JP2020159487A - Stacked-joint structure and automobile frame component - Google Patents

Stacked-joint structure and automobile frame component Download PDF

Info

Publication number
JP2020159487A
JP2020159487A JP2019060341A JP2019060341A JP2020159487A JP 2020159487 A JP2020159487 A JP 2020159487A JP 2019060341 A JP2019060341 A JP 2019060341A JP 2019060341 A JP2019060341 A JP 2019060341A JP 2020159487 A JP2020159487 A JP 2020159487A
Authority
JP
Japan
Prior art keywords
soft portion
plate member
hole
joint structure
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019060341A
Other languages
Japanese (ja)
Other versions
JP7370150B2 (en
Inventor
富士本 博紀
Hironori Fujimoto
博紀 富士本
雄二郎 巽
Yujiro Tatsumi
雄二郎 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019060341A priority Critical patent/JP7370150B2/en
Publication of JP2020159487A publication Critical patent/JP2020159487A/en
Application granted granted Critical
Publication of JP7370150B2 publication Critical patent/JP7370150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Body Structure For Vehicles (AREA)
  • Connection Of Plates (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a stacked-joint structure of stacked-joint members capable of suppressing breakage of a plate member starting from a hole formed in a non-fused joint when a stacked portion formed by stacking a plurality of plate members together is joined by non-fused joining means.SOLUTION: A stacked-joint structure according to one aspect of the present invention includes: a plurality of stacked plate members; and a plurality of joints arranged in a stacked portion of the plurality of stacked members, the joints being formed by mechanical joining means or friction-agitation point joining means. The plurality of joints have holes through which the mechanical joining means is inserted or holes formed by the friction-agitation point joining. Among the plurality of plate members, a main plate member having the largest product of the plate thickness and the tensile strength has, between the plurality of joints in the stacked portion, a soft portion with a hardness of 80% or less of the hardness of the plate member which includes main soft portions.SELECTED DRAWING: Figure 1

Description

本発明は、重ね接合構造、及び自動車骨格部品に関する。 The present invention relates to a lap joint structure and an automobile frame component.

衝突安全性の向上と燃費の向上とを両立するため、自動車車体を構成するモノコックボディの骨格をなす構造部材(以下、「自動車用構造部材」という)への高強度鋼板の適用が拡大している。現在、自動車用構造部材には引張強さが980MPa級の高張力鋼板が用いられており、さらに、最近は引張強さが1180MPa級以上の高張力鋼板の適用も検討されている。また、プレス成形と同時に焼入れを行うホットスタンプ法を用いることにより引張強さが1500MPa以上の高強度の自動車用構造部材の製造も進められている。ホットスタンプ法によれば、鋼板が高温の軟質な状態でプレス成形を行うために成形後の寸法精度に関する問題の発生が少ないとともに、高温かつ高延性の状態でプレス成形を行うことができることから成形性に優れるという大きなメリットがある。 In order to achieve both improved collision safety and improved fuel efficiency, the application of high-strength steel sheets to structural members (hereinafter referred to as "structural members for automobiles") that form the skeleton of the monocoque body that constitutes the automobile body has expanded. There is. Currently, high-tensile steel sheets having a tensile strength of 980 MPa class are used for structural members for automobiles, and recently, application of high-tensile steel sheets having a tensile strength of 1180 MPa class or more is also being considered. Further, by using a hot stamping method in which quenching is performed at the same time as press molding, a high-strength structural member for automobiles having a tensile strength of 1500 MPa or more is being manufactured. According to the hot stamping method, since the steel sheet is press-formed at a high temperature and soft, there are few problems related to dimensional accuracy after forming, and the press forming can be performed at a high temperature and high ductility. It has the great advantage of being excellent in sex.

しかし、引張強さが780MPa以上の鋼板を含むようなスポット溶接継手では、ナゲットの靭性が低下し、剥離方向の応力ではナゲット端部に応力が集中するため、鋼板の引張強さが増加しても、十字引張強さ(CTS)が、増加しないか、又は、減少するという問題がある。 However, in a spot welded joint containing a steel plate having a tensile strength of 780 MPa or more, the toughness of the nugget decreases, and the stress in the peeling direction concentrates the stress on the nugget end, so that the tensile strength of the steel plate increases. However, there is a problem that the cross tensile strength (CTS) does not increase or decreases.

この問題を解決する技術の一つとして、母材を溶融させることなくリベットやスクリューなどの機械的接合手段を用いて複数枚の金属板を機械的に接合する技術がある。この技術を用いることにより、従来よりも強度信頼性の高い、自動車部品が製造できる可能性がある。 As one of the techniques for solving this problem, there is a technique for mechanically joining a plurality of metal plates by using a mechanical joining means such as a rivet or a screw without melting the base metal. By using this technology, there is a possibility that automobile parts with higher strength and reliability than before can be manufactured.

また、自動車の車体などでは、軽量化等の目的で、鋼板とアルミニウム板、あるいは鋼板と炭素繊維強化プラスチック(CFRP)板のような異種材料の組合せを接合する場合がある。このように、組み合わせる材料が、融点や線膨張係数などの物性が異なる材料である場合は、例えば特許文献1、2に記載のように機械的接合手段をもって締結・接合することが行われている。また、電気抵抗の低いアルミニウム板では、抵抗スポット溶接に代えて摩擦撹拌点接合が用いられている場合もある。以下、機械的接合手段と摩擦撹拌点接合手段を総称して非溶融接合手段と記載する場合がある。 Further, in an automobile body or the like, a combination of different materials such as a steel plate and an aluminum plate or a steel plate and a carbon fiber reinforced plastic (CFRP) plate may be joined for the purpose of weight reduction or the like. As described above, when the materials to be combined are materials having different physical properties such as melting point and coefficient of linear expansion, they are fastened and joined by mechanical joining means as described in Patent Documents 1 and 2, for example. .. Further, in an aluminum plate having a low electric resistance, friction stir welding may be used instead of resistance spot welding. Hereinafter, the mechanical joining means and the friction stir welding point joining means may be collectively referred to as a non-melt joining means.

この非溶融接合手段を重ね接合構造に設けるにあたり、必然的に、板部材に穴を設ける必要がある。例えば、重ね合わせた複数の板部材の重ね部を、接合部においてブラインドリベットなどの機械的接合手段により接合する場合、板部材の接合部にはリベットが挿通する穴が形成される。また、重ね部を摩擦接合手段により点接合する場合、回転ツール側の板部材の接合部には、回転ツール先端のプローブの圧入痕による穴が残留する。 In order to provide this non-melt bonding means in the lap bonding structure, it is inevitably necessary to provide holes in the plate member. For example, when the overlapped portions of a plurality of stacked plate members are joined by a mechanical joining means such as a blind rivet at the joint portion, a hole through which the rivet is inserted is formed in the joint portion of the plate members. Further, when the overlapped portions are point-bonded by the friction joining means, a hole due to a press-fitting mark of the probe at the tip of the rotating tool remains at the joint portion of the plate member on the rotating tool side.

本発明者の検討では、重ね部を機械的接合手段や摩擦接合手段により接合した重ね接合部材では、重ね接合部材全体が引張変形を受けると、接合部に形成されている穴にひずみが集中して、穴を起点に小さい変形で板部材が破断する問題が生じた。特許文献1及び2等の先行技術においては、この問題に対して何ら検討が行われていない。 In the study of the present inventor, in the lap joining member in which the lap portion is joined by mechanical joining means or friction joining means, when the entire lap joining member is subjected to tensile deformation, strain is concentrated in the holes formed in the joining portion. As a result, there was a problem that the plate member was broken due to a small deformation starting from the hole. In the prior arts such as Patent Documents 1 and 2, no study has been made on this problem.

特開2000−272541号公報Japanese Unexamined Patent Publication No. 2000-272541 特開2005−119577号公報Japanese Unexamined Patent Publication No. 2005-119757

本発明は、複数の板部材を重ね合せて形成された重ね部を、非溶融接合手段によって接合した場合に、非溶融接合部に形成された穴を起点に板部材が破断するのを抑制することが可能な重ね接合部材の重ね接合構造を提供することを目的とする。 The present invention suppresses breakage of a plate member starting from a hole formed in the non-melt joint portion when the overlapped portion formed by superimposing a plurality of plate members is joined by a non-melt joint means. It is an object of the present invention to provide a lap joint structure of a lap joint member capable of being capable of.

本発明の要旨は以下のとおりである。
(1)本発明の一態様に係る重ね接合構造は、重ね合わせられた複数の板部材と、前記複数の板部材の重ね部に設けられた、機械的接合手段又は摩擦撹拌点接合手段によって構成された複数の接合部と、を備え、前記複数の接合部は、前記機械的接合手段が挿通される穴、又は摩擦撹拌点接合によって形成された穴を有し、前記複数の板部材のうち1枚以上が、前記重ね部における前記複数の接合部の間に軟質部を有し、前記軟質部の硬さが、前記軟質部が設けられた前記板部材の硬さの80%以下である。
(2)上記(1)に記載の重ね接合構造では、前記軟質部の長さL1、前記軟質部の幅W1、前記軟質部の硬さH1、前記軟質部を有する前記板部材の硬さH2、及び前記穴131の直径Kが、以下の式1及び式2を満たしてもよい。
L1>K (式1)
(H2−H1)×W1>H2×K (式2)
(3)上記(1)又は(2)に記載の重ね接合構造では、前記穴の端部と、前記軟質部の端部との最短距離D、及び前記穴131の直径Kが、以下の式3を満たしてもよい。
D≧K (式3)
(4)上記(1)〜(3)のいずれか一項に記載の重ね接合構造では、前記穴が、前記複数の板部材のうち1枚以上を貫通してもよい。
(5)上記(1)〜(4)のいずれか一項に記載の重ね接合構造では、前記軟質部が、前記穴を有する前記板部材に設けられてもよい。
(6)上記(1)〜(5)のいずれか一項に記載の重ね接合構造では、前記軟質部が、板厚と引張強さとの積が最も大きい主板部材に設けられてもよい。
(7)上記(1)〜(6)のいずれか一項に記載の重ね接合構造では、前記板部材が、前記接合部を囲み、且つ前記軟質部から離隔された第二軟質部を有し、前記軟質部の硬さH1、前記軟質部を有する前記板部材の硬さH2、前記第二軟質部の硬さH3、前記軟質部の幅W1、前記第二軟質部の幅W3、及び前記穴131の直径Kが、以下の式4を満たしてもよい。
(H2−H1)×W1>H2×K+(W3−K)×(H2−H3) (式4)
(8)上記(1)〜(7)のいずれか一項に記載の重ね接合構造では、前記軟質部を有する前記板部材では、引張強さが980MPa以上であり、その金属組織がマルテンサイトを含む鋼板であってもよい。
(9)本発明の別の態様に係る自動車骨格部品は、上記(1)〜(8)のいずれか一項に記載の重ね接合構造を有する。
(10)上記(9)に記載の自動車骨格部品は、Aピラー、Bピラー、又はルーフレールであってもよい。
The gist of the present invention is as follows.
(1) The lap joining structure according to one aspect of the present invention is composed of a plurality of lapped plate members and a mechanical joining means or a friction stir welding point joining means provided in the lap portion of the plurality of plate members. The plurality of joints are provided with, and the plurality of joints have a hole through which the mechanical joining means is inserted or a hole formed by friction stir welding, and among the plurality of plate members. One or more sheets have a soft portion between the plurality of joints in the overlapped portion, and the hardness of the soft portion is 80% or less of the hardness of the plate member provided with the soft portion. ..
(2) In the lap joint structure according to (1) above, the length L1 of the soft portion, the width W1 of the soft portion, the hardness H1 of the soft portion, and the hardness H2 of the plate member having the soft portion. , And the diameter K of the hole 131 may satisfy the following formulas 1 and 2.
L1> K (Equation 1)
(H2-H1) × W1> H2 × K (Equation 2)
(3) In the lap joint structure according to (1) or (2) above, the shortest distance D between the end of the hole and the end of the soft portion and the diameter K of the hole 131 are the following formulas. 3 may be satisfied.
D ≧ K (Equation 3)
(4) In the lap joint structure according to any one of (1) to (3) above, the hole may penetrate one or more of the plurality of plate members.
(5) In the lap joint structure according to any one of (1) to (4) above, the soft portion may be provided on the plate member having the holes.
(6) In the lap joint structure according to any one of (1) to (5) above, the soft portion may be provided on the main plate member having the largest product of the plate thickness and the tensile strength.
(7) In the lap joint structure according to any one of (1) to (6) above, the plate member has a second soft portion that surrounds the joint portion and is separated from the soft portion. , The hardness H1 of the soft portion, the hardness H2 of the plate member having the soft portion, the hardness H3 of the second soft portion, the width W1 of the soft portion, the width W3 of the second soft portion, and the above. The diameter K of the hole 131 may satisfy the following equation 4.
(H2-H1) × W1> H2 × K + (W3-K) × (H2-H3) (Equation 4)
(8) In the lap joint structure according to any one of (1) to (7) above, the plate member having the soft portion has a tensile strength of 980 MPa or more, and its metal structure forms martensite. It may be a steel plate containing.
(9) The automobile skeleton component according to another aspect of the present invention has the lap joint structure according to any one of (1) to (8) above.
(10) The automobile frame component according to (9) above may be an A pillar, a B pillar, or a roof rail.

