%程に堆積する。又、次に上方の分級層22bには粒径の中粒分が多く含む固化処理物が斜面に沿って35%程の層の厚みで堆積し、更に3番目の分級層22cには粗粒分を多く含む固化処理物が31%程の層厚みで堆積する。そして、礫R・ガラGや未改良塊等の固化処理物KMが最下層の分級層22dとして15%程の層厚みで堆積する(図4(a),(b)参照)。この粒度による分級の層の厚みは汚泥粒構成によって変動するが、その分級は上記の状態に近いものとなる。 This state is shown in FIG. In the uppermost classification layer 22a of the slope of the slope 2, a solidified product KM containing a large amount of fine particles having a particle size is deposited on about 19% of the upper part of the slope. Next, a solidified product containing a large amount of medium particles having a particle size is deposited on the upper classification layer 22b with a layer thickness of about 35% along the slope, and coarse grains are further formed on the third classification layer 22c. A solidified product containing a large amount of particles is deposited with a layer thickness of about 31%. Then, the solidified product KM such as gravel R / gala G and unimproved lumps is deposited as the lowermost classification layer 22d with a layer thickness of about 15% (see FIGS. 4 (a) and 4 (b)). The thickness of the classification layer according to this particle size varies depending on the sludge grain composition, but the classification is close to the above state.

よって、本発明の再生土は図4(b)に示すように、斜面に沿って粒度の大小によって大略分級されるように堆積する。堆積して4週間程で硬化が完了して再生土として利用できるようになる。 Therefore, as shown in FIG. 4B, the reclaimed soil of the present invention is deposited along the slope so as to be roughly classified according to the size of the particle size. After about 4 weeks of accumulation, hardening is completed and it can be used as recycled soil.

尚、上下に粒度で分級した各層は各層別に掘削して再生土として貯留して、その貯留したものから出荷の要求時に排出して、ダンプ車・トラック等に積載して目的地に運送することもできる。必要時に所定の粒度の傾斜地の層から直接掘削して運送してもよい。 In addition, each layer classified into upper and lower particles should be excavated for each layer and stored as recycled soil, discharged from the stored material at the time of shipping request, loaded on a dump truck, truck, etc. and transported to the destination. You can also. When necessary, it may be excavated and transported directly from a layer of sloped land having a predetermined particle size.

この斜面における層状に堆積した固化処理物KMにおける硬化の状態は、各層の前後で堆積した固化処理物の硬化度が変化する。各層の前方にある領域は硬化が進んでいないものであり、各層後方の堆積物は硬化が進んだものとなる。落下投入から4週間程で硬化が完了して再生土となる。更に、硬化の具合で出荷する場合は、層の前後の選択することで所要の硬度のものも選択出荷できる。 The state of hardening of the solidified product KM deposited in layers on this slope changes the degree of hardening of the solidified product deposited before and after each layer. The area in front of each layer is not hardened, and the deposits behind each layer are hardened. Hardening is completed in about 4 weeks after the fall, and the soil becomes recycled soil. Further, when shipping in the state of curing, those having the required hardness can be selectively shipped by selecting before and after the layer.

