JP2020159754A - Pre-load diagnostic method of rolling device - Google Patents

Pre-load diagnostic method of rolling device Download PDF

Info

Publication number
JP2020159754A
JP2020159754A JP2019056969A JP2019056969A JP2020159754A JP 2020159754 A JP2020159754 A JP 2020159754A JP 2019056969 A JP2019056969 A JP 2019056969A JP 2019056969 A JP2019056969 A JP 2019056969A JP 2020159754 A JP2020159754 A JP 2020159754A
Authority
JP
Japan
Prior art keywords
oil film
rolling
film thickness
preload
diagnostic method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019056969A
Other languages
Japanese (ja)
Other versions
JP7200789B2 (en
Inventor
泰右 丸山
Taisuke Maruyama
泰右 丸山
克 菅原
Katsu Sugawara
克 菅原
政貴 土子
Masataka Tsuchiko
政貴 土子
成志 前田
Shigeji Maeda
成志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2019056969A priority Critical patent/JP7200789B2/en
Publication of JP2020159754A publication Critical patent/JP2020159754A/en
Application granted granted Critical
Publication of JP7200789B2 publication Critical patent/JP7200789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

To provide a pre-load diagnostic method of a rolling device, which has improved accuracy.SOLUTION: In a pre-load diagnostic method of a rolling device 10 which includes outer members 1, inner members 3, and rolling bodies 5, an AC voltage is applied to an electric circuit which comprises the outer members 1, the rolling bodies 5, and the inner members 3 in a state to rotate the rolling device 10 in a predetermined rotational number region. An impedance and a phase angle of the electric circuit are measured during the application of the AC voltage, so that radius values of Hertzian contact circles of the rolling bodies 5 are calculated on the basis of the measured impedance and phase angle.SELECTED DRAWING: Figure 1

Description

本発明は、転動装置の予圧診断方法に関する。 The present invention relates to a method for diagnosing preload of a rolling device.

軸受の如き転動装置は、自動車、各種産業機械など幅広い産業分野にて利用されている。
ここで、転動装置には、ハブユニット軸受などのように、転動体に予圧がかけられているものがある。この予圧の診断においては、軸受トルクからおおよその予圧の値を予測することしかできないのが実状であった。
Rolling devices such as bearings are used in a wide range of industrial fields such as automobiles and various industrial machines.
Here, some rolling devices, such as hub unit bearings, are preloaded on a rolling element. In this preload diagnosis, the actual situation is that only an approximate preload value can be predicted from the bearing torque.

軸受の診断技術として、特許文献1に記載の技術が存在する。特許文献1は、交流電圧を転動装置の回転輪に対して非接触な状態で印加し、測定した静電容量を用いて軸受の油膜状態の推定ができる。すなわち、油膜をコンデンサーとみなして電気的な等価回路をモデル化し、転動装置の回転輪に対して非接触な状態で交流電圧を印加し、油膜の静電容量を測定する。静電容量と油膜厚さ(潤滑膜厚さ)は相関関係があるため、この相関関係から油膜の状態を推定するものである。 As a bearing diagnostic technique, there is a technique described in Patent Document 1. In Patent Document 1, an AC voltage is applied to the rotating wheel of the rolling element in a non-contact state, and the oil film state of the bearing can be estimated using the measured capacitance. That is, the oil film is regarded as a capacitor, an electrical equivalent circuit is modeled, an AC voltage is applied in a non-contact state to the rotating wheel of the rolling element, and the capacitance of the oil film is measured. Since there is a correlation between the capacitance and the oil film thickness (lubrication film thickness), the state of the oil film is estimated from this correlation.

特許第4942496号公報Japanese Patent No. 4942496

特許文献1に開示の技術によれば、油膜厚さを測定することは可能である。しかしながら、この方法では油膜厚さのみの算出が可能であり、金属接触割合や予圧について把握することができない。 According to the technique disclosed in Patent Document 1, it is possible to measure the oil film thickness. However, with this method, only the oil film thickness can be calculated, and the metal contact ratio and the preload cannot be grasped.

本発明は、転動装置のより正確な予圧診断方法を提供する。 The present invention provides a more accurate preload diagnostic method for rolling devices.

本発明の転動装置の予圧診断方法は、外方部材と、内方部材と、転動体とを備える転動装置の予圧診断方法であって、所定の回転数領域で前記転動装置を回転させた状態で、前記外方部材と、前記転動体と、前記内方部材とから構成される電気回路に交流電圧を印加し、前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を測定し、測定した前記インピーダンスおよび前記位相角に基づき、前記転動体のHertzian接触円半径の値を算出するものである。 The preload diagnosis method for a rolling device of the present invention is a preload diagnosis method for a rolling device including an outer member, an inner member, and a rolling element, and rotates the rolling device in a predetermined rotation speed region. In this state, an AC voltage is applied to the electric circuit composed of the outer member, the rolling element, and the inner member, and the impedance and phase angle of the electric circuit when the AC voltage is applied are adjusted. The value of the Hertzian contact circle radius of the rolling element is calculated based on the measured impedance and the phase angle.

