JP2020162837A - Patient transport carriage, particle beam irradiation system, and particle beam irradiation method - Google Patents

Patient transport carriage, particle beam irradiation system, and particle beam irradiation method Download PDF

Info

Publication number
JP2020162837A
JP2020162837A JP2019065824A JP2019065824A JP2020162837A JP 2020162837 A JP2020162837 A JP 2020162837A JP 2019065824 A JP2019065824 A JP 2019065824A JP 2019065824 A JP2019065824 A JP 2019065824A JP 2020162837 A JP2020162837 A JP 2020162837A
Authority
JP
Japan
Prior art keywords
patient
particle beam
top plate
axis
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019065824A
Other languages
Japanese (ja)
Other versions
JP6596679B1 (en
Inventor
洋介 原
Yosuke Hara
洋介 原
卓司 古川
Takuji Furukawa
卓司 古川
英里 竹下
Eri Takeshita
英里 竹下
康太 水島
Kota Mizushima
康太 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B Dot Medical Inc
Original Assignee
B Dot Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B Dot Medical Inc filed Critical B Dot Medical Inc
Priority to JP2019065824A priority Critical patent/JP6596679B1/en
Application granted granted Critical
Publication of JP6596679B1 publication Critical patent/JP6596679B1/en
Priority to US16/692,068 priority patent/US10912954B2/en
Priority to EP19211627.5A priority patent/EP3714938B1/en
Priority to KR1020190154787A priority patent/KR102080144B1/en
Priority to CN201911179517.0A priority patent/CN111744117B/en
Publication of JP2020162837A publication Critical patent/JP2020162837A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G1/00Stretchers
    • A61G1/02Stretchers with wheels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/02Adjustable operating tables; Controls therefor
    • A61G13/04Adjustable operating tables; Controls therefor tiltable around transverse or longitudinal axis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/02Adjustable operating tables; Controls therefor
    • A61G13/06Adjustable operating tables; Controls therefor raising or lowering of the whole table surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G3/00Ambulance aspects of vehicles; Vehicles with special provisions for transporting patients or disabled persons, or their personal conveyances, e.g. for facilitating access of, or for loading, wheelchairs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1079Sharing a beam by multiple treatment stations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2200/00Information related to the kind of patient or his position
    • A61G2200/30Specific positions of the patient
    • A61G2200/32Specific positions of the patient lying
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/10General characteristics of devices characterised by specific control means, e.g. for adjustment or steering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1052Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using positron emission tomography [PET] single photon emission computer tomography [SPECT] imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1063Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam maintaining the position when the patient is moved from an imaging to a therapy system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N2005/1074Details of the control system, e.g. user interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1097Means for immobilizing the patient

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiation-Therapy Devices (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

To provide a patient transport carriage, a particle beam irradiation system, and a particle beam irradiation method.SOLUTION: An embodiment of the present invention provides a patient transport carriage comprising: a top plate for carrying a patient; a driving unit for translating and/or rotating the top plate; and a driving control unit which controls the translation and/or rotation of the top plate by the driving unit, in response to the translation amount and/or rotation amount of the top plate that is received from a patient positioning apparatus provided in a particle beam treatment room.SELECTED DRAWING: Figure 1

Description

本発明は、患者搬送台車、粒子線照射システム、及び粒子線照射方法に関する。 The present invention relates to a patient carrier, a particle beam irradiation system, and a particle beam irradiation method.

粒子線治療において、加速器から取り出された陽子線、重粒子線、又は中性子線などの粒子線を病巣や癌などの腫瘍部分等(標的)に照射する治療法が行われている。標的への粒子線の線量の集中性を高めつつ、正常組織への影響を抑えるために、粒子線は標的に高精度に照射される。 In particle beam therapy, a treatment method is performed in which a particle beam such as a proton beam, a heavy particle beam, or a neutron beam extracted from an accelerator is irradiated to a tumor portion (target) such as a lesion or cancer. The particle beam is radiated to the target with high precision in order to reduce the effect on normal tissues while increasing the concentration of the particle beam dose to the target.

従来では、粒子線を患者に照射する前に、粒子線の照射ノズルが設置された、粒子線治療を行う部屋(以下「粒子線治療室」という)に置かれた治療台に患者を乗せて、照射ノズルから照射される粒子線の位置と粒子線を照射すべき部位との位置合わせ(「患者位置設定」という。)が行われる。すなわち、照射ノズルから照射される粒子線が患者内の標的に精度良く当たるように、粒子線照射位置と患者位置とが調整される(図9(a))。 Conventionally, before irradiating a patient with a particle beam, the patient is placed on a treatment table placed in a room for performing particle beam therapy (hereinafter referred to as "particle beam therapy room") in which a particle beam irradiation nozzle is installed. , The position of the particle beam irradiated from the irradiation nozzle and the position to be irradiated with the particle beam are aligned (referred to as "patient position setting"). That is, the particle beam irradiation position and the patient position are adjusted so that the particle beam emitted from the irradiation nozzle hits the target in the patient with high accuracy (FIG. 9A).

患者位置設定では、まず患者と治療台との間のずれを抑えるために、固定具を用い患者を治療台の天板に固定する。次いで、粒子線治療室内に設置されたレーザーポインタ等を利用し、患者の皮膚の上から、粒子線が照射される位置と粒子線を照射すべき部位と間の粗い位置決めを行う。その後、患者にX線を照射し、X線画像を撮像し、それを見ながら患者が乗った天板の位置や傾き等を調整して、粒子線を照射する位置を高精度に(例えばmm単位)決定する。そして、患者位置設定後に、粒子線の治療を開始する。 In the patient position setting, first, the patient is fixed to the top plate of the treatment table by using a fixture in order to suppress the deviation between the patient and the treatment table. Next, using a laser pointer or the like installed in the particle beam therapy room, rough positioning is performed from above the patient's skin between the position where the particle beam is irradiated and the site where the particle beam should be irradiated. After that, the patient is irradiated with X-rays, an X-ray image is taken, and while watching the X-ray image, the position and inclination of the top plate on which the patient is placed are adjusted to accurately position the particle beam irradiation (for example, mm). Unit) Determine. Then, after setting the patient position, particle beam therapy is started.

一般的に、患者位置設定には数分〜数十分の時間を要し、粒子線治療の治療時間の大半を占める。粒子線治療室内での長時間の患者位置設定は、患者1人当たりの粒子線治療室の占有時間も増加させる。この結果、単位時間あたりの治療人数を増やせないことや、安全な治療照射を担保するための粒子線のQuality Assurance(QA)測定を行う時間を圧迫し、医師や看護師、放射線技師等の医療従事者への負担を大きくする。 Generally, patient positioning takes several minutes to several tens of minutes and occupies most of the treatment time of particle beam therapy. Prolonged patient positioning in the particle therapy room also increases the time occupied by the particle therapy room per patient. As a result, it is not possible to increase the number of treatments per unit time, and it puts pressure on the time to perform quality assurance (QA) measurement of particle beams to ensure safe treatment irradiation, and medical care for doctors, nurses, radiologists, etc. Increase the burden on workers.

特許文献1は、患者位置設定に要する時間を短縮することを目的とし、照射ノズルが設置された粒子線治療室とは別の準備室にて患者位置設定を行う方法を開示する。この方法では、準備室で第1のベッドに最初の患者を乗せて固定具を取付け、レーザポインタを用いた患者位置の粗い位置決めを行い、その後、第1のベッドに患者を乗せたまま、第1の搬送路に沿ってシミュレータ室まで搬送し、患者の精密な位置決めを行う。この時、最初の患者を搬出した準備室では、次の患者を第2のベッドに乗せて同様の患者位置設定を行う。シミュレータ室で精密な位置決めを行った最初の患者は第1のベッドに乗せたまま第2の搬送路に沿って粒子線治療室まで搬送して、治療照射を行う。このようにして、粒子線治療室内での作業負担を減らし、効率的に粒子線治療を進めるものである。 Patent Document 1 discloses a method of setting a patient position in a preparation room separate from a particle beam therapy room in which an irradiation nozzle is installed, for the purpose of shortening the time required for setting the patient position. In this method, the first patient is placed on the first bed in the preparation room, the fixture is attached, the patient position is roughly positioned using a laser pointer, and then the patient is placed on the first bed and the first patient is placed on the first bed. The patient is transported to the simulator room along the transport path of 1 to perform precise positioning of the patient. At this time, in the preparation room where the first patient is carried out, the next patient is placed on the second bed and the same patient position setting is performed. The first patient who has been precisely positioned in the simulator room is transported to the particle beam therapy room along the second transport path while being placed on the first bed to perform therapeutic irradiation. In this way, the work load in the particle beam therapy room is reduced, and the particle beam therapy is efficiently promoted.

先行文献2は、照射ノズルが設置された粒子線治療室の治療台に、患者が乗った天板部分のみを移し替える方法を開示する。この方法では、準備室にて天板に乗せた患者の位置設定を行い、患者を乗せた天板を搬送台に載せて、準備室から治療室へ搬送する。粒子線治療室内で、患者を乗せた天板部分のみを粒子線治療室内の治療台に移乗させ、粒子線治療を行う(図9(b)、(c))。 Prior Document 2 discloses a method of transferring only a top plate portion on which a patient rests to a treatment table in a particle beam therapy room in which an irradiation nozzle is installed. In this method, the position of the patient placed on the top plate is set in the preparation room, the top plate on which the patient is placed is placed on the transport table, and the patient is transported from the preparation room to the treatment room. In the particle beam therapy room, only the top plate portion on which the patient is placed is transferred to the treatment table in the particle beam therapy room to perform particle beam therapy (FIGS. 9 (b) and 9 (c)).

特開2000−288102号公報Japanese Unexamined Patent Publication No. 2000-288102 特開2012−148026号公報Japanese Unexamined Patent Publication No. 2012-148526

特許文献1の技術では、準備室で行った患者位置設定の状態を維持しながら粒子線治療室まで患者を搬送することは難しく、搬送の間に振動等によって患者の位置がずれてしまい、実際には粒子線治療室内で再度位置設定を行う必要がある。特許文献2の技術では、準備室で患者位置設定を行った後、患者が乗った天板部分のみを粒子線治療室に設置された治療台へ移し替えるものであるが、移し替えの間に位置がずれてしまうおそれがある。また、粒子線治療室内に固定の治療台を常に備え付けておくことは、治療台の分だけ粒子線治療室を大きくしておく必要があり、またQA測定などの際に治療台によりQA測定用機器の設置が阻害されるなどの問題がある。 With the technique of Patent Document 1, it is difficult to transport the patient to the particle beam therapy room while maintaining the state of the patient position setting performed in the preparation room, and the position of the patient shifts due to vibration or the like during the transfer, which is actually the case. Needs to be repositioned in the particle therapy room. In the technique of Patent Document 2, after the patient position is set in the preparation room, only the top plate on which the patient sits is transferred to the treatment table installed in the particle beam therapy room, but during the transfer. There is a risk that the position will shift. In addition, to always equip the particle beam therapy room with a fixed treatment table, it is necessary to make the particle beam therapy room larger by the amount of the treatment table, and for QA measurement by the treatment table at the time of QA measurement etc. There are problems such as hindering the installation of equipment.

