JP2020161560A - Composite magnetic material and metal composite core composed of the same - Google Patents

Composite magnetic material and metal composite core composed of the same Download PDF

Info

Publication number
JP2020161560A
JP2020161560A JP2019057068A JP2019057068A JP2020161560A JP 2020161560 A JP2020161560 A JP 2020161560A JP 2019057068 A JP2019057068 A JP 2019057068A JP 2019057068 A JP2019057068 A JP 2019057068A JP 2020161560 A JP2020161560 A JP 2020161560A
Authority
JP
Japan
Prior art keywords
powder
resin
core
magnetic
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019057068A
Other languages
Japanese (ja)
Other versions
JP7490338B2 (en
Inventor
泰雄 大島
Yasuo Oshima
泰雄 大島
洋 有間
Hiroshi Arima
洋 有間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2019057068A priority Critical patent/JP7490338B2/en
Publication of JP2020161560A publication Critical patent/JP2020161560A/en
Application granted granted Critical
Publication of JP7490338B2 publication Critical patent/JP7490338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a composite magnetic material with improved density and excellent magnetic properties and a metal composite core made of the same.SOLUTION: The composite magnetic material is formed through mixing of magnetic powder and a resin. The magnetic powder is covered with an insulating film containing polytetrafluoroethylene.SELECTED DRAWING: Figure 1

Description

本発明は、磁性粉末と樹脂から成る複合磁性材料及びこの複合磁性材料によって構成されたメタルコンポジットコアに関する。 The present invention relates to a composite magnetic material composed of a magnetic powder and a resin, and a metal composite core composed of the composite magnetic material.

OA機器、太陽光発電システム、自動車など様々な用途にリアクトルが用いられている。様々な用途に対応するため、リアクトルに用いられるコアの形状の多様化が要求されている。この要求に応えるため、リアクトルは、メタルコンポジットコア(以下、MCコアとも称する)と呼ばれるコアが用いられる。 Reactors are used in various applications such as office automation equipment, photovoltaic power generation systems, and automobiles. In order to support various applications, diversification of the shape of the core used for the reactor is required. In order to meet this demand, a core called a metal composite core (hereinafter, also referred to as MC core) is used as the reactor.

このMCコアは、磁性粉末と樹脂とを混合させた複合磁性材料を所定の形状に成型し、固化させて成るコアである。複合磁性材料は粘土状である。そのため、複合磁性材料を容器に流し込みやすいので、容器の形状に合わせて成型しやすく、コアを所望の形状に成型できる。 This MC core is a core formed by molding a composite magnetic material, which is a mixture of magnetic powder and resin, into a predetermined shape and solidifying it. The composite magnetic material is clay-like. Therefore, since the composite magnetic material can be easily poured into the container, it can be easily molded according to the shape of the container, and the core can be molded into a desired shape.

特開2017−017326号公報JP-A-2017-017326

リアクトルは、使用する用途に合わせた透磁率や鉄損などの磁気特性が要求される。そして、鉄損はヒステリシス損失と渦電流損失の和で表される。一般的に、コアの密度を増加させることで、透磁率の向上やヒステリシス損失の低減を図ることができる。近年では、リアクトルの使用用途の多様化に伴い、透磁率の向上及びヒステリシス損失の低減がより高い水準で望まれている。 The reactor is required to have magnetic properties such as magnetic permeability and iron loss according to the intended use. The iron loss is represented by the sum of the hysteresis loss and the eddy current loss. Generally, by increasing the density of the core, it is possible to improve the magnetic permeability and reduce the hysteresis loss. In recent years, with the diversification of applications of the reactor, improvement of magnetic permeability and reduction of hysteresis loss are desired at a higher level.

本発明の目的は、密度を向上させ、透磁率の向上及びヒステリシス損失の低減を図ることができる複合磁性材料及びこれによって構成されたメタルコンポジットコアを提供することにある。 An object of the present invention is to provide a composite magnetic material capable of improving the density, improving the magnetic permeability and reducing the hysteresis loss, and a metal composite core composed of the composite magnetic material.

上記目的を達成するため、本発明の複合磁性材料は、磁性粉末と樹脂とを混合してなる複合磁性材料であって、前記磁性粉末は、ポリテトラフルオロエチレンを含み構成される絶縁被膜で覆われていること、を特徴とする。 In order to achieve the above object, the composite magnetic material of the present invention is a composite magnetic material obtained by mixing a magnetic powder and a resin, and the magnetic powder is covered with an insulating coating containing polytetrafluoroethylene. It is characterized by being magnetized.

本発明によれば、密度を向上させ、磁気特性の優れた複合磁性材料及びこれによって構成されたメタルコンポジットコアを得ることができる。 According to the present invention, it is possible to obtain a composite magnetic material having excellent magnetic properties and a metal composite core composed of the composite magnetic material with improved density.

絶縁被膜樹脂の添加量とかさ密度の関係を示した図である。It is a figure which showed the relationship between the addition amount of the insulating coating resin and the bulk density. 絶縁被膜樹脂の添加量と密度の関係を示した図である。It is a figure which showed the relationship between the addition amount of the insulating coating resin and the density. 絶縁被膜樹脂の添加量と初透磁率μ0の関係を示した図である。It is a figure which showed the relationship between the addition amount of the insulating film resin and the initial magnetic permeability μ0. 絶縁被膜樹脂の添加量と透磁率μ12000の関係を示した図である。It is a figure which showed the relationship between the addition amount of the insulating film resin and the magnetic permeability μ12000. 絶縁被膜樹脂の添加量とヒステリシス損失の関係を示した図である。It is a figure which showed the relationship between the addition amount of the insulating film resin and the hysteresis loss.