本発明では、細粒分が多い再生土を出荷する場合は、この傾斜地2の上部19%の厚みの分級層22aをトラクタショベル・高所採掘機で採掘して出荷すればよい。又、中粒分の成分の多い再生土を出荷したい場合は、斜面地の上方から19〜54%の第二層目の分級層22bの再生土を掘削して出荷する。更に、粗粒分が多い再生土の場合は、上方から54〜85%の第三層目の分級層22cの再生土を掘削して出荷すればよい。次に、礫・ガラ・未改良塊を多く含む第四層目の分級層22dの再生土は上方から85〜100%の最下層の再生土を掘削して出荷すればよい。
このように、粒度に応じた再生土は傾斜地2の上下の特定の分級層22a〜22dから掘削して出荷すればよいので、粒度に応じた再生土を利用でき、適切な再利用を可能とする。
In the present invention, when the recycled soil having a large amount of fine particles is shipped, the classification layer 22a having a thickness of 19% above the slope 2 may be mined with a tractor excavator / high-altitude mining machine and shipped. Further, when it is desired to ship the recycled soil having a large amount of medium-grained components, the recycled soil of the second layer 22b, which is 19 to 54% from the upper part of the slope, is excavated and shipped. Further, in the case of recycled soil having a large coarse particle content, the recycled soil of the third layer 22c of the third layer, which is 54 to 85% from the top, may be excavated and shipped. Next, the reclaimed soil of the fourth layer, which contains a large amount of gravel, gala, and unimproved lumps, may be shipped by excavating 85 to 100% of the reclaimed soil of the lowest layer from above.
In this way, the recycled soil according to the particle size can be excavated from the specific classification layers 22a to 22d above and below the slope 2 and shipped, so that the recycled soil according to the particle size can be used and can be reused appropriately. To do.

尚、傾斜地における固化処理物KMの落下位置は傾斜地の崖に沿った所定巾(作業範囲)で傾斜地の前方に進むように複数回繰り返し落下位置を移動して、固化処理物KMを1回又は複数回堆積して傾斜地の所定巾で傾斜面を開放した前方方向に主に移動するようにして所定巾で層状に前進させるようにした後別の傾斜地の作業範囲へ変える。 The drop position of the solidified product KM on the sloping land is repeatedly moved multiple times so as to advance in front of the sloping land within a predetermined width (working range) along the cliff of the sloping land, and the solidified product KM is dropped once or. After accumulating multiple times and moving the sloping surface mainly in the forward direction with the sloping surface open at the predetermined width of the sloping land so as to advance in layers with the predetermined width, the work range is changed to another sloping land.

これに代わる方法として、傾斜地から固化処理物KMの落下を前方へ1回又は複数回繰り返した後、傾斜地の落下位置の作業範囲を傾斜地の崖に沿って横の位置に移動して、移動した場所で固化処理物KMの落下を1回又は複数回した後、前方でなく崖の左右に沿っての横の位置に移動しての落下投入作業を繰り返すことで傾斜地の崖に沿って横方向に広い新しい領域で固化処理物を落下し、傾斜地の崖に沿って広い巾で前方への落下作業を少なく、崖の左右に移動して落下作業し、崖に沿って薄く左右に広い層状の再生土を形成していく方法がある。この方法の方が傾斜面の崩落が少なく、再生土の掘削も容易となる(図6参照)。掘削は、所定の時点で傾斜地の崖に沿って掘削機を移動して所定高さの層の粒度の再生土を採集して、再生土としてトラック・ダンプ車で運送して利用現場で投入する。 As an alternative method, after repeating the fall of the solidified product KM from the sloping land one or more times forward, the working range of the falling position of the sloping land was moved to the lateral position along the cliff of the sloping land and moved. After dropping the solidified product KM once or multiple times at the place, move to the side position along the left and right of the cliff instead of the front and repeat the drop-in operation to move laterally along the cliff on the slope. The solidified material is dropped in a wide new area, and the work of falling forward is small with a wide width along the cliff of the slope, and the work is done by moving to the left and right of the cliff. There is a way to form reclaimed soil. This method has less collapse of the inclined surface and facilitates excavation of recycled soil (see FIG. 6). For excavation, the excavator is moved along the cliff of the sloping land at a predetermined time to collect the reclaimed soil of the particle size of the layer of the predetermined height, and it is transported by truck / dump truck as the reclaimed soil and put into the site of use. ..