このような事情に鑑み、本発明は、患者搬送台車、粒子線照射システム、及び粒子線照射方法を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a patient carrier, a particle beam irradiation system, and a particle beam irradiation method.

本発明には、以下の態様が含まれる。
〔1〕
患者を乗せる天板と、
前記天板を平行移動及び/又は回転させる駆動部と
粒子線治療室に設けられた患者位置設定装置から受信した、前記天板の平行移動量及び/又は回転量に応じて、前記駆動部による前記天板の平行移動及び/又は回転を制御する駆動制御部と
を備える患者搬送台車。
〔2〕
前記駆動部は、前記天板の短辺方向(X軸)、前記天板の長辺方向(Y軸)、並びに前記長辺方向及び短辺方向に垂直な方向(Z軸)のうちの少なくとも1つの方向に沿って前記天板を平行移動させ、且つ/又は、前記短辺方向(X軸)、前記長辺方向(Y軸)、並びに前記垂直な方向(Z軸)のうちの少なくとも1つの方向のまわりに前記天板を回転させる、上記〔1〕に記載の患者搬送台車。
〔3〕
前記駆動部は、前記天板の短辺方向(X軸)、前記天板の長辺方向(Y軸)、並びに前記長辺方向及び短辺方向に垂直な方向(Z軸)に沿って前記天板を平行移動させ、且つ、前記短辺方向(X軸)、前記長辺方向(Y軸)、並びに前記垂直な方向(Z軸)のまわりに前記天板を回転させる、上記〔1〕に記載の患者搬送台車。
〔4〕
前記粒子線治療室に前記患者搬送台車を固定するためのベースロック機構をさらに備える上記〔1〕〜〔3〕のいずれか1項に記載の患者搬送台車。
〔5〕
前記粒子線は、陽子線、中性子線、又は重粒子線である、上記〔1〕〜〔4〕のいずれか1項に記載の患者搬送台車。
〔6〕
前記粒子線治療室へ患者を搬送する且つ/又は前記粒子線治療室から患者を搬送するための上記〔1〕〜〔5〕のいずれか1項に記載の患者搬送台車。
〔7〕
粒子線照射装置と、
粒子線治療室に設けられた患者位置設定装置と、
上記〔1〕〜〔6〕のいずれか1項に記載の患者搬送台車と
を含む粒子線照射システム。
〔8〕
前記患者位置設定装置は、
前記天板に乗った患者にX線を照射するX線発生装置と前記X線を検出するX線検出器とを制御して、前記患者のX線画像を生成するX線撮像制御部(43)と、
前記X線画像と、前記患者の粒子線を照射すべき部位に係る基準X線画像とを比較し、両者の位置誤差を算出する患者位置設定部(44)と、
前記位置誤差が所定の許容値以下でない場合に、前記位置誤差を低減するような前記天板の平行移動量及び/又は回転量を算出し、前記平行移動量及び/又は回転量を前記患者搬送台車に送信する台車制御部(45)と、
を備える、上記〔7〕に記載の粒子線照射システム。
〔9〕
上記〔8〕に記載の粒子線照射システムにおいて、患者に粒子線を照射する方法であって、
患者を乗せた前記患者搬送台車が、粒子線治療室内に移動し、前記粒子線治療室に対して固定されるステップと、
前記X線撮像制御部(43)が、前記X線発生装置及び前記X線検出器を制御して、前記患者のX線画像を生成するステップと、
前記患者位置設定部(44)が、前記X線画像と前記基準X線画像とを比較し、両者の位置誤差を算出するステップと、
前記台車制御部(45)が、前記位置誤差が所定の許容値以下でない場合に、前記位置誤差を低減するような前記天板の平行移動量及び/又は回転量を算出し、前記平行移動量及び/又は回転量を前記患者搬送台車に送信するステップと、
前記駆動制御部は、前記平行移動量及び/又は回転量に応じて、前記駆動部による前記天板の平行移動及び/又は回転を制御するステップと、
前記粒子線照射装置が、前記患者に粒子線を照射するステップと、
を含む、前記方法。
〔10〕
前記台車制御部(45)が前記患者搬送台車からエラー信号を受信するステップと、
前記患者位置設定部(44)が、前記エラー信号を前記粒子線照射システムを統括する治療制御装置(21)へ送信するステップと、
前記治療制御装置(21)が、前記粒子線照射装置を制御する粒子線照射制御装置(34)を通じて、前記患者への粒子線の照射を停止させるステップと
をさらに含む上記〔9〕に記載の方法。
〔11〕
粒子線治療室へ患者を搬送する且つ/又は粒子線治療室から患者を搬送するための患者搬送台車であって、
天板を平行移動及び/又は回転させる駆動部と
粒子線治療室に設けられた患者位置設定装置から受信した、前記天板の平行移動量及び/又は回転量に応じて、前記駆動部による前記天板の平行移動及び/又は回転を制御する駆動制御部と
を備える前記患者搬送台車。
〔12〕
前記患者位置設定装置は、
前記天板に乗った患者にX線を照射するX線発生装置と前記X線を検出するX線検出器とを制御して、前記患者のX線画像を生成するX線撮像制御部(43)と、
前記X線画像と、前記患者の粒子線を照射すべき部位に係る基準X線画像とを比較し、両者の位置誤差を算出する患者位置設定部(44)と、
前記位置誤差が所定の許容値以下でない場合に、前記位置誤差を低減するような前記天板の平行移動量及び/又は回転量を算出し、前記平行移動量及び/又は回転量を前記患者搬送台車に送信する台車制御部(45)と、
を備える、前記粒子線治療室へ患者を搬送する且つ/又は前記粒子線治療室から患者を搬送するための上記〔1〕〜〔6〕及び〔11〕のいずれか1項に記載の患者搬送台車。
The present invention includes the following aspects.
[1]
The top plate on which the patient is placed and
Depending on the amount of translation and / or rotation of the top plate received from the drive unit that translates and / or rotates the top plate and the patient positioning device provided in the particle beam therapy room, the drive unit A patient transport trolley including a drive control unit that controls parallel movement and / or rotation of the top plate.
[2]
The drive unit is at least one of the short side direction (X axis) of the top plate, the long side direction (Y axis) of the top plate, and the direction perpendicular to the long side direction and the short side direction (Z axis). The top plate is moved in parallel along one direction and / or at least one of the short side direction (X axis), the long side direction (Y axis), and the vertical direction (Z axis). The patient transport trolley according to the above [1], which rotates the top plate around one direction.
[3]
The drive unit is formed along the short side direction (X axis) of the top plate, the long side direction (Y axis) of the top plate, and the directions perpendicular to the long side direction and the short side direction (Z axis). The top plate is translated and the top plate is rotated around the short side direction (X axis), the long side direction (Y axis), and the vertical direction (Z axis). Patient transport trolley described in.
[4]
The patient transport trolley according to any one of the above [1] to [3], further comprising a base lock mechanism for fixing the patient transport trolley to the particle beam therapy room.
[5]
The patient carrier according to any one of the above [1] to [4], wherein the particle beam is a proton beam, a neutron beam, or a heavy particle beam.
[6]
The patient transport trolley according to any one of the above [1] to [5] for transporting a patient to the particle beam therapy room and / or transporting a patient from the particle beam therapy room.
[7]
Particle beam irradiation device and
The patient positioning device installed in the particle beam therapy room and
A particle beam irradiation system including the patient transport trolley according to any one of the above [1] to [6].
[8]
The patient positioning device is
An X-ray imaging control unit (43) that generates an X-ray image of the patient by controlling an X-ray generator that irradiates the patient on the top plate with X-rays and an X-ray detector that detects the X-rays. )When,
A patient positioning unit (44) that compares the X-ray image with a reference X-ray image relating to a site to be irradiated with the particle beam of the patient and calculates the positional error between the two.
When the position error is not equal to or less than a predetermined allowable value, the translation amount and / or rotation amount of the top plate is calculated so as to reduce the position error, and the translation amount and / or rotation amount is transferred to the patient. The dolly control unit (45) that transmits to the dolly and
The particle beam irradiation system according to the above [7].
[9]
In the particle beam irradiation system according to the above [8], a method of irradiating a patient with a particle beam.
A step in which the patient transport trolley carrying the patient moves into the particle beam therapy room and is fixed to the particle beam therapy room.
A step in which the X-ray imaging control unit (43) controls the X-ray generator and the X-ray detector to generate an X-ray image of the patient.
A step in which the patient position setting unit (44) compares the X-ray image with the reference X-ray image and calculates the position error between the two.
The bogie control unit (45) calculates a translation amount and / or a rotation amount of the top plate that reduces the position error when the position error is not equal to or less than a predetermined allowable value, and the translation amount. And / or a step of transmitting the amount of rotation to the patient transport carriage, and / or
The drive control unit includes a step of controlling the parallel movement and / or rotation of the top plate by the drive unit according to the translation amount and / or the rotation amount.
The step in which the particle beam irradiator irradiates the patient with the particle beam,
The method described above.
[10]
A step in which the trolley control unit (45) receives an error signal from the patient transport trolley,
A step in which the patient positioning unit (44) transmits the error signal to the treatment control device (21) that controls the particle beam irradiation system.
The above-mentioned [9], wherein the treatment control device (21) further includes a step of stopping the irradiation of the particle beam to the patient through the particle beam irradiation control device (34) that controls the particle beam irradiation device. Method.
[11]
A patient transport trolley for transporting a patient to and / or transporting a patient from the particle beam therapy room.
The drive unit for parallel movement and / or rotation of the top plate and the drive unit for rotating the top plate according to the amount of parallel movement and / or rotation of the top plate received from the patient positioning device provided in the particle beam therapy room. The patient transport trolley including a drive control unit that controls translation and / or rotation of the top plate.
[12]
The patient positioning device is
An X-ray imaging control unit (43) that generates an X-ray image of the patient by controlling an X-ray generator that irradiates the patient on the top plate with X-rays and an X-ray detector that detects the X-rays. )When,
A patient positioning unit (44) that compares the X-ray image with a reference X-ray image relating to a site to be irradiated with the particle beam of the patient and calculates the positional error between the two.
When the position error is not equal to or less than a predetermined allowable value, the translation amount and / or rotation amount of the top plate is calculated so as to reduce the position error, and the translation amount and / or rotation amount is transferred to the patient. The dolly control unit (45) that transmits to the dolly and
The patient transport according to any one of the above [1] to [6] and [11] for transporting a patient to the particle beam therapy room and / or transporting a patient from the particle beam therapy room. Cart.