(実施形態)
まず、本実施形態の構成について説明する。本実施形態のメタルコンポジットコア(以下、MCコアとも称する)は、複合磁性材料を所定の容器に充填し、加圧することで所定の形状のコアとなる。このMCコアは、リアクトルの磁性体として使用される。
(Embodiment)
First, the configuration of this embodiment will be described. The metal composite core of the present embodiment (hereinafter, also referred to as MC core) becomes a core having a predetermined shape by filling a predetermined container with a composite magnetic material and pressurizing it. This MC core is used as a magnetic material for the reactor.

複合磁性材料は、磁性粉末と樹脂とを含み構成される。磁性粉末としては、軟磁性粉末が使用でき、特に、Fe粉末、Fe−Si合金粉末、Fe−Al合金粉末、Fe−Si−Al合金粉末(センダスト)、非晶質合金粉末、ナノクリスタル、又はこれら2種以上の粉末の混合粉などが使用できる。Fe−Si合金粉末としては、例えば、Fe−6.5%Si合金粉末、Fe−3.5%Si合金粉末を使用できる。 The composite magnetic material is composed of a magnetic powder and a resin. As the magnetic powder, soft magnetic powder can be used, and in particular, Fe powder, Fe-Si alloy powder, Fe-Al alloy powder, Fe-Si-Al alloy powder (Sendust), amorphous alloy powder, nanocrystals, or A mixed powder of these two or more kinds of powder can be used. As the Fe-Si alloy powder, for example, Fe-6.5% Si alloy powder and Fe-3.5% Si alloy powder can be used.

磁性粉末は、平均粒子径の異なる磁性粉末を使用する。つまり、磁性粉末は、第1の粉末と、第1の粉末より平均粒子径が小さい第2の粉末から成る。本明細書において平均粒子径とは、特に断りがない限り、D50、すなわちメジアン径を指すものとする。また、第1の粉末と第2の粉末の種類は、同じものでもよいし、異なるものでもよい。なお、本実施形態では、磁性粉末は平均粒子径の異なる第1の粉末及び第2の粉末の2種類の粉末で構成させているが、磁性粉末は、第1の粉末のみ1種類で構成させてもよい。 As the magnetic powder, magnetic powders having different average particle diameters are used. That is, the magnetic powder is composed of a first powder and a second powder having an average particle size smaller than that of the first powder. In the present specification, the average particle size refers to D50, that is, the median diameter, unless otherwise specified. Further, the types of the first powder and the second powder may be the same or different. In the present embodiment, the magnetic powder is composed of two types of powder, a first powder and a second powder having different average particle diameters, but the magnetic powder is composed of only one type of the first powder. You may.

第1の粉末の平均粒子径は100μm〜200μm、第2の粉末は、3μm〜10μmが好ましい。この範囲とすることで、第1の粉末同士の隙間に平均粒子径の小さい第2の粉末が入り込み、密度及び透磁率の向上と低鉄損化を図ることができるからである。 The average particle size of the first powder is preferably 100 μm to 200 μm, and the average particle size of the second powder is preferably 3 μm to 10 μm. This is because, within this range, the second powder having a small average particle diameter enters the gap between the first powders, and the density and magnetic permeability can be improved and the iron loss can be reduced.

また、第1の粉末と第2の粉末の重量比率は、第1の粉末:第2の粉末=80:20〜60:40とすることが好ましい。この範囲とすることで密度及び透磁率が向上するとともに、鉄損を小さくすることができる。 The weight ratio of the first powder to the second powder is preferably 1st powder: 2nd powder = 80:20 to 60:40. Within this range, the density and magnetic permeability can be improved, and the iron loss can be reduced.

第1の粉末の周囲は、絶縁被膜により覆われている。絶縁被膜は、絶縁性を有する樹脂から成る。この樹脂の種類は、ポリテトラフルオロエチレン(以下、PTFEと称する)を含む。なお、本明細書において、絶縁被膜となる絶縁性を有する樹脂を絶縁被膜樹脂と呼ぶ場合がある。 The circumference of the first powder is covered with an insulating film. The insulating coating is made of an insulating resin. This type of resin includes polytetrafluoroethylene (hereinafter referred to as PTFE). In addition, in this specification, a resin having an insulating property which becomes an insulating film may be referred to as an insulating film resin.

PTFEの添加量は、磁性粉末に対して、0.1wt%以上1.0wt%以下の範囲が好ましい。PTFEの添加量が0.1wt%未満、又は、PTFEの添加量が1.0wt%を超えると、MCコアの密度増加の効果が低い。 The amount of PTFE added is preferably in the range of 0.1 wt% or more and 1.0 wt% or less with respect to the magnetic powder. When the amount of PTFE added is less than 0.1 wt%, or the amount of PTFE added exceeds 1.0 wt%, the effect of increasing the density of the MC core is low.

複合磁性材料を構成する樹脂は、磁性粉末と混合され、磁性粉末を保持する。樹脂としては、熱硬化性樹脂、紫外線硬化樹脂、又は熱可塑性樹脂を使用することができる。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン、ジアリルフタレート樹脂、シリコーン樹脂などが使用できる。紫外線硬化性樹脂としては、ウレタンアクリレート系、エポキシアクリレート系、アクリレート系、エポキシ系の樹脂を使用できる。熱可塑性樹脂としては、ポリイミドやフッ素樹脂などの耐熱性に優れた樹脂を使用することが好ましい。 The resin constituting the composite magnetic material is mixed with the magnetic powder and holds the magnetic powder. As the resin, a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin can be used. As the thermosetting resin, phenol resin, epoxy resin, unsaturated polyester resin, polyurethane, diallyl phthalate resin, silicone resin and the like can be used. As the ultraviolet curable resin, urethane acrylate-based, epoxy acrylate-based, acrylate-based, and epoxy-based resins can be used. As the thermoplastic resin, it is preferable to use a resin having excellent heat resistance such as polyimide or fluororesin.