この図6の製造方法の場合は、作業車Cは傾斜地の崖に沿って横にシフトさせて、又は作業車Cの配置姿勢を変えることで傾斜排出コンベヤを首振りして、崖に沿って固化処理物を傾斜地の崖に沿って落下位置を横方向に移動させ、傾斜地の崖に沿って横長い層状堆積層を形成させる。後者の崖に沿って横長い層状の堆積層を形成する方が安全な作業ができ、又再生土の掘削が崖に沿って行えるので好ましい。 In the case of the manufacturing method of FIG. 6, the work vehicle C is shifted sideways along the cliff on the sloping ground, or the inclined discharge conveyor is swung along the cliff by changing the arrangement posture of the work vehicle C. The solidified material is moved laterally along the cliff of the sloping land to form a horizontally long layered sedimentary layer along the cliff of the sloping land. It is preferable to form a horizontally long layered sedimentary layer along the latter cliff because safe work can be performed and reclaimed soil can be excavated along the cliff.

本発明の実施例は建設汚泥を再生土として使用する例であるが、地山の掘削又はトンネル工事の掘削土でも発生する汚泥・排土の固化材で調整した再生土の再利用にも適用できる。 The embodiment of the present invention is an example of using construction sludge as recycled soil, but it is also applied to reuse of recycled soil prepared with a solidifying material of sludge and waste that is also generated in excavated soil of ground excavation or tunnel construction. it can.

C 作業車
C1 クローラ
C2 車両フレーム
C3 運転席
1 造粒固化処理機
10 投入口
13 傾斜排出コンベヤ
131 リターン部(排出部)
2 傾斜地
20 斜面
21 上端
22a,22b,22c,22d 分級層
23 散乱防止用大型ブロック壁
4 投入場
5 固化処理調整置場
50 固化処理物の盛土
KM 固化処理物
G ガラ
R 礫
C Work vehicle C1 Crawler C2 Vehicle frame C3 Driver's seat 1 Granulation solidification processing machine 10 Input port 13 Inclined discharge conveyor 131 Return part (discharge part)
2 Slope 20 Slope 21 Upper end 22a, 22b, 22c, 22d Classification layer 23 Large block wall for anti-scattering 4 Input site 5 Solidification treatment adjustment yard 50 Embankment of solidification treatment product KM Solidification treatment product G Gala R gravel