本発明によれば、複数の板部材を重ね合せて形成された重ね部を、非溶融接合手段によって接合した場合に、接合時に形成された穴を起点に板部材が破断するのを抑制することで、板部材が破断するまでの伸び(歪量)を大きくすることが可能な重ね接合部材の重ね接合構造を提供することができる。 According to the present invention, when a laminated portion formed by superimposing a plurality of plate members is joined by a non-melt joining means, it is possible to prevent the plate member from breaking starting from a hole formed at the time of joining. Therefore, it is possible to provide a lap joint structure of a lap joint member capable of increasing the elongation (strain amount) until the plate member breaks.

本実施形態に係る重ね接合構造の斜視図である。It is a perspective view of the lap joint structure which concerns on this embodiment. 接合部の断面図である。It is sectional drawing of the joint part. レジスタンスエレメントウエルディングによって形成される機械的接合手段の概念図である。It is a conceptual diagram of the mechanical joining means formed by the resistance element welding. レジスタンスエレメントウエルディングによって形成される機械的接合手段の概念図である。It is a conceptual diagram of the mechanical joining means formed by the resistance element welding. 摩擦撹拌点接合によって形成される摩擦撹拌点接合手段の概念図である。It is a conceptual diagram of the friction stir point welding means formed by friction stir welding. 軟質部及びその周辺の硬さを概略的に説明する図である。It is a figure which outlines the hardness of a soft part and its surroundings. 軟質部の長さL1、軟質部の幅W1、及び穴の直径Kを示す概略図である。It is a schematic diagram which shows the length L1 of a soft part, the width W1 of a soft part, and the diameter K of a hole. 第二軟質部を有する重ね接合構造の斜視図である。It is a perspective view of the lap joint structure having a second soft part. 第二軟質部の硬さH3及び幅W3の測定方法を説明する概略図である。It is the schematic explaining the measuring method of the hardness H3 and the width W3 of a second soft part. 軟質部の形状のバリエーションを例示する斜視図である。It is a perspective view which illustrates the variation of the shape of a soft part. 軟質部の形状のバリエーションを例示する斜視図である。It is a perspective view which illustrates the variation of the shape of a soft part. 軟質部の形状のバリエーションを例示する斜視図である。It is a perspective view which illustrates the variation of the shape of a soft part. 軟質部の形状のバリエーションを例示する斜視図である。It is a perspective view which illustrates the variation of the shape of a soft part. 本実施形態に係る自動車骨格部品であるBピラーの斜視図である。It is a perspective view of the B pillar which is an automobile skeleton component which concerns on this embodiment. 図10のBピラーのXI−XI断面図である。It is XI-XI sectional view of the B pillar of FIG. 本実施形態に係る自動車骨格部品の一例であるAピラー及びルーフレールの斜視図である。It is a perspective view of the A pillar and the roof rail which are an example of the automobile frame parts which concerns on this embodiment. 図12のルーフレールの断面図である。It is sectional drawing of the roof rail of FIG. 本実施形態に係る自動車骨格部品の一例であるBピラーのヒンジリンフォースの斜視図である。It is a perspective view of the hinge reinforcement of the B pillar which is an example of the automobile frame component which concerns on this embodiment. 従来の重ね接合構造を模擬した試験片の平面図及び側面図である。It is a top view and a side view of a test piece simulating a conventional lap joint structure. 本発明の重ね接合構造を模擬した試験片の平面図及び側面図である。It is a top view and a side view of the test piece which simulated the lap joint structure of this invention. 引張試験後の図15の試験片の写真である。It is a photograph of the test piece of FIG. 15 after the tensile test.

本発明者らは、複数の板部材を重ね合せて形成された重ね部を、非溶融接合手段によって接合した場合に、接合時に形成された穴を起点に板部材が破断するのを抑制することが可能な重ね接合部材の重ね接合構造を提供する方法について検討を重ねた。その結果、接合部に形成されている穴の端部にひずみが集中しないように、ひずみを分散する手段を設けることが良いと着想した。そして、板部材の重ね部において、接合部と該接合に隣り合う接合部との間に軟質部を形成することにより、引張荷重によるひずみを分散させる構造となり、穴を起点とする重ね接合部材の破壊が抑制されるとの知見を得た。 The present inventors suppress the breakage of the plate members starting from the holes formed at the time of joining when the overlapped portions formed by superimposing a plurality of plate members are joined by non-melt joining means. We have repeatedly studied a method for providing a lap-joining structure of lap-joining members. As a result, it was conceived that it would be better to provide a means to disperse the strain so that the strain does not concentrate on the end of the hole formed in the joint. Then, in the laminated portion of the plate members, a soft portion is formed between the joint portion and the joint portion adjacent to the joint to disperse the strain due to the tensile load, and the laminated joint member starting from the hole has a structure. We obtained the finding that destruction is suppressed.

以下、図を適宜参照しながら、本実施形態に係る重ね接合構造1について説明する。なお、重ね接合構造1の例として、図にはフランジ12を有する板部材11を示すが、本実施形態に係る重ね接合構造1がフランジ12を備えなくともよい。また、図において板部材11の枚数が2枚又は3枚である構成を図示しながら本実施形態に係る重ね接合構造を説明するが、板部材11の枚数を4枚以上にしてもよい。 Hereinafter, the lap joint structure 1 according to the present embodiment will be described with reference to the drawings as appropriate. As an example of the lap joint structure 1, the plate member 11 having the flange 12 is shown in the figure, but the lap joint structure 1 according to the present embodiment does not have to include the flange 12. Further, although the lap joint structure according to the present embodiment will be described with reference to the configuration in which the number of plate members 11 is 2 or 3 in the drawing, the number of plate members 11 may be 4 or more.

上記知見により得られた本発明の一態様に係る重ね接合構造1は、図1に示されるように、重ね合わせられた複数の板部材11と、複数の板部材11の重ね部に設けられた、機械的接合手段又は摩擦撹拌点接合手段によって構成された複数の接合部13(図1では図示省略)と、を備え、複数の接合部13は、機械的接合手段が挿通される穴131、又は摩擦撹拌点接合によって形成された穴131を有し、複数の板部材11のうち1枚以上が、重ね部における複数の接合部13の間に軟質部14を有し、軟質部14の硬さが、軟質部14が設けられた板部材11の硬さの80%以下である。また、図1において重ね部はフランジ部12とされているが、上述のようにフランジ部12は必須ではない。 As shown in FIG. 1, the lap-join structure 1 according to one aspect of the present invention obtained from the above findings is provided on a plurality of stacked plate members 11 and a stack portion of the plurality of plate members 11. A plurality of joints 13 (not shown in FIG. 1) configured by a mechanical joining means or a friction stir welding point joining means, and the plurality of joinings 13 are holes 131 through which the mechanical joining means are inserted. Alternatively, it has a hole 131 formed by friction stir welding, and one or more of the plurality of plate members 11 has a soft portion 14 between the plurality of joint portions 13 in the overlapping portion, and the hardness of the soft portion 14 is hard. The hardness is 80% or less of the hardness of the plate member 11 provided with the soft portion 14. Further, although the overlapping portion is the flange portion 12 in FIG. 1, the flange portion 12 is not essential as described above.

(1)板部材11
板部材11の材質は特に限定されない。板部材11は、例えば、樹脂板、CFRP(Carbon Fiber Reinforced Plastic)板、又は、アルミ板、アルミ合金板、ステンレス板、チタン板、若しくは鋼板等の金属板である。板部材11が塗膜及びめっき等の表面処理層を備えてもよい。本実施形態に係る重ね接合構造は、複数の板部材11を重ねて構成されるものであるが、複数の板部材11の材質を同一にしてもよいし、異ならせてもよい。板部材11の板厚及び機械強度(引張強さ、及び硬さ等)も特に限定されない。例えば、板部材11が鋼板である場合、板部材11の厚さを例えば0.5〜2.6mmとしてもよい。板部材11がCFRP板である場合、板部材11の厚さを例えば0.3〜4.0mmとしてもよい。複数の板部材11の板厚及び機械強度を同一にしてもよいし、異ならせてもよい。
(1) Plate member 11
The material of the plate member 11 is not particularly limited. The plate member 11 is, for example, a resin plate, a CFRP (Carbon Fiber Reinforced Plastic) plate, or a metal plate such as an aluminum plate, an aluminum alloy plate, a stainless plate, a titanium plate, or a steel plate. The plate member 11 may include a coating film and a surface treatment layer such as plating. The lap joint structure according to the present embodiment is formed by stacking a plurality of plate members 11, but the materials of the plurality of plate members 11 may be the same or different. The plate thickness and mechanical strength (tensile strength, hardness, etc.) of the plate member 11 are also not particularly limited. For example, when the plate member 11 is a steel plate, the thickness of the plate member 11 may be, for example, 0.5 to 2.6 mm. When the plate member 11 is a CFRP plate, the thickness of the plate member 11 may be, for example, 0.3 to 4.0 mm. The plate thickness and mechanical strength of the plurality of plate members 11 may be the same or different.

なお、重ね接合構造の機械強度に最も影響するのは、これを構成する複数の板部材11のうち、板厚と引張強さとの積が最も大きい板部材である。本実施形態に係る重ね接合構造では、板厚と引張強さとの積が最も大きい板部材11を主板部材と称し、その他の板部材11を副板部材と称する。重ね接合構造が、板厚と引張強さとの積が等しい板部材11を2枚以上有し、且つこれらの板厚と引張強さとの積が、複数の板部材11のうち最大である場合、これらの両方を主板部材とみなすことができる。 Of the plurality of plate members 11 constituting the lap joint structure, the plate member having the largest product of the plate thickness and the tensile strength has the greatest effect on the mechanical strength of the lap joint structure. In the lap joint structure according to the present embodiment, the plate member 11 having the largest product of the plate thickness and the tensile strength is referred to as a main plate member, and the other plate members 11 are referred to as sub plate members. When the lap joint structure has two or more plate members 11 having the same product of plate thickness and tensile strength, and the product of these plate thickness and tensile strength is the maximum among the plurality of plate members 11. Both of these can be regarded as main plate members.

板部材11の最も好適な一例は高強度鋼板、具体的には引張強さ1200MPa以上であり、その金属組織がマルテンサイトを含む鋼板である。マルテンサイトを含む高強度鋼板は、レーザ照射等を用いて局所的な熱処理を施すことによって、後述する軟質部を容易に形成することができる。一方、引張強さが1200MPa以下の鋼板を板部材11とすることも妨げられず、例えば引張強さが1200MPa以上の高強度鋼板と、引張強さが270MPa〜980MPaの鋼板とを組み合わせてもよい。 The most preferable example of the plate member 11 is a high-strength steel sheet, specifically, a steel sheet having a tensile strength of 1200 MPa or more and having a metal structure containing martensite. A high-strength steel sheet containing martensite can be easily formed into a soft portion, which will be described later, by subjecting it to a local heat treatment using laser irradiation or the like. On the other hand, it is not hindered that the steel plate having a tensile strength of 1200 MPa or less is used as the plate member 11. For example, a high-strength steel plate having a tensile strength of 1200 MPa or more and a steel plate having a tensile strength of 270 MPa to 980 MPa may be combined. ..