また、樹脂は、磁性粉末に対して3〜10wt%含有されていることが好ましい。樹脂の含有量が3wt%より少ないと、磁性粉末の接合力が不足し、MCコアの機械的強度が低下する。また、樹脂の含有量が10wt%より多いと、磁性粉末を隙間なく保持することができなくなるなど、MCコアの密度が低下し、透磁率が低下する。 Further, the resin is preferably contained in an amount of 3 to 10 wt% with respect to the magnetic powder. If the content of the resin is less than 3 wt%, the bonding force of the magnetic powder is insufficient, and the mechanical strength of the MC core is lowered. On the other hand, if the resin content is more than 10 wt%, the magnetic powder cannot be held without gaps, the density of the MC core decreases, and the magnetic permeability decreases.

次に、この複合磁性材料を用いたMCコアの製造方法について説明する。本実施形態におけるMCコアの製造方法は、(1)被覆工程、(2)混合工程、(3)成型工程、(4)硬化工程を有する。 Next, a method for manufacturing an MC core using this composite magnetic material will be described. The method for producing an MC core in the present embodiment includes (1) coating step, (2) mixing step, (3) molding step, and (4) curing step.

(1)被覆工程
被覆工程は、第1の粉末をPTFEから成る絶縁被膜で覆う工程である。被覆工程では、第1の粉末とPTFEを混合し、乾燥させることで、第1の粉末の周囲にPTFEを被覆させる。第1の粉末とPTFEの混合は、所定の混合器を用いて自動又は手動で行うことができる。混合する時間は、適宜設定することができる。混合する時間は、例えば2分間である。また、乾燥温度や乾燥時間は、PTFEで第1の粉末を被覆できるのであれば、適宜な温度及び時間を設定できるが、例えば、180度で120分間乾燥する。
(1) Coating Step The coating step is a step of covering the first powder with an insulating coating made of PTFE. In the coating step, the first powder and PTFE are mixed and dried to coat the periphery of the first powder with PTFE. The mixing of the first powder and PTFE can be performed automatically or manually using a predetermined mixer. The mixing time can be set as appropriate. The mixing time is, for example, 2 minutes. The drying temperature and drying time can be set as appropriate as long as the first powder can be coated with PTFE. For example, the powder is dried at 180 degrees for 120 minutes.

(2)混合工程
混合工程は、磁性粉末と樹脂を混合する工程である。混合工程では、まず、被覆工程を経た第1の粉末と、第2の粉末を混合することで、磁性粉末を得る。そして、この磁性粉末に、磁性粉末に対して3〜10wt%の樹脂を添加し、磁性粉末と樹脂を混合する。この混合工程を経ることで、磁性粉末と樹脂との混合物である複合磁性材料を得ることができる。
(2) Mixing step The mixing step is a step of mixing the magnetic powder and the resin. In the mixing step, first, the first powder that has undergone the coating step and the second powder are mixed to obtain a magnetic powder. Then, 3 to 10 wt% of the resin is added to the magnetic powder, and the magnetic powder and the resin are mixed. By going through this mixing step, a composite magnetic material which is a mixture of magnetic powder and resin can be obtained.

(3)成型工程
成型工程は、複合磁性材料を製造するコアの形状に合わせて成型する工程である。成型工程では、まず、製造するコアの形状に合わせた容器に複合磁性材料を充填する。その後、容器に充填された複合磁性材料を、押圧部材で加圧する。この押圧部材で加圧することで、容器の形状に複合磁性材料を押し広げるとともに、複合磁性材料に含まれていた空隙を減少させることでコアの密度が大きくなる。
(3) Molding process The molding process is a process of molding according to the shape of the core for producing the composite magnetic material. In the molding process, first, the composite magnetic material is filled in a container that matches the shape of the core to be manufactured. Then, the composite magnetic material filled in the container is pressed by the pressing member. By pressurizing with this pressing member, the composite magnetic material is spread in the shape of the container, and the voids contained in the composite magnetic material are reduced to increase the density of the core.

複合磁性材料を加圧する圧力は、数ton〜数十tonで磁性粉末を押し固めて成形する圧粉磁心とは異なり、数kg〜数十kgと低い圧力をかければ足りる。そのため、圧粉磁心は磁性粉末が変形するが、MCコアは、加圧しても磁性粉末は変形しない。なお、MCコアの成型においては、圧粉磁心の成型のように加圧することは、必須要件ではないため、複合磁性材料を押圧部材で加圧しなくてもよい。 The pressure for pressurizing the composite magnetic material is several tons to several tens of tons, which is different from the powder magnetic core formed by compacting the magnetic powder, and it is sufficient to apply a low pressure of several kg to several tens of kg. Therefore, the magnetic powder is deformed in the dust core, but the magnetic powder is not deformed in the MC core even when pressurized. In molding the MC core, it is not necessary to pressurize the composite magnetic material with the pressing member because it is not an essential requirement to pressurize as in the molding of the dust core.