かかる課題を解決した本発明の構成は、
1) 土木建設現場から発生する無機性の汚泥に対して所定の重量割合で固化材と水とを併せて造粒固化処理機へ投入し、前記造粒固化処理機によって前記汚泥と前記固化材と前記水とを混練して固化処理物を作製するとともに、作製されて未硬化で流動性ある状態の前記固化処理物を所定角度の傾斜地の上端の上方の位置から連続的又は間欠的に落下させ、前記上端の上方から落下させることで前記固化処理物を前記傾斜地の斜面表面に沿って転がりながらほぐし且つ比重分離を働かせることによって落下させた前記固化処理物を撹拌させながら前記固化処理物の粒度が小さい成分が傾斜面の上部に、粒度が大きい成分は傾斜面の下部に堆積するように前記固化処理物の粒度に応じて上下に分級するように傾斜地の斜面に堆積させた状態で固化を進め、前記固化処理物を傾斜地の上端上方から繰り返し落下させることで、傾斜地の斜面位置及びその上端の位置が固化処理物の堆積で傾斜地の初期の位置から開放された方向へ移動して傾斜地に粒度で上下に分級された状態で再生土を層状に堆積させ、しかも前記傾斜地での固化処理物を落下開始する前の傾斜地の上端と傾斜下端との初期高低差は12m以上で且つ傾斜地上部の初期傾斜角度は50°〜75°の範囲のものとし、堆積した再生土を前記傾斜地の所要の高さから掘削することで所要の粒度の再生土をそのまま出荷できるようにしたことを特徴とする、無機性汚泥を再生土にする製造方法
2) 前記造粒固化処理機を自走できる車両に装置し、前記造粒固化処理機で混練して作製された造粒固化処理物を外側の上方高く持ち上げて落下排出できる傾斜排出コンベヤを前記車両に設けた作業車を用意し、前記作業車の造粒固化処理機に無機性汚泥と所定重量割合の固化材と水とを投入して混練して固化処理物を作製させながら前記作業車を傾斜地のある現場の投入位置まで移動させて停車させ、前記作業車にある前記傾斜排出コンベヤによって造粒固化処理機で作製された未硬化の固化処理物を持ち上げて前記傾斜排出コンベヤの上端のコンベヤリターン部から傾斜地の上端に向けて落下排出させて、傾斜地の斜面に再生土を層状に堆積させるようにした、前記1)記載の無機性汚泥を再生土にする製造方法
3) 傾斜地の崖に沿って所定巾の作業範囲で傾斜地の上端上方から固化処理物の落下作業を1回又は複数回行って、傾斜地の斜面及び上端が堆積して傾斜地の開放された方向に前進すると、その後傾斜地の崖に沿って処理した所定巾の前記作業範囲の崖に沿ってその左右の隣の所定巾の領域を落下処理作業の次の作業範囲とし、前記同様に1回又は複数回の固化処理物の落下作業を行った後傾斜地の崖に沿って更に左右の隣の所定巾の新しい領域を次の作業範囲として固化処理物の落下作業を同様に繰り返すことで傾斜地の傾斜面の崖に沿って広い巾の層状の堆積層を形成させ、所定粒度の堆積層の再生土の掘削も崖に沿って行うことで、落下処理作業と掘削排出処理作業を効率的にできることを特徴とする、前記1)又は2)記載の無機性汚泥を再生土にする製造方法
にある。
The configuration of the present invention that solves this problem is
1) With respect to the inorganic sludge generated from the civil engineering construction site, the solidifying material and water are put into the granulation solidification processing machine at a predetermined weight ratio, and the sludge and the solidifying material are charged by the granulation solidification processing machine. And the water are kneaded to prepare a solidified product, and the solidified product in a uncured and fluid state is continuously or intermittently dropped from a position above the upper end of a sloped ground at a predetermined angle. The solidified product is loosened while rolling along the slope surface of the sloping ground by dropping from above the upper end, and the solidified product dropped by exerting specific gravity separation while stirring the solidified product. The components with a small particle size are deposited on the upper part of the slope, and the components with a large particle size are deposited on the slope of the slope so as to be classified up and down according to the particle size of the solidified product. By repeatedly dropping the solidified material from above the upper end of the sloping land, the slope position of the sloping land and the position of the upper end of the sloping land move in the direction released from the initial position of the sloping land due to the deposition of the solidified material. The reclaimed soil is deposited in layers in a state of being classified into upper and lower parts according to the grain size, and the initial height difference between the upper end and the lower end of the slope before the solidified product on the slope starts to fall is 12 m or more and the above-ground part of the slope. The initial inclination angle of the slope is in the range of 50 ° to 75 °, and the accumulated reclaimed soil is excavated from the required height of the slope so that the reclaimed soil of the required grain size can be shipped as it is. 2) The granulation and solidification treatment machine is installed in a self-propelled vehicle, and the granulation and solidification treatment product produced by kneading with the granulation and solidification treatment machine is placed on the outside. Prepare a work vehicle equipped with an inclined discharge conveyor that can be lifted high upward and drop and discharge the vehicle, and put inorganic sludge, a solidifying material of a predetermined weight ratio, and water into the granulation and solidification processing machine of the work vehicle and knead them. Then, while producing the solidified product, the work vehicle is moved to a loading position at a site with a slope and stopped, and the uncured solidification produced by the granulation solidification processing machine by the slope discharge conveyor in the work vehicle. The inorganic sludge according to 1) above, wherein the processed material is lifted and dropped and discharged from the conveyor return portion at the upper end of the inclined discharge conveyor toward the upper end of the inclined ground so that the recycled soil is deposited in layers on the slope of the inclined ground. 3) Along the cliff of the sloping land, the solidified material is dropped one or more times from above the upper end of the sloping land within a work range of a predetermined width, and the slope and the upper end of the sloping land are deposited. Inclined When moving forward in the open direction of the ground, the area of the predetermined width adjacent to the cliff of the work range of the predetermined width processed along the cliff of the slope is set as the next work range of the drop processing work. After performing the dropping work of the solidified product once or a plurality of times in the same manner as described above, the dropping work of the solidified product is similarly performed along the cliff of the sloping land with a new area of a predetermined width adjacent to the left and right as the next work range. By repeating this process, a wide layered sedimentary layer is formed along the cliff on the slope of the sloping land, and the reclaimed soil of the sedimentary layer of a predetermined particle size is also excavated along the cliff. The method for producing recycled soil from the inorganic sludge according to 1) or 2) above, which is characterized by being able to efficiently perform the above.