本発明の一実施形態に係る患者搬送台車の概略図である。It is the schematic of the patient transport trolley which concerns on one Embodiment of this invention. 患者搬送台車の平行移動及び回転を説明する図である。It is a figure explaining the translation and rotation of a patient transport carriage. 患者搬送台車の制御ブロック図である。It is a control block diagram of a patient transport trolley. 患者搬送台車を含む粒子線照射システムの概略図である。It is the schematic of the particle beam irradiation system including the patient transport trolley. 粒子線照射システムの概略図である。It is the schematic of the particle beam irradiation system. 粒子線照射システムの制御ブロック図である。It is a control block diagram of a particle beam irradiation system. 患者位置設定のフローチャートである。It is a flowchart of patient position setting. 患者位置設定を説明する図である。It is a figure explaining the patient position setting. 従来の粒子線照射システムを説明する図である。It is a figure explaining the conventional particle beam irradiation system.

[患者搬送台車]
本発明の一実施形態に係る患者搬送台車10について説明する。
[Patient carrier]
The patient transport trolley 10 according to the embodiment of the present invention will be described.

図1の(a)は患者搬送台車10の概略斜視図であり、(b)は概略正面図、(c)は概略側面図である。図1に示すように、長方形状の天板11の短辺方向をX軸とし、天板11の長辺方向をY軸とし、患者搬送台車10の高さ方向(X軸及びY軸に垂直な方向)をZ軸とする。なお、天板11の形状は、長方形状のものに限らず、楕円形状のものであってもよく(この場合、短軸が短辺方向であるX軸、長軸が長辺方向であるY軸、両軸に垂直な軸がZ軸となる)、患者が安定して乗れる形状であればよい。 FIG. 1A is a schematic perspective view of the patient transport carriage 10, FIG. 1B is a schematic front view, and FIG. 1C is a schematic side view. As shown in FIG. 1, the short side direction of the rectangular top plate 11 is the X axis, the long side direction of the top plate 11 is the Y axis, and the height direction of the patient carrier 10 (perpendicular to the X axis and the Y axis). Direction) is the Z axis. The shape of the top plate 11 is not limited to a rectangular shape, but may be an elliptical shape (in this case, the short axis is the X axis in the short side direction and the long axis is the long side direction Y). The axis and the axis perpendicular to both axes are the Z axis), as long as the patient can ride stably.

患者搬送台車10は、患者を乗せる天板11と、天板11を各軸に沿って平行移動及び/又は各軸のまわりに回転させる駆動部12と、駆動部12を制御する駆動制御部13と、天板11、駆動部12、及び駆動制御部13を載せ、移動のための複数のキャスターを有するベース部14とを備える。医療従事者は、天板11上に患者を乗せて、患者搬送台車10を押して粒子線治療室へ患者を安定して搬送できる。なお、患者搬送台車10は自走式の電動車であってもよい。 The patient transport trolley 10 includes a top plate 11 on which a patient is placed, a drive unit 12 that translates and / or rotates the top plate 11 along each axis, and a drive control unit 13 that controls the drive unit 12. And a base unit 14 on which a top plate 11, a drive unit 12, and a drive control unit 13 are mounted and having a plurality of casters for movement. The medical staff can place the patient on the top plate 11 and push the patient transport cart 10 to stably transport the patient to the particle beam therapy room. The patient transport carriage 10 may be a self-propelled electric vehicle.

患者搬送台車10はさらに、天板11の位置(平行移動前後の位置、回転前後の位置)を安定して保持する(ロックする)ように構成された天板ロック機構15と、患者搬送台車10を粒子線治療室に対して固定し、患者搬送台車10が動かないように固定するためのベースロック機構16とを備える。 The patient transport trolley 10 further includes a top plate locking mechanism 15 configured to stably hold (lock) the positions of the top plate 11 (positions before and after translation, positions before and after rotation), and the patient transport trolley 10. Is provided with a base lock mechanism 16 for fixing the patient transport carriage 10 to the particle beam therapy room and fixing the patient transport carriage 10 so as not to move.

天板11は、患者の身体を固定するための固定具(不図示)を備える。固定具は、患者の頭部を固定する器具、患者の手足を固定する器具、患者の胴体を固定する器具、及び/又は患者の身体の形状に沿って形成されたクッション材などである。また、天板11は、患者の頭部、脚部、及び/又は胴体にあたる部分など天板11の一部が傾斜できるように構成されていてもよい。また、患者が天板11上でうつ伏せになった状態でも固定できるように、天板11に呼吸孔等が設けられていてもよい。 The top plate 11 includes a fixture (not shown) for fixing the patient's body. Fixtures include devices for fixing the patient's head, devices for fixing the patient's limbs, devices for fixing the patient's torso, and / or cushioning material formed along the shape of the patient's body. Further, the top plate 11 may be configured so that a part of the top plate 11 such as a portion corresponding to the patient's head, legs, and / or body can be inclined. Further, the top plate 11 may be provided with a breathing hole or the like so that the patient can be fixed even when the patient is lying down on the top plate 11.

駆動部12は、駆動制御部13による制御に従い、天板11をX軸、Y軸、及びZ軸に沿って平行移動させるための各種モータと、天板11をX軸、Y軸、及びZ軸のまわりで回転させるための各種モータと、これらモータの駆動力を天板11に伝えるための各種機構とを備える。また、駆動部12は、各モータの回転量、回転速度、及び回転方向などを検知し、天板11の平行移動量及び/又は回転量を算出するのに用いる信号を駆動制御部13に出力するエンコーダを備える。 The drive unit 12 includes various motors for moving the top plate 11 in parallel along the X-axis, Y-axis, and Z-axis according to the control by the drive control unit 13, and the top plate 11 on the X-axis, Y-axis, and Z. It is provided with various motors for rotating around a shaft and various mechanisms for transmitting the driving force of these motors to the top plate 11. Further, the drive unit 12 detects the rotation amount, rotation speed, rotation direction, etc. of each motor, and outputs a signal used to calculate the translation amount and / or the rotation amount of the top plate 11 to the drive control unit 13. Equipped with an encoder to rotate.

なお、本実施形態では、天板11が駆動部12によりX軸、Y軸、及びZ軸に沿って平行移動し、且つ、X軸、Y軸、及びZ軸のまわりで回転する態様について説明するが、これに限定されない。天板11が平行移動及び回転を行う軸の数は、用途に応じて限定的なものであってもよい。すなわち、駆動部12は、天板11がX軸、Y軸、及びZ軸のうちの少なくとも1つの軸に沿って平行移動でき、且つ/又は、X軸、Y軸、及びZ軸のうちの少なくとも1つの軸のまわりで回転できるように、構成されていてもよい。 In the present embodiment, the mode in which the top plate 11 is translated by the drive unit 12 along the X-axis, the Y-axis, and the Z-axis and rotates around the X-axis, the Y-axis, and the Z-axis will be described. However, it is not limited to this. The number of axes on which the top plate 11 translates and rotates may be limited depending on the application. That is, in the drive unit 12, the top plate 11 can be translated along at least one of the X-axis, Y-axis, and Z-axis, and / or of the X-axis, Y-axis, and Z-axis. It may be configured to rotate around at least one axis.

好ましくは、駆動部12は、天板11をX軸、Y軸、及びZ軸に沿って平行移動させる、又は、天板11をX軸、Y軸、及びZ軸のまわりで回転させるように構成されている。さらに好ましくは、駆動部12は、天板11を、X軸、Y軸、及びZ軸に沿って平行移動させ、且つ、X軸、Y軸、及びZ軸のまわりで回転させるように構成されている。 Preferably, the drive unit 12 translates the top plate 11 along the X, Y, and Z axes, or rotates the top plate 11 around the X, Y, and Z axes. It is configured. More preferably, the drive unit 12 is configured to translate the top plate 11 along the X, Y, and Z axes and rotate it around the X, Y, and Z axes. ing.

図2の(a)は天板11のX軸に沿った平行移動を表し、(b)は天板11のX軸のまわりの回転を模式的に表す。同様に、(c)は天板11のY軸に沿った平行移動を表し、(d)は天板11のY軸のまわりの回転を表し、(e)は天板11のZ軸に沿った平行移動を表し、(f)は天板11のZ軸のまわりの回転を表す。 FIG. 2A shows the translation of the top plate 11 along the X-axis, and FIG. 2B schematically shows the rotation of the top plate 11 around the X-axis. Similarly, (c) represents the translation of the top plate 11 along the Y-axis, (d) represents the rotation of the top plate 11 around the Y-axis, and (e) represents the rotation of the top plate 11 along the Z-axis. (F) represents the rotation of the top plate 11 around the Z axis.

駆動制御部13は、粒子線治療室に設けられた患者位置設定装置(後述)と無線通信するアンテナ又は有線通信するポートなどのインターフェースと、患者位置設定装置からの信号に基づき駆動部12を制御するためのプログラム及びプロセッサ(又はASICなど)と、該プログラムや各種情報を記憶する記憶部などを備えたコンピュータである。 The drive control unit 13 controls the drive unit 12 based on an interface such as an antenna for wireless communication or a port for wired communication with a patient position setting device (described later) provided in the particle beam therapy room, and a signal from the patient position setting device. It is a computer provided with a program and a processor (or ASIC, etc.) for the purpose of the program, and a storage unit for storing the program and various information.

図3は駆動制御部13の機能ブロック図である。駆動制御部13は、記憶部に記憶されたプログラムとプロセッサとが協働するなどして実現される機能部として、粒子線治療室に設けられた患者位置設定装置(後述する符号40)と信号を送受信する信号送受信部131と、駆動部12の各種モータを制御する平行移動制御部132及び回転制御部133と、駆動部12のエンコーダの出力に基づき天板11の平行移動量(x,y,z)及び/又は回転量(θx,θy,θz)を算出する移動回転量算出部134を有する。 FIG. 3 is a functional block diagram of the drive control unit 13. The drive control unit 13 is a functional unit realized by the cooperation of the processor and the program stored in the storage unit, and is a signal and a patient position setting device (reference numeral 40 described later) provided in the particle beam therapy room. The parallel movement amount (x, y) of the top plate 11 based on the output of the signal transmission / reception unit 131, the parallel movement control unit 132 and the rotation control unit 133 that control various motors of the drive unit 12, and the encoder of the drive unit 12. , Z) and / or has a moving rotation amount calculation unit 134 for calculating the rotation amount (θx, θy, θz).

平行移動制御部132は、平板11をX軸に沿って平行移動させるX軸平行移動モータと、平板11をY軸に沿って平行移動させるY軸平行移動モータと、平板11をZ軸に沿って平行移動させるZ軸平行移動モータとを制御し、各軸に沿った平板11の平行移動量(x,y,z)を制御する。 The parallel movement control unit 132 includes an X-axis parallel movement motor that moves the flat plate 11 in parallel along the X-axis, a Y-axis parallel movement motor that moves the flat plate 11 in parallel along the Y-axis, and a flat plate 11 along the Z-axis. It controls a Z-axis translation motor that translates in parallel, and controls the amount of translation (x, y, z) of the flat plate 11 along each axis.