(4)硬化工程
硬化工程は、複合磁性材料に含まれる樹脂を硬化させる工程である。樹脂の硬化は、樹脂の種類によって適宜の方法で硬化すればよい。例えば、樹脂が熱硬化性樹脂の場合には、熱を加えることで樹脂を硬化させる。
(4) Curing Step The curing step is a step of curing the resin contained in the composite magnetic material. The resin may be cured by an appropriate method depending on the type of resin. For example, when the resin is a thermosetting resin, the resin is cured by applying heat.

このように、所望の形状の容器に複合磁性材料を充填し、複合磁性材料に含まれる樹脂を硬化させることで、所望の形状となったMCコアが作製される。つまり、MCコアにおいては、混合工程において添加した樹脂は硬化するだけなので、当該樹脂の成分は、分解されない。一方、圧粉磁心では、絶縁被膜として添加した樹脂は、焼鈍工程を経るため熱分解され、残った無機成分などが粉末間のバインダとして機能する。また、圧粉磁心は、数ton〜数十tonで加圧成形することで、所望の形状にしており、樹脂を硬化させることでコアの形状を形成させるMCコアとは異なる。 In this way, a container having a desired shape is filled with the composite magnetic material, and the resin contained in the composite magnetic material is cured to produce an MC core having a desired shape. That is, in the MC core, since the resin added in the mixing step is only cured, the components of the resin are not decomposed. On the other hand, in the dust core, the resin added as the insulating film is thermally decomposed because it undergoes an annealing step, and the remaining inorganic components and the like function as a binder between the powders. Further, the dust core is formed into a desired shape by pressure molding at several tons to several tens of tons, which is different from the MC core in which the shape of the core is formed by curing the resin.

(実施例)
本発明の実施例を表1及び図1−図4を参照しつつ説明する。
(Example)
Examples of the present invention will be described with reference to Table 1 and FIGS. 1 to 4.

実施例1−3は、第1の粉末としては、平均粒子径が150μmのFe−6.5Si合金粉末を使用した。実施例1−3は、絶縁被膜としてPTFEを使用し、第1の粉末の周囲を被覆する。実施例1−3は、このPTFEを第1の粉末に対してそれぞれ1.0wt%、0.5wt%、0.1wt%添加した。 In Examples 1-3, Fe-6.5Si alloy powder having an average particle diameter of 150 μm was used as the first powder. In Examples 1-3, PTFE is used as an insulating coating to coat the periphery of the first powder. In Examples 1-3, 1.0 wt%, 0.5 wt%, and 0.1 wt% of this PTFE was added to the first powder, respectively.

一方、比較例1は、第1の粉末を絶縁被膜によって覆わず、第1の粉末そのものである。比較例2−4は、絶縁被膜樹脂として実施例1−3及び後述する比較例5−6とは異なるフッ素樹脂を使用した。比較例2−4は、この絶縁被膜樹脂を第1の粉末に対してそれぞれ1.0wt%、0.5wt%、0.1wt%添加した。また、比較例5及び6は、絶縁被膜樹脂としてポリフッ化ビニリデン(PVDF)を使用した。比較例5−6は、この絶縁被膜樹脂を第1の粉末に対してそれぞれ0.25wt%、0.1wt%添加した。 On the other hand, Comparative Example 1 is the first powder itself without covering the first powder with the insulating film. In Comparative Example 2-4, a fluororesin different from that of Example 1-3 and Comparative Example 5-6 described later was used as the insulating coating resin. In Comparative Example 2-4, 1.0 wt%, 0.5 wt%, and 0.1 wt% of this insulating coating resin were added to the first powder, respectively. Further, in Comparative Examples 5 and 6, polyvinylidene fluoride (PVDF) was used as the insulating coating resin. In Comparative Example 5-6, 0.25 wt% and 0.1 wt% of this insulating coating resin were added to the first powder, respectively.

そして、実施例1−3及び比較例1−6の第1の粉末のかさ密度を測定した。かさ密度は、絶縁被膜樹脂で覆った第1の粉末を100ccのシリンダーに摺り切りまで充填させた状態で測定した。その際、測定器として、タップデンサーKYT−5000(セイシン企業製)を用いた。その測定結果を表1及び図1に示す。なお、測定結果の考察は後述する。

Figure 2020161560
Then, the bulk density of the first powder of Examples 1-3 and Comparative Examples 1-6 was measured. The bulk density was measured in a state where the first powder covered with the insulating coating resin was filled in a 100 cc cylinder until it was worn out. At that time, a tap denser KYT-5000 (manufactured by Seishin Enterprise Co., Ltd.) was used as a measuring instrument. The measurement results are shown in Table 1 and FIG. The measurement results will be discussed later.
Figure 2020161560

次に、実施例1−3及び比較例1−6の第1の粉末から混合工程、成型工程、硬化工程を経て、MCコアを作製した。作製したMCコアは、外径35mm、内径20mm、高さ10mmのトロイダル形状とした。なお、本実施例では、第2の粉末は使用せず、複合磁性材料を作製した。 Next, an MC core was produced from the first powders of Examples 1-3 and Comparative Examples 1-6 through a mixing step, a molding step, and a curing step. The produced MC core had a toroidal shape with an outer diameter of 35 mm, an inner diameter of 20 mm, and a height of 10 mm. In this example, a composite magnetic material was produced without using the second powder.

