JP2020163254A - Pure water production device and pure water production method - Google Patents
Pure water production device and pure water production method Download PDFInfo
- Publication number
- JP2020163254A JP2020163254A JP2019064139A JP2019064139A JP2020163254A JP 2020163254 A JP2020163254 A JP 2020163254A JP 2019064139 A JP2019064139 A JP 2019064139A JP 2019064139 A JP2019064139 A JP 2019064139A JP 2020163254 A JP2020163254 A JP 2020163254A
- Authority
- JP
- Japan
- Prior art keywords
- water
- permeated
- flow rate
- channel
- raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、純水製造装置及び純水製造方法に関する。 The present invention relates to a pure water production apparatus and a pure water production method.
一般に純水製造装置には、不純物の除去を目的として、原水を透過水と濃縮水とに分離するための逆浸透膜が備えられている。逆浸透膜は、有効圧を一定とした場合、水温が高くなると水の粘性が低下して透過水量が増大する。一方、水温が低くなると水の粘性が上昇して透過水量が減少する。このため、逆浸透膜は、冬期の水温低下を見越して、低水温でも十分な透過水量が得られるように装置構成や操業条件が設計されている。そのため、水温が上昇する夏期では、逆浸透膜の透過水量が上昇し、透過水量の設計値を超えてしまう問題がある。この問題に対処するため、その都度、逆浸透膜の有効圧力を下げて透過水量を調整する必要がある。 Generally, a pure water production apparatus is provided with a reverse osmosis membrane for separating raw water into permeated water and concentrated water for the purpose of removing impurities. When the effective pressure of the reverse osmosis membrane is constant, the viscosity of water decreases and the amount of permeated water increases as the water temperature increases. On the other hand, when the water temperature becomes low, the viscosity of water increases and the amount of permeated water decreases. For this reason, the device configuration and operating conditions of the reverse osmosis membrane are designed so that a sufficient amount of permeated water can be obtained even at a low water temperature in anticipation of a decrease in water temperature in winter. Therefore, in the summer when the water temperature rises, there is a problem that the amount of permeated water in the reverse osmosis membrane increases and exceeds the design value of the permeated water amount. In order to deal with this problem, it is necessary to reduce the effective pressure of the reverse osmosis membrane and adjust the amount of permeated water each time.
ところで、逆浸透膜は、有効圧力を下げると不純物の阻止率が低下する特性がある。このため、逆浸透膜の有効圧力を例えば0.6MPa以上に設定し、不純物の阻止率が低下しない条件で操業を行う必要がある。しかし、上述のように夏期において水温の上昇に伴って有効圧力を低下させると、不純物の阻止率が低下し、透過水の水質が低下する問題がある。 By the way, the reverse osmosis membrane has a property that the blocking rate of impurities decreases when the effective pressure is lowered. Therefore, it is necessary to set the effective pressure of the reverse osmosis membrane to, for example, 0.6 MPa or more, and perform the operation under the condition that the inhibition rate of impurities does not decrease. However, as described above, if the effective pressure is lowered as the water temperature rises in the summer, there is a problem that the blocking rate of impurities is lowered and the water quality of the permeated water is lowered.
特許文献1には、原水を昇圧して並列に接続した複数個の逆浸透膜モジュール・ユニットに供給し、透過水を得る際に、原水の温度および/または透過水の水質に応じて逆浸透膜モジュール・ユニットの運転本数を制御する逆浸透処理装置の運転方法が記載されている。 In Patent Document 1, raw water is boosted and supplied to a plurality of reverse osmosis membrane module units connected in parallel, and when permeated water is obtained, reverse osmosis is performed according to the temperature of the raw water and / or the quality of the permeated water. The operation method of the reverse osmosis processing apparatus which controls the operation number of the membrane module unit is described.
また、特許文献2には、給水中の不純物を除去する逆浸透膜部と、給水を逆浸透膜部へ供給するポンプと、逆浸透膜部からの透過水の流量を検知する流量センサと、ポンプの回転数を出力周波数に応じて可変させるインバータと、流量センサからの流量検知信号に基づいてインバータへ指令信号を出力する制御部とを備える水質改質システムが記載されている。 Further, Patent Document 2 describes a reverse osmosis membrane portion that removes impurities in water supply, a pump that supplies water supply to the reverse osmosis membrane portion, and a flow rate sensor that detects the flow rate of permeated water from the reverse osmosis membrane portion. A water quality reforming system including an inverter that changes the rotation speed of a pump according to an output frequency and a control unit that outputs a command signal to the inverter based on a flow rate detection signal from a flow rate sensor is described.
また、特許文献3には、ろ過膜装置に通じる原水供給ラインに設けられる原水供給ポンプと、ろ過膜装置のろ過水ラインに設けられる流量発信器を有し、流量発信器から送信される流量信号に基づいて原水供給ポンプの回転数を制御し、ろ過水流量を一定にするろ過水流量制御手段と、ろ過膜装置の濃縮水ラインに設けられ濃縮水流量を一定にする濃縮水定流量弁と、ろ過膜装置と上記濃縮水定流量弁との間に介設され、濃縮水圧力を減圧する減圧弁と、減圧弁と縮水定流量弁との間に介設される圧力指示器とを備える精製水製造装置が記載されている。 Further, Patent Document 3 includes a raw water supply pump provided in a raw water supply line leading to a filtration membrane device and a flow rate transmitter provided in the filtered water line of the filtration membrane device, and a flow rate signal transmitted from the flow rate transmitter. A filtered water flow rate control means that controls the rotation speed of the raw water supply pump to keep the filtered water flow rate constant, and a concentrated water constant flow valve provided in the concentrated water line of the filter membrane device to keep the concentrated water flow rate constant. , A pressure reducing valve interposed between the filtration membrane device and the constant flow valve for concentrated water to reduce the pressure of concentrated water, and a pressure indicator provided between the pressure reducing valve and the constant flow valve for reduced water. A purified water production apparatus is described.
しかし、特許文献1では、数多くの逆浸透膜モジュール・ユニットを準備する必要があり、純水製造装置の設置スペースが増大する問題がある。また、特許文献2では、水温の変化に応じてポンプの回転数を制御するものであり、透過水量が水温に応じて変動するので、夏期に透過水量が増大するおそれがある。更に、特許文献3では、給水ポンプの回転数を制御してろ過膜への水量を一定にすることで水温の変動があってもろ過水量を一定に保つようにしており、ろ過膜の有効圧力が低下した場合は水質の悪化を招くおそれがある。 However, in Patent Document 1, it is necessary to prepare a large number of reverse osmosis membrane module units, and there is a problem that the installation space of the pure water production apparatus is increased. Further, in Patent Document 2, the rotation speed of the pump is controlled according to a change in water temperature, and the amount of permeated water fluctuates according to the water temperature, so that the amount of permeated water may increase in summer. Further, in Patent Document 3, the rotation speed of the water supply pump is controlled to keep the amount of water to the filtration membrane constant so that the amount of filtered water is kept constant even if the water temperature fluctuates, and the effective pressure of the filtration membrane is kept constant. If the value decreases, the water quality may deteriorate.
本発明は上記事情に鑑みてなされたものであり、夏期に水温が上昇した場合であっても、純水の水質を低下させず、かつ、純水の生産量を過剰させない純水製造装置及び純水製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a pure water production apparatus that does not deteriorate the quality of pure water and does not excessively produce pure water even when the water temperature rises in summer. An object of the present invention is to provide a method for producing pure water.