本発明によれば、転動装置の予圧をより正確に診断することが可能となる。 According to the present invention, it is possible to more accurately diagnose the preload of the rolling device.

図1は、ディスク試験片にボール試験片を押し付けた時の混合潤滑条件下における物理モデルを示すグラフである。FIG. 1 is a graph showing a physical model under mixed lubrication conditions when a ball test piece is pressed against a disc test piece. 図2は、転動装置の診断における電気回路の図を示し、図2(a)は図1に示す一つのボール試験片(転動体)に対応する電気回路の図であり、図2(b)は転動装置全体の電気回路の図を示す。FIG. 2 shows a diagram of an electric circuit in diagnosing a rolling device, FIG. 2 (a) is a diagram of an electric circuit corresponding to one ball test piece (rolling body) shown in FIG. 1, and FIG. 2 (b). ) Indicates a diagram of the electric circuit of the entire rolling element. 図3は、転動装置の概念図を示す。FIG. 3 shows a conceptual diagram of the rolling device. 図4は、転動装置の外輪回転数を変化させながら平均油膜厚さおよび油膜の破断率を測定した結果のグラフを示す(実施例1)。FIG. 4 shows a graph of the results of measuring the average oil film thickness and the breaking rate of the oil film while changing the outer ring rotation speed of the rolling element (Example 1). 図5は、転動装置の外輪回転数を変化させながら平均油膜厚さおよび油膜の破断率を測定した結果のグラフを示す(実施例2)。FIG. 5 shows a graph of the results of measuring the average oil film thickness and the breaking rate of the oil film while changing the outer ring rotation speed of the rolling element (Example 2).

以下、本発明に係る転動装置(軸受装置)の診断方法の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of a method for diagnosing a rolling device (bearing device) according to the present invention will be described in detail with reference to the drawings.

従来の転動装置における油膜診断技術として、特許文献1に示されている検査装置が存在する。この検査装置の構成は、油膜をコンデンサーとしてモデル化し、転動装置の回転輪に対して非接触な状態で交流電圧を印加し、油膜の静電容量を測定する。静電容量と油膜厚さの間には所定の相関があるため、転動装置の油膜状態の推定をすることができる。しかしながら、特許文献1の方法では油膜厚さのみ測定を行い、金属接触割合について把握することが困難である。また、ヘルツ接触域外の静電容量について考慮していないため、油膜厚さの値そのものの推定精度も高いものではない。 As an oil film diagnostic technique in a conventional rolling apparatus, there is an inspection apparatus shown in Patent Document 1. The configuration of this inspection device is to model the oil film as a condenser, apply an AC voltage in a non-contact state to the rotating wheels of the rolling device, and measure the capacitance of the oil film. Since there is a predetermined correlation between the capacitance and the oil film thickness, it is possible to estimate the oil film state of the rolling element. However, in the method of Patent Document 1, it is difficult to measure only the oil film thickness and grasp the metal contact ratio. Moreover, since the capacitance outside the Hertz contact area is not taken into consideration, the estimation accuracy of the oil film thickness value itself is not high.

本発明では、EHD(Electro Hydro Dynamics;電気流体力学)接触域に交流電圧を印加し、測定される複素インピーダンスZからEHD接触域内の油膜厚さおよび油膜の破断率を測定できる手法(インピーダンス法)を確立した。本手法を用いることにより、油膜厚さを精度良く測定することができる。ここでは前記インピーダンス法に基づいた油膜厚さおよび油膜の破断率(金属接触割合)の導出過程について述べる。 In the present invention, an AC voltage is applied to the EHD (Electro Hydro Dynamics) contact region, and the oil film thickness and the oil film breakage rate in the EHD contact region can be measured from the measured complex impedance Z (impedance method). Was established. By using this method, the oil film thickness can be measured with high accuracy. Here, the process of deriving the oil film thickness and the fracture rate (metal contact ratio) of the oil film based on the impedance method will be described.

図1はディスク試験片にボール試験片を押し付けた時の混合潤滑条件下における物理モデルを示すグラフである。本モデルにおけるディスク試験片は転動装置の外輪または内輪、ボール試験片は転動装置の転動体に相当する。y軸は油膜厚さ方向、x軸は油膜厚さ方向と直交する方向の軸を表す。また、hはEHD接触域内の油膜を形成している箇所における油膜厚さ、aはHertzian接触円半径、rはボール試験片の半径、SはHertzian接触面積、αは油膜の破断率である。よって、EHD接触域内で油膜の破断が生じている面積は図1に示すようにαSで表される。また、図1中のf(x)はEHD接触域以外の範囲(a≦x≦r)におけるボール試験片表面のy座標を表す関数であり、以下の式(1)によって表される。 FIG. 1 is a graph showing a physical model under mixed lubrication conditions when a ball test piece is pressed against a disc test piece. The disc test piece in this model corresponds to the outer ring or inner ring of the rolling device, and the ball test piece corresponds to the rolling element of the rolling device. The y-axis represents the oil film thickness direction, and the x-axis represents the axis orthogonal to the oil film thickness direction. Further, h 1 is the oil film thickness at the portion forming the oil film in the EHD contact area, a is the radius of the Hertzian contact circle, r is the radius of the ball test piece, S is the Hertzian contact area, and α is the breaking rate of the oil film. .. Therefore, the area where the oil film is broken in the EHD contact area is represented by αS as shown in FIG. Further, f (x) in FIG. 1 is a function representing the y coordinate of the surface of the ball test piece in a range (a ≦ x ≦ r) other than the EHD contact area, and is represented by the following equation (1).