絶縁被膜樹脂で被覆した磁性粉末に、磁性粉末に対して6wt%のエポキシ樹脂を添加し、2分間ヘラを用いて手動で混合し、複合磁性材料を形成した。この複合磁性材料を容器に充填し、加圧は行わなかった。そして、容器ごと複合磁性材料を大気中にて85℃で2時間乾燥させ、その後120℃で1時間乾燥させ、さらに150℃で4時間乾燥することで樹脂を硬化した。このようにして、MCコアを作製した。そして、作製したMCコアに、巻線を巻回し、リアクトルを作製した。 To the magnetic powder coated with the insulating coating resin, 6 wt% epoxy resin was added to the magnetic powder and manually mixed with a spatula for 2 minutes to form a composite magnetic material. The container was filled with this composite magnetic material and was not pressurized. Then, the composite magnetic material together with the container was dried in the air at 85 ° C. for 2 hours, then dried at 120 ° C. for 1 hour, and further dried at 150 ° C. for 4 hours to cure the resin. In this way, the MC core was produced. Then, a winding was wound around the produced MC core to produce a reactor.

以上のように作製した実施例1−3及び比較例1−6のリアクトルの透磁率、ヒステリシス損失Ph、MCコアの密度を下記の条件の下で測定した。 The magnetic permeability, hysteresis loss Ph, and MC core density of the reactors of Examples 1-3 and Comparative Examples 1-6 prepared as described above were measured under the following conditions.

MCコアの密度は、見かけ密度である。即ち、実施例1−3及び比較例1−6のMCコアの外径、内径、及び高さを測り、これらの値から各MCコアの体積(cm)を、π×(外径−内径)×高さに基づき算出した。そして、各MCコアの質量を測定し、測定した質量を算出した体積で除してMCコアの密度を算出した。 The density of the MC core is the apparent density. That is, the outer diameter, inner diameter, and height of the MC cores of Examples 1-3 and Comparative Examples 1-6 are measured, and the volume (cm 3 ) of each MC core is calculated from these values by π × (outer diameter 2 −. Calculated based on inner diameter 2 ) x height. Then, the mass of each MC core was measured, and the measured mass was divided by the calculated volume to calculate the density of the MC core.

透磁率及び鉄損の測定条件は、周波数100kHz、最大磁束密度Bm=30mTとした。透磁率は、鉄損Pcv測定時に最大磁束密度Bmを設定したときの振幅透磁率とした。ヒステリシス損失Phについては、MCコアにφ1.2mmの銅線で1次巻線40ターン、2次巻線3ターンの巻線を巻回し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY−8219)を用いて算出した。この算出は、鉄損の周波数曲線を次の(1)〜(3)式で最小2乗法により、ヒステリシス損失係数、渦電流損失係数を算出することで行った。 The measurement conditions for magnetic permeability and iron loss were a frequency of 100 kHz and a maximum magnetic flux density of Bm = 30 mT. The magnetic permeability was taken as the amplitude magnetic permeability when the maximum magnetic flux density Bm was set at the time of iron loss Pcv measurement. Regarding the hysteresis loss Ph, a copper wire of φ1.2 mm is wound around the MC core with 40 turns of the primary winding and 3 turns of the secondary winding, and a BH analyzer (Iwadori Measurement Co., Ltd .:) is a magnetic measuring device. It was calculated using SY-8219). This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient by the least squares method using the following equations (1) to (3) for the frequency curve of iron loss.

Pcv =Kh×f+Ke×f・・(1)
Ph =Kh×f・・(2)
Pe =Ke×f・・(3)
Pcv:鉄損
Kh :ヒステリシス損失係数
Ke :渦電流損失係数
f :周波数
Ph :ヒステリシス損失
Pe :渦電流損失
Pcv = Kh x f + Ke x f 2 ... (1)
Ph = Kh x f ... (2)
Pe = Ke × f 2 ... (3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss

Figure 2020161560
Figure 2020161560

表1は、実施例1−3及び比較例1−6の密度及びヒステリシス損失Phを示す表である。表2における透磁率は、振幅透磁率であり、LCRメータ(アジレント・テクノロジー株式会社製:4284A)を使用して、100kHz、1.0Vにおける各磁界の強さのインダクタンスから算出した。表2の「μ0」は、直流を重畳させていない状態、即ち、磁界の強さが0H(A/m)の時の初透磁率を示す。表2の「μ12000」は、磁界の強さが12kH(A/m)の時の透磁率を示す。また、図1は、絶縁被膜樹脂の添加量とかさ密度の関係を示したグラフである。図2は、絶縁被膜樹脂の添加量と密度の関係を示したグラフである。図3は、絶縁被膜樹脂の添加量と初透磁率μ0の関係を示したグラフである。図4は、絶縁被膜樹脂の添加量と透磁率μ12000の関係を示したグラフである。図5は、絶縁被膜樹脂の添加量とヒステリシス損失の関係を示したグラフである。 Table 1 is a table showing the density and hysteresis loss Ph of Examples 1-3 and Comparative Example 1-6. The magnetic permeability in Table 2 is the amplitude magnetic permeability, which was calculated from the inductance of the strength of each magnetic field at 100 kHz and 1.0 V using an LCR meter (manufactured by Agilent Technologies, Inc .: 4284 A). “Μ0” in Table 2 indicates the initial magnetic permeability in a state where direct current is not superimposed, that is, when the strength of the magnetic field is 0H (A / m). “Μ12000” in Table 2 indicates the magnetic permeability when the magnetic field strength is 12 kHz (A / m). Further, FIG. 1 is a graph showing the relationship between the amount of the insulating coating resin added and the bulk density. FIG. 2 is a graph showing the relationship between the amount of the insulating coating resin added and the density. FIG. 3 is a graph showing the relationship between the amount of the insulating coating resin added and the initial magnetic permeability μ0. FIG. 4 is a graph showing the relationship between the amount of the insulating coating resin added and the magnetic permeability μ12000. FIG. 5 is a graph showing the relationship between the amount of the insulating coating resin added and the hysteresis loss.