Claims (4)

土木建設現場から発生する無機性の汚泥に対して所定の重量割合で固化材と水とを併せて造粒固化処理機へ投入し、前記造粒固化処理機によって前記汚泥と前記固化材と前記水とを混練して固化処理物を作製するとともに、作製されて未硬化で流動性ある状態の前記固化処理物を所定角度の傾斜地の上端の上方の位置から連続的又は間欠的に落下させ、前記上端の上方から落下させることで前記固化処理物を前記傾斜地の斜面表面に沿って転がりながらほぐし且つ比重分離を働かせることによって落下させた前記固化処理物を撹拌させながら前記固化処理物の粒度が小さい成分が傾斜面の上部に、粒度が大きい成分は傾斜面の下部に堆積するように前記固化処理物の粒度に応じて上下に分級するように傾斜地の斜面に堆積させた状態で固化を進め、前記固化処理物を傾斜地の上端上方から繰り返し落下させることで、傾斜地の斜面位置及びその上端の位置が固化処理物の堆積で傾斜地の初期の位置から開放された方向へ移動して傾斜地に粒度で上下に分級された状態で再生土を層状に堆積させ、堆積した再生土を前記傾斜地の所要の高さから掘削することで所要の粒度の再生土をそのまま出荷できるようにしたことを特徴とする、無機性汚泥を再生土にする製造方法。 A solidifying material and water are put into a granulation solidification processing machine in a predetermined weight ratio with respect to the inorganic sludge generated from the civil engineering construction site, and the sludge, the solidifying material and the solidifying material are charged by the granulation solidification processing machine. A solidified product is prepared by kneading with water, and the solidified product in a uncured and fluid state is continuously or intermittently dropped from a position above the upper end of a sloped ground at a predetermined angle. By dropping from above the upper end, the solidified product is loosened while rolling along the slope surface of the sloped ground, and by activating specific gravity separation, the solidified product that has been dropped is stirred while the particle size of the solidified product is adjusted. Solidification proceeds in a state where small components are deposited on the upper part of the slope and large particles are deposited on the slope of the slope so that they are classified vertically according to the particle size of the solidified product. By repeatedly dropping the solidified material from above the upper end of the slope, the slope position of the slope and the position of the upper end move in the direction released from the initial position of the slope due to the deposition of the solidified material, and the grain size on the slope. The feature is that the reclaimed soil is deposited in layers in the state of being classified up and down, and the reclaimed soil of the required grain size can be shipped as it is by excavating the deposited reclaimed soil from the required height of the slope. A manufacturing method that turns inorganic sludge into recycled soil. 前記造粒固化処理機を自走できる車両に装置し、前記造粒固化処理機で混練して作製された造粒固化処理物を外側の上方高く持ち上げて落下排出できる傾斜排出コンベヤを前記車両に設けた作業車を用意し、前記作業車の造粒固化処理機に無機性汚泥と所定重量割合の固化材と水とを投入して混練して固化処理物を作製させながら前記作業車を傾斜地のある現場の投入位置まで移動させて停車させ、前記作業車にある前記傾斜排出コンベヤによって造粒固化処理機で作製された未硬化の固化処理物を持ち上げて前記傾斜排出コンベヤの上端のコンベヤリターン部から傾斜地の上端に向けて落下排出させて、傾斜地の斜面に再生土を層状に堆積させるようにした、請求項1記載の無機性汚泥を再生土にする製造方法。 The granulation and solidification processing machine is installed in a self-propelled vehicle, and an inclined discharge conveyor capable of dropping and discharging the granulation and solidification processed product produced by kneading with the granulation and solidification processing machine is provided to the vehicle. Prepare the provided work vehicle, put inorganic sludge, a solidifying material of a predetermined weight ratio, and water into the granulation and solidification processing machine of the work