Figure 2020159754
Figure 2020159754

実際のボール試験片は、荷重を受ける際に弾性変形が生じるためEHD接触域以外は厳密には球体ではないが、本発明では式(1)に示すように変形後も球体であると仮定した。 The actual ball test piece is not strictly a sphere except for the EHD contact area because elastic deformation occurs when a load is applied, but in the present invention, it is assumed that the ball is a sphere even after deformation as shown in the equation (1). ..

通常、EHD接触域内には馬蹄形と呼ばれる油膜の薄い領域が存在するが、本発明ではEHD接触域内の平均的な油膜厚さ(平均油膜厚さ)hを求めた。よって、EHD接触域内の一部で油膜の破断が生じている場合、求める平均的な油膜厚さhは油膜の破断率αと油膜厚さhを用いて、以下の式(2)によって表される。 Usually, the EHD contact region there is a region with a small oil film called horseshoe, average oil film thickness of the EHD contact region in the present invention (average oil film thickness) was determined h a. Therefore, if the breakage of the oil film in some EHD contact region is generated by using an average oil film thickness h a in breakage rate α and the oil film thickness h 1 of the oil film to obtain, by the following equation (2) expressed.

Figure 2020159754
Figure 2020159754

図2(a)は図1の物理モデルを電気的に等価な電気回路に変換して得られる電気回路(等価電気回路)E1の図を示す。ただし、Rは油膜が破断している領域における抵抗、CはHertzian接触域内の油膜による静電容量、Cはディスク試験片とボール試験片の2面間が図1におけるx=rの位置まで潤滑剤(潤滑油やグリース)で満たされていると仮定した時のHertzian接触域外に生じる静電容量である。つまり、本発明ではEHD接触域外の領域もコンデンサーとして考慮に入れている。Hertzian接触域内の油膜は、コンデンサーC(静電容量C)と抵抗R(抵抗値R)の並列回路を形成し、当該並列回路と、Hertzian接触域外のコンデンサーC(静電容量C)が並列に接続される。 FIG. 2A shows a diagram of an electric circuit (equivalent electric circuit) E1 obtained by converting the physical model of FIG. 1 into an electrically equivalent electric circuit. However, R 1 is the resistance in the region where the oil film is broken, C 1 is the capacitance due to the oil film in the Hertzian contact area, and C 2 is the distance between the two surfaces of the disc test piece and the ball test piece of x = r in FIG. It is the capacitance generated outside the Hertzian contact area when it is assumed that the position is filled with a lubricant (lubricating oil or grease). That is, in the present invention, the region outside the EHD contact region is also taken into consideration as a capacitor. The oil film in the Hertzian contact area forms a parallel circuit of the capacitor C 1 (capacitance C 1 ) and the resistor R 1 (resistance value R 1 ), and the parallel circuit and the capacitor C 2 (capacitance) outside the Hertzian contact area. C 2) are connected in parallel.

図2(b)は図1の物理モデルを外輪1および内輪3を有する転動装置10(図3参照)に適用した際における電気回路E4を示す。各転動体5は、外輪1および内輪3の双方に接触しているため、図2(b)に示すように、各転動体5について、二つの電気回路E1(外輪1−転動体5間および内輪3−転動体5間)が直列接続された電気回路E2が形成される。 FIG. 2B shows an electric circuit E4 when the physical model of FIG. 1 is applied to a rolling device 10 (see FIG. 3) having an outer ring 1 and an inner ring 3. Since each rolling element 5 is in contact with both the outer ring 1 and the inner ring 3, as shown in FIG. 2B, for each rolling element 5, two electric circuits E1 (between the outer ring 1 and the rolling element 5) and An electric circuit E2 in which the inner ring 3 and the rolling elements 5) are connected in series is formed.

さらに、転動装置10にn個の転動体5が設けられている場合、電気回路E2がn個並列に接続されることになる。よって、図2(b)に示すように、n個全ての転動体5を含む転動装置10は電気回路E3を形成することになる。本実施形態の転動装置10の診断に際しては、転動装置10の外輪1と内輪3の間に、電源から交流電圧を印加するため、図2(b)に示す全体の電気回路E4が形成される。 Further, when the rolling element 10 is provided with n rolling elements 5, n electric circuits E2 are connected in parallel. Therefore, as shown in FIG. 2B, the rolling device 10 including all n rolling elements 5 forms the electric circuit E3. In diagnosing the rolling device 10 of the present embodiment, an AC voltage is applied from the power source between the outer ring 1 and the inner ring 3 of the rolling device 10, so that the entire electric circuit E4 shown in FIG. 2B is formed. Will be done.

ここで図2(a)の電気回路に印加される交流電圧Vは、以下の式(3)によって表される。 Here, the AC voltage V applied to the electric circuit of FIG. 2A is represented by the following equation (3).