(密度の比較)
表2及び図2に示すように、第1の粉末をPTFEで被覆した実施例1−3の密度は、絶縁被膜で覆わず第1の粉末そのものであった比較例1の密度より大幅に増加している。具体的には、実施例1−3の密度は、全て5.0(g/cm)より大きくなっているのに対し、比較例1−6の密度は、全て5.0(g/cm)より小さくなっている。このことから、第1の粉末をPTFEで被覆する方がMCコアの密度が向上することが分かる。
(Density comparison)
As shown in Table 2 and FIG. 2, the density of Example 1-3 in which the first powder was coated with PTFE was significantly higher than the density of Comparative Example 1 in which the first powder itself was not covered with the insulating coating. are doing. Specifically, the densities of Examples 1-3 are all higher than 5.0 (g / cm 3 ), whereas the densities of Comparative Examples 1-6 are all 5.0 (g / cm 3 ). It is smaller than 3 ). From this, it can be seen that the density of the MC core is improved by coating the first powder with PTFE.

また、実施例1−3は、実施例1−3と絶縁被膜樹脂を変えた比較例2−4及び比較例5−6と比較しても、密度が増加していることが分かる。これは、絶縁被膜樹脂の添加量が同一の0.1wt%である実施例3、比較例4及び比較例6を比べても、実施例3は5.24(g/cm)であるのに対し、比較例4は4.66(g/cm)、比較例6は4.47(g/cm)であることからも示されている。よって、PTFEを0.1wt%以上添加することで、コアの密度が向上する。 Further, it can be seen that the densities of Examples 1-3 are also increased as compared with Example 1-3 and Comparative Examples 2-4 and 5-6 in which the insulating coating resin is changed. This is 5.24 (g / cm 3 ) in Example 3 even when comparing Example 3, Comparative Example 4 and Comparative Example 6 in which the addition amount of the insulating coating resin is the same 0.1 wt%. On the other hand, it is also shown that Comparative Example 4 is 4.66 (g / cm 3 ) and Comparative Example 6 is 4.47 (g / cm 3 ). Therefore, the density of the core is improved by adding 0.1 wt% or more of PTFE.

このように、第1の粉末をPTFEで被覆した実施例の密度が向上した要因は、PTFEの摩擦係数が小さいため、第1の粉末の流動性が向上することに起因するものと考える。即ち、第1の粉末をPTFEで被覆することで、第1の粉末の流動性が向上し、第1の粉末をより密接に配置でき、コアの見かけ密度が増加する。このことは、表1及び図1を参照すると、PTFEで被覆した実施例1−3の第1の粉末のかさ密度が、比較例1−6の第1の粉末のかさ密度よりも大きいことからも示されている。 It is considered that the reason why the density of the example in which the first powder is coated with PTFE is improved is that the fluidity of the first powder is improved because the friction coefficient of PTFE is small. That is, by coating the first powder with PTFE, the fluidity of the first powder is improved, the first powder can be arranged more closely, and the apparent density of the core is increased. This is because, referring to Table 1 and FIG. 1, the bulk density of the first powder of Example 1-3 coated with PTFE is higher than the bulk density of the first powder of Comparative Example 1-6. Is also shown.

また、第2の粉末が第1の粉末と接触しても、第1の粉末の周囲は摩擦係数の小さいPTFEで覆われているため、第2の粉末の流動性も抑制されにくい。そのため、第1の粉末間に形成される隙間により多くの第2の粉末が入り込み、コアの密度が増加する。 Further, even if the second powder comes into contact with the first powder, the fluidity of the second powder is not easily suppressed because the periphery of the first powder is covered with PTFE having a small friction coefficient. Therefore, more second powder enters the gap formed between the first powders, and the density of the core increases.

(透磁率の比較)
表2及び図3、4に示すように、PTFEで被覆した実施例の初透磁率(μ0)及び透磁率(μ12000)は、比較例1−6と比較して向上している。具体的には、比較例1と実施例1−3の初透磁率を比べると、実施例1−3の初透磁率が高い。また、比較例1と実施例1−3の透磁率を比べると、実施例1−3の透磁率が高い。このように、第1の粉末をPTFEで被覆した方が、初透磁率及び透磁率が向上していることが示されている。
(Comparison of magnetic permeability)
As shown in Table 2 and FIGS. 3 and 4, the initial magnetic permeability (μ0) and the magnetic permeability (μ12000) of the examples coated with PTFE are improved as compared with Comparative Examples 1-6. Specifically, when the initial magnetic permeability of Comparative Example 1 and Example 1-3 is compared, the initial magnetic permeability of Example 1-3 is high. Further, comparing the magnetic permeability of Comparative Example 1 and Example 1-3, the magnetic permeability of Example 1-3 is high. As described above, it is shown that the initial magnetic permeability and the magnetic permeability are improved when the first powder is coated with PTFE.

一方、比較例1と比較例2−6の初透磁率を比べると、比較例1の初透磁率の方が高い。また、比較例1の透磁率と比較例2−6の透磁率を比較すると、比較例1の透磁率の方が高い。つまり、PTFE以外の種類で被覆すると、絶縁被覆樹脂で被覆していない場合と比べて、初透磁率及び透磁率が低下することが示されている。 On the other hand, when the initial magnetic permeability of Comparative Example 1 and Comparative Example 2-6 is compared, the initial magnetic permeability of Comparative Example 1 is higher. Further, when the magnetic permeability of Comparative Example 1 and the magnetic permeability of Comparative Example 2-6 are compared, the magnetic permeability of Comparative Example 1 is higher. That is, it is shown that when coated with a type other than PTFE, the initial magnetic permeability and the magnetic permeability are lowered as compared with the case where the coating is not coated with the insulating coating resin.