板部材11が鋼板の場合には、鋼板を、表面にめっきがされていない非めっき鋼板としてもよく、合金化溶融亜鉛めっき(GAめっき)、溶融亜鉛めっき(GIめっき)、電気亜鉛めっき(EG)、Zn−Alめっき、Zn−Al−Mgめっき、Zn−Mgめっきなどの亜鉛系めっきで被覆された鋼板としてもよくさらにクロメート、樹脂などが塗装された鋼板としてもよい、さらに、アルミニウムめっき鋼板としてもよい。板部材11がホットスタンプ材である場合には、板部材11を、非めっき鋼板、アルミニウムめっき、鉄とアルミニウムの金属間化合物、若しくは鉄亜鉛固溶層及び酸化亜鉛層から構成される複合層により被覆された鋼板、又は、鉄亜鉛ニッケルの固溶層及び酸化亜鉛層から構成される複合層により被覆された鋼板としてもよい。 When the plate member 11 is a steel plate, the steel plate may be a non-plated steel plate whose surface is not plated, and may be alloyed hot-dip galvanizing (GA plating), hot-dip galvanizing (GI plating), or electrozinc plating (EG). ), Zn-Al plating, Zn-Al-Mg plating, Zn-Mg plating, or other zinc-based plating, or a steel sheet coated with chromate, resin, etc., and an aluminum-plated steel sheet. May be. When the plate member 11 is a hot stamping material, the plate member 11 is made of a non-plated steel plate, aluminum plating, an intermetallic compound of iron and aluminum, or a composite layer composed of an iron-zinc solid solution layer and a zinc oxide layer. It may be a coated steel plate or a steel plate coated with a composite layer composed of a solid solution layer of zinc iron-zinc nickel and a zinc oxide layer.

後述する機械的接合手段によれば、溶接に適合しない板部材11の接合も可能である。例えば、アルミ材を複数組み合わせた重ね接合構造1、及びアルミ材及び鋼材を組み合わせた重ね接合構造1等にも、機械的接合手段を適用可能である。さらには、金属板に代えてCFRP材を用いた重ね接合構造1にも、機械的接合手段を適用可能である。後述する摩擦撹拌点接合手段によっても、溶接に適合しない材料の接合が可能である。例えば、アルミ材を複数組み合わせた重ね接合構造1、及びアルミ材と鋼材とを組み合わせた重ね接合構造1等にも、摩擦撹拌点接合手段を適用可能である。以上の理由により、板部材11の材質は特に限定されない。 According to the mechanical joining means described later, it is possible to join the plate member 11 which is not suitable for welding. For example, the mechanical joining means can be applied to a lap joining structure 1 in which a plurality of aluminum materials are combined, a lap joining structure 1 in which an aluminum material and a steel material are combined, and the like. Further, the mechanical joining means can be applied to the lap joining structure 1 in which a CFRP material is used instead of the metal plate. It is also possible to join materials that are not suitable for welding by the friction stir welding means described later. For example, the friction stir welding point joining means can be applied to a lap joining structure 1 in which a plurality of aluminum materials are combined, a lap joining structure 1 in which an aluminum material and a steel material are combined, and the like. For the above reasons, the material of the plate member 11 is not particularly limited.

(2)接合部13及び穴131
複数の板部材11は、その一部または全部が重ねられており、重ね部において互いに接合される。接合部13は、非溶融接合手段、即ち機械的接合手段132、及び摩擦撹拌点接合手段133等とされる。
(2) Joint portion 13 and hole 131
A part or all of the plurality of plate members 11 are overlapped with each other, and are joined to each other at the overlapped portion. The joining portion 13 is a non-melt joining means, that is, a mechanical joining means 132, a friction stir point joining means 133, and the like.

機械的接合手段132は、例えばブラインドリベット、セルフピアシングリベット(自己穿孔リベット、SPR)、中空リベット、平リベット、ドリルネジ、ボルト、EJOWELD(登録商標)、及びFDS(登録商標)等である。これらによれば、板部材11は、冷間もしくは熱間で塑性加工により接合される。これらの記載的接合手段と、通電加熱及び加圧との組み合わせにより、板部材11を接合させてもよい。機械的接合手段132には、ブラインドリベットなどのように重ね合わせた金属板部材11を全て貫通するもの、及び、セルフピアシングリベットなどのように重ね合わせた金属板部材11の一部を貫通しないものがあるが、いずれも本実施形態に係る重ね接合構造1において用いることができる。図2に示される接合部13の例では、機械的接合手段132がリベットから構成されている。 The mechanical joining means 132 includes, for example, blind rivets, self-piercing rivets (self-perforated rivets, SPR), hollow rivets, flat rivets, drill screws, bolts, EJOWELD (registered trademark), FDS (registered trademark) and the like. According to these, the plate members 11 are joined by plastic working cold or hot. The plate member 11 may be joined by a combination of these descriptive joining means and energization heating and pressurization. The mechanical joining means 132 includes one that penetrates all the stacked metal plate members 11 such as a blind rivet and one that does not penetrate a part of the stacked metal plate members 11 such as a self-piercing rivet. However, all of them can be used in the superposition structure 1 according to the present embodiment. In the example of the joint portion 13 shown in FIG. 2, the mechanical joining means 132 is composed of rivets.

機械的接合手段132として、レジスタンスエレメントウエルディング(Resistance Element Welding;REW)が用いられてもよい。このREWは、図3A及び図3Bに示すように、板厚方向に貫通する穴131が形成された板部材11(例えば、アルミ合金板)と、別の板部材11(例えば、ボロン鋼等の鋼板)とを重ね合わせ、穴131に鋼製のフランジ付きリベットである機械的接合手段132を挿入し、さらに、電極Xを用いて、2枚の板部材11を挟持しながら(図3Aを参照)、所定の電流値にて2枚の板部材11に通電することにより、機械的接合手段132の先端部分と板部材11との接触部分を溶融させてナゲット132’を形成する接合手段である(図3Bを参照)。このように、REWは、部分的に溶融接合手段を利用しているものの、本質的にはフランジ付きリベットという機械的要素を利用した接合手段であるため、このような接合手段も機械的接合手段132として、本発明に好適に用いることができる。 As the mechanical joining means 132, Resistance Element Welding (REW) may be used. As shown in FIGS. 3A and 3B, the REW includes a plate member 11 (for example, an aluminum alloy plate) in which a hole 131 penetrating in the plate thickness direction is formed, and another plate member 11 (for example, boron steel or the like). (Steel plate) is overlapped, the mechanical joining means 132 which is a rivet with a steel flange is inserted into the hole 131, and further, the two plate members 11 are sandwiched by the electrode X (see FIG. 3A). ), A joining means for forming a nugget 132'by melting the contact portion between the tip portion of the mechanical joining means 132 and the plate member 11 by energizing the two plate members 11 at a predetermined current value. (See FIG. 3B). As described above, although REW partially uses the melt joining means, it is essentially a joining means using a mechanical element called a flanged rivet, so such a joining means is also a mechanical joining means. As 132, it can be suitably used in the present invention.

機械的接合手段132によって板部材11を接合する場合、機械的接合手段132を挿通させるための穴131を、板部材11に設ける必要がある。即ち、機械的接合手段132によって構成された接合部13は、機械的接合手段132が挿通される穴131を有する。機械的接合手段132が挿通される穴131は、板部材11を貫通するものであっても、貫通しないものであってもよい。 When the plate member 11 is joined by the mechanical joining means 132, it is necessary to provide a hole 131 in the plate member 11 for inserting the mechanical joining means 132. That is, the joining portion 13 formed by the mechanical joining means 132 has a hole 131 through which the mechanical joining means 132 is inserted. The hole 131 through which the mechanical joining means 132 is inserted may or may not penetrate the plate member 11.

接合部13は、摩擦撹拌点接合によって形成された接合部である。ここで、摩擦撹拌点接合(FSSW:Friction Stir Spot Welding)とは、図4に示されるように、母材より相対的に硬い回転ツールYを回転させながら母材に圧入し、母材を溶融させることなく接合する固相接合の一種である。摩擦撹拌点接合では、回転ツールYの回転によって生じた摩擦発熱により板部材11の変形抵抗を低下させ、且つ回転ツールY周辺の板部材11を回転ツールYの動きによって塑性流動させ、撹拌し、一体化する(図4(B)を参照)。これら一連の工程において使われる回転ツールYは、通常、先端がネジ加工されたプローブを有する。回転ツールを板部材11に圧入し、摩擦撹拌点接合を実施し、次いで回転ツールYを母材から引き抜いた際、回転ツールYが圧入された板部材11にはプローブの圧入痕が必然的に生じる(図4(C)を参照)。即ち、摩擦撹拌点接合手段によって構成された接合部は、プローブの圧入痕である穴131を有する。本実施形態に係る重ね接合構造1は、プローブの圧入により板厚の80%以上の深さの穴が形成される場合に適用されることが好ましい。 The joint portion 13 is a joint portion formed by friction stir welding. Here, Friction Stir Spot Welding (FSSW) is, as shown in FIG. 4, press-fitting into the base metal while rotating the rotation tool Y, which is relatively harder than the base metal, and melts the base metal. It is a kind of solid-state bonding that joins without causing. In friction stir welding, the deformation resistance of the plate member 11 is reduced by the frictional heat generated by the rotation of the rotary tool Y, and the plate member 11 around the rotary tool Y is plastically flowed and stirred by the movement of the rotary tool Y. Integrate (see FIG. 4B). The rotary tool Y used in these series of steps usually has a probe with a threaded tip. When the rotary tool is press-fitted into the plate member 11, friction stir welding is performed, and then the rotary tool Y is pulled out from the base material, the plate member 11 into which the rotary tool Y is press-fitted inevitably has a press-fitting mark of the probe. Occurs (see FIG. 4C). That is, the joint portion formed by the friction stir welding point joining means has a hole 131 which is a press-fitting mark of the probe. The lap bonding structure 1 according to the present embodiment is preferably applied when a hole having a depth of 80% or more of the plate thickness is formed by press-fitting the probe.

なお、これらの非溶融接合手段と、他の接合手段(例えば樹脂等)とを組み合わせることも妨げられない。例えば、重ね合わせ面に接着剤(例えば、エポキシ樹脂系接着剤等)を介在させて、接着剤による接合を非溶融接合手段と併用してもよい。重ね合わせ面にシール用樹脂(シーラー、及び電着塗装等)を介在させて、合わせ目を防水ないし絶縁してもよい。重ね合わせ面に構造用接着剤及び耐衝撃型の接着剤等を介在させて、接着剤による接合を非溶融接合手段と併用することは、本実施形態に係る重ね接合構造1の好適な形態である。特に、アルミ材と鋼材とを組み合わせた構造部材の場合は、電気的絶縁ができるシール機能を有する樹脂及び接着剤等と、非溶融接合手段とを併用することが好ましい。 It should be noted that the combination of these non-melt bonding means and other bonding means (for example, resin or the like) is not hindered. For example, an adhesive (for example, an epoxy resin-based adhesive) may be interposed on the overlapping surfaces, and the adhesive bonding may be used in combination with the non-melt bonding means. A sealing resin (sealer, electrodeposition coating, etc.) may be interposed on the overlapping surfaces to waterproof or insulate the seams. It is a preferable form of the superposition structure 1 according to the present embodiment that a structural adhesive, an impact-resistant adhesive or the like is interposed on the superposition surface and the bonding by the adhesive is used in combination with the non-melt bonding means. is there. In particular, in the case of a structural member in which an aluminum material and a steel material are combined, it is preferable to use a resin and an adhesive having a sealing function capable of electrically insulating and a non-melt bonding means in combination.