Figure 2020159754
Figure 2020159754

図2(a)の電気回路の全体を流れる電流Iは、以下の式(4)によって表される。 The current I flowing through the entire electric circuit of FIG. 2A is represented by the following equation (4).

Figure 2020159754
Figure 2020159754

よって、図2(a)の電気回路の全体の複素インピーダンスZは、以下の式(5)によって表される。 Therefore, the overall complex impedance Z of the electric circuit of FIG. 2A is represented by the following equation (5).

Figure 2020159754
Figure 2020159754

ここで、jは虚数、tは時間、ωは電圧の角振動数、θは電圧と電流の位相のずれ、すなわち位相角である。式(5)より複素インピーダンスZは、複素インピーダンスZの絶対値|Z|と位相角θという2つの独立した変数で構成されていることがわかる。すなわち、複素インピーダンスZを測定することにより、互いに独立した2つのパラメータ(ここでは平均油膜厚さhおよび破断率α)を測定可能であることを意味する。 Here, j is an imaginary number, t is time, ω is the angular frequency of voltage, and θ is the phase shift between voltage and current, that is, the phase angle. From equation (5), it can be seen that the complex impedance Z is composed of two independent variables, the absolute value | Z | of the complex impedance Z and the phase angle θ. That is, by measuring the complex impedance Z, which means that (in this case the average oil film thickness h a and breakage rate alpha) 2 two parameters independent of each other can be measured.

ここで図2(a)の電気回路の全体の複素インピーダンスZは、以下の式(6)によって表される。 Here, the overall complex impedance Z of the electric circuit of FIG. 2A is expressed by the following equation (6).

Figure 2020159754
Figure 2020159754

さらに式(6)より、以下の式(7)および(8)が導き出せる。 Further, the following equations (7) and (8) can be derived from the equation (6).

Figure 2020159754
Figure 2020159754

Figure 2020159754
Figure 2020159754

ここで、式(7)中の油膜が破断している領域の抵抗Rは、接触面積と反比例の関係にあるため、以下の式(9)によって表される。 Here, since the resistance R 1 in the region where the oil film is broken in the formula (7) is inversely proportional to the contact area, it is represented by the following formula (9).

Figure 2020159754
Figure 2020159754

ここで、R10は静止時(すなわちα=1)における抵抗である。R10は静止時におけるインピーダンスを|Z|、位相角をθとおくと、式(6)より以下の式(10)によって表される。 Here, R 10 is a resistance at rest (that is, α = 1). R 10 is represented by the following equation (10) from the equation (6), where the impedance at rest is | Z 0 | and the phase angle is θ 0 .

Figure 2020159754
Figure 2020159754

よって、破断率αは、式(7)、(9)、(10)より以下の式(11)によって表される。 Therefore, the breaking rate α is represented by the following formula (11) from the formulas (7), (9), and (10).

Figure 2020159754
Figure 2020159754

ところで、Hertzian接触域内の油膜による静電容量Cは、試験に用いる潤滑剤の誘電率εを用いて、以下の式(12)によって表される。 By the way, the capacitance C 1 due to the oil film in the Hertzian contact region is represented by the following equation (12) using the dielectric constant ε of the lubricant used in the test.

Figure 2020159754
Figure 2020159754

一方、Hertzian接触域外に生じる静電容量Cは、図1中の斜線部に示すような微小幅dx、長さ2πx、高さf(x)の円環状のコンデンサーが、a≦x≦rの範囲において並列に繋がって構成されているとみなすことができる。よって静電容量Cは、以下の式(13)によって表される。 On the other hand, the capacitance C 2 generated outside the Hertzian contact area is such that an annular capacitor having a minute width dx, a length 2πx, and a height f (x) as shown in the shaded area in FIG. 1 has a ≦ x ≦ r. It can be considered that they are connected in parallel within the range of. Therefore, the capacitance C 2 is represented by the following equation (13).

Figure 2020159754
Figure 2020159754

ここで、一般的にr≫a、r≫hであるため、静電容量Cは式(13)に基づき、以下の式(14)をもって近似することができる。 Here, since r »a and r» h 1 are generally used, the capacitance C 2 can be approximated by the following equation (14) based on the equation (13).

Figure 2020159754
Figure 2020159754

以上の式(8)、(12)、(14)より、以下の式(15)が得られる。 From the above equations (8), (12), and (14), the following equation (15) can be obtained.

Figure 2020159754
Figure 2020159754

ここで式(15)中のhを求めるため、Lambert W function(ランベルトW関数)を用いることとする。任意の複素数zに対して、Lambert W functionW(z)は以下の式(16)によって定義される。 Here, in order to obtain h 1 in the equation (15), the Lambert W function (Lambert W function) is used. For any complex number z, Lambert W function W (z) is defined by the following equation (16).

Figure 2020159754
Figure 2020159754

よって、式(2)、(15)、(16)より、求める平均油膜厚さhは以下の式(17)によって表される。 Therefore, equation (2), (15), represented by more, the average oil film thickness h a of obtaining the following equation (17) (16).