上記課題を解決するため、本発明は以下の構成を採用する。
[1] 原水を供給する原水供給路と、
前記原水供給路に設けられ、前記原水を供給する供給ポンプと、
前記供給ポンプによって供給された前記原水を透過水と濃縮水とに分離する逆浸透膜と、
前記逆浸透膜を透過した前記透過水が流れる透過水路と、
前記透過水路から分岐され、前記透過水の一部を前記原水供給路に返送可能な1または2以上の循環水路と、
前記循環水路にそれぞれ設けられ、前記原水、前記透過水または前記濃縮水のいずれかの温度が、前記循環水路毎に設定された基準温度を超えた場合に前記循環水路をそれぞれ開く1または2以上の開閉弁と、
前記循環水路の分岐位置よりも下流側の前記透過水路に設置された第1流量計と、
前記第1流量計によって測定された前記透過水の流量が第1基準流量範囲から外れた場合に、前記第1流量計により測定される前記透過水の流量が前記第1基準流量範囲内になるように前記供給ポンプによる前記原水の供給量を制御する制御部と、を備えることを特徴とする純水製造装置。
[2] 前記循環水路として、第1循環水路及び第2循環水路の2つが備えられ、
前記開閉弁として、第1開閉弁と第2開閉弁の2つが備えられ、
前記第1開閉弁は、前記第1循環水路に設けられ、前記原水、前記透過水または前記濃縮水のいずれかの温度が第1基準温度を超えた場合に前記第1循環水路を開く開閉弁であり、
前記第2開閉弁は、前記第2循環水路に設けられ、前記原水、前記透過水または前記濃縮水のいずれかの温度が、前記第1基準温度より高い第2基準温度を超えた場合に前記第2循環水路を開く開閉弁であることを特徴とする[1]に記載の純水製造装置。
[3] 前記逆浸透膜から排出された前記濃縮水が流れる濃縮水路と、
前記濃縮水路に設置された第2流量計と、
前記濃縮水路に設置され、前記第2流量計によって測定された前記濃縮水の流量があらかじめ設定された第2基準流量範囲から外れた場合に、前記第2流量計により測定される前記濃縮水の流量が前記第2基準流量範囲内になるように制御する流量制御弁と、
を更に備えることを特徴とする[1]または[2]に記載の純水製造装置。
[4] 前記制御部は、前記第1流量計からの流量測定値が入力され、前記流量測定値に基づき前記原水の供給量を制御するための制御信号を前記供給ポンプに出力するインバータであることを特徴とする[1]乃至[3]の何れか一項に記載の純水製造装置。
In order to solve the above problems, the present invention adopts the following configuration.
[1] Raw water supply channel for supplying raw water and
A supply pump provided in the raw water supply path and supplying the raw water,
A reverse osmosis membrane that separates the raw water supplied by the supply pump into permeated water and concentrated water.
A permeation channel through which the permeated water that has permeated the reverse osmosis membrane flows,
One or more circulating channels that are branched from the permeated channel and can return a part of the permeated water to the raw water supply channel.
One or two or more that are provided in the circulating water channels and open the circulating water channels when the temperature of any of the raw water, the permeated water, or the concentrated water exceeds the reference temperature set for each circulating water channel. On-off valve and
A first flow meter installed in the permeation channel on the downstream side of the branch position of the circulation channel, and
When the flow rate of the permeated water measured by the first flow meter deviates from the first reference flow rate range, the flow rate of the permeated water measured by the first flow meter falls within the first reference flow range. A pure water production apparatus including a control unit for controlling the supply amount of the raw water by the supply pump.
[2] Two circulation waterways, a first circulation waterway and a second circulation waterway, are provided as the circulation waterway.
Two on-off valves, a first on-off valve and a second on-off valve, are provided.
The first on-off valve is provided in the first circulating water channel and opens the first circulating water channel when the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the first reference temperature. And
The second on-off valve is provided in the second circulation water channel, and when the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the second reference temperature higher than the first reference temperature, the said. The pure water production apparatus according to [1], which is an on-off valve that opens a second circulation water channel.
[3] A concentrated water channel through which the concentrated water discharged from the reverse osmosis membrane flows, and
The second flow meter installed in the concentrated water channel and
The concentrated water measured by the second flow meter when the flow rate of the concentrated water installed in the concentrated water channel and measured by the second flow meter deviates from a preset second reference flow rate range. A flow rate control valve that controls the flow rate so that it is within the second reference flow rate range,
The pure water production apparatus according to [1] or [2], further comprising.
[4] The control unit is an inverter to which a flow rate measurement value from the first flow meter is input and a control signal for controlling the supply amount of the raw water based on the flow rate measurement value is output to the supply pump. The pure water production apparatus according to any one of [1] to [3].
[5] 供給ポンプにより原水を供給する供給工程と、
前記供給工程にて供給された前記原水を逆浸透膜により透過水と濃縮水とに分離する分離工程と、
前記原水、前記透過水または前記濃縮水のいずれかの温度が基準温度を超えた場合に、透過水路を流れる前記透過水の一部を、前記透過水路から分岐された1または2以上の循環水路によって前記供給工程前の前記原水に戻す循環工程と、
前記循環水路の分岐位置よりも下流側の前記透過水路において、第1流量計により、前記透過水の流量を測定する第1流量測定工程と、
前記第1流量測定工程において測定された前記透過水の流量が第1基準流量範囲から外れた場合に、前記第1流量計により測定される前記透過水の流量が前記第1基準流量範囲内になるように前記供給ポンプによる前記原水の供給量を制御する供給制御工程と、を備えることを特徴とする純水製造方法。
[6] 前記循環工程において、前記基準温度として複数の異なる基準温度を設定し、
前記原水、前記透過水または前記濃縮水のいずれかの温度が、前記複数の基準温度のうち最低の基準温度を超えた場合に、前記循環水路によって、前記透過水の一部を前記供給工程前の前記原水に戻すことを開始し、
前記原水、前記透過水または前記濃縮水のいずれかの温度が前記複数の基準温度を超える毎に、前記循環水路による前記透過水の循環量を増量することを特徴とする[5]に記載の純水製造方法。
[7] 前記循環工程は、前記原水、前記透過水または前記濃縮水のいずれかの温度が第1基準温度を超えた場合に、前記透過水路を流れる前記透過水の一部を、前記第1循環水路によって前記供給工程前の前記原水に戻し、
前記原水、前記透過水または前記濃縮水のいずれかの温度が前記第1基準温度より高い第2基準温度を超えた場合に、前記透過水路を流れる前記透過水の一部を、前記第1循環水路及び前記第2循環水路によって前記供給工程前の前記原水に戻す工程であることを特徴とする[5]または[6]に記載の純水製造方法。
[8] 前記逆浸透膜から排出されて濃縮水路を流れる前記濃縮水の流量を、第2流量計により測定する第2流量測定工程と、
前記第2流量工程において測定された前記濃縮水の流量が第2基準流量範囲から外れた場合に、前記第2流量計により測定される前記濃縮水の流量が前記第2基準流量範囲内になるように制御する流量制御工程と、
を更に備えることを特徴とする[5]乃至[7]の何れか一項に記載の純水製造方法。
[5] The supply process of supplying raw water by a supply pump and
A separation step of separating the raw water supplied in the supply step into permeated water and concentrated water by a reverse osmosis membrane, and
When the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the reference temperature, a part of the permeated water flowing through the permeated water channel is divided into one or more circulating water channels branched from the permeated water channel. In the circulation process of returning to the raw water before the supply process,
A first flow rate measuring step of measuring the flow rate of the permeated water with a first flow meter in the permeated water channel on the downstream side of the branch position of the circulating water channel.
When the flow rate of the permeated water measured in the first flow rate measuring step deviates from the first reference flow rate range, the flow rate of the permeated water measured by the first flow meter falls within the first reference flow rate range. A method for producing pure water, which comprises a supply control step for controlling the supply amount of the raw water by the supply pump so as to be provided.
[6] In the circulation step, a plurality of different reference temperatures are set as the reference temperature, and the reference temperature is set.
When the temperature of any of the raw water, the permeated water, or the concentrated water exceeds the lowest reference temperature among the plurality of reference temperatures, a part of the permeated water is provided before the supply step by the circulation channel. Started to return to the raw water of
4. The amount of permeated water circulated by the circulating water channel is increased each time the temperature of any of the raw water, the permeated water, or the concentrated water exceeds the plurality of reference temperatures [5]. Pure water production method.
[7] In the circulation step, when the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the first reference temperature, a part of the permeated water flowing through the permeated water channel is first. Returned to the raw water before the supply process by the circulation channel,
When the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the second reference temperature higher than the first reference temperature, a part of the permeated water flowing through the permeated water channel is circulated in the first circulation. The pure water production method according to [5] or [6], wherein the step is to return the raw water before the supply step by the water channel and the second circulation water channel.
[8] A second flow rate measuring step of measuring the flow rate of the concentrated water discharged from the reverse osmosis membrane and flowing through the concentrated water channel with a second flow meter.
When the flow rate of the concentrated water measured in the second flow rate step deviates from the second reference flow rate range, the flow rate of the concentrated water measured by the second flow meter falls within the second reference flow range. The flow rate control process to control
The pure water production method according to any one of [5] to [7], which further comprises.
[9] 供給ポンプによって供給した原水を、逆浸透膜によって透過水と濃縮水とに分離する純水製造方法において、
前記原水、前記透過水または前記濃縮水の温度が基準温度を超えた場合に、前記透過水の一部を前記供給前の原水に返送するとともに、前記原水、前記透過水または前記濃縮水の温度に応じて前記透過水の返送量を調整し、
前記透過水のうち、原水への返送分を除いた残部の流量が、透過水の返送開始前の流量になるように、前記供給ポンプによる供給量を調整することを特徴とする純水製造方法。
[9] In a pure water production method in which raw water supplied by a supply pump is separated into permeated water and concentrated water by a reverse osmosis membrane.