接合部13の位置は特に限定されないが、接合部13に形成される穴131の位置を板部材11の端部から離隔させることにより、穴131を起点として破断する可能性を一層抑制することができる。例えば、穴131の端部と板部材11の端部との間の最短距離Lと、穴131の直径Kとが以下の式を満たすことが好ましい。
L≧0.8K
The position of the joint portion 13 is not particularly limited, but by separating the position of the hole 131 formed in the joint portion 13 from the end portion of the plate member 11, the possibility of breakage starting from the hole 131 can be further suppressed. it can. For example, it is preferable that the shortest distance L between the end of the hole 131 and the end of the plate member 11 and the diameter K of the hole 131 satisfy the following equation.
L ≧ 0.8K

接合部13のピッチ(隣り合う接合部13同士の間の間隔)も特に限定されない。重ね接合構造1が適用される構造物及び適用部位に応じて、ピッチを適宜設定すればよい。重ね接合構造1が自動車部品に適用される場合、例えば接合部13のピッチは20mm〜100mm程度としてもよい。 The pitch of the joints 13 (distance between adjacent joints 13) is also not particularly limited. The pitch may be appropriately set according to the structure to which the lap joint structure 1 is applied and the application site. When the lap joint structure 1 is applied to an automobile part, for example, the pitch of the joint portion 13 may be about 20 mm to 100 mm.

なお、本実施形態に係る重ね接合構造1において、穴131は、板部材11を貫通する穴(通し穴)に限定されず、板部材11を貫通しない穴(止まり穴)、内面に段差がある穴(段付き穴)、内面が円錐状になっている穴(テーパ穴)、及び内面にねじが切ってある穴(めねじ穴)等であってもよい。また、穴131は、主板部材及び副板部材のいずれに設けられてもよい。 In the lap joint structure 1 according to the present embodiment, the hole 131 is not limited to a hole (through hole) that penetrates the plate member 11, but a hole (blind hole) that does not penetrate the plate member 11 and a step on the inner surface. It may be a hole (stepped hole), a hole having a conical inner surface (tapered hole), a hole having a thread on the inner surface (female screw hole), or the like. Further, the hole 131 may be provided in either the main plate member or the sub plate member.

(3)軟質部14
上述のように、重ね部を機械的接合手段132や摩擦撹拌点接合手段により接合した重ね接合部材1では、重ね接合部材1の全体が引張変形を受けると、接合部13に形成されている穴131にひずみが集中することにより、穴131を起点とした板部材11の破断が生じる恐れがある。そこで本発明者らは、接合部13に形成されている穴131の端部にひずみが集中しないように、ひずみを分散する手段について検討した。その結果、板部材11の重ね部において、隣り合う接合部13の間に軟質部14を形成することにより、引張荷重によるひずみを分散させる構造となり、穴131を起点とする重ね接合部材1の破壊が抑制されるとの知見を得た。
(3) Soft part 14
As described above, in the lap joining member 1 in which the lap portions are joined by the mechanical joining means 132 or the friction stir welding point joining means, a hole formed in the joining portion 13 when the entire lap joining member 1 is subjected to tensile deformation. When the strain is concentrated on the 131, the plate member 11 starting from the hole 131 may be broken. Therefore, the present inventors have studied a means for dispersing the strain so that the strain does not concentrate on the end of the hole 131 formed in the joint portion 13. As a result, in the overlapped portion of the plate member 11, the soft portion 14 is formed between the adjacent joint portions 13, so that the strain due to the tensile load is dispersed, and the overlapped joint member 1 starting from the hole 131 is broken. Was found to be suppressed.

以上の知見に基づき、本実施形態に係る重ね接合構造1は、重ね部における複数の接合部13の間に軟質部14を有する。軟質部14とは、軟質部14が設けられた板部材11の硬さH2の80%以下の硬さを有する領域である。軟質部14を特定する手段の例を図5に示す。図5は、穴131同士の間における板部材11の硬さ分布を示すグラフである。このグラフにおいて、硬さが板部材11の硬さH2の80%以下である領域が、軟質部である。 Based on the above findings, the lap joint structure 1 according to the present embodiment has a soft portion 14 between a plurality of joint portions 13 in the lap portion. The soft portion 14 is a region having a hardness of 80% or less of the hardness H2 of the plate member 11 provided with the soft portion 14. An example of the means for identifying the soft portion 14 is shown in FIG. FIG. 5 is a graph showing the hardness distribution of the plate member 11 between the holes 131. In this graph, the region where the hardness is 80% or less of the hardness H2 of the plate member 11 is the soft portion.

軟質部14は、重ね接合構造1を構成する複数の板部材11のうち1枚以上に設けられている必要があるが、いずれの板部材11に配置するかは適宜選択することができる。好ましくは、軟質部14は主板部材に設けられる。上述のように、主板部材は重ね接合構造1の機械的特性に最も影響する部材であるので、軟質部14を主板部材に設けることによって、穴131への歪み集中緩和効果を最大限に発揮させることができる。また、好ましくは、軟質部14は穴131が存在する板部材11に設けられる。以下、軟質部14を、穴131を有する主板部材に設けた構成によって本実施形態に係る重ね接合構造1を説明する。ただし、軟質部14は副板部材に設けられてもよいし、穴131を有しない板部材11に設けられてもよい。 The soft portion 14 needs to be provided on one or more of the plurality of plate members 11 constituting the lap joint structure 1, but which plate member 11 to be arranged can be appropriately selected. Preferably, the soft portion 14 is provided on the main plate member. As described above, since the main plate member is a member that most affects the mechanical properties of the lap joint structure 1, by providing the soft portion 14 on the main plate member, the effect of reducing the concentration of strain in the hole 131 is maximized. be able to. Further, preferably, the soft portion 14 is provided in the plate member 11 in which the hole 131 is present. Hereinafter, the lap joint structure 1 according to the present embodiment will be described with a configuration in which the soft portion 14 is provided on the main plate member having the hole 131. However, the soft portion 14 may be provided on the sub-plate member, or may be provided on the plate member 11 having no hole 131.

軟質部14の大きさ及び形状は特に限定されないが、例えば、軟質部14の長さL1、軟質部14の幅W1、軟質部14の硬さH1、板部材11の硬さH2、及び穴131の直径Kが、以下の式1及び式2を満たすように、軟質部14の大きさ及び形状を定めることが好ましい。
L1>K (式1)
(H2−H1)×W1>H2×K (式2)
The size and shape of the soft portion 14 are not particularly limited, but for example, the length L1 of the soft portion 14, the width W1 of the soft portion 14, the hardness H1 of the soft portion 14, the hardness H2 of the plate member 11, and the hole 131. It is preferable to determine the size and shape of the soft portion 14 so that the diameter K of the above satisfies the following formulas 1 and 2.
L1> K (Equation 1)
(H2-H1) × W1> H2 × K (Equation 2)

なお、図6に示されるように、軟質部14の長さL1とは、隣り合う穴131の中心を結ぶ線と、軟質部14の外縁との2つの交点間の距離である。L1の測定は、隣り合う穴131の中心を結ぶ線に沿って板部材11の硬さを連続的に測定することにより、図5のような硬さ−位置グラフを作成することにより行う。硬さ−位置グラフにおいて、0.8×H2を下回る領域の幅が、軟質部14の長さL1となる。 As shown in FIG. 6, the length L1 of the soft portion 14 is the distance between the line connecting the centers of the adjacent holes 131 and the two intersections of the outer edge of the soft portion 14. The measurement of L1 is performed by continuously measuring the hardness of the plate member 11 along the line connecting the centers of the adjacent holes 131 to create a hardness-position graph as shown in FIG. In the hardness-position graph, the width of the region below 0.8 × H2 is the length L1 of the soft portion 14.

図6に示されるように、軟質部14の幅W1とは、隣り合う穴131の中心を結ぶ線と垂直な方向で測定される、軟質部14の幅である。なお、図9(B)に示されるように軟質部が折れ曲がっている場合、軟質部14の幅W1は軟質部14の折り曲げ部に沿って測定された値である。 As shown in FIG. 6, the width W1 of the soft portion 14 is the width of the soft portion 14 measured in the direction perpendicular to the line connecting the centers of the adjacent holes 131. When the soft portion is bent as shown in FIG. 9B, the width W1 of the soft portion 14 is a value measured along the bent portion of the soft portion 14.

軟質部14の硬さH1とは、隣り合う穴131の中心を結ぶ線に沿って板部材11の硬さを測定して得られる複数の硬さ値のうち、軟質部14において最も小さい値〜3番目に小さい値の平均値である。図5を例に挙げて説明すると、点線で囲まれた3つの測定点における硬さの平均値が、H1である。 The hardness H1 of the soft portion 14 is the smallest value in the soft portion 14 among a plurality of hardness values obtained by measuring the hardness of the plate member 11 along a line connecting the centers of adjacent holes 131. It is the average value of the third smallest value. Taking FIG. 5 as an example, the average value of hardness at the three measurement points surrounded by the dotted line is H1.

板部材11の硬さH2とは、軟質部14が設けられた板部材11のうち、接合部13、軟質部14、及び後述する第二軟質部15以外の領域の硬さである。この領域内の少なくとも3点で測定した硬さの平均値を、板部材11の硬さH2とみなす。 The hardness H2 of the plate member 11 is the hardness of a region other than the joint portion 13, the soft portion 14, and the second soft portion 15 described later, among the plate members 11 provided with the soft portion 14. The average value of the hardness measured at at least three points in this region is regarded as the hardness H2 of the plate member 11.

穴131の直径Kは、穴131が円筒状である場合は、板部材11を平面視した場合の穴131の径である。穴131が例えば円錐状等の非円筒状である場合は、穴131の実際の体積及び穴131の実際の深さと同一の体積及び深さを有する円筒の径を、穴131の直径Kとみなす。軟質部14の両隣の穴131の直径が相違する場合、軟質部14の両隣の穴131の径のうち大きいほうを、穴131の直径Kとみなす。例えば図6に示されるように、直径Kの穴と、直径がKより小さいK’である穴131との間にある軟質部14が式2を満たすか否かを評価するにあたっては、式にはKの値を代入する。穴131の平面視での形状が円ではない場合、その円相当径を穴131の直径Kとみなす。めねじ穴の場合は、凹凸ピッチの広いほうの直径をKとみなす。 The diameter K of the hole 131 is the diameter of the hole 131 when the plate member 11 is viewed in a plan view when the hole 131 is cylindrical. When the hole 131 has a non-cylindrical shape such as a cone, the diameter of a cylinder having the same volume and depth as the actual volume of the hole 131 and the actual depth of the hole 131 is regarded as the diameter K of the hole 131. .. When the diameters of the holes 131 on both sides of the soft portion 14 are different, the larger diameter of the holes 131 on both sides of the soft portion 14 is regarded as the diameter K of the hole 131. For example, as shown in FIG. 6, in evaluating whether or not the soft portion 14 between the hole having a diameter K and the hole 131 having a diameter K'smaller than K satisfies the equation 2, the equation is used. Substitutes the value of K. When the shape of the hole 131 in a plan view is not a circle, the diameter corresponding to the circle is regarded as the diameter K of the hole 131. In the case of a female screw hole, the diameter with the wider uneven pitch is regarded as K.

上述の定義から明らかなように、重ね接合構造1に複数設けられ得る軟質部14のそれぞれが式1及び式2を満たすか否かの評価は、軟質部14と、その両隣の穴131との関係に基づいて行われる。なお、軟質部14と穴131とが異なる板部材11に設けられている場合は、複数の板部材11が接合された状態で板部材11を平面視したときの軟質部14と穴131との位置関係に基づいて上述の値を特定すればよい。硬さの測定は、ビッカース硬さ計で測定することが推奨される。ビッカース硬さ測定時の測定荷重は、板部材11の材質に応じて適宜選択すればよい。式2においては、ビッカース硬さに係数を掛けた値の比較が行われているので、同一の測定荷重でH1及びH2を測定すれば、測定荷重の影響を受けることなく、軟質部14が式2を満たすか否かの評価をすることができる。これは、後述の式4についても同じである。 As is clear from the above definition, the evaluation of whether or not each of the plurality of soft portions 14 that can be provided in the lap joint structure 1 satisfies the equations 1 and 2 is made by the soft portion 14 and the holes 131 on both sides thereof. It is based on relationships. When the soft portion 14 and the hole 131 are provided in different plate members 11, the soft portion 14 and the hole 131 when the plate member 11 is viewed in a plan view with the plurality of plate members 11 joined. The above values may be specified based on the positional relationship. It is recommended to measure the hardness with a Vickers hardness tester. The measured load at the time of measuring the Vickers hardness may be appropriately selected according to the material of the plate member 11. In Equation 2, the value obtained by multiplying the Vickers hardness by a coefficient is compared. Therefore, if H1 and H2 are measured with the same measured load, the soft portion 14 is expressed by the equation without being affected by the measured load. It is possible to evaluate whether or not 2 is satisfied. This also applies to Equation 4 described later.