Figure 2020159754
Figure 2020159754

つまり、式(11)、(17)より、静止時と油膜形成時におけるインピーダンスおよび位相を測定することにより、平均油膜厚さhおよび油膜の破断率αを算出することができる。 In other words, equation (11) and (17), by measuring the impedance and phase at the time of resting and oil film formation, it is possible to calculate the breakage rate of the average oil film thickness h a, and the oil film alpha.

ここで、油膜厚さが既知であれば、その既知の油膜厚さの値を、上記の式(17)の左辺(h)に入力することで、Hertzian接触円半径aを逆算することが可能となる。そして、予圧が大きければボール試験片(図1参照)はディスク試験片へとより強く押し付けられ、Hertzian接触円半径aの値は大きくなる。すなわち、Hertzian接触円半径aの大きさと予圧との間には正の相関があるため、逆算されたHertzian接触円半径aの値に基づいて、転動体の予圧をより正確に診断することが可能となる。 Here, if the oil film thickness is known, the value of the known oil film thickness, by entering the left side (h a) of the above formula (17), can be calculated back Hertzian contact circle radius a It will be possible. Then, if the preload is large, the ball test piece (see FIG. 1) is pressed more strongly against the disc test piece, and the value of the Hertzian contact circle radius a becomes large. That is, since there is a positive correlation between the size of the Hertzian contact circle radius a and the preload, it is possible to more accurately diagnose the preload of the rolling element based on the back-calculated value of the Hertzian contact circle radius a. It becomes.

上述の説明は、専ら基本となる図2(a)の電気回路E1についてのものであるが、転動装置10の転動体5の数等を考慮することにより、図2(b)の電気回路E4にも適用することができる。電気回路E4において、転動体5が外輪1および内輪3に接触する2つの接触点が、2個の電気回路E1を直列させてなる電気回路E2に対応する。転動装置10における転動体5の全個数(n個)が、2個の電気回路E1を直列させてなる電気回路E2を、さらに並列させる個数に対応する。また、転動装置10そのものが複数存在する場合、図2(b)の電気回路E3が、交流電圧に対して並列接続されることになる。 The above description is exclusively for the basic electric circuit E1 of FIG. 2A, but by considering the number of rolling elements 5 of the rolling device 10 and the like, the electric circuit of FIG. 2B is taken into consideration. It can also be applied to E4. In the electric circuit E4, the two contact points where the rolling element 5 contacts the outer ring 1 and the inner ring 3 correspond to the electric circuit E2 formed by connecting the two electric circuits E1 in series. The total number (n) of the rolling elements 5 in the rolling device 10 corresponds to the number of electric circuits E2 in which two electric circuits E1 are connected in series. Further, when a plurality of rolling elements 10 themselves are present, the electric circuit E3 of FIG. 2B is connected in parallel with respect to the AC voltage.

以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.

図3は転動装置(軸受装置)10の概念図を示す。転動装置10は、外輪(外方部材)1と、内輪(内方部材)3と、外輪1の内周面に形成された軌道面と内輪3の外周面に形成された軌道面との間に介在する複数個の転動体5を備える。さらに外輪1と転動体5の間、および内輪3と転動体5の間には、潤滑のために供給された油、グリース等の潤滑剤からなる油膜(潤滑膜)が存在する。転動装置10は、自動車、二輪車、鉄道車両などの如き移動体や、産業機械、工作機械などに適用されるが、適用される装置は特に限定されない。 FIG. 3 shows a conceptual diagram of the rolling device (bearing device) 10. The rolling device 10 includes an outer ring (outer member) 1, an inner ring (inner member) 3, a raceway surface formed on the inner peripheral surface of the outer ring 1, and a raceway surface formed on the outer peripheral surface of the inner ring 3. A plurality of rolling elements 5 intervening are provided. Further, an oil film (lubricating film) made of a lubricant such as oil or grease supplied for lubrication exists between the outer ring 1 and the rolling element 5 and between the inner ring 3 and the rolling element 5. The rolling device 10 is applied to a moving body such as an automobile, a motorcycle, a railroad vehicle, an industrial machine, a machine tool, and the like, but the applicable device is not particularly limited.

上記転動装置10として、ハブユニット軸受用グリースを封入した内径φ32mm、外径φ148mm、高さ79.5mmのハブユニット軸受(複列玉軸受)を用いて、平均油膜厚さhおよび油膜の破断率(金属接触割合)αの測定を行った。より具体的には、図3に示した転動装置10の外輪(外方部材)1を回転可能なようにして、この転動装置10に一般的なLCRメータ(交流電圧も兼ねる)を接続した。そして、LCRメータに交流電圧の周波数ω、交流電圧の電圧Vを入力し、転動装置10のインピーダンス(の絶対値)|Z|、位相角θをLCRメータによって測定した。この時の測定条件は、予圧500N、外輪回転数30〜1000rpm、温度は室内の常温(25℃)、グリース封入量10.8gである。 As the rolling device 10, the inner diameter was filled with grease hub unit bearings 32 mm, an outer diameter Fai148mm, using a hub unit bearings of height 79.5 mm (double row ball bearing), the average oil film thickness h a and the oil film The breaking rate (metal contact ratio) α was measured. More specifically, the outer ring (outer member) 1 of the rolling device 10 shown in FIG. 3 is made rotatable, and a general LCR meter (also serving as an AC voltage) is connected to the rolling device 10. did. Then, the frequency ω of the AC voltage and the voltage V of the AC voltage were input to the LCR meter, and the impedance (absolute value) | Z | and the phase angle θ of the rolling element 10 were measured by the LCR meter. The measurement conditions at this time are a preload of 500 N, an outer ring rotation speed of 30 to 1000 rpm, a temperature of indoor room temperature (25 ° C.), and a grease filling amount of 10.8 g.