回転制御部133は、平板11をX軸のまわりに回転させるX軸回転モータと、平板11をY軸のまわりに回転させるY軸回転モータと、平板11をZ軸のまわりに回転させるZ軸回転モータとを制御し、各軸のまわりの平板11の回転量(θx,θy,θz)を制御する。 The rotation control unit 133 includes an X-axis rotation motor that rotates the flat plate 11 around the X-axis, a Y-axis rotation motor that rotates the flat plate 11 around the Y-axis, and a Z-axis that rotates the flat plate 11 around the Z-axis. The rotation motor is controlled, and the amount of rotation (θx, θy, θz) of the flat plate 11 around each axis is controlled.

移動回転量算出部134は、駆動部12のエンコーダから各モータの回転量、回転速度、及び回転方向などの情報を受け取り、天板11の平行移動量(x,y,z)及び/又は回転量(θx,θy,θz)を算出する。算出した平行移動量(x,y,z)及び/又は回転量(θx,θy,θz)の情報は、信号送受信部131を通じて患者位置設定装置(後述する符号40)に送られる。 The moving rotation amount calculation unit 134 receives information such as the rotation amount, the rotation speed, and the rotation direction of each motor from the encoder of the drive unit 12, and the parallel movement amount (x, y, z) and / or rotation of the top plate 11. The quantity (θx, θy, θz) is calculated. The calculated translation amount (x, y, z) and / or rotation amount (θx, θy, θz) information is sent to the patient position setting device (reference numeral 40 described later) through the signal transmission / reception unit 131.

天板ロック機構15は、図1に示すようにベース部14上に設け、天板11を支える構成であってもよいし、駆動部12内に設けられ、モータの駆動力を天板11に伝える機構をロックする構成であってもよい。天板ロック機構15は、天板11が平行移動及び回転している間を除き、天板11が動かないように安定して保持するように構成される。これにより、何らかの事情により電源が駆動部12に供給されないような場合においても、天板ロック機構15が天板11を安定して保持することができるため、天板11から患者が落下するなどの状況を防ぐことができる。なお、医療従事者の指示するタイミングで、天板ロック機構15が天板11をロックできるようにしてもよい。 As shown in FIG. 1, the top plate lock mechanism 15 may be provided on the base portion 14 to support the top plate 11, or may be provided in the drive portion 12 to apply the driving force of the motor to the top plate 11. It may be configured to lock the transmitting mechanism. The top plate locking mechanism 15 is configured to stably hold the top plate 11 so that it does not move except while the top plate 11 is moving and rotating in parallel. As a result, even if power is not supplied to the drive unit 12 for some reason, the top plate lock mechanism 15 can stably hold the top plate 11, so that the patient may fall from the top plate 11. The situation can be prevented. The top plate lock mechanism 15 may be able to lock the top plate 11 at a timing instructed by the medical staff.

ベースロック機構16は、粒子線治療室の床や壁などに設けられたロック受け部(図5の符号51)と係合し、粒子線治療室に対して患者搬送台車10が動かないように固定するための機構である。ベースロック機構16は、患者搬送台車10の移動時等には邪魔にならないようにベース部14に格納させておき、粒子線治療室のロック受け部と係合する際にベース部14から突出するように構成してもよい。なお、ロック受け部51が粒子線治療室の壁に設けられている場合は、それに合わせてベースロック機構16もベース部14の側方に設けるようにしてもよい。 The base lock mechanism 16 engages with a lock receiving portion (reference numeral 51 in FIG. 5) provided on the floor or wall of the particle beam therapy room, and fixes the patient transport carriage 10 to the particle beam therapy room so as not to move. It is a mechanism to do. The base lock mechanism 16 is stored in the base portion 14 so as not to interfere with the movement of the patient transport carriage 10, and protrudes from the base portion 14 when engaging with the lock receiving portion of the particle beam therapy room. It may be configured as follows. If the lock receiving portion 51 is provided on the wall of the particle beam therapy room, the base lock mechanism 16 may be provided on the side of the base portion 14 accordingly.

[粒子線照射システム]
図4〜6を用いて、患者搬送台車10を用いた粒子線治療用の粒子線照射システム20について説明する。
[Particle beam irradiation system]
The particle beam irradiation system 20 for particle beam therapy using the patient transport carriage 10 will be described with reference to FIGS. 4 to 6.

粒子線照射システム20は、患者搬送台車10と、粒子線を生成し患部へ粒子線を照射する粒子線照射装置30と、粒子線治療室50に設けられた患者位置設定装置40とを含む。 The particle beam irradiation system 20 includes a patient transport trolley 10, a particle beam irradiation device 30 that generates particle beams and irradiates the affected area with the particle beams, and a patient positioning device 40 provided in the particle beam therapy room 50.

なお、患者位置設定装置40は、その一部が粒子線治療室50に設けられ、残りの部分が粒子線治療室50から離れた箇所に設けられていてもよい。そのため、患者位置設定装置40の一部、即ち少なくとも後述するX線発生装置41及びX線検出器42が粒子線治療室50に設けられていれば、「粒子線治療室に設けられた患者位置設定装置」となる。 A part of the patient positioning device 40 may be provided in the particle beam therapy room 50, and the remaining part may be provided in a place away from the particle beam therapy room 50. Therefore, if a part of the patient position setting device 40, that is, at least the X-ray generator 41 and the X-ray detector 42 described later are provided in the particle beam therapy room 50, the “patient position provided in the particle beam therapy room 50”. It becomes a setting device.

また、図4(a)には、1つの粒子線照射装置30を2つの粒子線治療室50で用いる粒子線照射システム20が描かれているが、1つの粒子線照射装置30を1つ粒子線治療室50で用いる構成であってもよいし、3つ以上の粒子線治療室50で用いる構成であってもよい。 Further, FIG. 4A depicts a particle beam irradiation system 20 in which one particle beam irradiation device 30 is used in two particle beam therapy rooms 50, but one particle beam irradiation device 30 is used as one particle. The configuration may be used in the radiotherapy room 50, or the configuration may be used in three or more particle beam therapy rooms 50.

図4(b)及び(c)に示すように、患者を乗せた患者搬送台車10は、外部から粒子線治療室50内へ搬送され、粒子線治療室50の床に設けたロック受け部51にベースロック機構16を係合させ固定させた後、粒子線治療の治療台としてそのまま利用できる。そのため、従来のような患者を搬送する台車から患者を粒子線治療室の治療台へ移す必要がなく、患者への負担は軽減される。また、粒子線治療室50内に固定の治療台を常に備え付けておく必要がないことから、粒子線治療室50のスペースを低減でき、QA測定などの際に備え付けの治療台がQA測定機器設置を阻害するなどの問題も生じない。 As shown in FIGS. 4 (b) and 4 (c), the patient transport trolley 10 carrying the patient is transported from the outside into the particle beam therapy room 50, and the lock receiving portion 51 provided on the floor of the particle beam therapy room 50. After engaging and fixing the base lock mechanism 16 to, it can be used as it is as a treatment table for particle beam therapy. Therefore, it is not necessary to move the patient from the conventional trolley for transporting the patient to the treatment table in the particle beam therapy room, and the burden on the patient is reduced. Further, since it is not necessary to always provide a fixed treatment table in the particle beam therapy room 50, the space of the particle beam therapy room 50 can be reduced, and the treatment table provided for QA measurement or the like is installed with the QA measurement device. There is no problem such as hindering.

粒子線照射装置30は、粒子線を生成する加速器31、粒子線をガイドする真空ダクトや各種電磁石装置32、及び粒子線を患者の照射すべき部位に向けて出射する照射ノズル33を含む。 The particle beam irradiation device 30 includes an accelerator 31 for generating particle beams, a vacuum duct for guiding the particle beams, various electromagnet devices 32, and an irradiation nozzle 33 for emitting the particle beams toward a portion to be irradiated by the patient.

加速器31は、粒子線を生成する装置であり、例えばシンクロトロン、サイクロトロン、又は線形加速器である。加速器31で生成された粒子線は、真空ダクト内を通り、各種電磁石装置32により照射ノズル33へ導かれる。粒子線は、陽子線、中性子線、又は重粒子線である。 The accelerator 31 is a device that generates a particle beam, for example, a synchrotron, a cyclotron, or a linear accelerator. The particle beam generated by the accelerator 31 passes through the vacuum duct and is guided to the irradiation nozzle 33 by various electromagnet devices 32. The particle beam is a proton beam, a neutron beam, or a heavy particle beam.

電磁石装置32は、特許第6364141号や特許第6387476号に記載の四極電磁石装置、ステアリング電磁石装置、振分電磁石装置、及び/又は収束電磁石などを含んでいてもよい。照射ノズル33は、粒子線治療室50に設けられ、患部へ向けて粒子線を照射する。照射ノズル33は、特許第6387476号に記載の照射ノズルであってもよい。また、電磁石装置32は、粒子線の形状及び/又は線量を調整するビームスリット装置(不図示)や、粒子線のビーム位置を微調整するためのステアリング電磁石装置を含むものであってもよい。なお、特許第6364141号及び特許第6387476号に記載の内容は、参照により本願に組み込まれる。 The electromagnet device 32 may include a quadrupole electromagnet device, a steering electromagnet device, a distribution electromagnet device, and / or a convergent electromagnet described in Japanese Patent No. 6364141 and Japanese Patent No. 6387476. The irradiation nozzle 33 is provided in the particle beam therapy room 50 and irradiates the particle beam toward the affected area. The irradiation nozzle 33 may be the irradiation nozzle described in Japanese Patent No. 6387476. Further, the electromagnet device 32 may include a beam slit device (not shown) for adjusting the shape and / or dose of the particle beam, and a steering electromagnet device for finely adjusting the beam position of the particle beam. The contents described in Japanese Patent No. 6364141 and Japanese Patent No. 6387476 are incorporated in the present application by reference.

照射ノズル33は、走査電磁石331、ビームモニタ332、及びエネルギー変調手段333を備える。 The irradiation nozzle 33 includes a scanning electromagnet 331, a beam monitor 332, and energy modulation means 333.