vehicle and knead them to prepare a solidified product, and make the work vehicle on a slope. The vehicle is moved to the loading position at the site where the vehicle is loaded, stopped, and the uncured solidified product produced by the granulation solidification processing machine is lifted by the inclined discharge conveyor in the work vehicle to lift the conveyor return at the upper end of the inclined discharge conveyor. The method for producing recycled soil from the inorganic sludge according to claim 1, wherein the recycled soil is deposited in layers on the slope of the slope by dropping and discharging from the portion toward the upper end of the slope. 傾斜地の崖に沿って所定巾の作業範囲で傾斜地の上端上方から固化処理物の落下作業を1回又は複数回行って、傾斜地の斜面及び上端が堆積して傾斜地の開放された方向に前進すると、その後傾斜地の崖に沿って処理した所定巾の前記作業範囲の崖に沿ってその左右の隣の所定巾の領域を落下処理作業の次の作業範囲とし、前記同様に1回又は複数回の固化処理物の落下作業を行った後傾斜地の崖に沿って更に左右の隣の所定巾の新しい領域を次の作業範囲として固化処理物の落下作業を同様に繰り返すことで傾斜地の傾斜面の崖に沿って広い巾の層状の堆積層を形成させ、所定粒度の堆積層の再生土の掘削も崖に沿って行うことで、落下処理作業と掘削排出処理作業を効率的にできることを特徴とする、請求項1又は2記載の無機性汚泥を再生土にする製造方法。 When the solidified material is dropped once or multiple times along the cliff of the sloping land from above the upper end of the sloping land within a work range of a predetermined width, the slope and the upper end of the sloping land are deposited and advance in the open direction of the sloping land. After that, the area of the predetermined width next to the cliff of the work range of the predetermined width processed along the cliff of the sloping land is set as the next work range of the drop processing work, and once or multiple times in the same manner as described above. After performing the fall work of the solidified material, the cliff on the slope of the sloping land is further repeated along the cliff of the sloping land with a new area of a predetermined width next to the left and right as the next work range. By forming a layered sedimentary layer with a wide width along the cliff and excavating the reclaimed soil of the sedimentary layer of a predetermined grain size along the cliff, it is possible to efficiently perform the drop treatment work and the excavation discharge treatment work. , A method for producing recycled soil from the inorganic sludge according to claim 1 or 2. 前記傾斜地での固化処理物を落下開始する前の傾斜地の上端と傾斜下端との初期高低差は12m以上で且つ傾斜地上部の初期傾斜角度は50°〜75°の範囲のものである、請求項1〜3いずれか記載の無機性汚泥を再生土にする製造方法。 Claimed that the initial height difference between the upper end and the lower end of the slope before the solidified product on the slope starts to fall is 12 m or more, and the initial inclination angle of the above-ground portion of the slope is in the range of 50 ° to 75 °. A production method for converting the inorganic sludge according to any one of 1 to 3 into recycled soil.
JP2019067410A 2019-03-29 2019-03-29 Method for producing inorganic sludge from recycled soil Active JP6689429B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067410A JP6689429B1 (en) 2019-03-29 2019-03-29 Method for producing inorganic sludge from recycled soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067410A JP6689429B1 (en) 2019-03-29 2019-03-29 Method for producing inorganic sludge from recycled soil

Publications (2)