When the temperature of the raw water, the permeated water or the concentrated water exceeds the reference temperature, a part of the permeated water is returned to the raw water before supply, and the temperature of the raw water, the permeated water or the concentrated water is reached. Adjust the amount of permeated water returned according to
A pure water production method characterized by adjusting the supply amount by the supply pump so that the flow rate of the remaining portion of the permeated water excluding the portion returned to the raw water becomes the flow rate before the start of the return of the permeated water. ..
本発明の純水製造装置によれば、原水等の水温が基準温度を超える場合に自動的に開閉弁が開くことで、透過水量の増大のおそれがある高水温時に、透過水の一部が循環水路を経由して原水供給路に戻され、純水製造装置からユースポイントや後段の水処理装置に供給される透過水量の増大が抑制できる。また、透過水の一部が原水供給路に戻されることで、原水の水質が向上する。更に、第1流量計の流量値が第1基準流量範囲から外れた場合に、制御部が供給ポンプによる原水の供給量を制御することで、透過水量が第1基準流量範囲を維持するようにする。これにより、透過水の流量が必要以上に減少することが防止され、ユースポイントや後段の水処理装置に十分な量の透過水を供給できる。以上のように、本発明の純水製造装置によれば、高水温時であっても、純水の水質を低下させず、かつ、純水の生産量を適正な範囲に維持することができる。 According to the pure water production apparatus of the present invention, when the water temperature of raw water or the like exceeds the reference temperature, the on-off valve is automatically opened, so that a part of the permeated water is released at a high water temperature where the amount of permeated water may increase. It is returned to the raw water supply channel via the circulation channel, and the increase in the amount of permeated water supplied from the pure water production device to the point of use and the water treatment device in the subsequent stage can be suppressed. In addition, the quality of raw water is improved by returning a part of the permeated water to the raw water supply channel. Further, when the flow rate value of the first flow meter deviates from the first reference flow rate range, the control unit controls the amount of raw water supplied by the supply pump so that the permeated water amount maintains the first reference flow rate range. To do. As a result, the flow rate of the permeated water is prevented from being reduced more than necessary, and a sufficient amount of permeated water can be supplied to the point of use and the water treatment device in the subsequent stage. As described above, according to the pure water production apparatus of the present invention, it is possible to maintain the production amount of pure water within an appropriate range without deteriorating the water quality of pure water even at a high water temperature. ..
また、本発明の純水製造装置によれば、第1循環水路及び第2循環水路と、第1開閉弁及び第2開閉弁とが備えられ、水温が上昇するにつれて第1循環水路に透過水が流れ、更に水温が上昇した場合には第1循環水路と第2循環水路とに透過水が流れるように構成されているので、水温の変化に応じて、原水供給路に戻す透過水量を調整でき、純水の生産量を適正な範囲に維持することができる。 Further, according to the pure water production apparatus of the present invention, the first circulation water channel and the second circulation water channel, the first on-off valve and the second on-off valve are provided, and as the water temperature rises, the permeated water enters the first circulation water channel. Is configured so that permeated water flows into the first circulation channel and the second circulation channel when the water temperature rises further, so the amount of permeated water returned to the raw water supply channel is adjusted according to the change in water temperature. It is possible to maintain the production amount of pure water within an appropriate range.
更に、本発明の純水製造装置によれば、濃縮水路を流れる濃縮水の流量が第2基準流量範囲を外れた場合に、流量制御弁によって濃縮水の流量を適正な流量に制御する。これにより、例えば、濃縮水の流量が増大して透過水量の減少が懸念される場合であっても、濃縮水と透過水の水量比が適切な範囲に維持される。このため、逆浸透膜の操業条件を適正な範囲に維持でき、純水の品質を維持できる。 Further, according to the pure water production apparatus of the present invention, when the flow rate of the concentrated water flowing through the concentrated water channel is out of the second reference flow rate range, the flow rate control valve controls the flow rate of the concentrated water to an appropriate flow rate. As a result, for example, even when the flow rate of the concentrated water increases and there is a concern that the amount of permeated water decreases, the ratio of the amount of concentrated water to the permeated water is maintained within an appropriate range. Therefore, the operating conditions of the reverse osmosis membrane can be maintained within an appropriate range, and the quality of pure water can be maintained.
更にまた、本発明の純水製造装置によれば、制御部がインバータであるので、第1流量計からの流量測定値に基づき原水の供給量を容易に制御できる。 Furthermore, according to the pure water production apparatus of the present invention, since the control unit is an inverter, the supply amount of raw water can be easily controlled based on the flow rate measurement value from the first flow meter.
本発明の純水製造方法によれば、循環工程において、原水等の水温が基準温度を超える場合に、透過水の一部が原水に戻されるので、ユースポイントや後段の水処理装置に供給される透過水量の増大を抑制できる。また、透過水の一部が原水供給路に戻されることで、原水の水質が向上する。更に、第1流量測定工程及び供給制御工程において、透過水路と循環水路との分岐位置よりも下流側に設置された第1流量計の流量値が第1基準流量範囲から外れた場合に、供給ポンプによる原水の供給量を制御することで、透過水量が第1基準流量範囲を維持するようにする。これにより、透過水の流量が必要以上に減少することが防止され、ユースポイントや後段の水処理装置に十分な量の透過水を供給できる。以上のように、本発明の純水製造方法によれば、高水温時であっても、純水の水質を低下させず、かつ、純水の生産量を適正な範囲に維持することができる。 According to the pure water production method of the present invention, when the temperature of raw water or the like exceeds the reference temperature in the circulation step, a part of the permeated water is returned to the raw water, so that it is supplied to the point of use or the water treatment device in the subsequent stage. It is possible to suppress an increase in the amount of permeated water. In addition, the quality of raw water is improved by returning a part of the permeated water to the raw water supply channel. Further, in the first flow rate measurement step and the supply control step, when the flow rate value of the first flow meter installed on the downstream side of the branch position between the permeation water channel and the circulation water channel deviates from the first reference flow rate range, the supply is performed. By controlling the amount of raw water supplied by the pump, the amount of permeated water is maintained in the first reference flow rate range. As a result, the flow rate of the permeated water is prevented from being reduced more than necessary, and a sufficient amount of permeated water can be supplied to the point of use and the water treatment device in the subsequent stage. As described above, according to the pure water production method of the present invention, it is possible to maintain the production amount of pure water in an appropriate range without deteriorating the water quality of pure water even at a high water temperature. ..
また、本発明の純水製造方法によれば、基準温度として複数の異なる基準温度を設定し、原水等の温度が複数の基準温度を超える毎に、循環水路による透過水の循環量を増量するので、水温の変化に応じて、原水供給路に戻す透過水量を調整でき、純水の生産量を適正な範囲に維持することができる。 Further, according to the pure water production method of the present invention, a plurality of different reference temperatures are set as reference temperatures, and the amount of permeated water circulated through the circulation channel is increased each time the temperature of raw water or the like exceeds a plurality of reference temperatures. Therefore, the amount of permeated water returned to the raw water supply path can be adjusted according to the change in water temperature, and the amount of pure water produced can be maintained within an appropriate range.
更に、本発明の純水製造方法によれば、水温が上昇するにつれて第1循環水路に透過水が流れ、更に水温が上昇した場合には第1循環水路と第2循環水路とに透過水が流れるように構成されているので、水温の変化に応じて、原水供給路に戻す透過水量を調整でき、純水の生産量を適正な範囲に維持することができる。 Further, according to the pure water production method of the present invention, permeated water flows into the first circulating water channel as the water temperature rises, and when the water temperature rises further, permeated water flows into the first circulating water channel and the second circulating water channel. Since it is configured to flow, the amount of permeated water returned to the raw water supply channel can be adjusted according to changes in water temperature, and the amount of pure water produced can be maintained within an appropriate range.
更にまた、本発明の純水製造方法によれば、第2流量測定工程及び流量制御工程において、濃縮水路を流れる濃縮水の流量が第2基準流量範囲を外れた場合に、濃縮水の流量を適正な流量に制御する。これにより、例えば、濃縮水の流量が増大して透過水量の減少が懸念される場合であっても、濃縮水と透過水の水量比が適切な範囲に維持される。このため、逆浸透膜の操業条件を適正な範囲に維持でき、純水の品質を維持できる。 Furthermore, according to the pure water production method of the present invention, in the second flow rate measuring step and the flow rate control step, when the flow rate of the concentrated water flowing through the concentrated water channel is out of the second reference flow rate range, the flow rate of the concentrated water is adjusted. Control to an appropriate flow rate. As a result, for example, even when the flow rate of the concentrated water increases and there is a concern that the amount of permeated water decreases, the ratio of the amount of concentrated water to the permeated water is maintained within an appropriate range. Therefore, the operating conditions of the reverse osmosis membrane can be maintained within an appropriate range, and the quality of pure water can be maintained.