このことから、PTFEで第1の粉末を被覆すると、初透磁率及び透磁率が向上することが示されている。これは、PTFEで被覆したことでコアの密度が増加したためであると考える。つまり、コアの密度が増加したことで、磁束密度も増加し、その結果、透磁率が向上すると考える。 From this, it is shown that coating the first powder with PTFE improves the initial magnetic permeability and the magnetic permeability. It is considered that this is because the density of the core is increased by coating with PTFE. That is, it is considered that the magnetic flux density increases as the core density increases, and as a result, the magnetic permeability improves.

(ヒステリシス損失の比較)
表2及び図5に示すように、PTFEを0.1wt%添加した実施例3のヒステリシス損失は137.6である。一方、絶縁被覆樹脂で被覆していない比較例1のヒステリシス損失は、205.3である。また、PTFEとは異なる種類の樹脂を0.1wt%添加した比較例4及び6のヒステリシス損失は、それぞれ200.5、158.3である。つまり、絶縁被膜樹脂で被覆していない比較例1のヒステリシス損失を基準にすると、実施例3のヒステリシス損失は比較例1の約67%に低減している、一方、比較例4及び6のヒステリシス損失は、比較例1の約98%、約77%であり、実施例3の方がヒステリシス損失の低減率が高い。よって、PTFEで第1の粉末を被覆した方がヒステリシス損失をより低減できる。
(Comparison of hysteresis loss)
As shown in Table 2 and FIG. 5, the hysteresis loss of Example 3 to which 0.1 wt% of PTFE was added is 137.6. On the other hand, the hysteresis loss of Comparative Example 1 not coated with the insulating coating resin is 205.3. The hysteresis loss of Comparative Examples 4 and 6 to which 0.1 wt% of a resin different from PTFE was added was 200.5 and 158.3, respectively. That is, based on the hysteresis loss of Comparative Example 1 not coated with the insulating coating resin, the hysteresis loss of Example 3 is reduced to about 67% of that of Comparative Example 1, while the hysteresis of Comparative Examples 4 and 6 is reduced. The loss is about 98% and about 77% of Comparative Example 1, and the reduction rate of the hysteresis loss is higher in Example 3. Therefore, the hysteresis loss can be further reduced by coating the first powder with PTFE.

このように、実施例3のヒステリシス損失は、比較例1、4及び6のヒステリシス損失よりも低下している。この要因も、実施例のコアの密度を増加させることができたためである。そして、この結果は、100kHzという高周波において用いた場合にも、同様にヒステリシス損失を抑制できることを示している。なお、ここでいう高周波とは、100kHzのみを指すものではなく、20kHzを超えていれば高周波に含まれる。 As described above, the hysteresis loss of Example 3 is lower than that of Comparative Examples 1, 4 and 6. This factor is also due to the fact that the core density of the examples could be increased. And this result shows that the hysteresis loss can be similarly suppressed even when it is used at a high frequency of 100 kHz. The high frequency referred to here does not mean only 100 kHz, but is included in the high frequency if it exceeds 20 kHz.

(PTFEの添加量)
以上のように、少なくともPTFEを0.1wt%以上添加することで、コアの密度が増加し、透磁率の向上及びヒステリシス損失の抑制を図ることができる。一方、図2を参照すると、実施例の密度の増加は、PTFEを0.5wt%添加した時点(実施例2)が最大値となり、0.5wt%以上添加すると、コアの密度は低下する傾向にある。本実施例では、PTFEの添加量は1.0wt%までとしたが、仮にこれ以上添加した場合、さらにコアの密度が低下することが容易に推察できる。密度が低下すると、それに伴って透磁率が低下し、又、ヒステリシス損失が増加する。よって、PTFEの添加量の上限は、1.0wt%とすることが好ましい。したがって、PTFEの添加量は、0.1wt%以上1.0wt以下であることが好ましい。
(Amount of PTFE added)
As described above, by adding at least 0.1 wt% or more of PTFE, the density of the core can be increased, the magnetic permeability can be improved, and the hysteresis loss can be suppressed. On the other hand, referring to FIG. 2, the increase in the density of the examples reaches the maximum value when 0.5 wt% of PTFE is added (Example 2), and when 0.5 wt% or more is added, the density of the core tends to decrease. It is in. In this example, the amount of PTFE added was up to 1.0 wt%, but if more than this is added, it can be easily inferred that the density of the core is further reduced. As the density decreases, the magnetic permeability decreases accordingly, and the hysteresis loss increases. Therefore, the upper limit of the amount of PTFE added is preferably 1.0 wt%. Therefore, the amount of PTFE added is preferably 0.1 wt% or more and 1.0 wt or less.

(他の実施形態)
本明細書においては、本発明に係る実施形態を説明したが、この実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。上記のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
Although the embodiment according to the present invention has been described in the present specification, this embodiment is presented as an example and is not intended to limit the scope of the invention. The above-described embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. The embodiments and modifications thereof are included in the scope and the gist of the invention as well as the invention described in the claims and the equivalent scope thereof.