次に、式(11)および式(17)を用いて、外輪回転数Nを変化させながら平均油膜厚さhおよび油膜の破断率αを測定した。図4はその測定結果を示すグラフである。なお、グラフ中の破線は、実験が行われた常温における理論油膜厚さh(Hamrock BJ and Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: part III-fully flooded results. ASME Trans J Lubricat Technol 1977; 99: 264-275.)を示している。後述の図5に示した破線についても同様である。 Next, using equation (11) and (17) were measured α breakage rate of the average oil film thickness h a, and the oil film while changing the wheel rotating speed N. FIG. 4 is a graph showing the measurement result. The dashed line in the graph is the theoretical oil film thickness h c (Hamrock BJ and Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: part III-fully flooded results. ASME Trans J Lubricat Technol 1977; 99) in which the experiment was conducted. : 264-275.) Is shown. The same applies to the broken line shown in FIG. 5 described later.

図4より、外輪回転数Nが100rpmを超える高回転領域では、平均油膜厚さhが理論油膜厚さhよりも小さくなっていることがわかる。この結果から、回転数の大きい高速域では枯渇潤滑(潤滑剤が転動体と外輪または内輪の転送面から排除され十分な潤滑ができていない状態)が生じていることが示唆された。 From FIG. 4, in the high speed region where the outside wheel rotating speed N exceeds 100 rpm, it can be seen that the average oil film thickness h a is smaller than the theoretical oil film thickness h c. From this result, it was suggested that depleted lubrication (a state in which the lubricant is removed from the transfer surface of the rolling element and the outer ring or the inner ring and sufficient lubrication is not achieved) occurs in the high speed range where the rotation speed is high.

その一方で、外輪回転数Nが50rpm未満の低回転領域では、グリースの見掛け粘度が大きくなるため、平均油膜厚さhが理論油膜厚さhよりも大きくなっている。 On the other hand, the outside wheel rotating speed N is in a low speed region of less than 50 rpm, because the apparent viscosity of the grease increases, the average oil film thickness h a is larger than the theoretical oil film thickness h c.

よって、外輪回転数Nが50から100rpmの領域は、油膜厚さhが理論油膜厚さhとほぼ一致することがわかった。そこでこの領域を、所定の回転数領域であると解釈する。なお、本願において、「ほぼ一致する」とは、平均油膜厚さhと理論油膜厚さhとの差の絶対値が、所定の値d=0.1未満である事を意味する。 Thus, 100 rpm region from the outside wheel rotating speed N 50 have been found to oil film thickness h a substantially coincides with the theoretical oil film thickness h c. Therefore, this region is interpreted as a predetermined rotation speed region. In the present application, "almost the same" means that the absolute value of the difference between the average oil film thickness h a and the theoretical oil film film h c is less than a predetermined value d = 0.1.

以上の事から、考案したインピーダンス法に基づいて、転動体の予圧診断を行うことができることがわかる。すなわち、平均油膜厚さhと理論油膜厚さhとがほぼ一致する前記所定の回転数領域において、転動装置のインピーダンス測定を行う。そして、式(17)を用いて、Hertzian接触円半径aを逆算する。この逆算は、式(17)の左辺hに理論油膜厚さhを入力することで可能である。そして、逆算されたHertzian接触円半径aの値と予圧との間には、正の相関がある。従って、逆算されたHertzian接触円半径aの値に基づいて、転動体の予圧を診断することが可能となる。 From the above, it can be seen that the preload diagnosis of the rolling element can be performed based on the devised impedance method. That is, the impedance of the rolling element is measured in the predetermined rotation speed region where the average oil film thickness h a and the theoretical oil film film h c substantially coincide with each other. Then, the Hertzian osculating circle radius a is back-calculated using the equation (17). This inverse operation is possible by inputting the theoretical oil film thickness h c on the left side h a of formula (17). Then, there is a positive correlation between the value of the back-calculated Hertzian contact circle radius a and the preload. Therefore, it is possible to diagnose the preload of the rolling element based on the value of the Hertzian contact circle radius a calculated back.

上記の実施例1とは条件を一部変更した場合の測定結果を図5に示す。実施例2においては、実施例1で使用したグリースの代わりに、当該グリースの基油を0.2g封入している。その他の条件は実施例1と同様である。 FIG. 5 shows a measurement result when the conditions are partially changed from the above-mentioned Example 1. In Example 2, 0.2 g of the base oil of the grease is sealed in place of the grease used in Example 1. Other conditions are the same as in Example 1.