式1を満たす軟質部14は、穴131の直径Kに対して十分に長いので、重ね接合構造1に応力が付加されたときに、破断に至るまでの重ね接合構造1の伸び量を増大させることができる。この効果を得るために、軟質部14の長さL1は、長ければ長いほど好ましい。例えば、軟質部14の長さL1を、穴131の直径Kの2倍以上(即ちL1≧2×K)、3倍以上(即ちL1≧3×K)、又は4倍以上(即ちL1≧4×K)と規定してもよい。ただし、軟質部14の長さL1が大きすぎると、後述する穴131の端部と軟質部14の端部との最短距離Dが狭まることとなる。穴131の端部と軟質部14の端部との最短距離D、及び穴131同士の間隔などを考慮しながら、軟質部14の長さL1を定めるとよい。 Since the soft portion 14 satisfying the formula 1 is sufficiently long with respect to the diameter K of the hole 131, when stress is applied to the lap joint structure 1, the amount of elongation of the lap joint structure 1 until fracture is increased. be able to. In order to obtain this effect, the length L1 of the soft portion 14 is preferably longer. For example, the length L1 of the soft portion 14 is twice or more (that is, L1 ≧ 2 × K), three times or more (that is, L1 ≧ 3 × K), or four times or more (that is, L1 ≧ 4) the diameter K of the hole 131. It may be specified as × K). However, if the length L1 of the soft portion 14 is too large, the shortest distance D between the end of the hole 131 and the end of the soft portion 14, which will be described later, will be narrowed. The length L1 of the soft portion 14 may be determined in consideration of the shortest distance D between the end of the hole 131 and the end of the soft portion 14, the distance between the holes 131, and the like.

式2の右辺「H2×K」は、穴131による板部材11の強度低下の影響を示し、式2の左辺「(H2−H1)×W」は、軟質部14による強度低下の影響を示す。式2を満たす軟質部14が設けられた重ね接合構造1に引張応力(隣り合う穴131の中心を結ぶ線に沿った引張応力)が付加された場合、穴131の周囲よりも軟質部14の方が優先的に変形する。従って、式2を満たす軟質部14は歪み集中の緩和効果を奏する。 The right side “H2 × K” of the equation 2 indicates the effect of the strength decrease of the plate member 11 due to the hole 131, and the left side “(H2-H1) × W” of the equation 2 indicates the effect of the strength decrease due to the soft portion 14. .. When tensile stress (tensile stress along the line connecting the centers of adjacent holes 131) is applied to the lap joint structure 1 provided with the soft portion 14 satisfying the formula 2, the soft portion 14 is more than the periphery of the hole 131. Priority is given to deformation. Therefore, the soft portion 14 satisfying the equation 2 has an effect of alleviating strain concentration.

軟質部14と穴131との間隔は特に限定されないが、大きいほうが好ましい。例えば、穴131の端部と軟質部14の端部との最短距離D、及び穴131の直径Kが、以下の式3を満たすことが好ましい。
D≧K (式3)
なお図6に示されるように、穴131の端部と軟質部14の端部との最短距離Dとは、隣り合う穴131の中心を結ぶ線と軟質部14の縁との交点、及び、この線と穴131の縁との交点の間の距離である。軟質部14の両側にある穴131の大きさが、左右で相違することがあり、穴131と軟質部14との間隔も、左右で相違することがあるが、式3が満たされているか否かの判断は穴131ごとに実施すればよい。例えば、図6の例では、軟質部14の右側が式3を満たすか否かはD及びKに基づいて判断し、軟質部14の左側が式3を満たすか否かはD’及びK’に基づいて判断すればよい。
The distance between the soft portion 14 and the hole 131 is not particularly limited, but a larger distance is preferable. For example, it is preferable that the shortest distance D between the end of the hole 131 and the end of the soft portion 14 and the diameter K of the hole 131 satisfy the following formula 3.
D ≧ K (Equation 3)
As shown in FIG. 6, the shortest distance D between the end of the hole 131 and the end of the soft portion 14 is the intersection of the line connecting the centers of the adjacent holes 131 and the edge of the soft portion 14, and The distance between this line and the intersection of the edges of the holes 131. The size of the holes 131 on both sides of the soft portion 14 may differ on the left and right, and the distance between the hole 131 and the soft portion 14 may also differ on the left and right, but whether or not Equation 3 is satisfied. The determination may be made for each hole 131. For example, in the example of FIG. 6, whether or not the right side of the soft portion 14 satisfies the formula 3 is determined based on D and K, and whether or not the left side of the soft portion 14 satisfies the formula 3 is determined based on D'and K'. It should be judged based on.

式3が満たされる重ね接合構造1によれば、破断歪み(重ね接合構造1に破断が生じるまでの、重ね接合構造1の歪み量)を一層向上させることができる。何故なら、式3を満たすように軟質部14と穴131との間隔が確保された重ね接合構造1に変形が生じた場合、穴131から軟質部14に向かった亀裂の進展が効果的に防止されるからである。この効果を得るために、軟質部14と穴131との間隔は長ければ長いほど好ましい。例えば、穴131の端部と軟質部14の端部との最短距離Dを、穴131の直径Kの2倍以上(即ちD≧2×K)、穴131の直径Kの3倍以上(即ちD≧3×K)、又は穴131の直径Kの4倍以上(即ちD≧4×K)としてもよい。ただし、穴131の端部と軟質部14の端部との最短距離Dが大きすぎると、上述した軟質部14の長さL1が短くなる。軟質部14の長さL1、及び穴131同士の間隔などを考慮しながら、穴131の端部と軟質部14の端部との最短距離Dを定めるとよい。 According to the lap joint structure 1 satisfying the formula 3, the fracture strain (the amount of strain of the lap joint structure 1 until the lap joint structure 1 is broken) can be further improved. This is because when the lap joint structure 1 in which the distance between the soft portion 14 and the hole 131 is secured so as to satisfy the equation 3 is deformed, the growth of cracks from the hole 131 toward the soft portion 14 is effectively prevented. Because it is done. In order to obtain this effect, the longer the distance between the soft portion 14 and the hole 131, the more preferable. For example, the shortest distance D between the end of the hole 131 and the end of the soft portion 14 is twice or more the diameter K of the hole 131 (that is, D ≧ 2 × K) and three times or more the diameter K of the hole 131 (that is, that is). D ≧ 3 × K), or 4 times or more the diameter K of the hole 131 (that is, D ≧ 4 × K). However, if the shortest distance D between the end of the hole 131 and the end of the soft portion 14 is too large, the length L1 of the soft portion 14 described above becomes short. It is preferable to determine the shortest distance D between the end of the hole 131 and the end of the soft portion 14 while considering the length L1 of the soft portion 14 and the distance between the holes 131.

図7に示されるように、重ね接合構造1の板部材11が、接合部13(図7では図示省略)を囲み、且つ軟質部14から離隔された第二軟質部15を有してもよく、ここで軟質部14の硬さH1、軟質部を有する板部材11の硬さH2、第二軟質部15の硬さH3、軟質部14の幅W1、第二軟質部15の幅W3、及び穴131の直径Kが、以下の式4を満たしてもよい。
(H2−H1)×W1>H2×K+(W3−K)×(H2−H3) (式4)
As shown in FIG. 7, the plate member 11 of the lap joint structure 1 may have a second soft portion 15 that surrounds the joint portion 13 (not shown in FIG. 7) and is separated from the soft portion 14. Here, the hardness H1 of the soft portion 14, the hardness H2 of the plate member 11 having the soft portion, the hardness H3 of the second soft portion 15, the width W1 of the soft portion 14, the width W3 of the second soft portion 15, and so on. The diameter K of the hole 131 may satisfy the following equation 4.
(H2-H1) × W1> H2 × K + (W3-K) × (H2-H3) (Equation 4)

なお、第二軟質部15とは、第二軟質部15が設けられた板部材11の硬さH2の80%以下の硬さを有する領域である。第二軟質部15の幅W3とは、接合部が並ぶ方向に対して垂直な方向に沿って測定される第二軟質部15の幅の距離である。
第二軟質部15の硬さH3とは、隣り合う穴131の中心を結ぶ線に沿って板部材11の硬さを測定して得られる複数の硬さ値のうち、第二軟質部15において最も小さい値〜3番目に小さい値の平均値である。穴131が直線状に配されていない場合、第二軟質部15の硬さH3とは、図8に示されるB−A−C線に沿って測定される板部材11の複数の硬さ値のうち、第二軟質部15において最も小さい値〜3番目に小さい値の平均値である。なお、図8におけるAは、硬さH3を特定しようとする第二軟質部15に囲まれる穴131の中心である。図8におけるBは、硬さH3を特定しようとする第二軟質部15の隣の穴131の中心から前述のAまでを結ぶ線と、第二軟質部15の縁との交点である。図8におけるBは、硬さH3を特定しようとする第二軟質部15の両隣の穴131のうち一方の中心から前述のAまでを結ぶ線と、第二軟質部15の縁との交点である。図8におけるCは、硬さH3を特定しようとする第二軟質部15の両隣の穴131のうち他方の中心から前述のAまでを結ぶ線と、第二軟質部15の縁との交点である。
The second soft portion 15 is a region having a hardness of 80% or less of the hardness H2 of the plate member 11 provided with the second soft portion 15. The width W3 of the second soft portion 15 is the distance of the width of the second soft portion 15 measured along the direction perpendicular to the direction in which the joints are lined up.
The hardness H3 of the second soft portion 15 is the hardness H3 of the second soft portion 15 among a plurality of hardness values obtained by measuring the hardness of the plate member 11 along a line connecting the centers of adjacent holes 131. It is the average value of the smallest value to the third smallest value. When the holes 131 are not arranged in a straight line, the hardness H3 of the second soft portion 15 is a plurality of hardness values of the plate member 11 measured along the line BAC shown in FIG. Of these, it is the average value of the smallest value to the third smallest value in the second soft portion 15. Note that A in FIG. 8 is the center of the hole 131 surrounded by the second soft portion 15 for which the hardness H3 is to be specified. FIG. 8B is an intersection of the line connecting the center of the hole 131 adjacent to the second soft portion 15 for which the hardness H3 is to be specified to the above-mentioned A and the edge of the second soft portion 15. B in FIG. 8 is an intersection of a line connecting the center of one of the holes 131 on both sides of the second soft portion 15 for which hardness H3 is to be specified to the above-mentioned A and the edge of the second soft portion 15. is there. C in FIG. 8 is an intersection of the line connecting the other center of the holes 131 on both sides of the second soft portion 15 for which the hardness H3 is to be specified to the above-mentioned A and the edge of the second soft portion 15. is there.

第二軟質部15は、複数の板部材11同士を接合する前に第二軟質部15を板部材に設けられた場合、接合部13の形成を容易にする効果を有する。例えば、引張強さが1500MPaを超えるホットスタンプ材料が板部材11である場合、板部材11が硬すぎて、セルフピアシングリベット等の機械的接合手段132を打ち込めない場合がある。第二軟質部15を予め板部材11に設けることで、複数の板部材11同士の接合を容易にすることができる。 The second soft portion 15 has an effect of facilitating the formation of the joint portion 13 when the second soft portion 15 is provided on the plate member before joining the plurality of plate members 11. For example, when the hot stamp material having a tensile strength of more than 1500 MPa is the plate member 11, the plate member 11 may be too hard to drive the mechanical joining means 132 such as a self-piercing rivet. By providing the second soft portion 15 on the plate member 11 in advance, it is possible to facilitate the joining of the plurality of plate members 11.