Publication Number Publication Date
JP6689429B1 JP6689429B1 (en) 2020-04-28
JP2020163319A true JP2020163319A (en) 2020-10-08

Family

ID=70413893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067410A Active JP6689429B1 (en) 2019-03-29 2019-03-29 Method for producing inorganic sludge from recycled soil

Country Status (1)

Country Link
JP (1) JP6689429B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058815A (en) * 2019-10-02 2021-04-15 惠久 田畑 Production facility of solidified sludge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094160A2 (en) * 1999-10-21 2001-04-25 Komatsu Ltd. Fluidized soil material supply machine
JP2001279663A (en) * 2000-03-31 2001-10-10 Hitachi Constr Mach Co Ltd Self-advancing soil improving machine
JP2002339397A (en) * 2001-05-15 2002-11-27 Hitachi Constr Mach Co Ltd Automotive mud hardening apparatus
JP2006207181A (en) * 2005-01-26 2006-08-10 Eesukon Kogyo Kk Method for placing leveling concrete by using excavated soil
JP2010207784A (en) * 2009-03-12 2010-09-24 Takenaka Komuten Co Ltd Method for manufacturing granular improved soil and granular improved soil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094160A2 (en) * 1999-10-21 2001-04-25 Komatsu Ltd. Fluidized soil material supply machine
JP2001279663A (en) * 2000-03-31 2001-10-10 Hitachi Constr Mach Co Ltd Self-advancing soil improving machine
JP2002339397A (en) * 2001-05-15 2002-11-27 Hitachi Constr Mach Co Ltd Automotive mud hardening apparatus
JP2006207181A (en) * 2005-01-26 2006-08-10 Eesukon Kogyo Kk Method for placing leveling concrete by using excavated soil
JP2010207784A (en) * 2009-03-12 2010-09-24 Takenaka Komuten Co Ltd Method for manufacturing granular improved soil and granular improved soil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058815A (en) * 2019-10-02 2021-04-15 惠久 田畑 Production facility of solidified sludge
JP7360884B2 (en) 2019-10-02 2023-10-13 惠久 田畑 Sludge solidification processing product manufacturing equipment

Also Published As

Publication number Publication date
JP6689429B1 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6689429B1 (en) Method for producing inorganic sludge from recycled soil
EP2346617A2 (en) Apparatus and method for reclaiming material
JP5317434B2 (en) Excavated soil reforming plant containing defective soil residue
WO2015037249A1 (en) Civil engineering improvement method and modifying paper powder material
JP7360884B2 (en) Sludge solidification processing product manufacturing equipment
GB2443191A (en) Soil recycling apparatus
JP3375599B2 (en) Operation management method of sediment production system
JP2019093558A (en) Production method for erosion control soil cement
JP2000126572A (en) Fluidization device
JP7115714B2 (en) Bucket for transferring powder and granular material transfer method
JP3742786B2 (en) Earth and sand product production system
JP3312134B2 (en) Method of controlling reservoir thickness of dam filter material in dam filter material manufacturing method
JP3706094B2 (en) Soil improvement system
JP6720583B2 (en) Method and apparatus for manufacturing building material using tunnel excavation shear
CN215923787U (en) Sandstone aggregate storage system
JP3375573B2 (en) Soil improvement material supply device and self-propelled soil improvement machine
Copeland et al. Design of coarse tailings and dry ash disposal facilities
JP3375600B2 (en) Soil improvement method
CN201037422Y (en) Environment-friendly type composite pit gold mining vehicle
CN106592365A (en) Preparation method of road backing material
JP4138514B2 (en) Material input method and input device
RU2039272C1 (en) Method for dumping and working of hard rocks with coarse fractionation
Copeland et al. Disposal of belt filtered tailings–Skorpion Zinc case study: feasibility, design and early operation
Asthana et al. Construction Aspects of Dams
CN113666134A (en) Sandstone aggregate storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200407

R150 Certificate of patent or registration of utility model

Ref document number: 6689429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250