Claims (5)

磁性粉末と樹脂とを混合してなる複合磁性材料であって、
前記磁性粉末は、ポリテトラフルオロエチレンを含み構成される絶縁被膜で覆われていること、
を特徴とする複合磁性材料。
A composite magnetic material made by mixing magnetic powder and resin.
The magnetic powder is covered with an insulating coating containing polytetrafluoroethylene.
A composite magnetic material characterized by.
前記磁性粉末は、
第1の粉末と、
前記第1の粉末より平均粒子径が小さい第2の粉末と、
を有し、
前記第1の粉末は、前記絶縁被膜で覆われていること、
を特徴とする請求項1に記載の複合磁性材料。
The magnetic powder is
The first powder and
A second powder having an average particle size smaller than that of the first powder,
Have,
The first powder is covered with the insulating coating.
The composite magnetic material according to claim 1.
前記ポリテトラフルオロエチレンの添加量は、前記磁性粉末に対して0.1wt%以上1.0wt%以下であること、
を特徴とする請求項1又は2に記載の複合磁性材料。
The amount of the polytetrafluoroethylene added is 0.1 wt% or more and 1.0 wt% or less with respect to the magnetic powder.
The composite magnetic material according to claim 1 or 2.
前記請求項1乃至3の何れかに記載の複合磁性材料によって構成されたメタルコンポジットコア。 A metal composite core made of the composite magnetic material according to any one of claims 1 to 3. 前記樹脂が硬化されて成ること、
を特徴とする請求項4に記載のメタルコンポジットコア。
The resin is cured.
The metal composite core according to claim 4.
JP2019057068A 2019-03-25 2019-03-25 Composite magnetic material and metal composite core made of this composite magnetic material Active JP7490338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019057068A JP7490338B2 (en) 2019-03-25 2019-03-25 Composite magnetic material and metal composite core made of this composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057068A JP7490338B2 (en) 2019-03-25 2019-03-25 Composite magnetic material and metal composite core made of this composite magnetic material

Publications (2)

Publication Number Publication Date
JP2020161560A true JP2020161560A (en) 2020-10-01
JP7490338B2 JP7490338B2 (en) 2024-05-27

Family

ID=72643672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057068A Active JP7490338B2 (en) 2019-03-25 2019-03-25 Composite magnetic material and metal composite core made of this composite magnetic material

Country Status (1)

Country Link
JP (1) JP7490338B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171947A (en) * 2016-03-18 2017-09-28 Ntn株式会社 Mixed powder for powder magnetic core and manufacturing method therefor
JP2017188680A (en) * 2016-03-31 2017-10-12 Ntn株式会社 Magnetic material, magnetic core, and method for manufacturing the same
JP2018125503A (en) * 2017-02-03 2018-08-09 株式会社タムラ製作所 Composite magnetic powder material, metal composite core and method for manufacturing metal composite core

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545733B2 (en) 2017-02-03 2019-07-17 株式会社タムラ製作所 Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP6545732B2 (en) 2017-02-03 2019-07-17 株式会社タムラ製作所 Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP2019041008A (en) 2017-08-25 2019-03-14 Ntn株式会社 Manufacturing method of dust core and mixed powder for dust core used therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171947A (en) * 2016-03-18 2017-09-28 Ntn株式会社 Mixed powder for powder magnetic core and manufacturing method therefor
JP2017188680A (en) * 2016-03-31 2017-10-12 Ntn株式会社 Magnetic material, magnetic core, and method for manufacturing the same
JP2018125503A (en) * 2017-02-03 2018-08-09 株式会社タムラ製作所 Composite magnetic powder material, metal composite core and method for manufacturing metal composite core

Also Published As

Publication number Publication date
JP7490338B2 (en) 2024-05-27

Similar Documents

Publication Publication Date Title
JP6730785B2 (en) Metal composite core manufacturing method and reactor manufacturing method
JP6858158B2 (en) Core, reactor, core manufacturing method and reactor manufacturing method
KR101976300B1 (en) Powder core, method for producing same, electric/electronic component provided with same, and electric/electronic device having said electric/electronic component mounted thereon
JP7246456B2 (en) Alloy powder composition, compact, method for producing same, and inductor
WO2018105697A1 (en) Method for producing reactor, method for producing core, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material
JP6545733B2 (en) Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP6615850B2 (en) Composite magnetic material and core manufacturing method
JP6545732B2 (en) Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP6545734B2 (en) Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP7066586B2 (en) Manufacturing method of composite magnetic material, metal composite core, reactor, and metal composite core
JP7490338B2 (en) Composite magnetic material and metal composite core made of this composite magnetic material
JP6502173B2 (en) Reactor device and electric / electronic equipment
JP7490337B2 (en) Composite magnetic material and metal composite core made of this composite magnetic material
WO2018142666A1 (en) Powder compact core, method for manufacturing powder compact core, electric/electronic component provided with powder compact core, and electric/electronic apparatus having electric/electronic component mounted therein
JP7418194B2 (en) Manufacturing method of powder magnetic core
JP2019073748A (en) Method for producing magnetic material, method for producing dust core, method for manufacturing coil component, dust core, and coil component
JP6840523B2 (en) Reactor manufacturing method, core manufacturing method
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2024042394A (en) composite magnetic material
JP7218337B2 (en) METAL COMPOSITE CORE AND METHOD FOR MANUFACTURING METAL COMPOSITE CORE
JP2018098261A (en) Method for manufacturing reactor
JPWO2020145047A1 (en) Manufacturing method of dust core, dust core, coil parts and granulated powder
JP7138736B2 (en) CORE, REACTOR, CORE MANUFACTURING METHOD AND REACTOR MANUFACTURING METHOD
WO2019044698A1 (en) Dust core, method for producing said dust core, electrical/electronic component provided with said dust core, and electrical/electronic device equipped with said electrical/electronic component
JP6415621B2 (en) Magnetic core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240515

R150 Certificate of patent or registration of utility model

Ref document number: 7490338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150