走査電磁石331は、流れる電流量や電流の向きを調整することで、照射ノズル33から出射する粒子線の進行方向を微調整し、所定の範囲内でスキャン(走査)可能にするための電磁石である。ビームモニタ332は、粒子線を監視し、線量やビームの位置及び平坦度を計測するモニタである。計測した情報は、ビームモニタ332から粒子線照射制御部34にフィードバックされ、走査電磁石331の制御や粒子線の精度よい照射に利用される。エネルギー変調手段333は、粒子線のエネルギーを調整して粒子線の患者内の到達する深さを調整するものであり、例えば、レンジモジュレータ、散乱体、リッジフィルタ、患者コリメータ、患者ボーラス、又はアプリケータなどである。 The scanning electromagnet 331 is an electromagnet that finely adjusts the traveling direction of the particle beam emitted from the irradiation nozzle 33 by adjusting the amount of flowing current and the direction of the current, and enables scanning within a predetermined range. is there. The beam monitor 332 is a monitor that monitors particle beams and measures the dose, the position and flatness of the beam. The measured information is fed back from the beam monitor 332 to the particle beam irradiation control unit 34, and is used for controlling the scanning electromagnet 331 and accurately irradiating the particle beam. The energy modulation means 333 adjusts the energy of the particle beam to adjust the depth of reach of the particle beam in the patient, such as a range modulator, scatterer, ridge filter, patient collimator, patient bolus, or application. Such as

図5の(a)は、患者搬送台車10を患者の頭部側(正面)から見た図であり、(b)は側面から見た図である。 FIG. 5A is a view of the patient transport carriage 10 as viewed from the head side (front) of the patient, and FIG. 5B is a view as viewed from the side.

患者位置設定装置40は、X線を生成し患者に照射する複数のX線発生装置41a、41b(総称してX線発生装置41)と、X線発生装置41a、41bから照射されたX線をそれぞれ検出するX線検出器42a、42b(総称してX線検出器42)とを備える。X線発生装置41は、X線管や、コーンビームCT用のX線発生装置などであり、X線検出器42は、X線発生装置41から出たX線を検出するCCDエリアイメージセンサ、CMOSエリアイメージセンサ、又はフラットパネルセンサであってもよい。なお、X線を用いるX線発生装置41及びX線検出器42に変えて、磁気共鳴を用いたMRI装置を用いて、粒子線と粒子線を照射すべき患部との患者位置設定を行うようにしてもよい。 The patient positioning device 40 includes a plurality of X-ray generators 41a and 41b (collectively referred to as X-ray generators 41) that generate X-rays and irradiate the patient, and X-rays emitted from the X-ray generators 41a and 41b. The X-ray detectors 42a and 42b (collectively, the X-ray detector 42) are provided. The X-ray generator 41 is an X-ray tube, an X-ray generator for cone beam CT, and the like, and the X-ray detector 42 is a CCD area image sensor that detects X-rays emitted from the X-ray generator 41. It may be a CMOS area image sensor or a flat panel sensor. Instead of the X-ray generator 41 and the X-ray detector 42 that use X-rays, an MRI device that uses magnetic resonance is used to set the patient position between the particle beam and the affected area to be irradiated with the particle beam. It may be.

なお、図5には、X線発生装置41a、41bとそれらに対応するX線検出器42a、42bは、2組描かれているが、X線発生装置41及びX線検出器42の組は、1組であってもよいし、3組以上であってもよい。X線発生装置41及びX線検出器42の組は、数が多いほど、精度は向上するが、処理が複雑になるため、好ましくは2〜3組である。 In FIG. 5, two sets of the X-ray generators 41a and 41b and the corresponding X-ray detectors 42a and 42b are drawn, but the set of the X-ray generator 41 and the X-ray detector 42 is shown. It may be one set or three or more sets. As the number of sets of the X-ray generator 41 and the X-ray detector 42 increases, the accuracy improves, but the processing becomes complicated, so that the number of sets is preferably two or three.

図6は、患者位置設定装置40と粒子線照射システム20の制御ブロック図である。 FIG. 6 is a control block diagram of the patient positioning device 40 and the particle beam irradiation system 20.

患者位置設定装置40は、X線撮像制御部43、患者位置設定部44、及び台車制御部45を備える。X線撮像制御部43、患者位置設定部44、及び台車制御部45は、各種通信インターフェースと、各種制御のためのプログラム及びプロセッサ(又はASICなど)と、該プログラムや各種情報を記憶する記憶部などを備え、記憶部に記憶されたプログラムとプロセッサとが協働するなどして実現される機能部である。X線撮像制御部43、患者位置設定部44、及び台車制御部45は、粒子線治療室50に設けられていてもよいし、粒子線治療室50から離れた箇所に設けられ、粒子線治療室50内のX線発生装置41やX線検出器42、患者搬送台車10を遠隔から制御するものであってもよい。 The patient position setting device 40 includes an X-ray imaging control unit 43, a patient position setting unit 44, and a trolley control unit 45. The X-ray imaging control unit 43, the patient position setting unit 44, and the trolley control unit 45 include various communication interfaces, programs and processors (or ASICs, etc.) for various controls, and a storage unit that stores the programs and various information. It is a functional unit that is realized by the cooperation of the processor and the program stored in the storage unit. The X-ray imaging control unit 43, the patient position setting unit 44, and the trolley control unit 45 may be provided in the particle beam therapy room 50, or may be provided at a location away from the particle beam therapy room 50, and may be provided for particle beam therapy. The X-ray generator 41, the X-ray detector 42, and the patient carrier 10 in the chamber 50 may be remotely controlled.

X線撮像制御部43は、患者位置設定部44の命令に応じて又は所定の周期で、X線発生装置41とX線検出器42を制御し、患者のX線画像を生成し、それを患者位置設定部44に出力する。 The X-ray imaging control unit 43 controls the X-ray generator 41 and the X-ray detector 42 in response to a command from the patient position setting unit 44 or at a predetermined cycle, generates an X-ray image of the patient, and generates an X-ray image of the patient. It is output to the patient position setting unit 44.

患者位置設定部44は、X線撮像制御部43から受信したX線画像を、予め記憶しておいた当該患者の粒子線が照射されるべき部位に係る基準X線画像と比較し、両者の誤差量(位置誤差)を算出する。そして、患者位置設定部44は、X線画像と基準X線画像との位置誤差に係る情報を台車制御部45に出力する。 The patient position setting unit 44 compares the X-ray image received from the X-ray imaging control unit 43 with the reference X-ray image relating to the portion to be irradiated with the particle beam of the patient, which is stored in advance, and both of them. Calculate the amount of error (positional error). Then, the patient position setting unit 44 outputs information related to the position error between the X-ray image and the reference X-ray image to the trolley control unit 45.

ここで、基準X線画像は、粒子線治療を行う前に、X線画像を撮像できる準備室(又は粒子線治療室50)内で患者の粒子線を照射すべき部位(患部)のX線画像を取得しておき、患者位置設定装置40に記憶させておく。なお、同じ患部に対する粒子線治療が複数回行われる場合には、当該患部に係る基準X線画像を最初に取得しておけば、粒子線治療ごとに基準X線画像を取得する必要はないが、粒子線治療ごとに、粒子線治療室50へ入る前の準備室等において基準X線画像を取得するようにしてもよい。 Here, the reference X-ray image is an X-ray of a part (affected part) to be irradiated with the particle beam of the patient in the preparation room (or the particle beam therapy room 50) where the X-ray image can be imaged before performing the particle beam therapy. The image is acquired and stored in the patient positioning device 40. When particle beam therapy for the same affected area is performed multiple times, it is not necessary to acquire a reference X-ray image for each particle beam therapy if the reference X-ray image for the affected area is acquired first. For each particle therapy, a reference X-ray image may be acquired in a preparation room or the like before entering the particle therapy room 50.

台車制御部45は、X線画像と基準X線画像との位置誤差に基づき、該位置誤差が低減される(又はゼロになる)ように、患者搬送台車10の天板11の平行移動量(x,y,z)及び/又は回転量(θx,θy,θz)を算出し、その情報を患者搬送台車10の駆動制御部13へ送信する。また、台車制御部45は、患者搬送台車10から実際に動かした平行移動量(x,y,z)及び/又は回転量(θx,θy,θz)の情報を受信し、その情報を患者位置設定部44に出力する。 Based on the positional error between the X-ray image and the reference X-ray image, the carriage control unit 45 translates the top plate 11 of the patient transport carriage 10 (or becomes zero) so that the positional error is reduced (or becomes zero). x, y, z) and / or the amount of rotation (θx, θy, θz) are calculated, and the information is transmitted to the drive control unit 13 of the patient transport carriage 10. Further, the trolley control unit 45 receives information on the amount of parallel movement (x, y, z) and / or the amount of rotation (θx, θy, θz) actually moved from the patient transport trolley 10, and receives the information from the patient position. Output to the setting unit 44.

患者位置設定部44は、粒子線照射システム20全体を統括する治療制御装置21に患者位置設定に係る情報を送信する。患者位置設定に係る情報には、患者位置設定部44が台車制御部45から入力した平行移動量(x,y,z)及び/又は回転量(θx,θy,θz)の情報を含む。また、患者搬送台車10に不具合等があった場合には、患者搬送台車10の駆動制御部13からエラー信号が、台車制御部45を通じて患者位置設定部44に送られ、患者位置設定部44から治療制御装置21へ送られる。エラー信号を受けた治療制御装置21は、患者の安全を考慮して、粒子線照射制御装置34を通じて粒子線の照射を停止させる。 The patient position setting unit 44 transmits information related to the patient position setting to the treatment control device 21 that controls the entire particle beam irradiation system 20. The information related to the patient position setting includes information on the amount of translation (x, y, z) and / or the amount of rotation (θx, θy, θz) input by the patient position setting unit 44 from the carriage control unit 45. If there is a problem with the patient transport trolley 10, an error signal is sent from the drive control unit 13 of the patient transport trolley 10 to the patient position setting unit 44 through the trolley control unit 45, and the patient position setting unit 44 sends an error signal. It is sent to the treatment control device 21. Upon receiving the error signal, the treatment control device 21 stops the irradiation of the particle beam through the particle beam irradiation control device 34 in consideration of the safety of the patient.

患者位置設定の情報に基づき治療制御装置21は、粒子線照射制御装置34に命令を出し、それに応じて粒子線照射制御装置34は、粒子線照射装置30を制御して、粒子線の線量、形状、及び照射位置などを調整する。 The treatment control device 21 issues a command to the particle beam irradiation control device 34 based on the information of the patient position setting, and the particle beam irradiation control device 34 controls the particle beam irradiation device 30 accordingly to control the particle beam dose. Adjust the shape and irradiation position.

粒子線照射システム20において、粒子線が照射される位置は、患者搬送台車10の天板11を制御して患者位置を調整するアプローチと、粒子線照射装置30(照射ノズル33等)を制御して粒子線の照射位置や形状、エネルギー等を調整するアプローチの両方から調整できる。これにより、粒子線の照射位置の精度が向上し、調整に費やす時間も短縮される。 In the particle beam irradiation system 20, the position where the particle beam is irradiated is determined by controlling the approach of controlling the top plate 11 of the patient carrier 10 to adjust the patient position and the particle beam irradiation device 30 (irradiation nozzle 33 or the like). It can be adjusted from both approaches that adjust the irradiation position, shape, energy, etc. of the particle beam. As a result, the accuracy of the irradiation position of the particle beam is improved, and the time spent for adjustment is also shortened.