本発明の純水製造方法によれば、原水等の温度が基準温度を超えた場合に、透過水の一部を原水に返送する。また、原水等の温度に応じて透過水の返送量を調整する。更に、原水への返送分を除いた透過水の残部の流量が、返送開始前の流量になるように、供給ポンプによる供給量を調整する。
これにより、夏期の高水温時に逆浸透膜を透過する透過水量が増大したとしても、ユースポイントや後段の水処理装置に供給される透過水量の増大が抑制できる。また、透過水の一部が原水供給路に戻されることで、原水の水質が向上する。更に、原水への返送分を除いた透過水の残部の流量を調整することで、透過水の極端な流量減少を予防する。
従って、本発明の純水製造方法によれば、高水温時であっても、純水の水質を低下させず、かつ、純水の生産量を適正な範囲に維持することができる。
According to the pure water production method of the present invention, when the temperature of raw water or the like exceeds the reference temperature, a part of the permeated water is returned to the raw water. In addition, the amount of permeated water returned is adjusted according to the temperature of the raw water. Further, the supply amount by the supply pump is adjusted so that the flow rate of the remaining portion of the permeated water excluding the amount returned to the raw water becomes the flow rate before the start of return.
As a result, even if the amount of permeated water that permeates the reverse osmosis membrane increases at high water temperatures in summer, it is possible to suppress an increase in the amount of permeated water that is supplied to the point of use and the water treatment device in the subsequent stage. In addition, the quality of raw water is improved by returning a part of the permeated water to the raw water supply channel. Furthermore, by adjusting the flow rate of the balance of the permeated water excluding the amount returned to the raw water, an extreme decrease in the flow rate of the permeated water is prevented.
Therefore, according to the pure water production method of the present invention, it is possible to maintain the production amount of pure water in an appropriate range without deteriorating the water quality of pure water even at a high water temperature.
本発明の実施形態の純水製造装置1及び純水製造方法について説明する。
図1に示すように、本実施形態の純水製造装置1には、原水供給路2、供給ポンプ3、原水W1を透過水W2と濃縮水W3に分離する逆浸透膜4、透過水W2が流れる透過水路5、透過水路5から分岐した循環水路6、循環水路6に設けられた開閉弁7、8、透過水路5に設けられた第1流量計9、および、供給ポンプ3を制御する制御部10が備えられている。
The pure water production apparatus 1 and the pure water production method according to the embodiment of the present invention will be described.
As shown in FIG. 1, the pure water production apparatus 1 of the present embodiment includes a raw water supply path 2, a supply pump 3, a reverse osmosis film 4 that separates the raw water W1 into permeated water W2 and concentrated water W3, and permeated water W2. Control to control the flowing
また、本実施形態の純水製造装置1には、図1に示すように、濃縮水W3が流れる濃縮水路11が備えられている。濃縮水路11には、第2流量計12及び流量制御弁13が備えられている。
更に、純水製造装置1の透過水路5には、水温計20が備えられている。
Further, as shown in FIG. 1, the pure water production apparatus 1 of the present embodiment is provided with a
Further, the
原水供給路2は、原水槽2aと原水水路2bとから構成されている。原水槽2aは、原水W1を一時的に貯留する槽である。原水水路2bは、原水W1を原水槽2aから逆浸透膜4に流す流路である。原水水路2bの途中に、供給ポンプ3が配置されており、原水W1は供給ポンプ3によって加圧され、逆浸透膜4に送られる。
The raw water supply channel 2 is composed of a
供給ポンプ3は、原水W1を逆浸透膜4に供給するものである。供給ポンプ3の回転量によって逆浸透膜4への原水W1の供給量が制御され、逆浸透膜4に対する有効圧力が調整される。供給ポンプ3の回転量は、制御部10によって制御される。
The supply pump 3 supplies the raw water W1 to the reverse osmosis membrane 4. The amount of raw water W1 supplied to the reverse osmosis membrane 4 is controlled by the amount of rotation of the supply pump 3, and the effective pressure on the reverse osmosis membrane 4 is adjusted. The amount of rotation of the supply pump 3 is controlled by the
逆浸透膜4は、原水W1を、透過水W2と濃縮水W3に分離させる。原水W1は、逆浸透膜4に通水されることによって、不純物が除去されて透過水W2とされる。除去された不純物は濃縮水W3に含有される。逆浸透膜4は、浸透膜(メンブレン)を何層にも重ねて海苔巻き状に巻き、容器に収めたスパイラル型モジュールを好適に使用できるが、これに限定されるものではない。また、逆浸透膜4には、透過水W2を流す透過水路5と、濃縮水W3を流す濃縮水路11とが接続されている。
The reverse osmosis membrane 4 separates the raw water W1 into the permeated water W2 and the concentrated water W3. Impurities are removed from the raw water W1 by passing it through the reverse osmosis membrane 4, and the raw water W1 becomes permeated water W2. The removed impurities are contained in the concentrated water W3. As the reverse osmosis membrane 4, a spiral type module in which osmosis membranes (membranes) are stacked in multiple layers and wrapped in a seaweed roll shape and housed in a container can be preferably used, but the reverse osmosis membrane 4 is not limited thereto. Further, the reverse osmosis membrane 4 is connected to a permeated
透過水路5は、逆浸透膜4によって分離された透過水W2をユースポイント又は後段の水処理装置(以下 単に「ユースポイント等」と記す)に供給する水路である。透過水路5の途中には、循環水路6が接続されている。また、透過水路5には、水温計20と第1流量計9とが設置されている。
The permeated
図1に示す純水製造装置1では、循環水路6として、第1循環水路6aと第2循環水路6bの2つが備えられている。循環水路6の数は特に制限がなく、1以上であればよい。第1循環水路6a及び第2循環水路6bは、透過水路5の途中から分岐され、原水供給路2を構成する原水槽2aまたは原水水路2bのいずれかに接続されている。循環水路6によって、透過水W2の一部を、原水供給路2に返送できるようになっている。
In the pure water production apparatus 1 shown in FIG. 1, two
循環水路6の途中には、開閉弁7、8が備えられている。第1循環水路6aに第1開閉弁7が備えられ、第2循環水路6bには第2開閉弁8が備えられている。開閉弁7、8は、原水W1、透過水W2または濃縮水W3のいずれかの温度が、あらかじめ設定された基準温度を超えた場合に開く弁である。開閉弁7、8は例えば、水温に応じて自動で開閉する自動弁がよい。また、開閉弁7、8は、水温に応じて開度を可変にすることが可能な制御弁でもよい。
On-off
第1開閉弁7は、原水W1、透過水W2または濃縮水W3のいずれかの温度が第1基準温度を超えた場合に開く開閉弁であり、第2開閉弁8は、原水W1、透過水W2または濃縮水W3のいずれかの温度が第2基準温度を超えた場合に開く開閉弁である。第2基準温度は、第1基準温度よりも高い温度に設定されている。基準温度、第1基準温度及び第2基準温度は、逆浸透膜の性能や純水製造装置の製造能力等に応じて適宜設定すればよい。
The first on-off valve 7 is an on-off valve that opens when the temperature of any of the raw water W1, the permeated water W2, and the concentrated water W3 exceeds the first reference temperature, and the second on-off
第1開閉弁7、第2開閉弁8の開閉動作をさせる際に、原水W1、透過水W2または濃縮水W3のいずれかの温度を参照することにしたのは、原水W1、透過水W2及び濃縮水W3の水温は逆浸透膜4の通過前後でほとんど変化しないので、いずれかの水温に基づいて開閉弁7、8を動作させればよいためである。
When opening and closing the first on-off valve 7 and the second on-off
水温計20は、循環水路6との分岐位置よりも下流側の透過水路5に設置されており、透過水W2の水温を測定する。なお、水温計20の設置位置は図1に示す位置に限定されるものではなく、原水水路2bや濃縮水路11に設置されていてもよい。水温計20が原水水路2bに設置される場合は原水W1の水温が測定され、濃縮水路11に設置される場合は濃縮水W3の水温が測定される。この水温計20によって測定された水温に基づいて、開閉弁7、8を動作させればよい。
The
第1流量計9は、循環水路6との分岐位置よりも下流側の透過水路5に設置されており、透過水W2の流量を測定する。測定された透過水W2の流量は、制御部10に出力される。
The first flow meter 9 is installed in the permeated