ここで、穴131から軟質部14に向かった亀裂の進展を効果的に防止するために、軟質部14と第二軟質部15とは互いに離隔されている。また、第二軟質部15は、式4を満たす形状及び硬さを有することが好ましい。式4の左辺「(H2−H1)×W1」は、式2の左辺と同じく、軟質部14による強度低下の影響を示す。式4の右辺「H2×K+(W3−K)×(H2−H3)」は、穴131及び第二軟質部15による板部材11の強度低下の影響を示す。式4を満たす軟質部14及び第二軟質部15が設けられた重ね接合構造1に引張応力(隣り合う穴131の中心を結ぶ線に沿った引張応力)が付加された場合、穴131の周囲(即ち第二軟質部15)よりも、軟質部14の方が優先的に変形する。従って、式4を満たす軟質部14は穴131への一層高い歪み集中緩和効果を奏する。 Here, in order to effectively prevent the growth of cracks from the hole 131 toward the soft portion 14, the soft portion 14 and the second soft portion 15 are separated from each other. Further, the second soft portion 15 preferably has a shape and hardness satisfying the formula 4. The left side “(H2-H1) × W1” of the formula 4 shows the influence of the strength reduction due to the soft portion 14 as in the left side of the formula 2. The right side “H2 × K + (W3-K) × (H2-H3)” of the formula 4 indicates the effect of the strength reduction of the plate member 11 due to the hole 131 and the second soft portion 15. When tensile stress (tensile stress along the line connecting the centers of adjacent holes 131) is applied to the lap joint structure 1 provided with the soft portion 14 and the second soft portion 15 satisfying the formula 4, the periphery of the hole 131. (That is, the soft portion 14 is preferentially deformed over the second soft portion 15). Therefore, the soft portion 14 satisfying the equation 4 exerts a higher strain concentration relaxation effect on the hole 131.

本実施形態に係る重ね接合構造1の製造方法、特に軟質部14(及び必要に応じて第二軟質部15)の形成方法は特に限定されない。軟質部14及び第二軟質部15を形成する工程は、板部材11を接合する工程の前に行われても、後に行われてもよい。第二軟質部15を形成する工程を、板部材11を接合する工程の前に行う場合、接合部13の形成が容易になるので好ましい。 The method for producing the lap joint structure 1 according to the present embodiment, particularly the method for forming the soft portion 14 (and the second soft portion 15 if necessary) is not particularly limited. The step of forming the soft portion 14 and the second soft portion 15 may be performed before or after the step of joining the plate members 11. When the step of forming the second soft portion 15 is performed before the step of joining the plate members 11, it is preferable because the joining portion 13 can be easily formed.

軟質部14(及び必要に応じて第二軟質部15)を形成する手段は、板部材11の材質に応じて適宜選定することができる。例えば、板部材11がマルテンサイト及びベイナイトなどを含む高強度鋼板である場合、レーザ照射又は高周波加熱による焼戻し(板部材11の局所的な加熱、及び徐冷)によれば、局所的な硬さ低下を容易に生じさせることができる。好適には、レーザビームによる焼戻しが望ましい。レーザビームは、エネルギーが安定しているからである。例えば、レーザビームは、ディスクレーザ、ファイバーレーザ、ダイレクトダイオードレーザ、YAGレーザ、及び炭酸ガスレーザ等のいずれかを用い、ビーム径を5〜25mmの範囲とし、出力を1〜10kWの範囲として、軟質部14を形成してもよい。さらに好適には、矩形集光が可能で矩形状のエネルギー分布をもつ光学系の適用が望ましい。 The means for forming the soft portion 14 (and the second soft portion 15 if necessary) can be appropriately selected according to the material of the plate member 11. For example, when the plate member 11 is a high-strength steel plate containing martensite, bainite, etc., the local hardness is determined by tempering by laser irradiation or high-frequency heating (local heating and slow cooling of the plate member 11). The drop can easily occur. Preferably, tempering with a laser beam is desirable. This is because the energy of the laser beam is stable. For example, as the laser beam, any one of a disk laser, a fiber laser, a direct diode laser, a YAG laser, a carbon dioxide gas laser, etc. is used, the beam diameter is in the range of 5 to 25 mm, the output is in the range of 1 to 10 kW, and the soft portion. 14 may be formed. More preferably, it is desirable to apply an optical system capable of rectangular condensing and having a rectangular energy distribution.

また、板部材11がホットスタンプによって成形されるものである場合、ホットスタンプ用の金型を用いて軟質部14及び第二軟質部15を形成することができる。通常のホットスタンプでは、まずA3点以上まで鋼板を加熱し、次いで水冷金型(水などの冷媒を流通させる流路を備え、被加工材を冷却する機能を有する金型)を用いて鋼板を成形し、さらに水冷金型を用いて鋼板を急冷することによりマルテンサイトを生成させる。ここで、水冷金型によって急冷する箇所を、軟質部14及び第二軟質部15以外の箇所に限定し、軟質部14及び第二軟質部15を設ける箇所については徐冷するように、水冷金型を構成することができる。また、鋼板を加熱する際に、軟質部14及び第二軟質部15を設ける箇所については最高加熱温度をA3点以下とし、その他の箇所については最高加熱温度をA3点以上にすることによっても、軟質部14及び第二軟質部15を形成することかできる。 Further, when the plate member 11 is formed by hot stamping, the soft portion 14 and the second soft portion 15 can be formed by using a mold for hot stamping. In a normal hot stamp, the steel sheet is first heated to point A3 or higher, and then the steel sheet is heated using a water-cooled die (a die having a flow path for flowing a refrigerant such as water and having a function of cooling the work material). Martensite is produced by molding and then quenching the steel sheet using a water-cooled die. Here, the parts to be rapidly cooled by the water cooling mold are limited to the parts other than the soft part 14 and the second soft part 15, and the parts where the soft part 14 and the second soft part 15 are provided are slowly cooled. The type can be constructed. Further, when heating the steel sheet, the maximum heating temperature may be set to A3 or lower at the locations where the soft portion 14 and the second soft portion 15 are provided, and the maximum heating temperature may be set to A3 or higher at other locations. A soft portion 14 and a second soft portion 15 can be formed.

上述された本実施形態に係る重ね接合構造1の具体例を、図9A〜図9Dを参照しながら以下に説明する。図9A〜図9Dは、板部材11が曲げ部及びフランジ部12を有し、フランジ部12において板部材11同士が重ねられ、接合部13によって接合されている種々の重ね接合構造1を示す。いずれの例においても、接合部13の間には軟質部14が設けられているが、軟質部14の形状は様々なものとすることができる。 A specific example of the lap joint structure 1 according to the present embodiment described above will be described below with reference to FIGS. 9A to 9D. 9A to 9D show various lap joint structures 1 in which the plate member 11 has a bent portion and a flange portion 12, and the plate members 11 are overlapped with each other at the flange portion 12 and are joined by the joint portion 13. In any of the examples, the soft portion 14 is provided between the joint portions 13, but the shape of the soft portion 14 can be various.

図9Aは、軟質部14がフランジ部12の端部に沿った長方形形状を有し、且つフランジ部12の内部にのみ設けられた例である。 FIG. 9A is an example in which the soft portion 14 has a rectangular shape along the end portion of the flange portion 12 and is provided only inside the flange portion 12.

図9Bは、軟質部14がフランジ部12の端部に沿った長方形形状を有し、且つ板部材11の曲げ部を超えて延在する例である。具体的には、図9Bに例示された重ね接合構造1においては、軟質部14は、フランジ部12の内部のみならず、曲げ部を超えてフランジ部12の外部に延伸している。この場合、軟質部14の幅W1は、板部材11の屈曲に沿って測定される。また図9Bに例示された重ね接合構造1においては、軟質部14は、フランジ部12の端部にも及んでいる。 FIG. 9B is an example in which the soft portion 14 has a rectangular shape along the end portion of the flange portion 12 and extends beyond the bent portion of the plate member 11. Specifically, in the lap joint structure 1 illustrated in FIG. 9B, the soft portion 14 extends not only inside the flange portion 12 but also beyond the bent portion to the outside of the flange portion 12. In this case, the width W1 of the soft portion 14 is measured along the bending of the plate member 11. Further, in the lap joint structure 1 illustrated in FIG. 9B, the soft portion 14 extends to the end portion of the flange portion 12.

図9Cは、軟質部14が曲げ部からフランジ部12の端部に向けて広がる形状を有する例である。この場合、軟質部14の長さL1は、隣り合う穴131の中心を結ぶ線と、軟質部14の外縁との2つの交点間の距離として定義される。 FIG. 9C shows an example in which the soft portion 14 has a shape that extends from the bent portion toward the end portion of the flange portion 12. In this case, the length L1 of the soft portion 14 is defined as the distance between the line connecting the centers of the adjacent holes 131 and the two intersections of the outer edge of the soft portion 14.

図9Dは、軟質部14が角丸長方形形状(二つの等しい長さの平行線、及びこれら平行線の両端に設けられた二つの半円からなる形状)を有する例である。この場合、上述されたように、軟質部14の長さL1は、隣り合う穴131の中心を結ぶ線と軟質部14の外縁との2つの交点間の距離として定義され、軟質部14の幅W1は、隣り合う穴131の中心を結ぶ線と垂直な方向で測定される軟質部14の幅として定義される。 FIG. 9D is an example in which the soft portion 14 has a rectangular shape with rounded corners (two parallel lines of equal length and a shape consisting of two semicircles provided at both ends of these parallel lines). In this case, as described above, the length L1 of the soft portion 14 is defined as the distance between the two intersections of the line connecting the centers of the adjacent holes 131 and the outer edge of the soft portion 14, and the width of the soft portion 14. W1 is defined as the width of the soft portion 14 measured in a direction perpendicular to the line connecting the centers of adjacent holes 131.

なお、本実施形態に係る重ね接合構造1において、全ての穴131の間に軟質部14を設ける必要はない。重ね接合構造1において、変形の生じやすさが一様であるとは限らないからである。例えば、変形が特に生じやすく、穴131への歪み集中が危惧される箇所においてのみ軟質部14を設け、その他の箇所には軟質部14を設けないこととしてもよい。即ち、一部の穴131の間にのみ軟質部14が設けられた重ね接合構造1も、本実施形態に係る重ね接合構造1に該当する。 In the lap joint structure 1 according to the present embodiment, it is not necessary to provide the soft portion 14 between all the holes 131. This is because in the lap joint structure 1, the susceptibility to deformation is not always uniform. For example, the soft portion 14 may be provided only in a place where deformation is particularly likely to occur and strain concentration in the hole 131 is feared, and the soft portion 14 may not be provided in other places. That is, the lap joint structure 1 in which the soft portion 14 is provided only between a part of the holes 131 also corresponds to the lap joint structure 1 according to the present embodiment.

本実施形態に係る重ね接合構造1の用途は特に限定されない。重ね接合構造1の好適な用途の一つとして、接合された複数の鋼板から構成される自動車部品、特に自動車骨格部品が挙げられる。自動車骨格部品は、マルテンサイトを含有する高強度鋼板から構成されるので、本実施形態に係る重ね接合構造1を容易に適用することができ、この場合に自動車の衝突安全性を高めるという顕著な効果が得られる。一方、機械的接合手段132及び/又は摩擦撹拌点接合手段によって接合されるあらゆる板部材11に、本実施形態に係る重ね接合構造1を適用することが可能である。例えば、リベット又は高力ボルトによって接合される橋梁部材、及び摩擦撹拌点接合によって接合されるアルミ製鉄道車両構体等に関しても、本実施形態に係る重ね接合構造1を適用することで、破断の抑制が可能であると考えられる。本実施形態に係る重ね接合構造1を、建築用の建具、梁、リンク部材、簡易倉庫、家具、冷蔵庫、テレビ、コピー機、クーラー室外機などの家電及び什器等に適用することも考えられる。 The use of the lap joint structure 1 according to the present embodiment is not particularly limited. One of the preferred uses of the lap-bonded structure 1 is an automobile part composed of a plurality of joined steel plates, particularly an automobile skeleton part. Since the automobile skeleton part is composed of a high-strength steel plate containing martensite, the lap joint structure 1 according to the present embodiment can be easily applied, and in this case, it is remarkable that the collision safety of the automobile is enhanced. The effect is obtained. On the other hand, it is possible to apply the lap joining structure 1 according to the present embodiment to any plate member 11 joined by the mechanical joining means 132 and / or the friction stir welding point joining means. For example, even for bridge members joined by rivets or high-strength bolts, aluminum railroad vehicle structures joined by friction stir welding, etc., breakage can be suppressed by applying the lap joint structure 1 according to the present embodiment. Is considered possible. It is also conceivable to apply the lap joint structure 1 according to the present embodiment to home appliances such as fittings, beams, link members, simple warehouses, furniture, refrigerators, televisions, copiers, cooler outdoor units, and fixtures for construction.