患者位置設定は、粒子線治療前に行われるが、粒子線治療中に所定の周期で行うようにしてもよい。これにより、粒子線治療中の患者の意図しない移動や生理的な体動(呼吸など)が生じても、すぐに粒子線の照射位置を調整できる。 The patient position is set before the particle beam therapy, but may be performed at a predetermined cycle during the particle beam therapy. As a result, even if the patient undergoes unintended movement or physiological body movement (breathing, etc.) during particle beam therapy, the irradiation position of the particle beam can be adjusted immediately.

図7は、患者位置設定の一連のフローチャートである。 FIG. 7 is a series of flowcharts for setting the patient position.

まず、粒子線治療を受ける患者を、粒子線治療室とは別の準備室等において、患者搬送台車10の天板11に乗せて、固定具で患者が動かないように固定する(ステップS1)。 First, the patient undergoing particle beam therapy is placed on the top plate 11 of the patient transport carriage 10 in a preparation room or the like separate from the particle beam therapy room, and fixed with a fixture so that the patient does not move (step S1). ..

患者を乗せた患者搬送台車10を粒子線治療室50へ搬送し、患者搬送台車10のベースロック機構16を粒子線治療室50のロック受け部51へ固定させる(ステップS2)。 The patient transport trolley 10 carrying the patient is transported to the particle beam therapy room 50, and the base lock mechanism 16 of the patient transport trolley 10 is fixed to the lock receiving portion 51 of the particle beam therapy room 50 (step S2).

粒子線治療室50内に設けたレーザーポインタ装置(不図示)を用いて、患者の外側から(皮膚上で)粒子線を照射すべき位置について粗い位置決めを行う(ステップS3)。粗い位置決めは、医師や技師等の医療関係者により行われるものであってもよいし、レーザーポインタ装置、治療制御装置21、及び患者位置設定装置40が協働して自動的に行うものであってもよい。また、ステップS3は粒子線治療室50内ではなく、別の準備室等で行うものであってもよい(即ち、ステップS2の前にステップS3を行う)。 Using a laser pointer device (not shown) provided in the particle beam therapy room 50, rough positioning is performed at a position where the particle beam should be irradiated from the outside (on the skin) of the patient (step S3). Rough positioning may be performed by a medical personnel such as a doctor or a technician, or may be automatically performed by the laser pointer device, the treatment control device 21, and the patient positioning device 40 in cooperation with each other. You may. Further, step S3 may be performed not in the particle beam therapy room 50 but in another preparation room or the like (that is, step S3 is performed before step S2).

粗い位置決めの後、患者位置設定装置40のX線撮像制御部43は、X線発生装置41及びX線検出器42を制御して、患者の粒子線を照射すべき部位のX線画像を撮像する(ステップS4)。患者位置設定部44は、ステップS4で取得したX線画像を、予め記憶しておいた基準X線画像と比較し、両者の位置誤差を算出する(ステップS5)。位置誤差の算出は、例えば位相相関法などの公知の画像処理アルゴリズムを用いることができる。 After rough positioning, the X-ray imaging control unit 43 of the patient positioning device 40 controls the X-ray generator 41 and the X-ray detector 42 to capture an X-ray image of the portion to be irradiated with the patient's particle beam. (Step S4). The patient position setting unit 44 compares the X-ray image acquired in step S4 with the reference X-ray image stored in advance, and calculates the position error between the two (step S5). A known image processing algorithm such as a phase correlation method can be used to calculate the position error.

患者位置設定部44は、ステップS5で算出した位置誤差が所定の許容値以下であるかどうか判定する(ステップS6)。許容値以下の場合(ステップS6でYes)、患者位置設定部44は、患者位置設定が完了したとの情報を治療制御装置21に送り、粒子線治療(粒子線の照射)が開始される。 The patient position setting unit 44 determines whether or not the position error calculated in step S5 is equal to or less than a predetermined allowable value (step S6). If it is below the permissible value (Yes in step S6), the patient position setting unit 44 sends information that the patient position setting is completed to the treatment control device 21, and particle beam therapy (irradiation of particle beam) is started.

許容値を超える場合(ステップS6でNo)、患者位置設定部44は台車制御部45に位置誤差の情報を送り、台車制御部45は、位置誤差が低減されるように、患者搬送台車10の天板11の平行移動量(x,y,z)及び/又は回転量(θx,θy,θz)を算出し、その情報を患者搬送台車10の駆動制御部13へ送信する(ステップS7)。 When the permissible value is exceeded (No in step S6), the patient position setting unit 44 sends the position error information to the trolley control unit 45, and the trolley control unit 45 of the patient transport trolley 10 so as to reduce the position error. The amount of translation (x, y, z) and / or the amount of rotation (θx, θy, θz) of the top plate 11 is calculated, and the information is transmitted to the drive control unit 13 of the patient transport carriage 10 (step S7).

患者搬送台車10の駆動制御部13は、駆動部12を制御して、受信した平行移動量(x,y,z)及び/又は回転量(θx,θy,θz)の分だけ天板11を平行移動及び/又は回転させる(ステップS8)。そして、位置誤差が許容値以下となるまでステップS4〜S8は繰り返される。 The drive control unit 13 of the patient transport trolley 10 controls the drive unit 12 to shift the top plate 11 by the amount of the received translation amount (x, y, z) and / or rotation amount (θx, θy, θz). Translate and / or rotate (step S8). Then, steps S4 to S8 are repeated until the position error becomes equal to or less than the allowable value.

再度、図8を用いて患者位置設定の概要を説明する。 The outline of the patient position setting will be described again with reference to FIG.

粗い位置決めの後、X線撮像制御部43は、患者のX線画像を撮像し、患者位置設定部44に出力する。患者位置設定部44は、予め記憶させておいた基準X線画像と取得したX線画像とを比較し、両者の位置誤差を算出し、許容値と比較する。図8(a)は位置誤差が比較的大きい場合である。位置誤差が許容値を超えるため、台車制御部45は、位置誤差を低減する(またはゼロにする)ように、患者搬送台車10の天板11の平行移動量及び/又は回転量を算出し、その情報を患者搬送台車10の駆動制御部13に送る。駆動制御部13は、受信した平行移動量及び/又は回転量に応じて、天板11を平行移動及び/又は回転させる。天板11の移動後にX線画像を撮像し、同様の処理を繰り返し、徐々に位置誤差が低減する(図8(a)〜(c))。図8(b)では、Z軸に沿って天板11を平行移動(+z1)させつつ、Y軸のまわりで天板11を回転(+θ1)させ、図8(c)では、Z軸に沿って天板11を平行移動(+z2)させつつ、Y軸のまわりで天板11を回転(+θ2)させている。最終的に、位置誤差が許容値以下となると、患者位置設定は完了する。 After the rough positioning, the X-ray image pickup control unit 43 takes an X-ray image of the patient and outputs it to the patient position setting unit 44. The patient position setting unit 44 compares the reference X-ray image stored in advance with the acquired X-ray image, calculates the position error between the two, and compares it with the permissible value. FIG. 8A shows a case where the position error is relatively large. Since the position error exceeds the permissible value, the carriage control unit 45 calculates the translation amount and / or the rotation amount of the top plate 11 of the patient transport carriage 10 so as to reduce (or reduce) the position error. The information is sent to the drive control unit 13 of the patient transport carriage 10. The drive control unit 13 translates and / or rotates the top plate 11 according to the received translation amount and / or rotation amount. After moving the top plate 11, an X-ray image is taken and the same process is repeated to gradually reduce the positional error (FIGS. 8 (a) to 8 (c)). In FIG. 8B, while the top plate 11 is translated (+ z1) along the Z axis, the top plate 11 is rotated (+ θ1 y ) around the Y axis, and in FIG. 8C, the top plate 11 is moved to the Z axis. While the top plate 11 is translated (+ z2) along the Y-axis, the top plate 11 is rotated (+ θ2 y ). Finally, when the position error is below the permissible value, the patient position setting is completed.

上記のとおり、本実施形態に係る患者搬送台車10を用いた粒子線照射システム20では、従来のように粒子線治療室内に常に備え付けの治療台を設けておく必要がないことから、粒子線治療室のスペースを低減できる。これにより、X線診断装置を持っているが粒子線照射装置を置く十分なスペースをとれないような既存の病院施設であっても、粒子線治療システムを導入しやすくなる。また、患者搬送台車10を用いた粒子線照射システム20では、患者は準備室又は病室から患者搬送台車10に乗ったまま粒子線治療室へ入り、粒子線治療を受けることができるため、従来のような治療台への乗り換えや天板の移し替えにともなう患者の心理的な負担を軽減することができる。また、従来のような天板の移し替えにともなう患者位置のずれも軽減できる。また、粒子線治療中に患者搬送台車10に不具合等があった場合であっても、そのエラー情報は治療制御装置21に送られ、粒子線の照射が安全に停止できるように構成されている。また、粒子線治療中であっても周期的に患者位置設定を行うことができ、患者の意図しない移動や生理的な体動が生じても、それに応じて天板11を動かすことで、粒子線が照射される位置のずれを補い、正しい照射すべき部位に粒子線を照射することができる。 As described above, in the particle beam irradiation system 20 using the patient transport trolley 10 according to the present embodiment, it is not necessary to always provide a treatment table provided in the particle beam treatment room as in the conventional case, so that the particle beam therapy is performed. The space in the room can be reduced. This makes it easier to introduce a particle beam therapy system even in an existing hospital facility that has an X-ray diagnostic device but does not have sufficient space for placing the particle beam irradiation device. Further, in the particle beam irradiation system 20 using the patient transport trolley 10, the patient can enter the particle beam therapy room from the preparation room or the hospital room while riding on the patient transport trolley 10 and receive the particle beam therapy. It is possible to reduce the psychological burden on the patient due to the transfer to the treatment table or the transfer of the top plate. In addition, it is possible to reduce the deviation of the patient position due to the conventional transfer of the top plate. Further, even if there is a problem in the patient transport carriage 10 during the particle beam therapy, the error information is sent to the treatment control device 21 so that the particle beam irradiation can be safely stopped. .. In addition, the patient position can be set periodically even during particle beam therapy, and even if the patient's unintended movement or physiological body movement occurs, the particles can be moved by moving the top plate 11 accordingly. It is possible to compensate for the deviation of the position where the line is irradiated and to irradiate the particle beam to the correct irradiation site.

上記実施形態で説明される寸法、材料、形状、構成要素の相対的な位置等は任意であり、本発明が適用される装置の構造又は様々な条件に応じて変更される。また、本発明は、具体的に記載された上記実施形態に限定されるものではない。 The dimensions, materials, shapes, relative positions of the components, etc. described in the above embodiments are arbitrary and are changed according to the structure of the apparatus to which the present invention is applied or various conditions. Further, the present invention is not limited to the above-described embodiments specifically described.