制御部10は、第1流量計9によって測定された透過水W2の流量が第1基準流量範囲から外れた場合に、透過水W2の流量が第1基準流量範囲内になるように、供給ポンプ3による原水W1の供給量を制御する。制御部10には、第1流量計9からの流量測定値が入力される。そして、制御部10は、入力された流量測定値に基づき、原水W1の供給量を制御するための制御信号を前記供給ポンプ3に出力する。制御部10は、インバータであることが好ましい。第1基準流量範囲は、逆浸透膜の性能や純水製造装置の製造能力等に応じて適宜設定すればよい。
The
濃縮水路11は、逆浸透膜4によって分離された濃縮水W3を流す水路である。濃縮水路11は、原水槽2aまたは原水水路2bのいずれかに接続されている。これにより、濃縮水W3を原水供給路2に返送できるようになっている。
The
なお、濃縮水路11の途中に排水路を分岐させておき、濃縮水W3の一部を純水製造装置1の外部に排出してもよい。あるいは、濃縮水路11は、原水槽2aおよび原水水路2bに接続することなく、濃縮水W3の全量を純水製造装置1の外部に排出するようにしてもよい。
A drainage channel may be branched in the middle of the
また、濃縮水路11の途中には、第2流量計12及び流量制御弁13が設置されている。第2流量計12は、濃縮水W3の流量を測定する。測定された濃縮水W3の流量は、流量制御弁13に出力される。流量制御弁13は、第2流量計12によって測定された濃縮水W3の流量が、あらかじめ設定された第2基準流量範囲から外れた場合に、濃縮水W3の流量が第2基準流量範囲内になるように、濃縮水W3の流量を制御する。第2基準流量範囲は、逆浸透膜の性能や純水製造装置の製造能力等に応じて適宜設定すればよい。
Further, a
次に、図1を参照しつつ、本実施形態の純水製造方法について説明する。本実施形態の純水製造方法は、供給ポンプ3により原水W1を供給する供給工程と、逆浸透膜4により原水W1を透過水W2と濃縮水W3とに分離する分離工程と、循環水路6によって透過水W2の一部を原水W1に戻す循環工程と、第1流量計9により透過水W2の流量を測定する第1流量測定工程と、供給ポンプ3によって原水W1の供給量を制御する供給制御工程と、を行う。
Next, the pure water production method of the present embodiment will be described with reference to FIG. The pure water production method of the present embodiment includes a supply step of supplying raw water W1 by a supply pump 3, a separation step of separating raw water W1 into permeated water W2 and concentrated water W3 by a reverse osmosis membrane 4, and a circulating
また、本実施形態の純水製造方法は、第2流量計12により濃縮水W3の流量を測定する第2流量測定工程と、濃縮水W3の流量が第2基準流量範囲内になるように制御する流量制御工程とを行ってもよい。以下、各工程について説明する。
Further, in the pure water production method of the present embodiment, the second flow rate measuring step of measuring the flow rate of the concentrated water W3 by the
まず、供給工程では、原水槽2aに貯留された原水W1を、原水水路2bを通じて逆浸透膜4に供給する。この際、供給ポンプ3を作動させて、逆浸透膜4に供給する原水W1の有効圧力を調整する。有効圧力は、逆浸透膜4の阻止率が低くなりすぎないように調整する。
First, in the supply step, the raw water W1 stored in the
次に、分離工程では、逆浸透膜4によって、原水W1を透過水W2と濃縮水W3とに分離する。原水W1を逆浸透膜4に通すことによって、不純物量が低減された透過水W2が得られる。一方、濃縮水W3には不純物が濃縮される。透過水W2は透過水路5に送られ、濃縮W3は濃縮水路11に送られる。
Next, in the separation step, the raw water W1 is separated into the permeated water W2 and the concentrated water W3 by the reverse osmosis membrane 4. By passing the raw water W1 through the reverse osmosis membrane 4, the permeated water W2 having a reduced amount of impurities can be obtained. On the other hand, impurities are concentrated in the concentrated water W3. The permeated water W2 is sent to the permeated
次に、循環工程では、原水W1、透過水W2または濃縮水W3のいずれか(以下、原水W1等という)の温度が基準温度を超えた場合に、循環水路6によって透過水W2の一部を供給工程前の原水W1に戻す。一方、原水W1等の温度が基準温度以下の場合は、透過水W2の一部を原水W1に戻さずに、透過水W2の全部をユースポイント等に供給する。循環水路6に透過水W2を流す場合は、開閉弁7、8を作動させることによって透過水W2を循環水路6に流すようにする。原水W1の水温が基準温度を超えると、原水W1の粘度が低下して、透過水W2の量が過剰になる。そこで循環工程では、この過剰分の透過水W2を原水W1に戻す操作を行う。
Next, in the circulation step, when the temperature of any of the raw water W1, the permeated water W2 or the concentrated water W3 (hereinafter referred to as the raw water W1 or the like) exceeds the reference temperature, a part of the permeated water W2 is removed by the circulating
原水W1の水温が上昇するにつれて、原水W1の粘度が低下するので、原水W1の水温の上昇に応じて、透過水W2の返送量を増やすとよい。そこで、循環工程では、基準温度として複数の異なる基準温度を設定し、原水W1等の温度が、複数の基準温度のうち最低の基準温度を超えた場合に、循環水路6によって、透過水W2の一部を供給工程前の原水W1に戻すことを開始し、原水W1等の温度が複数の基準温度を超える毎に、循環水路6による透過水W2の循環量を増量してもよい。なお、原水W1等のいずれかの温度が最低の基準温度以下の場合は、透過水W2の一部を原水W1に戻さずに、透過水W2の全部をユースポイント等に供給すればよい。
Since the viscosity of the raw water W1 decreases as the water temperature of the raw water W1 rises, it is advisable to increase the amount of permeated water W2 returned in accordance with the rise in the water temperature of the raw water W1. Therefore, in the circulation step, a plurality of different reference temperatures are set as the reference temperature, and when the temperature of the raw water W1 or the like exceeds the lowest reference temperature among the plurality of reference temperatures, the permeated water W2 is provided by the
この場合、1つの循環水路6を用いて透過水W2の循環を開始するとともに循環水量を増量してもよい。循環水路6に設ける開閉弁としては、例えば、開度を可変可能な制御弁を用いるとよい。
In this case, the circulation of the permeated water W2 may be started and the amount of the circulating water may be increased by using one
また、2以上の循環水路6を用い、1つ目の循環水路によって透過水W2の循環を開始し、更に水温が上昇した場合は残りの循環水路を順次開通させることで循環水量を増量してもよい。それぞれの循環水路6に設ける開閉弁としては、例えば、開閉状態を「開」と「閉」の2つに切り替え可能な弁を用いるとよい。
Further, using two or more circulating
以下、図1に示す純水製造装置1における循環工程を説明する。図1では、循環水路6として第1循環水路6a及び第2循環水路6bの2つが備えられている。そこで、基準温度として、第1基準温度と第2基準温度の2つを設定する。第2基準温度は、第1基準温度よりも高い温度に設定する。
Hereinafter, the circulation process in the pure water production apparatus 1 shown in FIG. 1 will be described. In FIG. 1, two
そして、原水W1等の温度が第1基準温度を超えた場合に、第1開閉弁7を開かせて、透過水W2の一部を、第1循環水路6aによって供給工程前の原水W1に戻す。更に原水W1等の水温が上昇して、原水W1等の温度が第2基準温度を超えた場合には、更に第2開閉弁8を開かせて、透過水W2の一部を第1循環水路6a及び第2循環水路6bによって供給工程前の原水W1に戻す。
Then, when the temperature of the raw water W1 or the like exceeds the first reference temperature, the first on-off valve 7 is opened, and a part of the permeated water W2 is returned to the raw water W1 before the supply process by the first
第1循環水路6a及び第2循環水路6bによって返送されなかった透過水W2の残部は、そのまま透過水路5を流れ、ユースポイント等に送られる。
The rest of the permeated water W2 that has not been returned by the first circulating
次に、第1流量測定工程では、第1流量計9によって透過水W2の流量を測定する。第1流量計9は、循環水路6の分岐位置よりも下流側の透過水路5に配置されている。このため、透過水W2の一部が循環水路6によって返送されているときは、第1流量計9は透過水W2の残部の流量を測定する。また、透過水W2が循環水路6によって返送されないときは、第1流量計9によって透過水W2の全部の流量を測定する。第1流量計9によって測定された透過水W2の流量測定値は、制御部10に送られる。
Next, in the first flow rate measuring step, the flow rate of the permeated water W2 is measured by the first flow meter 9. The first flow meter 9 is arranged in the
次に、供給制御工程では、第1流量測定工程において測定された透過水W2の流量が第1基準流量範囲から外れた場合に、制御部10がこれを検知して、透過水W2の流量が第1基準流量範囲内になるように、供給ポンプ3による原水W1の供給量を制御する。透過水W2の一部を循環水路6によって原水W1に戻した場合、ユースポイント等に供給される透過水W2の水量が減少し、ユースポイント等において水不足が生じることがある。そのため、透過水W2の流量の適正範囲である第1基準流量範囲を設定し、透過水W2の流量が第1基準流量範囲から外れる場合は、これを制御部10が検知して、供給ポンプ3に制御信号を送り、原水W1の供給量を調整する。