次に、本発明の別の態様に係る自動車骨格部品について説明する。本実施形態に係る自動車骨格部品は、本実施形態に係る重ね接合構造1を有する自動車骨格部品である。この自動車骨格部品は、例えばAピラー、Bピラー、サイドシル、バンパー、フロアメンバー、フロントサイドメンバー、リアサイドメンバー又はルーフレールである。以下、本実施形態に係る自動車骨格部品の例を説明する。 Next, an automobile frame component according to another aspect of the present invention will be described. The automobile skeleton part according to the present embodiment is an automobile skeleton part having the lap joint structure 1 according to the present embodiment. The automobile frame parts are, for example, A pillars, B pillars, side sills, bumpers, floor members, front side members, rear side members or roof rails. Hereinafter, an example of the automobile frame parts according to the present embodiment will be described.

図10は、本実施形態に係る自動車骨格部品の一例であるBピラー2の斜視図である。この図においてサイドパネルアウタは省略されている。図10のBピラー2は、穴131を有する機械的接合部13(図示されていない)と、隣り合う機械的接合部13の間(即ち穴131の間)に設けられた軟質部14を有する。ただし、一部の機械的接合部13の間(図10における、点線で囲まれた領域)には、軟質部は設けられていない。これは、車体の側面衝突時の歪みの発生はBピラーの部位に応じて異なり、衝突時に穴からの破断が発生しにくい、歪み量の小さい部位には必ずしも軟質部を設ける必要がないとの理由による。 FIG. 10 is a perspective view of the B-pillar 2, which is an example of the automobile frame component according to the present embodiment. In this figure, the side panel outer is omitted. The B-pillar 2 of FIG. 10 has a mechanical joint 13 (not shown) having a hole 131 and a soft portion 14 provided between adjacent mechanical joints 13 (that is, between the holes 131). .. However, no soft portion is provided between some of the mechanical joints 13 (the region surrounded by the dotted line in FIG. 10). This is because the occurrence of distortion at the time of a side collision of the vehicle body differs depending on the part of the B pillar, and it is not always necessary to provide a soft part at the part where the amount of distortion is small, where breakage from the hole is unlikely to occur at the time of collision. For some reason.

図11は、図10のBピラー2のXI−XI断面図である。このBピラー2は、通常の鋼板であるBピラーインナ22と、高強度鋼板であるBピラーリンフォース21と、アルミ又は軟鋼であるサイドパネルアウタ23とから構成される。これらが板部材11に該当し、特にBピラーリンフォース21は主板部材に該当する。Bピラーリンフォース21、Bピラーインナ22、及びサイドパネルアウタ23はその両端で接合され、主板部材に該当するBピラーリンフォース21には軟質部14が設けられている。 FIG. 11 is a cross-sectional view taken along the line XI-XI of the B pillar 2 of FIG. The B-pillar 2 is composed of a B-pillar inner 22 which is a normal steel plate, a B-pillar reinforcement 21 which is a high-strength steel plate, and a side panel outer 23 which is aluminum or mild steel. These correspond to the plate member 11, and in particular, the B-pillar reinforcement 21 corresponds to the main plate member. The B-pillar reinforcement 21, the B-pillar inner 22, and the side panel outer 23 are joined at both ends thereof, and the B-pillar reinforcement 21 corresponding to the main plate member is provided with a soft portion 14.

図12は、本実施形態に係る自動車骨格部品の一例であるAピラー3及びルーフレール4の斜視図である。図12に示された部品でも、一部の穴の間にのみ軟質部14が設けられる。 FIG. 12 is a perspective view of the A pillar 3 and the roof rail 4 which are examples of the automobile frame parts according to the present embodiment. Even in the parts shown in FIG. 12, the soft portion 14 is provided only between some holes.

図13は、図12に示されたルーフレール4のXIII−XIII断面図である。この自動車骨格部品は、高強度鋼板であるルーフレールインナ42と、高強度鋼板であるルーフレールアウタリンフォース41と、アルミ又は軟鋼であるサイドパネルアウタ43とから構成される。これらが板部材11に該当し、特にルーフレールアウタリンフォース41は主板部材に該当する。ルーフレールインナ42、ルーフレールアウタリンフォース41、及びサイドパネルアウタ43はその両端で接合され、主板部材に該当するルーフレールアウタリンフォース41には軟質部14が設けられている。 FIG. 13 is a sectional view taken along line XIII-XIII of the roof rail 4 shown in FIG. This automobile frame component is composed of a roof rail inner 42 which is a high-strength steel plate, a roof rail outer reinforcement 41 which is a high-strength steel plate, and a side panel outer 43 which is aluminum or mild steel. These correspond to the plate member 11, and in particular, the roof rail outer ring force 41 corresponds to the main plate member. The roof rail inner 42, the roof rail outer line force 41, and the side panel outer 43 are joined at both ends thereof, and the roof rail outer line force 41 corresponding to the main plate member is provided with a soft portion 14.

図14は、本実施形態に係る自動車骨格部品の一例であるBピラーのヒンジリンフォース5の斜視図である。この自動車骨格部品では、ハット状部材52と、ハット状部材の内側に沿って配された高強度鋼板51とが機械的接合手段である接合部13によって接合されており、高強度鋼板の接合部13の間(即ち穴131の間)には軟質部14が設けられている。フロアメンバーにも、図14に示される構成を用いることができる。 FIG. 14 is a perspective view of a hinge reinforcement 5 of a B-pillar, which is an example of an automobile frame component according to the present embodiment. In this automobile frame component, the hat-shaped member 52 and the high-strength steel plate 51 arranged along the inside of the hat-shaped member are joined by a joint portion 13 which is a mechanical joining means, and the joint portion of the high-strength steel plate is joined. A soft portion 14 is provided between 13 (that is, between holes 131). The configuration shown in FIG. 14 can also be used for the floor members.

本実施形態に係る重ね接合構造1の説明においては、2枚又は3枚の板部材11を重ね合せた重ね部に接合部を形成した重ね接合構造を例示したが、4枚以上の板部材11を重ね合せてもよい。また、本実施形態に係る重ね接合構造1の説明においては、2枚又は3枚の板部材11のうち1枚の板部材11又は2枚の板部材11に軟質部が形成される場合について説明したが、例えば、4枚以上(複数)の板部材11を重ね合せた重ね部に接合部を形成して、重ね接合構造を構成してもよく、かかる場合、軟質部が形成された板部材11の枚数は、任意に設定することができる。また、板部材11を重ね合せて形成する重ね部をフランジ部とする必要はない。部分補強等を目的として、フランジを有しない板部材11同士を重ね合せて接合する重ね接合構造なども本実施形態に係る重ね接合構造に含まれることはいうまでもない。 In the description of the lap joint structure 1 according to the present embodiment, a lap joint structure in which a joint portion is formed in a lap portion obtained by superimposing two or three plate members 11 is exemplified, but four or more plate members 11 May be overlapped. Further, in the description of the lap joint structure 1 according to the present embodiment, a case where a soft portion is formed on one plate member 11 or two plate members 11 out of two or three plate members 11 will be described. However, for example, a joint portion may be formed in a superposed portion in which four or more (plural) plate members 11 are superposed to form a superposed joint structure. In such a case, a plate member in which a soft portion is formed is formed. The number of 11 sheets can be set arbitrarily. Further, it is not necessary to use the overlapped portion formed by superimposing the plate members 11 as the flange portion. Needless to say, the lap joining structure according to the present embodiment also includes a lap joining structure in which plate members 11 having no flange are overlapped and joined for the purpose of partial reinforcement or the like.

図15に示す、軟質部を備えない板部材A及び板部材Bを接合した試料No.1及びNo.8、並びに図16に示す、軟質部を備える板部材A及び軟質部を備えない板部材Bを接合した試料No.2〜No.7及びNo.9〜No.11を作成した。ここで、図15及び図16の(A)は試料(リベット接合のもの)の平面図であり、図15及び図16の(B)は試料(リベット接合のもの)の側面図である。なお、図15および図16において板部材Aは、幅20mmの平行部と、平行部の両端に設けられた幅35mmの保持部(肩部)を有する、長さ200mmの板(評点間隔50mm)である。図15および図16において板部材Bは、板部材Aの平行部に重ねられた、幅20mm及び長さ60mmの板である。板部材Aの種別、板厚、及び硬さは、全ての試料で同一とし、その内容は表1に示す通りとした。板部材Bの種別、板厚、及び硬さは、表1に示すB1及びB2の2種類とした。板部材Aの金属組織は、ほぼすべてマルテンサイトであった。 Sample No. 15 in which the plate member A and the plate member B having no soft portion are joined as shown in FIG. 1 and No. Sample No. 8 and the plate member A having a soft portion and the plate member B not having a soft portion, which are shown in FIG. 2-No. 7 and No. 9 to No. 11 was created. Here, (A) of FIGS. 15 and 16 is a plan view of the sample (rivet-bonded), and FIG. 15 and 16 (B) are side views of the sample (rivet-bonded). In addition, in FIGS. 15 and 16, the plate member A is a plate having a length of 200 mm (score interval 50 mm) having a parallel portion having a width of 20 mm and holding portions (shoulders) having a width of 35 mm provided at both ends of the parallel portion. Is. In FIGS. 15 and 16, the plate member B is a plate having a width of 20 mm and a length of 60 mm, which is overlapped with parallel portions of the plate member A. The type, plate thickness, and hardness of the plate member A were the same for all the samples, and the contents were as shown in Table 1. The type, plate thickness, and hardness of the plate member B were two types, B1 and B2 shown in Table 1. The metal structure of the plate member A was almost all martensite.

板部材A及び板部材Bの接合手段は、リベット、SRP(セルフピアシングリベット)、及び摩擦撹拌接合のいずれかとした。接合手段をSRPとした試料のうち、No.6においては、板部材AのSRP部に第二軟質部を形成した。第二軟質部の幅W3は10mmとし、第二軟質部の硬さH3はHV270とした。板部材A及びBの穴の直径K、及び軟質部の形状は、表2に示す通りとした。なお、軟質部は試験片の平行部の両端に沿った長方形形状とされており、軟質部の幅W1は、平行部の両端に垂直な方向に沿って測定される軟質部の幅とし、軟質部の長さL1は、平行部の両端に平行な方向に沿って測定される軟質部の長さとした。 The joining means of the plate member A and the plate member B was any one of rivets, SRP (self-piercing rivets), and friction stir welding. Among the samples in which the joining means was SRP, No. In No. 6, a second soft portion was formed in the SRP portion of the plate member A. The width W3 of the second soft portion was 10 mm, and the hardness H3 of the second soft portion was HV270. The diameter K of the holes of the plate members A and B and the shape of the soft portion are as shown in Table 2. The soft portion has a rectangular shape along both ends of the parallel portion of the test piece, and the width W1 of the soft portion is the width of the soft portion measured along the direction perpendicular to both ends of the parallel portion. The length L1 of the portion was defined as the length of the soft portion measured along the direction parallel to both ends of the parallel portion.

そして、表2の試料No.1〜11に引張試験を行い、その破断歪を測定した。測定結果を表2に示す。 Then, the sample No. of Table 2 Tensile tests were performed on 1 to 11 and the breaking strain was measured. The measurement results are shown in Table 2.

表2に示されるように、軟質部を有しない板部材から構成された重ね接合構造の試料No.1及びNo.8と比較して、軟質部を有する板部材Aを含む重ね接合構造の試料No.2〜No.7及びNo.9〜No.11は、破壊の起点が(接合部の)穴ではなく、軟質部であり、かつ優れた破断歪を有した。 As shown in Table 2, the sample No. of the lap joint structure composed of a plate member having no soft portion. 1 and No. Compared with No. 8, the sample No. of the lap joint structure including the plate member A having a soft portion. 2-No. 7 and No. 9 to No. In No. 11, the starting point of fracture was not a hole (at the joint) but a soft portion, and the fracture strain had excellent fracture strain.