記載される実施形態では、明瞭化のために特定の用語が使用される。しかしながら、本発明は、選択された特定の用語及び実施例に限定されることを意図していない。関連分野の当業者であれば、他の同等の構成要素を使用することができ、また、本発明の広い概念から逸脱することなく他の方法を開発することができることを認識するであろう。 In the embodiments described, certain terms are used for clarity. However, the present invention is not intended to be limited to selected specific terms and examples. One of ordinary skill in the art will recognize that other equivalent components can be used and that other methods can be developed without departing from the broad concept of the invention.

前述の説明は本発明の好ましい実施形態を対象にしているが、他の変形及び変更が当業者には明らかであり、本発明の趣旨又は範囲から逸脱することなく施せることに注意されたい。また、本発明の一実施形態に関連して説明した特徴を、たとえ明確に前述していなくても、他の実施形態とともに用いることができる。 Although the above description is intended for preferred embodiments of the invention, it should be noted that other modifications and modifications will be apparent to those skilled in the art and can be made without departing from the spirit or scope of the invention. In addition, the features described in relation to one embodiment of the present invention can be used in conjunction with other embodiments, even if not explicitly stated above.

10 患者搬送台車
11 天板
12 駆動部
13 駆動制御部
131 信号送受信部
132 平行移動制御部
133 回転制御部
134 移動回転量算出部
14 ベース部
15 天板ロック機構
16 ベースロック機構
20 粒子線照射システム
21 治療制御装置
30 粒子線照射装置
31 加速器
32 電磁石装置
33 照射ノズル
34 粒子線照射制御装置
40 患者位置設定装置
41 X線発生装置
42 X線検出器
43 X線撮像制御部
44 患者位置設定部
45 台車制御部
50 粒子線治療室
51 ロック受け部
10 Patient carrier 11 Top plate 12 Drive unit 13 Drive control unit 131 Signal transmission / reception unit 132 Parallel movement control unit 133 Rotation control unit 134 Movement rotation amount calculation unit 14 Base unit 15 Top plate lock mechanism 16 Base lock mechanism 20 Particle beam irradiation system 21 Treatment control device 30 Particle beam irradiation device 31 Accelerator 32 Electromagnet device 33 Irradiation nozzle 34 Particle beam irradiation control device 40 Patient position setting device 41 X-ray generator 42 X-ray detector 43 X-ray imaging control unit 44 Patient position setting unit 45 Cart control unit 50 Particle beam treatment room 51 Lock receiving unit

Claims (12)

患者を乗せる天板と、
前記天板を平行移動及び/又は回転させる駆動部と
粒子線治療室に設けられた患者位置設定装置から受信した、前記天板の平行移動量及び/又は回転量に応じて、前記駆動部による前記天板の平行移動及び/又は回転を制御する駆動制御部と
を備える患者搬送台車。
The top plate on which the patient is placed and
Depending on the amount of translation and / or rotation of the top plate received from the drive unit that translates and / or rotates the top plate and the patient positioning device provided in the particle beam therapy room, the drive unit A patient transport trolley including a drive control unit that controls parallel movement and / or rotation of the top plate.
前記駆動部は、前記天板の短辺方向(X軸)、前記天板の長辺方向(Y軸)、並びに前記長辺方向及び短辺方向に垂直な方向(Z軸)のうちの少なくとも1つの方向に沿って前記天板を平行移動させ、且つ/又は、前記短辺方向(X軸)、前記長辺方向(Y軸)、並びに前記垂直な方向(Z軸)のうちの少なくとも1つの方向のまわりに前記天板を回転させる、請求項1に記載の患者搬送台車。 The drive unit is at least one of the short side direction (X axis) of the top plate, the long side direction (Y axis) of the top plate, and the direction perpendicular to the long side direction and the short side direction (Z axis). The top plate is moved in parallel along one direction and / or at least one of the short side direction (X axis), the long side direction (Y axis), and the vertical direction (Z axis). The patient carrier according to claim 1, wherein the top plate is rotated around one direction. 前記駆動部は、前記天板の短辺方向(X軸)、前記天板の長辺方向(Y軸)、並びに前記長辺方向及び短辺方向に垂直な方向(Z軸)に沿って前記天板を平行移動させ、且つ、前記短辺方向(X軸)、前記長辺方向(Y軸)、並びに前記垂直な方向(Z軸)のまわりに前記天板を回転させる、請求項1に記載の患者搬送台車。 The drive unit is formed along the short side direction (X axis) of the top plate, the long side direction (Y axis) of the top plate, and the directions perpendicular to the long side direction and the short side direction (Z axis). The first aspect of claim 1, wherein the top plate is translated and the top plate is rotated around the short side direction (X axis), the long side direction (Y axis), and the vertical direction (Z axis). The described patient carrier. 前記粒子線治療室に前記患者搬送台車を固定するためのベースロック機構をさらに備える請求項1〜3のいずれか1項に記載の患者搬送台車。 The patient transport trolley according to any one of claims 1 to 3, further comprising a base lock mechanism for fixing the patient transport trolley to the particle beam therapy room. 前記粒子線は、陽子線、中性子線、又は重粒子線である、請求項1〜4のいずれか1項に記載の患者搬送台車。 The patient carrier according to any one of claims 1 to 4, wherein the particle beam is a proton beam, a neutron beam, or a heavy particle beam. 前記粒子線治療室へ患者を搬送する且つ/又は前記粒子線治療室から患者を搬送するための請求項1〜5のいずれか1項に記載の患者搬送台車。 The patient transport trolley according to any one of claims 1 to 5, for transporting a patient to the particle beam therapy room and / or for transporting a patient from the particle beam therapy room. 粒子線照射装置と、
粒子線治療室に設けられた患者位置設定装置と、
請求項1〜6のいずれか1項に記載の患者搬送台車と
を含む粒子線照射システム。
Particle beam irradiation device and
The patient positioning device installed in the particle beam therapy room and
A particle beam irradiation system including the patient transport trolley according to any one of claims 1 to 6.
前記患者位置設定装置は、
前記天板に乗った患者にX線を照射するX線発生装置と前記X線を検出するX線検出器とを制御して、前記患者のX線画像を生成するX線撮像制御部(43)と、
前記X線画像と、前記患者の粒子線を照射すべき部位に係る基準X線画像とを比較し、両者の位置誤差を算出する患者位置設定部(44)と、
前記位置誤差が所定の許容値以下でない場合に、前記位置誤差を低減するような前記天板の平行移動量及び/又は回転量を算出し、前記平行移動量及び/又は回転量を前記患者搬送台車に送信する台車制御部(45)と、
を備える、請求項7に記載の粒子線照射システム。
The patient positioning device is
An X-ray imaging control unit (43) that generates an X-ray image of the patient by controlling an X-ray generator that irradiates the patient on the top plate with X-rays and an X-ray detector that detects the X-rays. )When,
A patient positioning unit (44) that compares the X-ray image with a reference X-ray image relating to a site to be irradiated with the particle beam of the patient and calculates the positional error between the two.
When the position error is not equal to or less than a predetermined allowable value, the translation amount and / or rotation amount of the top plate is calculated so as to reduce the position error, and the translation amount and / or rotation amount is transferred to the patient. The dolly control unit (45) that transmits to the dolly and
7. The particle beam irradiation system according to claim 7.
請求項8に記載の粒子線照射システムにおいて、患者に粒子線を照射する方法であって、
患者を乗せた前記患者搬送台車が、粒子線治療室内に移動し、前記粒子線治療室に対して固定されるステップと、
前記X線撮像制御部(43)が、前記X線発生装置及び前記X線検出器を制御して、前記患者のX線画像を生成するステップと、
前記患者位置設定部(44)が、前記X線画像と前記基準X線画像とを比較し、両者の位置誤差を算出するステップと、
前記台車制御部(45)が、前記位置誤差が所定の許容値以下でない場合に、前記位置誤差を低減するような前記天板の平行移動量及び/又は回転量を算出し、前記平行移動量及び/又は回転量を前記患者搬送台車に送信するステップと、
前記駆動制御部は、前記平行移動量及び/又は回転量に応じて、前記駆動部による前記天板の平行移動及び/又は回転を制御するステップと、
前記粒子線照射装置が、前記患者に粒子線を照射するステップと、
を含む、前記方法。
A method of irradiating a patient with a particle beam in the particle beam irradiation system according to claim 8.
A step in which the patient transport trolley carrying the patient moves into the particle beam therapy room and is fixed to the particle beam therapy room.
A step in which the X-ray imaging control unit (43) controls the X-ray generator and the X-ray detector to generate an X-ray image of the patient.
A step in which the patient position setting unit (44) compares the X-ray image with the reference X-ray image and calculates the position error between the two.
The bogie control unit (45) calculates a translation amount and / or a rotation amount of the top plate that reduces the position error when the position error is not equal to or less than a predetermined allowable value, and the translation amount. And / or a step of transmitting the amount of rotation to the patient transport carriage, and / or
The drive control unit includes a step of controlling the parallel movement and / or rotation of the top plate by the drive unit according to the translation amount and / or rotation amount.
The step in which the particle beam irradiator irradiates the patient with the particle beam,
The method described above.
前記台車制御部(45)が前記患者搬送台車からエラー信号を受信するステップと、
前記患者位置設定部(44)が、前記エラー信号を前記粒子線照射システムを統括する治療制御装置(21)へ送信するステップと、
前記治療制御装置(21)が、前記粒子線照射装置を制御する粒子線照射制御装置(34)を通じて、前記患者への粒子線の照射を停止させるステップと
をさらに含む請求項9に記載の方法。
A step in which the trolley control unit (45) receives an error signal from the patient transport trolley,
A step in which the patient positioning unit (44) transmits the error signal to the treatment control device (21) that controls the particle beam irradiation system.
The method according to claim 9, further comprising a step in which the treatment control device (21) stops the irradiation of the particle beam to the patient through the particle beam irradiation control device (34) that controls the particle beam irradiation device. ..
粒子線治療室へ患者を搬送する且つ/又は粒子線治療室から患者を搬送するための患者搬送台車であって、
天板を平行移動及び/又は回転させる駆動部と
粒子線治療室に設けられた患者位置設定装置から受信した、前記天板の平行移動量及び/又は回転量に応じて、前記駆動部による前記天板の平行移動及び/又は回転を制御する駆動制御部と
を備える前記患者搬送台車。
A patient transport trolley for transporting a patient to and / or transporting a patient from the particle beam therapy room.
The drive unit for parallel movement and / or rotation of the top plate and the drive unit for rotating the top plate according to the amount of parallel movement and / or rotation of the top plate received from the patient positioning device provided in the particle beam therapy room. The patient transport trolley including a drive control unit that controls translation and / or rotation of the top plate.
前記患者位置設定装置は、
前記天板に乗った患者にX線を照射するX線発生装置と前記X線を検出するX線検出器とを制御して、前記患者のX線画像を生成するX線撮像制御部(43)と、
前記X線画像と、前記患者の粒子線を照射すべき部位に係る基準X線画像とを比較し、両者の位置誤差を算出する患者位置設定部(44)と、
前記位置誤差が所定の許容値以下でない場合に、前記位置誤差を低減するような前記天板の平行移動量及び/又は回転量を算出し、前記平行移動量及び/又は回転量を前記患者搬送台車に送信する台車制御部(45)と、
を備える、前記粒子線治療室へ患者を搬送する且つ/又は前記粒子線治療室から患者を搬送するための請求項1〜6及び11のいずれか1項に記載の患者搬送台車。

The patient positioning device is
An X-ray imaging control unit (43) that generates an X-ray image of the patient by controlling an X-ray generator that irradiates the patient on the top plate with X-rays and an X-ray detector that detects the X-rays. )When,
A patient positioning unit (44) that compares the X-ray image with a reference X-ray image relating to a site to be irradiated with the particle beam of the patient and calculates the positional error between the two.
When the position error is not equal to or less than a predetermined allowable value, the translation amount and / or rotation amount of the top plate is calculated so as to reduce the position error, and the translation amount and / or rotation amount is transferred to the patient. The dolly control unit (45) that transmits to the dolly and
The patient transport trolley according to any one of claims 1 to 6 and 11, wherein the patient is transported to the particle beam therapy room and / or the patient is transported from the particle beam therapy room.