Next, in the supply control step, when the flow rate of the permeated water W2 measured in the first flow rate measuring step deviates from the first reference flow rate range, the
例えば、透過水W2の流量が第1基準流量範囲を下回る場合は、制御部10が供給ポンプ3に制御信号を送り、原水W1の供給量を増加させる。この場合、逆浸透膜4における原水W1の有効圧力が高まり、逆浸透膜4の阻止率を高く維持したまま透過水W2の水量を増加できる。また、透過水W2の流量が第1基準流量範囲を超える場合は、制御部10が供給ポンプ3に制御信号を送り、原水W1の供給量を減少させる。
For example, when the flow rate of the permeated water W2 is lower than the first reference flow rate range, the
次に、第2流量測定工程では、第2流量計12により、濃縮水路11を流れる濃縮水W3の流量を測定する。第2流量計12によって測定された濃縮水W3の流量測定値は、流量制御弁13に送られる。
Next, in the second flow rate measuring step, the flow rate of the concentrated water W3 flowing through the
次に、流量制御工程では、第2流量測定工程において測定された濃縮水W3の流量が第2基準流量範囲を外れた場合に、濃縮水W3の流量が第2基準流量範囲内になるように制御する。供給ポンプ3によって原水W1の供給量を増加させると、濃縮水W3の流量が増大する一方で、透過水W2の流量の減少が懸念される場合がある。そこで、第2流量計12によって濃縮水W3の流量を監視し、これが適正な範囲から外れる場合は、流量制御弁13を作動させて濃縮水W3の流量を低下させることにより、透過水W2の流量と濃縮水W3との流量バランスを適切な範囲にする。これにより、逆浸透膜4の操業条件を適正な範囲に維持できるようになる。
Next, in the flow rate control step, when the flow rate of the concentrated water W3 measured in the second flow rate measuring step is out of the second reference flow rate range, the flow rate of the concentrated water W3 is within the second reference flow rate range. Control. When the supply amount of the raw water W1 is increased by the supply pump 3, the flow rate of the concentrated water W3 increases, but there is a concern that the flow rate of the permeated water W2 decreases. Therefore, the flow rate of the concentrated water W3 is monitored by the
以上説明したように、本実施形態の純水製造装置1によれば、原水W1等の水温が基準温度を超える場合に自動的に開閉弁7、8が開くことで、透過水量の増大のおそれがある高水温時に、透過水W2の一部が循環水路6を経由して原水供給路2に戻され、純水製造装置1からユースポイント等に供給される透過水量の増大が抑制できる。また、透過水W2の一部が原水供給路2に戻されることで、原水W1の水質が向上する。更に、第1流量計9の流量値が第1基準流量範囲から外れた場合に、制御部10が供給ポンプ3による原水W1の供給量を制御することで、分岐後の透過水量が第1基準流量範囲を維持するようにする。これにより、透過水W2の流量が必要以上に減少することが防止され、ユースポイント等に十分な量の透過水を供給できる。以上のように、本実施形態の純水製造装置1によれば、高水温時であっても、純水の水質を低下させず、かつ、純水の生産量を適正な範囲に維持することができる。
As described above, according to the pure water production apparatus 1 of the present embodiment, when the water temperature of the raw water W1 or the like exceeds the reference temperature, the on-off
また、本実施形態の純水製造装置1によれば、水温が上昇するにつれて第1循環水路6aに透過水W2が流れ、更に水温が上昇した場合には第1循環水路6aと第2循環水路6bとに透過水W2が流れるように構成されているので、水温の変化に応じて、原水供給路2に戻す透過水量を調整でき、純水の生産量を適正な範囲に維持することができる。
Further, according to the pure water production apparatus 1 of the present embodiment, the permeated water W2 flows through the first circulating
更に、本実施形態の純水製造装置1によれば、濃縮水路11を流れる濃縮水W3の流量が第2基準流量範囲を外れた場合に、流量制御弁13によって濃縮水W3の流量を適正な流量に制御する。これにより、例えば、濃縮水W3の流量が増大して透過水W2の流量の減少が懸念される場合であっても、濃縮水W3と透過水W2の水量比が適切な範囲に維持される。このため、逆浸透膜4の操業条件を適正な範囲に維持でき、純水の品質を維持できる。
Further, according to the pure water production apparatus 1 of the present embodiment, when the flow rate of the concentrated water W3 flowing through the
更にまた、本実施形態の純水製造装置1によれば、制御部10がインバータであるので、第1流量計9からの流量測定値に基づき原水W1の供給量を容易に制御できる。
Furthermore, according to the pure water production apparatus 1 of the present embodiment, since the
また、本実施形態の純水製造方法によれば、循環工程において、原水W1等の水温が基準温度を超える場合に、透過水W2の一部を原水W1に戻すので、ユースポイント等に供給される透過水量の増大が抑制できる。また、透過水W2の一部が原水供給路2に戻されることで、原水W1の水質が向上する。更に、第1流量測定工程及び供給制御工程において、透過水路5と循環水路6との分岐位置よりも下流側に設置された第1流量計9の流量値が第1基準流量範囲から外れた場合に、供給ポンプ3による原水の供給量を制御することで、透過水量が第1基準流量範囲内に維持される。これにより、透過水W2の流量が必要以上に減少することが防止され、ユースポイント等に十分な量の透過水W2を供給できる。以上のように、本実施形態の純水製造方法によれば、高水温時であっても、純水の水質を低下させず、かつ、純水の生産量を適正な範囲に維持することができる。
Further, according to the pure water production method of the present embodiment, when the water temperature of the raw water W1 or the like exceeds the reference temperature in the circulation step, a part of the permeated water W2 is returned to the raw water W1, so that it is supplied to a use point or the like. The increase in the amount of permeated water can be suppressed. Further, a part of the permeated water W2 is returned to the raw water supply path 2, so that the water quality of the raw water W1 is improved. Further, in the first flow rate measurement step and the supply control step, when the flow rate value of the first flow meter 9 installed on the downstream side of the branch position between the
また、本実施形態の純水製造方法によれば、基準温度として複数の異なる基準温度を設定し、原水W1等の温度が複数の基準温度を超える毎に、循環水路6による透過水W2の循環量を増量するので、水温の変化に応じて、原水供給路2に戻す透過水W2の量を調整でき、純水の生産量を適正な範囲に維持することができる。
Further, according to the pure water production method of the present embodiment, a plurality of different reference temperatures are set as the reference temperature, and each time the temperature of the raw water W1 or the like exceeds the plurality of reference temperatures, the permeated water W2 is circulated through the
更に、本実施形態の純水製造方法によれば、水温が上昇するにつれて第1循環水路6aに透過水が流れ、更に水温が上昇した場合には第1循環水路6aと第2循環水路6bとに透過水W2が流れるように構成されているので、水温の変化に応じて、原水供給路2に戻す透過水W2の量を調整でき、純水の生産量を適正な範囲に維持することができる。
Further, according to the pure water production method of the present embodiment, the permeated water flows into the first circulating
更にまた、本実施形態の純水製造方法によれば、第2流量測定工程及び流量制御工程において、濃縮水W3の流量が第2基準流量範囲から外れた場合に、濃縮水W3の流量を適正な流量に制御する。これにより、濃縮水W3の流量が増大して透過水W2の流量の減少が懸念される場合であっても、濃縮水W3と透過水W2の水量比が適切な範囲に維持される。このため、逆浸透膜4の操業条件を適正な範囲に維持でき、純水の品質を維持できる。 Furthermore, according to the pure water production method of the present embodiment, when the flow rate of the concentrated water W3 deviates from the second reference flow rate range in the second flow rate measurement step and the flow rate control step, the flow rate of the concentrated water W3 is appropriate. Control the flow rate. As a result, even when the flow rate of the concentrated water W3 increases and there is a concern that the flow rate of the permeated water W2 decreases, the water amount ratio of the concentrated water W3 and the permeated water W2 is maintained in an appropriate range. Therefore, the operating conditions of the reverse osmosis membrane 4 can be maintained within an appropriate range, and the quality of pure water can be maintained.