引張試験後の各試料を詳細に確認すると、軟質部を備えない試験片は、図15に破断部Zとして示すように穴を起点として破断していた。参考に、機械的接合部を備えるが軟質部を備えなかったNo.1の試験後の写真を図17に示す。一方、軟質部を備える試験片は、破断部Zとして図16に示すように、軟質部14において破断していた。 When each sample after the tensile test was confirmed in detail, the test piece without the soft portion was fractured starting from the hole as shown as the fracture portion Z in FIG. For reference, No. 1 which had a mechanical joint but did not have a soft part. The photograph after the test of No. 1 is shown in FIG. On the other hand, the test piece provided with the soft portion was broken at the soft portion 14 as shown in FIG. 16 as the fractured portion Z.

本発明によれば、複数の板部材を重ね合せて形成された重ね部を、非溶融接合手段によって接合した場合に、接合時に形成された穴を起点に板部材が破断するのを抑制し、破断するまでの伸びを大きくすることが可能な重ね接合部材の重ね接合構造を提供することができる。例えば、本発明を自動車に適用した場合、その衝突時の乗員保護性能を飛躍的に向上させることができる。従って、本発明は高い産業上の利用可能性を有する。 According to the present invention, when an overlapping portion formed by superimposing a plurality of plate members is joined by a non-melt joining means, it is possible to prevent the plate member from breaking starting from a hole formed at the time of joining. It is possible to provide a lap joint structure of a lap joint member capable of increasing the elongation until breaking. For example, when the present invention is applied to an automobile, the occupant protection performance at the time of a collision can be dramatically improved. Therefore, the present invention has high industrial applicability.

1 重ね接合構造
11 板部材
12 フランジ部
13 接合部
131 穴
132 機械的接合手段
132’ ナゲット
133 摩擦撹拌点接合手段
14 軟質部
15 第二軟質部
2 Bピラー
21 Bピラーリンフォース
22 Bピラーインナ
23 サイドパネルアウタ
3 Aピラー
4 ルーフレール
41 ルーフレールアウタリンフォース
42 ルーフレールインナ
43 サイドパネルアウタ
5 ヒンジリンフォース
51 高強度鋼板
52 ハット状部材
X 電極
Y 回転ツール
1 Lap joint structure 11 Plate member 12 Flange part 13 Joint part 131 Hole 132 Mechanical joining means 132'Nugget 133 Friction stirring point joining means 14 Soft part 15 Second soft part 2 B pillar 21 B pillar Reinforce 22 B pillar inner 23 Side Panel Outer 3 A Pillar 4 Roof Rail 41 Roof Rail Outer Linforce 42 Roof Rail Inner 43 Side Panel Outer 5 Hinge Reinforce 51 High Strength Steel Plate 52 Hat-shaped Member X Electrode Y Rotating Tool

Claims (10)

重ね合わせられた複数の板部材と、
前記複数の板部材の重ね部に設けられた、機械的接合手段又は摩擦撹拌点接合手段によって構成された複数の接合部と、
を備え、
前記複数の接合部は、前記機械的接合手段が挿通される穴、又は摩擦撹拌点接合によって形成された穴を有し、
前記複数の板部材のうち1枚以上が、前記重ね部における前記複数の接合部の間に軟質部を有し、
前記軟質部の硬さが、前記軟質部が設けられた前記板部材の硬さの80%以下である
ことを特徴とする重ね接合構造。
With multiple superposed plate members,
A plurality of joints formed by mechanical joining means or friction stir welding point joining means provided in the overlapping portions of the plurality of plate members, and
With
The plurality of joints have holes through which the mechanical joining means are inserted, or holes formed by friction stir welding.
One or more of the plurality of plate members have a soft portion between the plurality of joint portions in the overlapping portion.
A lap joint structure characterized in that the hardness of the soft portion is 80% or less of the hardness of the plate member provided with the soft portion.
前記軟質部の長さL1、前記軟質部の幅W1、前記軟質部の硬さH1、前記軟質部を有する前記板部材の硬さH2、及び前記穴の直径Kが、以下の式1及び式2を満たすことを特徴とする請求項1に記載の重ね接合構造。
L1>K (式1)
(H2−H1)×W1>H2×K (式2)
The length L1 of the soft portion, the width W1 of the soft portion, the hardness H1 of the soft portion, the hardness H2 of the plate member having the soft portion, and the diameter K of the hole are the following equations 1 and. The lap joint structure according to claim 1, wherein the lap joint structure is characterized by satisfying 2.
L1> K (Equation 1)
(H2-H1) × W1> H2 × K (Equation 2)
前記穴の端部と、前記軟質部の端部との最短距離D、及び前記穴の直径Kが、以下の式3を満たすことを特徴とする請求項1又は2に記載の重ね接合構造。
D≧K (式3)
The lap joint structure according to claim 1 or 2, wherein the shortest distance D between the end portion of the hole and the end portion of the soft portion and the diameter K of the hole satisfy the following formula 3.
D ≧ K (Equation 3)
前記穴が、前記複数の板部材のうち1枚以上を貫通することを特徴とする請求項1〜3のいずれか一項に記載の重ね接合構造。 The lap joint structure according to any one of claims 1 to 3, wherein the hole penetrates one or more of the plurality of plate members. 前記軟質部が、前記穴を有する前記板部材に設けられることを特徴とする請求項1〜4のいずれか一項に記載の重ね接合構造。 The lap joint structure according to any one of claims 1 to 4, wherein the soft portion is provided on the plate member having the hole. 前記軟質部が、板厚と引張強さとの積が最も大きい主板部材に設けられることを特徴とする請求項1〜5のいずれか一項に記載の重ね接合構造。 The lap joint structure according to any one of claims 1 to 5, wherein the soft portion is provided on a main plate member having the largest product of plate thickness and tensile strength. 前記板部材が、前記接合部を囲み、且つ前記軟質部から離隔された第二軟質部を有し、
前記軟質部の硬さH1、前記軟質部を有する前記板部材の硬さH2、前記第二軟質部の硬さH3、前記軟質部の幅W1、前記第二軟質部の幅W3、及び前記穴1の直径Kが、以下の式4を満たすことを特徴とする請求項1〜6のいずれか一項に記載の重ね接合構造。
(H2−H1)×W1>H2×K+(W3−K)×(H2−H3) (式4)
The plate member has a second soft portion that surrounds the joint and is separated from the soft portion.
The hardness H1 of the soft portion, the hardness H2 of the plate member having the soft portion, the hardness H3 of the second soft portion, the width W1 of the soft portion, the width W3 of the second soft portion, and the hole. The lap joint structure according to any one of claims 1 to 6, wherein the diameter K of 1 satisfies the following formula 4.
(H2-H1) × W1> H2 × K + (W3-K) × (H2-H3) (Equation 4)
前記軟質部を有する前記板部材では、引張強さが980MPa以上であり、その金属組織がマルテンサイトを含む鋼板であることを特徴とする請求項1〜7のいずれか一項に記載の重ね接合構造。 The lap joint according to any one of claims 1 to 7, wherein the plate member having the soft portion has a tensile strength of 980 MPa or more and the metal structure thereof is a steel plate containing martensite. Construction. 請求項1〜8のいずれか一項に記載の重ね接合構造を有する自動車骨格部品。 An automobile skeleton component having the lap joint structure according to any one of claims 1 to 8. Aピラー、Bピラー、サイドシル、バンパー、フロアメンバー、フロントサイドメンバー、リアサイドメンバー又はルーフレールであることを特徴とする請求項9に記載の自動車骨格部品。 The automobile frame component according to claim 9, wherein the A-pillar, the B-pillar, the side sill, the bumper, the floor member, the front side member, the rear side member, or the roof rail.
JP2019060341A 2019-03-27 2019-03-27 Lap joint structure and automobile frame parts Active JP7370150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060341A JP7370150B2 (en) 2019-03-27 2019-03-27 Lap joint structure and automobile frame parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060341A JP7370150B2 (en) 2019-03-27 2019-03-27 Lap joint structure and automobile frame parts

Publications (2)

Publication Number Publication Date
JP2020159487A true JP2020159487A (en) 2020-10-01
JP7370150B2 JP7370150B2 (en) 2023-10-27

Family

ID=72642563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060341A Active JP7370150B2 (en) 2019-03-27 2019-03-27 Lap joint structure and automobile frame parts

Country Status (1)

Country Link
JP (1) JP7370150B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114378421A (en) * 2020-10-21 2022-04-22 上海汽车集团股份有限公司 Welding method for metal pieces with different hardness and welded product of metal pieces with different hardness
CN114603075A (en) * 2022-03-25 2022-06-10 本钢板材股份有限公司 Method for connecting ultrahigh-strength steel and aluminum alloy by using self-piercing riveting technology
WO2022210506A1 (en) * 2021-03-30 2022-10-06 川崎重工業株式会社 Joint structure and joining method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274429A (en) * 2001-03-15 2002-09-25 Fuji Heavy Ind Ltd Car body joint structure
JP2014223669A (en) * 2013-04-22 2014-12-04 新日鐵住金株式会社 Lap welding member of high-strength steel sheet and manufacturing method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274429A (en) * 2001-03-15 2002-09-25 Fuji Heavy Ind Ltd Car body joint structure
JP2014223669A (en) * 2013-04-22 2014-12-04 新日鐵住金株式会社 Lap welding member of high-strength steel sheet and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114378421A (en) * 2020-10-21 2022-04-22 上海汽车集团股份有限公司 Welding method for metal pieces with different hardness and welded product of metal pieces with different hardness
WO2022210506A1 (en) * 2021-03-30 2022-10-06 川崎重工業株式会社 Joint structure and joining method
JP7524122B2 (en) 2021-03-30 2024-07-29 川崎重工業株式会社 Joined structure and joining method
CN114603075A (en) * 2022-03-25 2022-06-10 本钢板材股份有限公司 Method for connecting ultrahigh-strength steel and aluminum alloy by using self-piercing riveting technology

Also Published As

Publication number Publication date
JP7370150B2 (en) 2023-10-27

Similar Documents

Publication Publication Date Title
Sakiyama et al. Dissimilar metal joining technologies for steel sheet and aluminum alloy sheet in auto body
EP1806200A1 (en) Method for bonding iron-based member with aluminum-based member
US20150174702A1 (en) Method of welding overlapped portion, method of manufacturing overlap-welded member, overlap-welded member, and automotive part
WO2019088207A1 (en) Overlapping bonded structure
JP7370150B2 (en) Lap joint structure and automobile frame parts
JP2015093283A (en) Dissimilar metal joining method between steel plate and aluminum alloy plate, and dissimilar metal joining joint
JP2015000422A (en) Lap weld member, and manufacturing method thereof
JP2007144473A (en) Joined body of dissimilar material
Kapil et al. A new approach for dissimilar aluminum-steel impact spot welding using vaporizing foil actuators
JP2006198675A (en) Mounting structure of steel-made member for car and aluminum alloy-made member
JP2006224146A (en) Method for joining different kinds of material
JP7389315B2 (en) Lap joint structure and automobile frame parts
JP2020159489A (en) Stacked-joint structure and automobile frame component
Feng et al. Fatigue behaviour and life estimation of Mg/Al ultrasonic spot weld bonding welds
JP2017209725A (en) Joint structure and manufacturing method of joint structure
JP2007283313A (en) Joined body of dissimilar materials
US11590601B2 (en) Method of joining steel work-pieces having different gauge ratios
EP4410449A1 (en) Method for producing rivet joint, rivet joint, and automobile part
WO2021200695A1 (en) Method for manufacturing rivet joint, rivet joint, and automotive part
US20220176486A1 (en) Joint structure, automotive component, and joint structure manufacturing method
JP2019177408A (en) Welded structure and method for manufacturing the same
Suzuki et al. Dissimilar metals Joining Process using GMAW has High strength and One side access characteristic, and the Automation robot system
JP2021154377A (en) Method for manufacturing rivet joint structure, rivet joint structure and automobile components
JP2021154374A (en) Method for manufacturing rivet joint structure, rivet joint structure and automobile components
WO2007063646A1 (en) Bonded object of different materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221129

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231017

R150 Certificate of patent or registration of utility model

Ref document number: 7370150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150