図4と同様、図5においても、外輪回転数Nが100rpmを超える高回転領域では枯渇潤滑が生じており、平均油膜厚さhが理論油膜厚さhよりも小さくなっていることがわかる。 Similar to FIG. 4, also in FIG. 5, in the high rotation region where the outside wheel rotating speed N exceeds 100rpm has occurred depletion lubrication, that the average oil film thickness h a is smaller than the theoretical oil film thickness h c Recognize.

一方で、図5の低回転領域においては、図4とは異なり平均油膜厚さhが理論油膜厚さhよりも大きくなってはいない。これは、基油が増ちょう剤を含まないので、測定結果が理論油膜厚さhと一致したと考えられる。 On the other hand, in the low rotation region of FIG. 5, unlike FIG average oil film thickness h a is not is larger than the theoretical oil film thickness h c. This is considered to be because the base oil does not contain a thickener, so the measurement result is in agreement with the theoretical oil film thickness h c .

そこで図5の例では、平均油膜厚さhが理論油膜厚さhとほぼ一致する所定の回転数領域を、30rpmを超え、かつ100rpm未満とする。この所定の回転数領域において、転動装置のインピーダンス測定を行えば、前記の実施例1と同様に、逆算されたHertzian接触円半径aの値を逆算することが可能である。従って、逆算されたHertzian接触円半径aの値に基づいて、転動体の予圧を診断することが可能となる。 Therefore, in the example of FIG. 5, the predetermined rotation speed region in which the average oil film thickness h a substantially coincides with the theoretical oil film thickness h c is set to exceed 30 rpm and less than 100 rpm. By measuring the impedance of the rolling element in this predetermined rotation speed region, it is possible to back-calculate the value of the back-calculated Hertzian contact circle radius a as in the first embodiment. Therefore, it is possible to diagnose the preload of the rolling element based on the value of the Hertzian contact circle radius a calculated back.

なお、軸受の予圧診断という観点からすると、所定の回転数領域をより広くとることのできる、油による潤滑(実施例2)の方がより好ましいことがわかった。 From the viewpoint of bearing preload diagnosis, it was found that lubrication with oil (Example 2), which can have a wider predetermined rotation speed region, is more preferable.

本発明は、油潤滑、グリース潤滑に関わらず、また軸受全般(玉,ころ,円錐,自動調心,ニードル,複列)に適用可能な技術であり、直動製品(リニアガイド,ボールねじ)の予圧診断も同様に行うことができる。 The present invention is a technique applicable to bearings in general (balls, rollers, cones, self-alignment, needles, double rows) regardless of oil lubrication or grease lubrication, and is a linear motion product (linear guide, ball screw). The preload diagnosis can be performed in the same manner.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。 The present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, and the like. In addition, the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

1 外輪(外方部材)
3 内輪(内方部材)
5 転動体
10 転動装置(軸受装置)
1 Outer ring (outer member)
3 Inner ring (inner member)
5 Rolling body 10 Rolling device (bearing device)

Claims (3)

外方部材と、内方部材と、転動体とを備える転動装置の予圧診断方法であって、
所定の回転数領域で前記転動装置を回転させた状態で、前記外方部材と、前記転動体と、前記内方部材とから構成される電気回路に交流電圧を印加し、
前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を測定し、
測定した前記インピーダンスおよび前記位相角に基づき、前記転動体のHertzian接触円半径の値を算出する、
転動装置の予圧診断方法。
A preload diagnostic method for a rolling device including an outer member, an inner member, and a rolling element.
With the rolling device rotated in a predetermined rotation speed region, an AC voltage is applied to an electric circuit composed of the outer member, the rolling element, and the inner member.
The impedance and phase angle of the electric circuit when the AC voltage is applied are measured.
Based on the measured impedance and the phase angle, the value of the Hertzian osculating circle radius of the rolling element is calculated.
Preload diagnostic method for rolling equipment.
請求項1に記載の予圧診断方法であって、
前記所定の回転数領域は、前記インピーダンスおよび前記位相角に基づき算出した平均油膜厚さと理論油膜厚さとの差の絶対値が、所定の値未満であるような回転数領域である、
転動装置の予圧診断方法。
The preload diagnostic method according to claim 1.
The predetermined rotation speed region is a rotation speed region in which the absolute value of the difference between the average oil film thickness and the theoretical oil film thickness calculated based on the impedance and the phase angle is less than a predetermined value.
Preload diagnostic method for rolling equipment.
請求項1または請求項2に記載の予圧診断方法であって、
Figure 2020159754
の左辺に理論油膜厚さを入力することで、前記転動体のHertzian接触円半径の値を算出する、
転動装置の予圧診断方法。
The preload diagnostic method according to claim 1 or 2.
Figure 2020159754
By inputting the theoretical oil film thickness on the left side of, the value of the Hertzian osculating circle radius of the rolling element is calculated.
Preload diagnostic method for rolling equipment.
JP2019056969A 2019-03-25 2019-03-25 Preload Diagnosis Method for Rolling Device Active JP7200789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019056969A JP7200789B2 (en) 2019-03-25 2019-03-25 Preload Diagnosis Method for Rolling Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019056969A JP7200789B2 (en) 2019-03-25 2019-03-25 Preload Diagnosis Method for Rolling Device