図1に示す純水製造装置において、原水の水温を25℃、28℃、30℃、32℃及び35℃に徐々に上昇させた場合の、透過水の流量と逆浸透膜の有効圧力との関係を調査した。結果を表1に示す。
表1に示すように、原水の温度が上昇するにつれて、水の粘性係数が低下し、水の粘度は低下する。
In the pure water production apparatus shown in FIG. 1, the flow rate of permeated water and the effective pressure of the reverse osmosis membrane when the temperature of the raw water is gradually increased to 25 ° C, 28 ° C, 30 ° C, 32 ° C and 35 ° C. Investigated the relationship. The results are shown in Table 1.
As shown in Table 1, as the temperature of raw water rises, the viscosity coefficient of water decreases, and the viscosity of water decreases.
比較例は、循環水路による透過水の返送を行わなかった例である。比較例では、原水の温度によらずに供給ポンプの回転量を一定量にして稼働させた。 The comparative example is an example in which the permeated water was not returned through the circulation channel. In the comparative example, the supply pump was operated with a constant amount of rotation regardless of the temperature of the raw water.
表1に示すように、比較例では水温が上昇し、水の粘度が低下するにつれて、各温度での透過水の流量(第1流量計による流量値)が増大した。一方、逆浸透膜(RO膜)の有効圧力は、水温が上昇し、水の粘度が低下するにつれて、低下した。特に、水温が35℃になると、有効圧力が0.575MPaとなり、逆浸透膜の阻止率が低下し、透過水(純水)の不純物量が増大した。 As shown in Table 1, in the comparative example, as the water temperature increased and the viscosity of the water decreased, the flow rate of the permeated water at each temperature (flow rate value by the first flow meter) increased. On the other hand, the effective pressure of the reverse osmosis membrane (RO membrane) decreased as the water temperature increased and the viscosity of the water decreased. In particular, when the water temperature reached 35 ° C., the effective pressure became 0.575 MPa, the blocking rate of the reverse osmosis membrane decreased, and the amount of impurities in the permeated water (pure water) increased.
一方、実施例は、循環水路による透過水の返送を行なった例である。実施例では、第1基準温度を28℃に設定し、第2基準温度を32℃に設定した。また、実施例では、制御部により、供給ポンプの回転量を増大させて原水の供給量を制御した。これにより、逆浸透膜(RO膜)の有効圧力は0.721〜0.764MPaの範囲に維持された。 On the other hand, the example is an example in which the permeated water is returned through the circulation channel. In the examples, the first reference temperature was set to 28 ° C and the second reference temperature was set to 32 ° C. Further, in the embodiment, the control unit controls the supply amount of raw water by increasing the rotation amount of the supply pump. As a result, the effective pressure of the reverse osmosis membrane (RO membrane) was maintained in the range of 0.721 to 0.764 MPa.
表1に示すように、実施例では、原水の温度が28℃になったときに、第1開閉弁が開いて第1循環水路によって透過水を原水槽に返送した。また、原水の温度が32℃になったときに、更に第2開閉弁が開き、第2循環水路によって透過水を原水槽に返送した。このため、表1に示すように、透過水の返送量は水温の上昇とともに増加した。これにより、第1流量計による透過水の流量値は95〜102m3/hの範囲に維持された。また、実施例では逆浸透膜(RO膜)の有効圧力が0.721〜0.764MPaの範囲に維持されたため、逆浸透膜の阻止率が低下せず、透過水(純水)の不純物量は低いままだった。 As shown in Table 1, in the example, when the temperature of the raw water reached 28 ° C., the first on-off valve was opened and the permeated water was returned to the raw water tank by the first circulation channel. Further, when the temperature of the raw water reached 32 ° C., the second on-off valve was further opened, and the permeated water was returned to the raw water tank by the second circulation water channel. Therefore, as shown in Table 1, the amount of permeated water returned increased as the water temperature increased. As a result, the flow rate value of the permeated water by the first flow meter was maintained in the range of 95 to 102 m 3 / h. Further, in the examples, since the effective pressure of the reverse osmosis membrane (RO membrane) was maintained in the range of 0.721 to 0.764 MPa, the inhibition rate of the reverse osmosis membrane did not decrease, and the amount of impurities in the permeated water (pure water). Remained low.
1…純水製造装置、2…原水供給路、2a…原水槽、2b…原水水路、3…供給ポンプ、4…逆浸透膜、5…透過水路、6…循環水路、6a…第1循環水路、6b…第2循環水路、7…第1開閉弁(開閉弁)、8…第2開閉弁(開閉弁)、9…第1流量計、10…制御部、11…濃縮水路、12…第2流量計、13…流量制御弁、20…水温計、W1…原水、W2…透過水、W3…濃縮水。 1 ... Pure water production equipment, 2 ... Raw water supply channel, 2a ... Raw water tank, 2b ... Raw water channel, 3 ... Supply pump, 4 ... Reverse osmosis membrane, 5 ... Permeation channel, 6 ... Circulation channel, 6a ... First circulation channel , 6b ... 2nd circulation channel, 7 ... 1st on-off valve (on-off valve), 8 ... 2nd on-off valve (on-off valve), 9 ... 1st flow meter, 10 ... control unit, 11 ... concentrated water channel, 12 ... 2 flow meter, 13 ... flow control valve, 20 ... water temperature gauge, W1 ... raw water, W2 ... permeated water, W3 ... concentrated water.
Claims (9)
前記原水供給路に設けられ、前記原水を供給する供給ポンプと、
前記供給ポンプによって供給された前記原水を透過水と濃縮水とに分離する逆浸透膜と、
前記逆浸透膜を透過した前記透過水が流れる透過水路と、
前記透過水路から分岐され、前記透過水の一部を前記原水供給路に返送可能な1または2以上の循環水路と、
前記循環水路にそれぞれ設けられ、前記原水、前記透過水または前記濃縮水のいずれかの温度が、前記循環水路毎に設定された基準温度を超えた場合に前記循環水路をそれぞれ開く1または2以上の開閉弁と、
前記循環水路の分岐位置よりも下流側の前記透過水路に設置された第1流量計と、
前記第1流量計によって測定された前記透過水の流量が第1基準流量範囲から外れた場合に、前記第1流量計により測定される前記透過水の流量が前記第1基準流量範囲内になるように前記供給ポンプによる前記原水の供給量を制御する制御部と、を備えることを特徴とする純水製造装置。 The raw water supply channel that supplies raw water and
A supply pump provided in the raw water supply path and supplying the raw water,
A reverse osmosis membrane that separates the raw water supplied by the supply pump into permeated water and concentrated water.
A permeation channel through which the permeated water that has permeated the reverse osmosis membrane flows,
One or more circulating channels that are branched from the permeated channel and can return a part of the permeated water to the raw water supply channel.
One or two or more that are provided in the circulating water channels and open the circulating water channels when the temperature of any of the raw water, the permeated water, or the concentrated water exceeds the reference temperature set for each of the circulating water channels. On-off valve and
A first flow meter installed in the permeation channel on the downstream side of the branch position of the circulation channel, and
When the flow rate of the permeated water measured by the first flow meter deviates from the first reference flow rate range, the flow rate of the permeated water measured by the first flow meter falls within the first reference flow range. A pure water production apparatus including a control unit for controlling the supply amount of the raw water by the supply pump.
前記開閉弁として、第1開閉弁と第2開閉弁の2つが備えられ、
前記第1開閉弁は、前記第1循環水路に設けられ、前記原水、前記透過水または前記濃縮水のいずれかの温度が第1基準温度を超えた場合に前記第1循環水路を開く開閉弁であり、
前記第2開閉弁は、前記第2循環水路に設けられ、前記原水、前記透過水または前記濃縮水のいずれかの温度が、前記第1基準温度より高い第2基準温度を超えた場合に前記第2循環水路を開く開閉弁であることを特徴とする請求項1に記載の純水製造装置。 Two circulation channels, a first circulation channel and a second circulation channel, are provided as the circulation channel.
Two on-off valves, a first on-off valve and a second on-off valve, are provided.
The first on-off valve is provided in the first circulating water channel and opens the first circulating water channel when the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the first reference temperature. And
The second on-off valve is provided in the second circulation water channel, and when the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the second reference temperature higher than the first reference temperature, the said. The pure water production apparatus according to claim 1, wherein the on-off valve opens a second circulation water channel.
前記濃縮水路に設置された第2流量計と、
前記濃縮水路に設置され、前記第2流量計によって測定された前記濃縮水の流量があらかじめ設定された第2基準流量範囲から外れた場合に、前記第2流量計により測定される前記濃縮水の流量が前記第2基準流量範囲内になるように制御する流量制御弁と、
を更に備えることを特徴とする請求項1または請求項2に記載の純水製造装置。 A concentrated water channel through which the concentrated water discharged from the reverse osmosis membrane flows,
The second flow meter installed in the concentrated water channel and
The concentrated water measured by the second flow meter when the flow rate of the concentrated water installed in the concentrated water channel and measured by the second flow meter deviates from a preset second reference flow rate range. A flow rate control valve that controls the flow rate so that it is within the second reference flow rate range,
The pure water production apparatus according to claim 1 or 2, further comprising.