JP2019065824A 2019-03-29 2019-03-29 Patient transport cart, particle beam irradiation system, and particle beam irradiation method Active JP6596679B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019065824A JP6596679B1 (en) 2019-03-29 2019-03-29 Patient transport cart, particle beam irradiation system, and particle beam irradiation method
US16/692,068 US10912954B2 (en) 2019-03-29 2019-11-22 Patient shuttle system, irradiation system for particle therapy and operation method thereof
EP19211627.5A EP3714938B1 (en) 2019-03-29 2019-11-26 Patient shuttle system, irradiation system for particle therapy and operation method thereof
KR1020190154787A KR102080144B1 (en) 2019-03-29 2019-11-27 Patient shuttle system, irradiation system for particle therapy and operation method thereof
CN201911179517.0A CN111744117B (en) 2019-03-29 2019-11-27 Patient transport trolley, particle beam irradiation system and working method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065824A JP6596679B1 (en) 2019-03-29 2019-03-29 Patient transport cart, particle beam irradiation system, and particle beam irradiation method

Publications (2)

Publication Number Publication Date
JP6596679B1 JP6596679B1 (en) 2019-10-30
JP2020162837A true JP2020162837A (en) 2020-10-08

Family

ID=68383176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065824A Active JP6596679B1 (en) 2019-03-29 2019-03-29 Patient transport cart, particle beam irradiation system, and particle beam irradiation method

Country Status (5)

Country Link
US (1) US10912954B2 (en)
EP (1) EP3714938B1 (en)
JP (1) JP6596679B1 (en)
KR (1) KR102080144B1 (en)
CN (1) CN111744117B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203170A (en) * 2020-09-29 2020-12-24 株式会社三共 Game machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6775860B1 (en) * 2020-03-26 2020-10-28 株式会社ビードットメディカル Charged particle beam irradiation device
JP6734610B1 (en) * 2020-03-31 2020-08-05 株式会社ビードットメディカル Superconducting electromagnet device and charged particle beam irradiation device
JP6899172B1 (en) 2021-03-10 2021-07-07 株式会社ビードットメディカル Patient transport trolley and particle beam irradiation system
CN117919605A (en) * 2022-10-14 2024-04-26 中硼(厦门)医疗器械有限公司 Stage positioning system and stage positioning method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289373A (en) * 2006-04-25 2007-11-08 Hitachi Ltd Radiotherapy apparatus
JP2008237687A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Particle beam radiation system and its control method
JP2014061445A (en) * 2013-12-26 2014-04-10 Mitsubishi Electric Corp Drive type patient platform
JP2014161623A (en) * 2013-02-27 2014-09-08 Sumitomo Heavy Ind Ltd Neutron capture therapy system
JP2017140526A (en) * 2012-03-31 2017-08-17 一般財団法人メディポリス医学研究財団 Device for remote multi-portal irradiation of particle beam

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123330A (en) 1982-01-15 1983-07-22 松下電工株式会社 Power source for solar battery
US5483960A (en) * 1994-01-03 1996-01-16 Hologic, Inc. Morphometric X-ray absorptiometry (MXA)
WO1999030485A2 (en) * 1997-12-10 1999-06-17 Koninklijke Philips Electronics N.V. X-ray examination apparatus
JP2000288102A (en) 1999-04-12 2000-10-17 Toshiba Corp Radiation exposure method and device therefor
DE102004057308A1 (en) * 2004-11-26 2006-07-13 Siemens Ag Angiographic X-ray diagnostic device for rotational angiography
JP4452848B2 (en) * 2004-12-13 2010-04-21 独立行政法人放射線医学総合研究所 Charged particle beam irradiation apparatus and rotating gantry
JP4474549B2 (en) * 2005-06-15 2010-06-09 独立行政法人放射線医学総合研究所 Irradiation field forming device
EP1749550A1 (en) 2005-08-04 2007-02-07 Institut Curie Method and apparatus for applying radiotherapy
US10684380B2 (en) * 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US20170014646A1 (en) * 2008-05-22 2017-01-19 W. Davis Lee Guided charged particle imaging/treatment apparatus and method of use thereof
KR101085196B1 (en) * 2008-05-30 2011-11-21 이종인 Digital Radiography System
WO2009153832A1 (en) * 2008-06-18 2009-12-23 三菱電機株式会社 Treatment table system
JP5463509B2 (en) * 2010-02-10 2014-04-09 株式会社東芝 Particle beam irradiation apparatus and control method thereof
DE102010013498B4 (en) * 2010-03-31 2016-06-02 Siemens Aktiengesellschaft Method for determining three-dimensional volume data, imaging device and data carrier
US10188877B2 (en) * 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10589128B2 (en) * 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
WO2012019162A1 (en) * 2010-08-06 2012-02-09 Accuray, Inc. Systems and methods for real-time tumor tracking during radiation treatment using ultrasound imaging
JP2012070880A (en) * 2010-09-28 2012-04-12 Mitsubishi Heavy Ind Ltd Radiation therapy system control device and radiation therapy system control method
JP5697464B2 (en) 2011-01-21 2015-04-08 三菱電機株式会社 Patient position setting device, patient table, transport device, and particle beam therapy device
US9788810B2 (en) * 2015-06-25 2017-10-17 Portavision Medical Llc System and method for X-ray imaging alignment
JP5954705B2 (en) * 2012-05-07 2016-07-20 国立研究開発法人量子科学技術研究開発機構 Irradiation planning apparatus, irradiation planning program, irradiation plan determination method, and charged particle irradiation system
JP5954826B2 (en) * 2012-12-25 2016-07-20 株式会社日立製作所 Particle beam therapy system
EP3175790B1 (en) * 2013-11-04 2021-09-08 Ecential Robotics Method for reconstructing a 3d image from 2d x-ray images
EP3175426B1 (en) * 2014-07-30 2019-09-25 Brainlab AG Online patient reconstruction and tracking for patient setup in radiation therapy using an iterative closest point algorithm
JP6613466B2 (en) * 2014-10-28 2019-12-04 国立研究開発法人量子科学技術研究開発機構 Charged particle beam irradiation equipment
EP3034003B1 (en) * 2014-12-19 2017-11-08 Ion Beam Applications S.A. Method and imaging system for determining a reference radiograph for a later use in radiation therapy
ES2653345T3 (en) 2015-01-24 2018-02-06 Ion Beam Applications S.A.  Device for holding and placing a patient in a medical team
WO2017209662A1 (en) * 2016-05-30 2017-12-07 Prismatic Sensors Ab X-ray imaging for enabling assessment of scoliosis
US10667869B2 (en) * 2017-05-17 2020-06-02 General Electric Company Guidance system for needle procedures
JP6387476B1 (en) 2018-07-02 2018-09-05 株式会社ビードットメディカル Charged particle beam irradiation equipment
US10431418B1 (en) * 2018-04-05 2019-10-01 B Dot Medical Inc. Focusing magnet and charged particle irradiation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289373A (en) * 2006-04-25 2007-11-08 Hitachi Ltd Radiotherapy apparatus
JP2008237687A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Particle beam radiation system and its control method
JP2017140526A (en) * 2012-03-31 2017-08-17 一般財団法人メディポリス医学研究財団 Device for remote multi-portal irradiation of particle beam
JP2014161623A (en) * 2013-02-27 2014-09-08 Sumitomo Heavy Ind Ltd Neutron capture therapy system
JP2014061445A (en) * 2013-12-26 2014-04-10 Mitsubishi Electric Corp Drive type patient platform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203170A (en) * 2020-09-29 2020-12-24 株式会社三共 Game machine

Also Published As

Publication number Publication date
KR102080144B1 (en) 2020-02-25
US20200306563A1 (en) 2020-10-01
JP6596679B1 (en) 2019-10-30
CN111744117A (en) 2020-10-09
EP3714938B1 (en) 2021-11-03
US10912954B2 (en) 2021-02-09
CN111744117B (en) 2021-09-07
EP3714938A1 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP6596679B1 (en) Patient transport cart, particle beam irradiation system, and particle beam irradiation method
EP3541281B1 (en) System for emission-guided high-energy photon delivery
JP3577221B2 (en) Radiation therapy bed system
CN108325093B (en) Self-shielding integrated control radiosurgery system
US8083408B2 (en) Method and device for delivering radiotherapy
EP1740098B1 (en) Patient positioning assembly
US6094760A (en) Bed system for radiation therapy
CN109715249B (en) Neutron capture therapy system
JP2010537784A (en) Patient support device
AU2002353904A1 (en) Method and device for delivering radiotherapy
US20090154645A1 (en) Teletherapy treatment center
CN115738106A (en) Self-shielding integrated control radiosurgery system
US11904188B2 (en) Fully-spherical radiation therapy system
US20100138997A1 (en) Patient transport unit and method for transporting a patient
Han et al. Evaluation of initial setup accuracy and intrafraction motion for spine stereotactic body radiation therapy using stereotactic body frames
US20090281658A1 (en) Medical facility and method of docking a positioning device with a shuttle
JP3707967B2 (en) Proton beam therapy system
CN116808455B (en) Arc-shaped radiotherapy equipment and operation method thereof, accelerator and magnetic field adjusting device
JP7082366B2 (en) Radiation therapy device, bed positioning device, and bed positioning method
JPH0838628A (en) Radiation treatment device
JP2019122555A (en) Treatment planning system
WO2023228461A1 (en) Radiotherapy system and method for controlling radiotherapy system
Zhang et al. Recent Patents on Radiotherapy Bed
JP2021027849A (en) Patient mounting table for neutron capture therapy, patient posture confirmation system, and patient posture confirmation method
Chien et al. Robotic patient positioning for radiation therapy delivery at varying source to target distances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190524

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6596679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350