Publications (2)

Publication Number Publication Date
JP2020159754A true JP2020159754A (en) 2020-10-01
JP7200789B2 JP7200789B2 (en) 2023-01-10

Family

ID=72642818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019056969A Active JP7200789B2 (en) 2019-03-25 2019-03-25 Preload Diagnosis Method for Rolling Device

Country Status (1)

Country Link
JP (1) JP7200789B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7168139B1 (en) * 2021-05-28 2022-11-09 日本精工株式会社 Bearing device state detection method, detection device, and program
WO2022250060A1 (en) * 2021-05-28 2022-12-01 日本精工株式会社 Bearing device state detecting method, detecting device, and program
JP7347720B1 (en) 2022-04-13 2023-09-20 日本精工株式会社 Bearing device condition detection method, detection device, and program
JP7347721B1 (en) 2022-03-14 2023-09-20 日本精工株式会社 Bearing device condition detection method, detection device, and program
WO2023176602A1 (en) * 2022-03-14 2023-09-21 日本精工株式会社 Bearing device state detecting method, detecting device, and program
WO2023199655A1 (en) * 2022-04-13 2023-10-19 日本精工株式会社 Bearing device state detection method, detection device, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151302A (en) * 1980-04-25 1981-11-24 Nippon Seiko Kk Measuring method of oil film thickness
JP2006177933A (en) * 2004-11-24 2006-07-06 Jtekt Corp Sensor device and rolling bearing having sensor
JP2009133786A (en) * 2007-11-30 2009-06-18 Nippon Steel Corp Nondestructive inspection device of weld zone, and nondestructive inspection method of weld zone
JP2009275736A (en) * 2008-05-13 2009-11-26 Ntn Corp Bearing device
WO2014094812A1 (en) * 2012-12-17 2014-06-26 Aktiebolaget Skf Lubricating grease condition monitoring
JP6380720B1 (en) * 2017-01-06 2018-08-29 日本精工株式会社 Diagnosis method of rolling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151302A (en) * 1980-04-25 1981-11-24 Nippon Seiko Kk Measuring method of oil film thickness
JP2006177933A (en) * 2004-11-24 2006-07-06 Jtekt Corp Sensor device and rolling bearing having sensor
JP2009133786A (en) * 2007-11-30 2009-06-18 Nippon Steel Corp Nondestructive inspection device of weld zone, and nondestructive inspection method of weld zone
JP2009275736A (en) * 2008-05-13 2009-11-26 Ntn Corp Bearing device
WO2014094812A1 (en) * 2012-12-17 2014-06-26 Aktiebolaget Skf Lubricating grease condition monitoring
JP6380720B1 (en) * 2017-01-06 2018-08-29 日本精工株式会社 Diagnosis method of rolling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7168139B1 (en) * 2021-05-28 2022-11-09 日本精工株式会社 Bearing device state detection method, detection device, and program
WO2022250060A1 (en) * 2021-05-28 2022-12-01 日本精工株式会社 Bearing device state detecting method, detecting device, and program
JP7347721B1 (en) 2022-03-14 2023-09-20 日本精工株式会社 Bearing device condition detection method, detection device, and program
WO2023176602A1 (en) * 2022-03-14 2023-09-21 日本精工株式会社 Bearing device state detecting method, detecting device, and program
JP7347720B1 (en) 2022-04-13 2023-09-20 日本精工株式会社 Bearing device condition detection method, detection device, and program
WO2023199655A1 (en) * 2022-04-13 2023-10-19 日本精工株式会社 Bearing device state detection method, detection device, and program

Also Published As

Publication number Publication date
JP7200789B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
JP2020159754A (en) Pre-load diagnostic method of rolling device
JP6380720B1 (en) Diagnosis method of rolling device
JP6729633B2 (en) Diagnosis method of rolling device
JP7484410B2 (en) Method for diagnosing rolling devices
CN113302411B (en) Method for diagnosing rolling device
Scherb et al. A study on the smearing and slip behaviour of radial cylindrical roller bearings
JP7248198B2 (en) Bearing device state detection method, detection device, and program
JP7168139B1 (en) Bearing device state detection method, detection device, and program
WO2022250060A1 (en) Bearing device state detecting method, detecting device, and program
WO2024071272A1 (en) Rolling device diagnosing method, diagnosing device, and program
JP7347721B1 (en) Bearing device condition detection method, detection device, and program
WO2023176602A1 (en) Bearing device state detecting method, detecting device, and program
JP7367898B1 (en) Measuring method, measuring device, and program
WO2023199655A1 (en) Bearing device state detection method, detection device, and program
JP7347720B1 (en) Bearing device condition detection method, detection device, and program
JP7364135B1 (en) Condition diagnosis method, condition diagnosis device, and program
JP2024052177A (en) Method, device, and program for diagnosing a rolling device
WO2024101322A1 (en) Condition measuring method, condition measuring device, and program
Noguchi et al. Effect of oil film parameter on vibration acceleration and electrical pitting of small ball bearing
CN116507814A (en) Method, device and program for detecting state of oil film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R150 Certificate of patent or registration of utility model

Ref document number: 7200789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150