前記供給工程にて供給された前記原水を逆浸透膜により透過水と濃縮水とに分離する分離工程と、
前記原水、前記透過水または前記濃縮水のいずれかの温度が基準温度を超えた場合に、透過水路を流れる前記透過水の一部を、前記透過水路から分岐された1または2以上の循環水路によって前記供給工程前の前記原水に戻す循環工程と、
前記循環水路の分岐位置よりも下流側の前記透過水路において、第1流量計により、前記透過水の流量を測定する第1流量測定工程と、
前記第1流量測定工程において測定された前記透過水の流量が第1基準流量範囲から外れた場合に、前記第1流量計により測定される前記透過水の流量が前記第1基準流量範囲内になるように前記供給ポンプによる前記原水の供給量を制御する供給制御工程と、を備えることを特徴とする純水製造方法。 The supply process of supplying raw water by a supply pump and
A separation step of separating the raw water supplied in the supply step into permeated water and concentrated water by a reverse osmosis membrane, and
When the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the reference temperature, a part of the permeated water flowing through the permeated water channel is divided into one or more circulating water channels branched from the permeated water channel. In the circulation process of returning to the raw water before the supply process,
A first flow rate measuring step of measuring the flow rate of the permeated water with a first flow meter in the permeated water channel on the downstream side of the branch position of the circulating water channel.
When the flow rate of the permeated water measured in the first flow rate measuring step deviates from the first reference flow rate range, the flow rate of the permeated water measured by the first flow meter falls within the first reference flow rate range. A method for producing pure water, which comprises a supply control step for controlling the supply amount of the raw water by the supply pump so as to be provided.
前記原水、前記透過水または前記濃縮水のいずれかの温度が、前記複数の基準温度のうち最低の基準温度を超えた場合に、前記循環水路によって、前記透過水の一部を前記供給工程前の前記原水に戻すことを開始し、
前記原水、前記透過水または前記濃縮水のいずれかの温度が前記複数の基準温度を超える毎に、前記循環水路による前記透過水の循環量を増量することを特徴とする請求項5に記載の純水製造方法。 In the circulation step, a plurality of different reference temperatures are set as the reference temperature, and the reference temperature is set.
When the temperature of any of the raw water, the permeated water, or the concentrated water exceeds the lowest reference temperature among the plurality of reference temperatures, a part of the permeated water is provided before the supply step by the circulation channel. Started to return to the raw water of
The fifth aspect of claim 5, wherein the circulation amount of the permeated water by the circulation water channel is increased each time the temperature of any of the raw water, the permeated water or the concentrated water exceeds the plurality of reference temperatures. Pure water production method.
前記原水、前記透過水または前記濃縮水のいずれかの温度が前記第1基準温度より高い第2基準温度を超えた場合に、前記透過水路を流れる前記透過水の一部を、前記第1循環水路及び前記第2循環水路によって前記供給工程前の前記原水に戻す工程であることを特徴とする請求項5または請求項6に記載の純水製造方法。 In the circulation step, when the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the first reference temperature, a part of the permeated water flowing through the permeated water channel is subjected to the first circulating water channel. Return to the raw water before the supply process,
When the temperature of any of the raw water, the permeated water, and the concentrated water exceeds the second reference temperature higher than the first reference temperature, a part of the permeated water flowing through the permeated water channel is circulated in the first circulation. The pure water production method according to claim 5 or 6, wherein the step is to return the raw water before the supply step by the water channel and the second circulation water channel.
前記第2流量工程において測定された前記濃縮水の流量が第2基準流量範囲から外れた場合に、前記第2流量計により測定される前記濃縮水の流量が前記第2基準流量範囲内になるように制御する流量制御工程と、
を更に備えることを特徴とする請求項5乃至請求項7の何れか一項に記載の純水製造方法。 A second flow rate measuring step of measuring the flow rate of the concentrated water discharged from the reverse osmosis membrane and flowing through the concentrated water channel with a second flow meter,
When the flow rate of the concentrated water measured in the second flow rate step deviates from the second reference flow rate range, the flow rate of the concentrated water measured by the second flow meter falls within the second reference flow range. The flow rate control process to control
The pure water production method according to any one of claims 5 to 7, further comprising.
前記原水、前記透過水または前記濃縮水の温度が基準温度を超えた場合に、前記透過水の一部を前記供給前の原水に返送するとともに、前記原水、前記透過水または前記濃縮水の温度に応じて前記透過水の返送量を調整し、
前記透過水のうち、原水への返送分を除いた残部の流量が、透過水の返送開始前の流量になるように、前記供給ポンプによる供給量を調整することを特徴とする純水製造方法。 In a pure water production method in which raw water supplied by a supply pump is separated into permeated water and concentrated water by a reverse osmosis membrane.
When the temperature of the raw water, the permeated water or the concentrated water exceeds the reference temperature, a part of the permeated water is returned to the raw water before supply, and the temperature of the raw water, the permeated water or the concentrated water is reached. Adjust the amount of permeated water returned according to
A pure water production method characterized by adjusting the supply amount by the supply pump so that the flow rate of the remaining portion of the permeated water excluding the portion returned to the raw water becomes the flow rate before the start of the return of the permeated water. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019064139A JP7196731B2 (en) | 2019-03-28 | 2019-03-28 | Pure water production device and pure water production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019064139A JP7196731B2 (en) | 2019-03-28 | 2019-03-28 | Pure water production device and pure water production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020163254A true JP2020163254A (en) | 2020-10-08 |
JP7196731B2 JP7196731B2 (en) | 2022-12-27 |
Family
ID=72714050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019064139A Active JP7196731B2 (en) | 2019-03-28 | 2019-03-28 | Pure water production device and pure water production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7196731B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115475524A (en) * | 2022-06-30 | 2022-12-16 | 青岛海尔施特劳斯水设备有限公司 | Control method of water purification system and water purification system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009279472A (en) * | 2008-05-19 | 2009-12-03 | Miura Co Ltd | Reverse osmosis membrane device |
JP2014159006A (en) * | 2013-02-20 | 2014-09-04 | Mitsubishi Heavy Ind Ltd | Operation method of reverse osmotic membrane device |
-
2019
- 2019-03-28 JP JP2019064139A patent/JP7196731B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009279472A (en) * | 2008-05-19 | 2009-12-03 | Miura Co Ltd | Reverse osmosis membrane device |
JP2014159006A (en) * | 2013-02-20 | 2014-09-04 | Mitsubishi Heavy Ind Ltd | Operation method of reverse osmotic membrane device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115475524A (en) * | 2022-06-30 | 2022-12-16 | 青岛海尔施特劳斯水设备有限公司 | Control method of water purification system and water purification system |
Also Published As
Publication number | Publication date |
---|---|
JP7196731B2 (en) | 2022-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5085675B2 (en) | Seawater desalination system | |
RU2718079C1 (en) | Device and method of water treatment by means of reverse osmosis or nanofiltration | |
WO2017217008A1 (en) | Reverse osmosis membrane separation apparatus | |
US20080105617A1 (en) | Two pass reverse osmosis system | |
US20080308475A1 (en) | Demineralizer | |
JP2008237971A (en) | Method for operating membrane filtration system | |
US10294127B2 (en) | Method of operating reverse osmosis membrane apparatus | |
JP7087429B2 (en) | Water treatment equipment | |
WO2012073693A1 (en) | Reverse osmosis membrane separator, start-up method therefor, and method for producing permeate | |
JPH06277665A (en) | Producing apparatus for high purity water | |
JP2020163254A (en) | Pure water production device and pure water production method | |
JP6026105B2 (en) | Purified water production equipment | |
JP2017221875A (en) | Reverse osmosis membrane separation apparatus | |
JP2016032810A (en) | Water treatment system | |
JP4978590B2 (en) | Pure water production equipment | |
JP4475925B2 (en) | Desalination treatment apparatus and desalination treatment method | |
JP2018202360A (en) | Reverse osmosis membrane separation device | |
JPS59179110A (en) | Operating method of filter module | |
JP5966639B2 (en) | Salt water desalination apparatus and fresh water generation method | |
JPH1076143A (en) | Filtration treatment and filter | |
JP2013086049A (en) | Water treatment system | |
DK180834B1 (en) | Control for filtration process | |
JP2017221876A (en) | Reverse osmosis membrane separation apparatus | |
JP2014034005A (en) | Salt water desalination apparatus and fresh water production method | |
JP2017221877A (en) | Reverse osmosis membrane separation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220628 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7196731 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |