JP7389315B2 - Lap joint structure and automobile frame parts - Google Patents

Lap joint structure and automobile frame parts Download PDF

Info

Publication number
JP7389315B2
JP7389315B2 JP2019060342A JP2019060342A JP7389315B2 JP 7389315 B2 JP7389315 B2 JP 7389315B2 JP 2019060342 A JP2019060342 A JP 2019060342A JP 2019060342 A JP2019060342 A JP 2019060342A JP 7389315 B2 JP7389315 B2 JP 7389315B2
Authority
JP
Japan
Prior art keywords
hole
joint structure
plate member
plate
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060342A
Other languages
Japanese (ja)
Other versions
JP2020159488A (en
Inventor
博紀 富士本
雄二郎 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019060342A priority Critical patent/JP7389315B2/en
Publication of JP2020159488A publication Critical patent/JP2020159488A/en
Application granted granted Critical
Publication of JP7389315B2 publication Critical patent/JP7389315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、重ね接合構造、及び自動車骨格部品に関する。 TECHNICAL FIELD The present invention relates to a lap joint structure and an automobile frame component.

衝突安全性の向上と燃費の向上とを両立するため、自動車車体を構成するモノコックボディの骨格をなす構造部材(以下、「自動車用構造部材」という)への高強度鋼板の適用が拡大している。現在、自動車用構造部材には引張強度が980MPa級の高張力鋼板が用いられている。また、プレス成形と同時に焼入れを行うホットスタンプ法を用いることにより引張強度が1500MPa以上の高強度の自動車用構造部材の製造も進められている。ホットスタンプ法によれば、鋼板が高温の軟質な状態でプレス成形を行うために成形後の寸法精度に関する問題の発生が少ないとともに、高温かつ高延性の状態でプレス成形を行うことができることから成形性に優れるという大きなメリットがある。 In order to improve collision safety and fuel efficiency at the same time, the application of high-strength steel plates to structural members that form the framework of monocoque bodies that make up automobile bodies (hereinafter referred to as "automotive structural members") is expanding. There is. Currently, high-tensile steel plates with a tensile strength of 980 MPa class are used for structural members for automobiles. Further, by using a hot stamping method in which quenching is performed at the same time as press forming, high-strength structural members for automobiles with a tensile strength of 1500 MPa or more are being manufactured. According to the hot stamping method, there are fewer problems with dimensional accuracy after forming because the steel sheet is press-formed in a high-temperature, soft state. It has the great advantage of being superior in quality.

しかし、引張強さが780MPa以上の鋼板を含むようなスポット溶接継手では、ナゲットの靭性が低下し、剥離方向の応力ではナゲット端部に応力が集中するため、鋼板の引張強さが増加しても、十字引張強さ(CTS)が、増加しないか、又は、減少するという問題がある。 However, in spot welded joints that include steel plates with a tensile strength of 780 MPa or more, the toughness of the nugget decreases, and stress in the peeling direction concentrates at the nugget ends, so the tensile strength of the steel plate increases. However, there is a problem that the cross tensile strength (CTS) does not increase or decreases.

この問題を解決する技術の一つとして、母材を溶融させることなくリベットやスクリューなどの機械的接合手段を用いて複数枚の金属板を機械的に接合する技術がある。この技術を用いることにより、従来よりも強度信頼性の高い、自動車部品が製造できる可能性がある。 One technique for solving this problem is a technique of mechanically joining a plurality of metal plates using mechanical joining means such as rivets and screws without melting the base material. By using this technology, it is possible to manufacture automobile parts with higher strength and reliability than conventional ones.

また、自動車の車体などでは、軽量化等の目的で、鋼板とアルミニウム板、あるいは鋼板と炭素繊維強化プラスチック(CFRP)板のような異種材料の組合せを接合する場合がある。このように、組み合わせる材料が、融点や線膨張係数などの物性が異なる材料である場合は、例えば特許文献1、2に記載のように機械的接合手段をもって締結・接合することが行われている。また、電気抵抗の低いアルミニウム板では、抵抗スポット溶接に代えて摩擦撹拌点接合が用いられている場合もある。以下、機械的接合手段と摩擦撹拌点接合手段を総称して非溶融接合手段と記載する場合がある。 Furthermore, in automobile bodies and the like, combinations of different materials such as steel plates and aluminum plates, or steel plates and carbon fiber reinforced plastic (CFRP) plates are sometimes joined together for the purpose of reducing weight. In this way, when the materials to be combined have different physical properties such as melting points and coefficients of linear expansion, they are fastened and joined using mechanical joining means, as described in Patent Documents 1 and 2, for example. . Furthermore, for aluminum plates with low electrical resistance, friction stir spot welding is sometimes used instead of resistance spot welding. Hereinafter, the mechanical joining means and the friction stir point joining means may be collectively referred to as non-melting joining means.

この非溶融接合手段を重ね接合構造に設けるにあたり、必然的に、板部材に穴を設ける必要がある。例えば、重ね合わせた複数の板部材の重ね部を、接合部においてブラインドリベットなどの機械的接合手段により接合する場合、板部材の接合部にはリベットが挿通する穴が形成される。また、重ね部を摩擦接合手段により点接合する場合、回転ツール側の板部材の接合部には、回転ツール先端のプローブの圧入痕による穴が残留する。 In providing this non-melting bonding means to the lap bonding structure, it is inevitably necessary to provide holes in the plate members. For example, when the overlapped portions of a plurality of stacked plate members are joined at the joint portion using a mechanical joining means such as a blind rivet, a hole through which the rivet is inserted is formed in the joint portion of the plate members. Further, when the overlapped portions are point-joined by friction welding means, a hole remains at the joint portion of the plate member on the rotary tool side due to the press-fit trace of the probe at the tip of the rotary tool.

本発明者の検討では、重ね部を機械的接合手段や摩擦接合手段により接合した重ね接合部材では、重ね接合部材全体が引張変形を受けると、接合部に形成されている穴にひずみが集中して、穴を起点に小さい変形で板部材が破断する問題が生じた。特許文献1及び2等の先行技術においては、この問題に対して何ら検討が行われていない。 According to the inventor's study, in a lap joint member in which the overlapped parts are joined by mechanical joining means or friction joining means, when the entire overlap joint member is subjected to tensile deformation, strain is concentrated in the hole formed in the joint part. Therefore, a problem arose in which the plate member broke due to small deformation starting from the hole. In the prior art such as Patent Documents 1 and 2, no consideration has been given to this problem.

特開2000-272541号公報Japanese Patent Application Publication No. 2000-272541 特開2005-119577号公報Japanese Patent Application Publication No. 2005-119577

複数の板部材を重ね合わせて形成された重ね部を非溶融接合手段によって接合することによる重ね接合構造において、非溶融接合部に形成される穴を起点に板部材が破断する場合がある。本発明は、板部材の非溶融接合部に形成される穴を起点とした板部材の破断を抑制し、これにより板部材が破断するまでの伸び(歪量)を大きくすることが可能な重ね接合構造を提供することを目的とする。 In a stacked joint structure in which overlapped parts formed by stacking a plurality of plate members are joined by a non-melting joining means, the plate members may break starting from a hole formed in the non-melting joining part. The present invention suppresses the breakage of a plate member starting from a hole formed in a non-melting joint of the plate member, thereby increasing the elongation (amount of strain) until the plate member breaks. The purpose is to provide a joint structure.

本発明の要旨は以下のとおりである。
(1)本発明の一態様に係る重ね接合構造は、重ね合わせられた複数の板部材と、前記複数の板部材の重ね部に設けられた、機械的接合手段又は摩擦撹拌点接合手段によって構成された複数の接合部と、を備え、前記複数の接合部は、前記機械的接合手段が挿通される穴、又は摩擦撹拌点接合によって形成された穴を有し、前記複数の板部材のうち1枚以上において、前記穴の周囲に硬質部が設けられており、前記硬質部は、前記板部材の一部となっており、かつ、前記板部材の板厚方向の全体に亘って設けられており、前記穴が、前記複数の板部材のうち1枚以上を貫通する
(2)上記(1)に記載の重ね接合構造では、前記穴の縁と、前記穴の周囲の前記硬質部の縁との間の最短距離D、前記穴の径K、前記硬質部のビッカース硬さH1、及び前記硬質部が設けられた前記板部材のビッカース硬さH2が、式1を満たしてもよい。
D≧K×H2/{2×(H1-H2)}(式1)
(3)上記(1)又は(2)に記載の重ね接合構造では、複数の前記硬質部の間の距離d、及び前記穴の径Kが式2を満たしてもよい。
d≧2×K(式2)
)上記(1)~()のいずれか一項に記載の重ね接合構造では、前記硬質部が設けられた板部材が、引張強さが1180MPa以下の鋼板であってもよい。
)上記(1)~()のいずれか一項に記載の重ね接合構造では、前記硬質部が、板厚と引張強さとの積が最も大きい主板部材に設けられることを特徴とする。
)本発明の別の態様に係る自動車骨格部品は、上記(1)~()のいずれか一項に記載の重ね接合構造を有する。
)上記()に記載の自動車骨格部品は、Aピラー、Bピラー、サイドシル、フロアメンバー、バンパー、フロントサイドメンバー、リアサイドメンバー、バッテリーフレーム、又はルーフレールであってもよい。
The gist of the present invention is as follows.
(1) The overlap joint structure according to one aspect of the present invention is configured by a plurality of overlapping plate members and a mechanical joining means or a friction stir point joining means provided at the overlapping portion of the plurality of plate members. a plurality of joints, each of which has a hole through which the mechanical joining means is inserted or a hole formed by friction stir point welding, and one of the plurality of plate members In one or more sheets, a hard part is provided around the hole, and the hard part is a part of the plate member and is provided over the entire thickness direction of the plate member. and the hole passes through one or more of the plurality of plate members .
(2) In the lap joint structure described in (1) above, the shortest distance D between the edge of the hole and the edge of the hard part around the hole, the diameter K of the hole, and the Vickers distance of the hard part The hardness H1 and the Vickers hardness H2 of the plate member provided with the hard portion may satisfy Expression 1.
D≧K×H2/{2×(H1-H2)} (Formula 1)
(3) In the overlapping joint structure described in (1) or (2) above, the distance d between the plurality of hard parts and the diameter K of the hole may satisfy Expression 2.
d≧2×K (Formula 2)
( 4 ) In the lap joint structure according to any one of (1) to ( 3 ) above, the plate member provided with the hard portion may be a steel plate having a tensile strength of 1180 MPa or less.
( 5 ) In the lap joint structure according to any one of (1) to ( 4 ) above, the hard portion is provided on the main plate member having the largest product of plate thickness and tensile strength. .
( 6 ) An automobile frame component according to another aspect of the present invention has the lap joint structure according to any one of (1) to ( 5 ) above.
( 7 ) The automobile frame component described in ( 6 ) above may be an A pillar, a B pillar, a side sill, a floor member, a bumper, a front side member, a rear side member, a battery frame, or a roof rail.

本発明によれば、板部材の非溶融接合部に形成される穴を起点とした板部材の破断を抑制し、これにより板部材が破断するまでの伸び(歪量)を大きくすることが可能な重ね接合構造を提供することができる。 According to the present invention, it is possible to suppress the breakage of the plate member starting from the hole formed in the non-melting joint of the plate member, thereby increasing the elongation (amount of strain) until the plate member breaks. It is possible to provide a layered joint structure.

本実施形態に係る重ね接合構造の斜視図である。FIG. 2 is a perspective view of a stacked joint structure according to the present embodiment. 接合部の断面図である。FIG. 3 is a cross-sectional view of a joint. レジスタンスエレメントウエルディングによって形成される機械的接合手段の概念図である。FIG. 3 is a conceptual diagram of mechanical joining means formed by resistance element welding. レジスタンスエレメントウエルディングによって形成される機械的接合手段の概念図である。FIG. 3 is a conceptual diagram of mechanical joining means formed by resistance element welding. 摩擦撹拌点接合によって形成される摩擦撹拌点接合手段の概念図である。FIG. 3 is a conceptual diagram of friction stir point joining means formed by friction stir point joining. 硬質部の特定方法を概略的に説明する図である。FIG. 3 is a diagram schematically illustrating a method for identifying a hard part. 穴の縁と穴の周囲の硬質部の縁との間の最短距離D、穴の径K、及び硬質部の間の距離dを示す概略図である。It is a schematic diagram showing the shortest distance D between the edge of the hole and the edge of the hard part around the hole, the diameter K of the hole, and the distance d between the hard parts. 硬質部の形状のバリエーションを例示する斜視図である。It is a perspective view which illustrates the variation of the shape of a hard part. 硬質部の形状のバリエーションを例示する斜視図である。It is a perspective view which illustrates the variation of the shape of a hard part. 硬質部の形状のバリエーションを例示する斜視図である。It is a perspective view which illustrates the variation of the shape of a hard part. 硬質部の形状のバリエーションを例示する斜視図である。It is a perspective view which illustrates the variation of the shape of a hard part. 本実施形態に係る自動車骨格部品であるBピラーの斜視図である。FIG. 1 is a perspective view of a B-pillar that is an automobile frame component according to the present embodiment. 図8のBピラーのIX-IX断面図である。9 is a sectional view taken along line IX-IX of the B-pillar in FIG. 8. FIG. 本実施形態に係る自動車骨格部品の一例であるAピラー及びルーフレールの斜視図である。FIG. 2 is a perspective view of an A-pillar and a roof rail, which are examples of automobile frame parts according to the present embodiment. 図10のルーフレールのXI-XI断面図である。11 is a sectional view taken along line XI-XI of the roof rail in FIG. 10. FIG. 本実施形態に係る自動車骨格部品の一例であるBピラーのヒンジリンフォースの斜視図である。FIG. 2 is a perspective view of a hinge reinforcement of a B-pillar, which is an example of an automobile frame component according to the present embodiment. 従来の重ね接合構造を模擬した試験片の平面図及び側面図である。FIG. 3 is a plan view and a side view of a test piece simulating a conventional lap joint structure. 本発明の重ね接合構造を模擬した試験片の平面図及び側面図である。FIG. 2 is a plan view and a side view of a test piece simulating the lap joint structure of the present invention. 引張試験後の図13の試験片の写真である。14 is a photograph of the test piece of FIG. 13 after a tensile test.

本発明者らは、複数の板部材を重ね合せて形成された重ね部を、非溶融接合手段によって接合した場合に、接合部に形成された穴を起点に板部材が破断するのを抑制することが可能な重ね接合部材の重ね接合構造を提供する方法について検討を重ねた。その結果、接合部に形成されている穴の端部にひずみが集中しないように、ひずみを分散する手段を設けることが良いと本発明者らは着想した。そして、板部材の穴の周囲に硬質部を形成することにより、引張荷重によるひずみが穴に集中することを防止可能であることを知見した。この知見による重ね接合構造では、穴を起点とする破壊が抑制され、その伸びが向上する。 The present inventors have solved the problem of suppressing the breakage of the plate members starting from the holes formed in the joint parts when the overlapped parts formed by stacking a plurality of plate members are joined by non-melting joining means. We have repeatedly investigated methods for providing a stacked joint structure for stacked members that can be used. As a result, the present inventors came up with the idea that it would be better to provide a means for dispersing strain so that strain would not be concentrated at the end of the hole formed in the joint. The inventors have also discovered that by forming a hard portion around the hole in the plate member, it is possible to prevent strain caused by a tensile load from concentrating on the hole. The lap joint structure based on this knowledge suppresses fractures originating from holes and improves its elongation.

以下、図を適宜参照しながら、本実施形態に係る重ね接合構造1について説明する。なお、重ね接合構造1の例として、図にはフランジ12を有する板部材11を示すが、本実施形態に係る重ね接合構造1がフランジ12を備えなくともよい。また、図において板部材11の枚数が2枚又は3枚である構成を図示しながら本実施形態に係る重ね接合構造を説明するが、板部材11の枚数を4枚以上にしてもよい。 Hereinafter, the stacked joint structure 1 according to the present embodiment will be described with reference to the drawings as appropriate. In addition, although the plate member 11 which has the flange 12 is shown in the figure as an example of the overlap joint structure 1, the overlap joint structure 1 according to this embodiment may not include the flange 12. Further, although the stacked joint structure according to the present embodiment will be described while illustrating a configuration in which the number of plate members 11 is two or three in the drawings, the number of plate members 11 may be four or more.

上記知見により得られた本発明の一態様に係る重ね接合構造1は、図1に示されるように、重ね合わせられた複数の板部材11と、複数の板部材11の重ね部に設けられた、機械的接合手段又は摩擦撹拌点接合手段によって構成された複数の接合部13(図1では図示省略)と、を備え、複数の接合部13は、機械的接合手段が挿通される穴131、又は摩擦撹拌点接合によって形成された穴131を有し、複数の板部材11のうち1枚以上において、穴131の周囲に硬質部14が設けられている。また、図1において重ね部はフランジ部12とされているが、上述のようにフランジ部12は必須ではない。 A stacked joint structure 1 according to an embodiment of the present invention obtained from the above findings includes a plurality of stacked plate members 11 and a stacked portion of the plate members 11, as shown in FIG. , a plurality of joint parts 13 (not shown in FIG. 1) configured by mechanical joining means or friction stir point joining means, and each of the plurality of joint parts 13 has a hole 131 through which the mechanical joining means is inserted; Alternatively, it has a hole 131 formed by friction stir spot welding, and a hard portion 14 is provided around the hole 131 in one or more of the plurality of plate members 11. Further, although the overlapping portion in FIG. 1 is the flange portion 12, the flange portion 12 is not essential as described above.

(1)板部材11
板部材11の材質は特に限定されない。板部材11は、例えば、樹脂板、CFRP(Carbon Fiber Reinforced Plastic)板、アルミ板、アルミ合金板、ステンレス板、チタン板、又は鋼板等の金属板である。板部材11が塗膜及びめっき等の表面処理層を備えてもよい。本実施形態に係る重ね接合構造は、複数の板部材11を重ねて構成されるものであるが、複数の板部材11の材質を同一にしてもよいし、異ならせてもよい。板部材11の板厚及び機械強度(引張強さ、及び硬さ等)も特に限定されない。例えば、板部材11が鋼板である場合、板部材11の厚さを例えば0.5~2.6mmとしてもよい。板部材11がCFRP板である場合、板部材11の厚さを例えば0.3~4.0mmとしてもよい。複数の板部材11の板厚及び機械強度を同一にしてもよいし、異ならせてもよい。
(1) Plate member 11
The material of the plate member 11 is not particularly limited. The plate member 11 is, for example, a metal plate such as a resin plate, a CFRP (Carbon Fiber Reinforced Plastic) plate, an aluminum plate, an aluminum alloy plate, a stainless steel plate, a titanium plate, or a steel plate. The plate member 11 may be provided with a surface treatment layer such as a coating film or plating. Although the overlapping joint structure according to this embodiment is constructed by stacking a plurality of plate members 11, the plurality of plate members 11 may be made of the same material or may be made of different materials. The thickness and mechanical strength (tensile strength, hardness, etc.) of the plate member 11 are not particularly limited either. For example, when the plate member 11 is a steel plate, the thickness of the plate member 11 may be, for example, 0.5 to 2.6 mm. When the plate member 11 is a CFRP plate, the thickness of the plate member 11 may be, for example, 0.3 to 4.0 mm. The thickness and mechanical strength of the plurality of plate members 11 may be the same or may be different.

なお、重ね接合構造の機械強度に最も影響するのは、これを構成する複数の板部材11のうち、板厚と引張強さとの積が最も大きい板部材である。本実施形態に係る重ね接合構造では、板厚と引張強さとの積が最も大きい板部材11を主板部材と称し、その他の板部材11を副板部材と称する。重ね接合構造が、板厚と引張強さとの積が等しい板部材11を2枚以上有し、且つこれらの板厚と引張強さとの積が、複数の板部材11のうち最大である場合、これらの両方を主板部材とみなすことができる。 Note that, among the plurality of plate members 11 constituting this structure, the one having the largest influence on the mechanical strength of the overlapped structure is the one with the largest product of plate thickness and tensile strength. In the lap joint structure according to the present embodiment, the plate member 11 having the largest product of plate thickness and tensile strength is referred to as the main plate member, and the other plate members 11 are referred to as sub-plate members. When the lap joint structure has two or more plate members 11 with the same product of plate thickness and tensile strength, and the product of these plate thicknesses and tensile strength is the largest among the plurality of plate members 11, Both of these can be considered main plate members.

板部材11の最も好適な一例は、引張強さ1180MPa以下の鋼板である。このような鋼板は、レーザ照射等の局所的な焼入れ処理を施すことによって、後述する硬質部14を容易に形成することができる。一方、引張強さが1180MPa超の鋼板を板部材11とすることも妨げられない。 The most suitable example of the plate member 11 is a steel plate having a tensile strength of 1180 MPa or less. By subjecting such a steel plate to local hardening treatment such as laser irradiation, a hard portion 14, which will be described later, can be easily formed. On the other hand, the plate member 11 may be made of a steel plate having a tensile strength of more than 1180 MPa.

板部材11が鋼板の場合には、鋼板を、表面にめっきがされていない非めっき鋼板としてもよく、合金化溶融亜鉛めっき(GAめっき)、溶融亜鉛めっき(GIめっき)、電気亜鉛めっき(EG)、Zn-Alめっき、Zn-Al-Mgめっき、及びZn-Mgめっきなどの亜鉛系めっきで被覆された鋼板としてもよく、さらに、アルミニウムめっき鋼板としてもよい。板部材11を、クロメート、及び樹脂などが塗装された鋼板としてもよい。板部材11がホットスタンプ材である場合には、板部材11を、非めっき鋼板、アルミニウムめっき、鉄とアルミニウムの金属間化合物、若しくは鉄亜鉛固溶層及び酸化亜鉛層から構成される複合層により被覆された鋼板、又は、鉄亜鉛ニッケルの固溶層及び酸化亜鉛層から構成される複合層により被覆された鋼板としてもよい。 When the plate member 11 is a steel plate, the steel plate may be a non-plated steel plate whose surface is not plated, and may be galvanized by alloying hot-dip galvanizing (GA plating), hot-dip galvanizing (GI plating), or electrogalvanizing (EG plating). ), Zn-Al plating, Zn-Al-Mg plating, Zn-Mg plating, or other zinc-based plating, or may be an aluminum-plated steel sheet. The plate member 11 may be a steel plate coated with chromate, resin, or the like. When the plate member 11 is a hot-stamped material, the plate member 11 is made of a non-plated steel plate, aluminum plating, an intermetallic compound of iron and aluminum, or a composite layer composed of an iron-zinc solid solution layer and a zinc oxide layer. It may be a coated steel sheet or a steel sheet coated with a composite layer consisting of a solid solution layer of iron-zinc-nickel and a zinc oxide layer.

後述する機械的接合手段によれば、溶接に適合しない板部材11の接合も可能である。例えば、アルミ材を複数組み合わせた重ね接合構造1、及びアルミ材及び鋼材を組み合わせた重ね接合構造1等にも、機械的接合手段を適用可能である。さらには、金属板に代えてCFRP材を用いた重ね接合構造1にも、機械的接合手段を適用可能である。後述する摩擦撹拌点接合手段によっても、溶接に適合しない材料の接合が可能である。例えば、アルミ材を複数組み合わせた重ね接合構造1、及びアルミ材と鋼材とを組み合わせた重ね接合構造1等にも、摩擦撹拌点接合手段を適用可能である。以上の理由により、板部材11の材質は特に限定されない。 According to the mechanical joining means described later, it is also possible to join plate members 11 that are not suitable for welding. For example, mechanical joining means can also be applied to the overlap joint structure 1 in which a plurality of aluminum materials are combined, the overlap joint structure 1 in which aluminum materials and steel materials are combined, and the like. Furthermore, mechanical joining means can also be applied to the stacked joint structure 1 using CFRP material instead of metal plates. It is also possible to join materials that are not compatible with welding by the friction stir point joining means described below. For example, the friction stir point welding means can also be applied to a lap joint structure 1 that combines a plurality of aluminum materials, a lap joint structure 1 that combines aluminum materials and steel materials, and the like. For the above reasons, the material of the plate member 11 is not particularly limited.

(2)接合部13及び穴131
複数の板部材11は、その一部または全部が重ねられており、重ね部において互いに接合される。接合部13は、非溶融接合手段、即ち機械的接合手段132、及び摩擦撹拌点接合手段133等とされる。
(2) Joint part 13 and hole 131
The plurality of plate members 11 are partially or entirely overlapped, and are joined to each other at the overlapped portions. The joining portion 13 includes non-melting joining means, ie, mechanical joining means 132, friction stir point joining means 133, and the like.

機械的接合手段132は、例えばブラインドリベット、セルフピアシングリベット(自己穿孔リベット、SPR)、中空リベット、平リベット、ドリルネジ、ボルト、EJOWELD(登録商標)、及びFDS(登録商標)等である。これらによれば、板部材11は、冷間又は熱間で塑性加工により接合される。これらの機械的接合手段と、通電加熱及び加熱との組み合わせにより、板部材11を接合させてもよい。機械的接合手段132には、ブラインドリベットなどのように重ね合わせた金属板部材11を全て貫通するもの、及び、セルフピアシングリベットなどのように重ね合わせた金属板部材11の一部を貫通しないものがあるが、いずれも本実施形態に係る重ね接合構造1において用いることができる。図2に示される接合部13の例では、機械的接合手段132がリベットから構成されている。 Mechanical joining means 132 are, for example, blind rivets, self-piercing rivets (SPR), hollow rivets, flat rivets, drill screws, bolts, EJOWELD®, FDS®, and the like. According to these, the plate members 11 are joined by cold or hot plastic working. The plate members 11 may be joined by a combination of these mechanical joining means and electrical heating and heating. Mechanical joining means 132 include those that penetrate all of the stacked metal plate members 11, such as blind rivets, and those that do not penetrate a portion of the stacked metal plate members 11, such as self-piercing rivets. However, any of them can be used in the overlapping joint structure 1 according to the present embodiment. In the example of the joint 13 shown in FIG. 2, the mechanical joint means 132 is comprised of a rivet.

機械的接合手段132として、レジスタンスエレメントウエルディング(Resistance Element Welding;REW)が用いられてもよい。このREWは、図3Aに示すように、板厚方向に貫通する穴131が形成された板部材11(例えば、アルミ合金板)と、別の板部材11(例えば、ボロン鋼等の鋼板)とを重ね合わせ、穴131に鋼製のフランジ付きリベットである機械的接合手段132を挿入し、さらに、電極Xを用いて、2枚の板部材11を挟持しながら(図3Aを参照)、所定の電流値にて2枚の板部材11に通電することにより、機械的接合手段132の先端部分と板部材11との接触部分を溶融させてナゲット132’を形成する接合手段である(図3Bを参照)。このように、REWは、部分的に溶融接合手段を利用しているものの、本質的にはフランジ付きリベットという機械的要素を利用した接合手段であるため、このような接合手段も機械的接合手段132として、本発明に好適に用いることができる。 As the mechanical joining means 132, resistance element welding (REW) may be used. As shown in FIG. 3A, this REW includes a plate member 11 (for example, an aluminum alloy plate) in which a hole 131 penetrating through the plate is formed and another plate member 11 (for example, a steel plate such as boron steel). The mechanical joining means 132, which is a steel flanged rivet, is inserted into the hole 131, and the electrodes X are used to sandwich the two plate members 11 (see FIG. 3A). This is a joining means that melts the contact portion between the tip portion of the mechanical joining means 132 and the plate member 11 by applying current to the two plate members 11 at a current value of , thereby forming a nugget 132' (FIG. 3B ). In this way, although REW partially utilizes melt-joining means, it is essentially a joining means that utilizes a mechanical element called a flanged rivet, so such joining means are also mechanical joining means. 132, it can be suitably used in the present invention.

機械的接合手段132によって板部材11を接合する場合、機械的接合手段132を挿通させるための穴131を、板部材11に設ける必要がある。即ち、機械的接合手段132によって構成された接合部13は、機械的接合手段132が挿通される穴131を有する。機械的接合手段132が挿通される穴131は、板部材11を貫通するものであっても、貫通しないものであってもよい。 When joining the plate members 11 using the mechanical joining means 132, it is necessary to provide a hole 131 in the plate member 11 through which the mechanical joining means 132 is inserted. That is, the joint portion 13 constituted by the mechanical joining means 132 has a hole 131 through which the mechanical joining means 132 is inserted. The hole 131 into which the mechanical joining means 132 is inserted may or may not penetrate the plate member 11.

摩擦撹拌点接合手段について説明する。摩擦撹拌点接合(FSSW:Friction Stir Spot Welding)とは、図4に示されるように、母材より相対的に硬い回転ツールYを回転させながら母材に圧入し、母材を溶融させることなく接合する固相接合の一種である。摩擦撹拌点接合では、回転ツールYの回転によって生じた摩擦発熱により板部材11の変形抵抗を低下させ、且つ回転ツールY周辺の板部材11を回転ツールYの動きによって塑性流動させ、撹拌し、一体化する(図4(B)を参照)。これら一連の工程において使われる回転ツールYは、通常、先端がネジ加工されたプローブを有する。回転ツールを板部材11に圧入し、摩擦撹拌点接合を実施し、次いで回転ツールYを母材から引き抜いた際、回転ツールYが圧入された板部材11にはプローブの圧入痕が必然的に生じる(図4(C)を参照)。即ち、摩擦撹拌点接合手段によって構成された接合部は、プローブの圧入痕である穴131を有する。本実施形態に係る重ね接合構造1は、プローブの圧入により板厚の80%以上の深さの穴が形成される場合に適用されることが好ましい。 The friction stir point welding means will be explained. Friction stir spot welding (FSSW) is, as shown in Fig. 4, a rotating tool Y that is relatively harder than the base material, which is press-fitted into the base material while rotating, without melting the base material. It is a type of solid phase joining. In friction stir spot welding, the deformation resistance of the plate member 11 is reduced by frictional heat generated by the rotation of the rotary tool Y, and the plate member 11 around the rotary tool Y is made to plastically flow and stirred by the movement of the rotary tool Y. (See Figure 4(B)). The rotary tool Y used in these series of steps usually has a probe with a threaded tip. When the rotary tool is press-fitted into the plate member 11, friction stir spot welding is performed, and then the rotary tool Y is pulled out from the base material, there will inevitably be press-fit marks of the probe on the plate member 11 into which the rotary tool Y was press-fitted. occurs (see Figure 4(C)). That is, the joint formed by the friction stir point joining means has a hole 131 which is a press-fit trace of the probe. The stacked joint structure 1 according to this embodiment is preferably applied when a hole having a depth of 80% or more of the plate thickness is formed by press-fitting a probe.

なお、これらの非溶融接合手段と、他の接合手段(例えば樹脂等)とを組み合わせることも妨げられない。例えば、重ね合わせ面に接着剤(例えば、エポキシ樹脂系接着剤等)を介在させて、接着剤による接合を非溶融接合手段と併用してもよい。重ね合わせ面にシール用樹脂(シーラー、電着塗装)を介在させて、合わせ目を防水ないし絶縁してもよい。重ね合わせ面に構造用接着剤及び耐衝撃型の接着剤等を介在させて、接着剤による接合を非溶融接合手段と併用することは、本実施形態に係る重ね接合構造1の好適な形態である。特に、アルミ材と鋼材とを組み合わせた構造部材の場合は、電気的絶縁ができるシール機能を有する樹脂及び接着剤等と、非溶融接合手段とを併用することが好ましい。 Note that it is not prohibited to combine these non-melting bonding means with other bonding means (for example, resin, etc.). For example, an adhesive (for example, an epoxy resin adhesive, etc.) may be interposed between the overlapping surfaces, and bonding using the adhesive may be used in combination with non-melting bonding means. A sealing resin (sealer, electrodeposition coating) may be interposed between the overlapping surfaces to waterproof or insulate the seam. It is a preferable form of the overlap joint structure 1 according to the present embodiment to interpose a structural adhesive, an impact-resistant adhesive, etc. on the overlapping surfaces and use adhesive joining together with non-melting joining means. be. In particular, in the case of a structural member made of a combination of aluminum and steel, it is preferable to use a resin, adhesive, etc. that has a sealing function that can provide electrical insulation, and a non-melting bonding means.

接合部13の位置は特に限定されないが、接合部13に形成される穴131の位置を板部材11の端部から離隔させることにより、穴131を起点として破断する可能性を一層抑制することができる。例えば、穴131の端部と板部材11の端部との間の最短距離Lと、穴131の直径Kとが以下の式を満たすことが好ましい。
L≧0.8K
Although the position of the joint part 13 is not particularly limited, by separating the position of the hole 131 formed in the joint part 13 from the end of the plate member 11, the possibility of breakage starting from the hole 131 can be further suppressed. can. For example, it is preferable that the shortest distance L between the end of the hole 131 and the end of the plate member 11 and the diameter K of the hole 131 satisfy the following formula.
L≧0.8K

接合部13のピッチ(隣り合う接合部13同士の間の間隔)も特に限定されない。重ね接合構造1が適用される構造物及び適用部位に応じて、ピッチを適宜設定すればよい。重ね接合構造1が自動車部品に適用される場合、例えば接合部13のピッチは20mm~100mm程度としてもよい。 The pitch of the joints 13 (the distance between adjacent joints 13) is also not particularly limited. The pitch may be appropriately set depending on the structure to which the overlapping joint structure 1 is applied and the application site. When the overlapping joint structure 1 is applied to automobile parts, the pitch of the joint portions 13 may be approximately 20 mm to 100 mm, for example.

なお、本実施形態に係る重ね接合構造1において、穴131は、板部材11を貫通する穴(通し穴)に限定されず、板部材11を貫通しない穴(止まり穴)、内面に段差がある穴(段付き穴)、内面が円錐状になっている穴(テーパ穴)、及び内面にねじが切ってある穴(めねじ穴)等であってもよい。また、穴131は、主板部材及び副板部材のいずれに設けられてもよい。 In addition, in the stacked joint structure 1 according to the present embodiment, the hole 131 is not limited to a hole that penetrates the plate member 11 (through hole), but also a hole that does not penetrate the plate member 11 (blind hole), or a hole that has a step on the inner surface. It may be a hole (stepped hole), a hole with a conical inner surface (tapered hole), a hole with a threaded inner surface (female threaded hole), or the like. Moreover, the hole 131 may be provided in either the main plate member or the sub-plate member.

(3)硬質部14
上述のように、重ね部を機械的接合手段132や摩擦撹拌点接合手段により接合した重ね接合部材1では、重ね接合部材1の全体が引張変形を受けると、接合部13に形成されている穴131にひずみが集中することにより、穴131を起点とした板部材11の破断が生じる恐れがある。そこで本発明者らは、接合部13に形成されている穴131の端部にひずみが集中しないように、ひずみを分散する手段について検討した。その結果、板部材11の穴131の周囲に硬質部14を形成することにより、引張荷重によるひずみが穴131に集中することを防止可能であることを本発明者らは知見した。
(3) Hard part 14
As described above, in the lap joint member 1 in which the overlapped portions are joined by the mechanical joining means 132 or the friction stir point joining means, when the entire overlap joint member 1 is subjected to tensile deformation, the hole formed in the joint portion 13 If the strain concentrates on the hole 131, there is a possibility that the plate member 11 will break starting from the hole 131. Therefore, the present inventors studied means for dispersing strain so that the strain would not be concentrated at the end of the hole 131 formed in the joint portion 13. As a result, the present inventors found that by forming the hard portion 14 around the hole 131 of the plate member 11, it is possible to prevent strain caused by a tensile load from concentrating on the hole 131.

上記知見に基づき、本実施形態に係る重ね接合構造1では、複数の板部材11のうち1枚以上において、穴131の周囲に硬質部14が設けられている。硬質部14とは、硬質部14が設けられた板部材11のビッカース硬さH2より20%以上高いビッカース硬さを有する領域である。硬質部15を特定する手段の例を図5に示す。図5は、接合部13の穴131を平面視した図である。接合部13(穴131)の周囲において、例えば格子状にビッカース硬さ測定を実施することにより、硬質部14が設けられた板部材11のビッカース硬さH2より20%以上高いビッカース硬さが検出される測定点αと、それ以外の測定点βを得ることができる。測定点αの集合と、測定点βの集合との境界が、硬質部14の外縁である。 Based on the above findings, in the stacked joint structure 1 according to the present embodiment, the hard portion 14 is provided around the hole 131 in one or more of the plurality of plate members 11. The hard portion 14 is a region having a Vickers hardness that is 20% or more higher than the Vickers hardness H2 of the plate member 11 on which the hard portion 14 is provided. An example of means for identifying the hard portion 15 is shown in FIG. FIG. 5 is a plan view of the hole 131 of the joint portion 13. By performing Vickers hardness measurement, for example, in a grid pattern around the joint portion 13 (hole 131), a Vickers hardness that is 20% or more higher than the Vickers hardness H2 of the plate member 11 on which the hard portion 14 is provided is detected. It is possible to obtain measurement points α and other measurement points β. The boundary between the set of measurement points α and the set of measurement points β is the outer edge of the hard portion 14.

硬質部14を特定するにあたり、板部材11のビッカース硬さを測定することが必要となる。ビッカース硬さの測定は、ビッカース硬さ計で測定することが推奨される。ビッカース硬さ測定時の測定荷重は、板部材11の材質に応じて適宜選択すればよい。板部材11における任意の領域が硬質部15に該当するか否かの判断は、上述の定義から明らかなように、板部材11のビッカース硬さと、該領域のビッカース硬さとの相対値に基づいて行われる。従って、同一の測定荷重で板部材11及び該領域のビッカース硬さが測定されていれば、測定荷重の影響を受けることなく、該領域が硬質部15に該当するか否かを判定することができる。重ね接合構造1が後述の式1及び式2を満たすか否かを判定する場合においても、同じ理由により、ビッカース硬さ測定時の測定荷重は、板部材11の材質に応じて適宜選択すればよい。 In order to identify the hard portion 14, it is necessary to measure the Vickers hardness of the plate member 11. It is recommended to measure Vickers hardness using a Vickers hardness meter. The measurement load at the time of Vickers hardness measurement may be appropriately selected depending on the material of the plate member 11. As is clear from the above definition, whether or not a given region of the plate member 11 corresponds to the hard portion 15 is determined based on the relative value between the Vickers hardness of the plate member 11 and the Vickers hardness of the region. It will be done. Therefore, if the Vickers hardness of the plate member 11 and the region is measured with the same measurement load, it is possible to determine whether or not the region corresponds to the hard part 15 without being affected by the measurement load. can. When determining whether or not the lap joint structure 1 satisfies Equations 1 and 2 described later, for the same reason, the measurement load at the time of Vickers hardness measurement can be selected as appropriate depending on the material of the plate member 11. good.

硬質部14は、重ね接合構造1を構成する複数の板部材11のうち1枚以上に設けられている必要があるが、いずれの板部材11に配置するかは適宜選択することができる。好ましくは、硬質部14は主板部材に設けられる。上述のように、主板部材は重ね接合構造1の機械的特性に最も影響する部材であるので、硬質部14を主板部材に設けることによって、その応力緩和効果を最大限に発揮させることができる。また、好ましくは、硬質部14は穴131が存在する板部材11に設けられる。以下、硬質部14を、穴131を有する主板部材に設けた構成によって本実施形態に係る重ね接合構造1を説明する。ただし、硬質部14は副板部材に設けられてもよいし、穴131を有しない板部材11に設けられてもよい。 Although the hard portion 14 needs to be provided on one or more of the plurality of plate members 11 constituting the overlapping joint structure 1, it can be appropriately selected on which plate member 11 the hard portion 14 is arranged. Preferably, the hard portion 14 is provided on the main plate member. As described above, the main plate member is the member that most affects the mechanical properties of the lap joint structure 1, so by providing the hard portion 14 on the main plate member, its stress relaxation effect can be maximized. Preferably, the hard portion 14 is provided in the plate member 11 in which the hole 131 is present. Hereinafter, the overlap joint structure 1 according to the present embodiment will be explained based on a configuration in which the hard portion 14 is provided in a main plate member having a hole 131. However, the hard portion 14 may be provided on the sub-plate member, or may be provided on the plate member 11 that does not have the hole 131.

硬質部14の大きさ及び形状は特に限定されないが、例えば、穴131の縁と穴131の周囲の硬質部14の縁との間の最短距離D、穴131の径K、硬質部14のビッカース硬さH1、及び硬質部14が設けられた板部材11のビッカース硬さH2が、以下の式1を満たすように、硬質部14の大きさ及び形状を定めることが好ましい。
D≧K×H2/{2×(H1-H2)} (式1)
穴が並んだ方向に、応力が付加された場合、穴を含んだ硬質部で変形が起きにくい条件は、おおよそ、以下の式で表すことができる。
2×D×H1≧(2×D+K)×H2
この式を、Dに関して整理することにより、(式1)が得られる。
Although the size and shape of the hard part 14 are not particularly limited, for example, the shortest distance D between the edge of the hole 131 and the edge of the hard part 14 around the hole 131, the diameter K of the hole 131, the Vickers diameter of the hard part 14, etc. It is preferable to determine the size and shape of the hard part 14 so that the hardness H1 and the Vickers hardness H2 of the plate member 11 provided with the hard part 14 satisfy the following formula 1.
D≧K×H2/{2×(H1-H2)} (Formula 1)
When stress is applied in the direction in which the holes are lined up, the conditions under which deformation does not easily occur in the hard part containing the holes can be roughly expressed by the following equation.
2×D×H1≧(2×D+K)×H2
By rearranging this formula with respect to D, (Formula 1) is obtained.

図6に、「穴131の縁と穴131の周囲の硬質部14の縁との間の最短距離D」を示す。Dの値が大きいほど、硬質化による穴131の補強効果が高まる。穴131の縁を特定する手段は上述のとおりである。なお、図7Bに示されるように硬質部14が折れ曲がっている場合、穴131の縁と硬質部の縁との距離とは、硬質部の折り曲げ部に沿って測定された値である。 FIG. 6 shows "the shortest distance D between the edge of the hole 131 and the edge of the hard part 14 around the hole 131." The larger the value of D, the stronger the reinforcement effect of the hole 131 due to hardening. The means for specifying the edge of the hole 131 is as described above. In addition, when the hard part 14 is bent as shown in FIG. 7B, the distance between the edge of the hole 131 and the edge of the hard part is a value measured along the bent part of the hard part.

穴131の直径Kは、穴131が円筒状である場合は、板部材11を平面視した場合の穴131の径である。穴131が例えば円錐状等の非円筒状である場合は、穴131の実際の体積及び穴131の実際の深さと同一の体積及び深さを有する円筒の径を、穴131の直径Kとみなす。穴131の平面視での形状が円ではない場合、その円相当径を穴131の直径Kとみなす。穴131がめねじ穴である場合は、凹凸ピッチのうち広いほうの直径を、穴131の直径Kとみなす。 When the hole 131 is cylindrical, the diameter K of the hole 131 is the diameter of the hole 131 when the plate member 11 is viewed from above. If the hole 131 has a non-cylindrical shape, such as a conical shape, the diameter of a cylinder having the same volume and depth as the actual volume and the actual depth of the hole 131 is considered to be the diameter K of the hole 131. . If the shape of the hole 131 in plan view is not a circle, the equivalent circle diameter is regarded as the diameter K of the hole 131. When the hole 131 is a female threaded hole, the diameter of the wider one of the uneven pitches is regarded as the diameter K of the hole 131.

硬質部14のビッカース硬さH1とは、図5に示されるように、硬質部14のビッカース硬さを測定して得られる複数のビッカース硬さ値のうち、硬質部14において最も大きい値~3番目に大きい値の平均値である。ただし、摩擦撹拌点接合手段133にあたる領域は、硬質部14のビッカース硬さH1を測定する際に無視される。上述のように、硬質部14は硬質部14が設けられた板部材11のビッカース硬さH2より20%以上高いビッカース硬さを有する領域と定義されるが、この硬質部14の内部においてビッカース硬さが一定とは限らない。このため、硬質部14の中でも特に硬い部分のビッカース硬さを、硬質部14のビッカース硬さH1とする。 As shown in FIG. 5, the Vickers hardness H1 of the hard part 14 is the largest value for the hard part 14 to 3 among the plurality of Vickers hardness values obtained by measuring the Vickers hardness of the hard part 14. It is the average value of the largest value. However, the area corresponding to the friction stir point welding means 133 is ignored when measuring the Vickers hardness H1 of the hard part 14. As mentioned above, the hard part 14 is defined as a region having a Vickers hardness that is 20% or more higher than the Vickers hardness H2 of the plate member 11 on which the hard part 14 is provided. The quality is not necessarily constant. Therefore, the Vickers hardness of a particularly hard part of the hard part 14 is defined as the Vickers hardness H1 of the hard part 14.

板部材11のビッカース硬さH2とは、硬質部14が設けられた板部材11のうち、接合部13、及び硬質部14以外の領域のビッカース硬さである。穴131から十分離れた領域内の少なくとも3点で測定したビッカース硬さの平均値を、板部材11のビッカース硬さH2とみなす。 The Vickers hardness H2 of the plate member 11 is the Vickers hardness of a region other than the joint portion 13 and the hard portion 14 of the plate member 11 provided with the hard portion 14. The average value of the Vickers hardness measured at at least three points within a region sufficiently distant from the hole 131 is regarded as the Vickers hardness H2 of the plate member 11.

なお、H1及びH2の測定にあたり、ビッカース硬さ測定時の測定荷重は、板部材11の材質に応じて適宜選択すればよい。式1は、H1及びH2の相対比率に基づいてDの下限値を定めるものである。したがって、同一の測定荷重でH1及びH2を測定すれば、測定荷重の影響を受けることなく、硬質部14が式1を満たすか否かの評価をすることができる。これは、後述の式1’、及び式1’’についても同じである。 In addition, in measuring H1 and H2, the measurement load at the time of Vickers hardness measurement may be appropriately selected according to the material of the plate member 11. Equation 1 determines the lower limit value of D based on the relative ratio of H1 and H2. Therefore, by measuring H1 and H2 with the same measurement load, it is possible to evaluate whether the hard part 14 satisfies Equation 1 without being affected by the measurement load. This also applies to Equations 1' and 1'', which will be described later.

式1を満たす硬質部14は、穴131の直径Kに対して十分に大きいので、重ね接合構造1に応力が付加されたときに、歪の集中を緩和し、破断に至るまでの重ね接合構造1の伸び量を増大させることができる。この効果を得るために、穴131の縁と穴131の周囲の硬質部14の縁との間の最短距離Dは、大きければ大きいほど好ましい。例えば硬質部14の形状を、D、K、H1、及びH2が以下の式1’、又は式1’’を満たすように、画定してもよい。
D≧1.2×K×H2/{2×(H1-H2)} (式1’)
D≧1.4×K×H2/{2×(H1-H2)} (式1’’)
ただし、Dが大きすぎると、後述する硬質部14同士の距離が狭まることとなる。これらの要素を考慮しながら、硬質部14の長さL1を定めるとよい。
The hard part 14 that satisfies Equation 1 is sufficiently large relative to the diameter K of the hole 131, so that when stress is applied to the lap joint structure 1, it alleviates the concentration of strain and prevents the lap joint structure from breaking. 1 can be increased. In order to obtain this effect, it is preferable that the shortest distance D between the edge of the hole 131 and the edge of the hard part 14 around the hole 131 be as large as possible. For example, the shape of the hard portion 14 may be defined such that D, K, H1, and H2 satisfy the following formula 1' or formula 1''.
D≧1.2×K×H2/{2×(H1-H2)} (Formula 1')
D≧1.4×K×H2/{2×(H1-H2)} (Formula 1'')
However, if D is too large, the distance between the hard parts 14, which will be described later, will become narrower. It is preferable to determine the length L1 of the hard portion 14 while taking these factors into consideration.

本実施形態に係る重ね接合構造1は、複数の接合部13を有する。これら複数の接合部13の穴131のうち1つだけの周囲に硬質部14を設けてよいし、2つ以上の穴131の周囲に硬質部14を設けてもよい。複数の硬質部14が重ね溶接構造1に設けられる場合において、複数の硬質部14同士の位置関係は特に限定されない。しかしながら、例えば、複数の硬質部14の間の距離d、及び穴131の径Kが式2を満たしてもよい。
d≧2×K (式2)
The stacked joint structure 1 according to this embodiment has a plurality of joints 13. The hard portion 14 may be provided around only one of the holes 131 of the plurality of joints 13, or the hard portion 14 may be provided around two or more holes 131. When a plurality of hard parts 14 are provided in the lap welded structure 1, the positional relationship between the plurality of hard parts 14 is not particularly limited. However, for example, the distance d between the plurality of hard parts 14 and the diameter K of the hole 131 may satisfy Expression 2.
d≧2×K (Formula 2)

なお、図6に示されるように、複数の硬質部14の間の距離dとは、これら硬質部14の内部の穴131の中心同士を結ぶ線と、これら硬質部14の縁との2つの交点の間の距離である。硬質部14同士の間に、式2を満たすように間隔を設けることにより、穴131の周囲に生じる歪を、硬質部14同士の間に効率的に分配することができる。従って、式2を満たすように複数の硬質部14を配することにより、重ね接合部材1のひずみ集中を一層抑制し、伸びを一層改善することができる。 Note that, as shown in FIG. 6, the distance d between the plurality of hard parts 14 is defined as the distance d between a line connecting the centers of the holes 131 inside these hard parts 14 and the edges of these hard parts 14. is the distance between the intersection points. By providing a space between the hard parts 14 so as to satisfy Expression 2, the strain generated around the hole 131 can be efficiently distributed between the hard parts 14. Therefore, by arranging the plurality of hard parts 14 so as to satisfy Expression 2, it is possible to further suppress the concentration of strain in the lap joint member 1 and further improve the elongation.

本実施形態に係る重ね接合構造1の製造方法、特に硬質部14の形成方法は特に限定されず、板部材11の材質に応じて適宜選択することができる。板部材11が、例えば引張強さ1180MPa以下の鋼板等の、焼入れによって強度向上が可能なものである場合、レーザ照射、高周波加熱、通電加熱等の局所的な焼入れ処理を施すことによって、硬質部14を容易に形成することができる。板部材11が、アルミ板及びアルミ合金板等の、加工硬化によって強度向上が可能なものである場合、局所的な鍛造加工やショットブラスト処理等を局所的に施すことによって、硬質部14を容易に形成することができる。 The method for manufacturing the stacked joint structure 1 according to the present embodiment, particularly the method for forming the hard portion 14, is not particularly limited, and can be appropriately selected depending on the material of the plate member 11. If the plate member 11 is made of a steel plate with a tensile strength of 1180 MPa or less, whose strength can be improved by hardening, the hard part can be strengthened by local hardening treatment such as laser irradiation, high-frequency heating, and electrical heating. 14 can be easily formed. When the plate member 11 is made of an aluminum plate, an aluminum alloy plate, etc. whose strength can be improved by work hardening, the hard part 14 can be easily strengthened by locally performing forging, shot blasting, etc. can be formed into

硬質部14の形成は、板部材11の接合の前に行われても、後に行われてもよい。例えば、板部材11が引張強さ1180MPa以下の鋼板である場合、板部材11の接合後に硬質部14を形成することが好ましい。これにより、機械的接合手段を挿通させるための穴を容易に形成することができる。一方、接合された複数の板部材11に対して適用することが難しい硬化方法の利用が必要である場合、板部材11の接合前に硬質部14を形成すればよい。このように、板部材11の材質及び板部材11の硬貨方法に応じて、硬質部14を形成するタイミングを柔軟に選択することができる。 The hard portion 14 may be formed before or after the plate members 11 are joined. For example, when the plate member 11 is a steel plate having a tensile strength of 1180 MPa or less, it is preferable to form the hard portion 14 after the plate member 11 is joined. Thereby, a hole for inserting the mechanical joining means can be easily formed. On the other hand, if it is necessary to use a hardening method that is difficult to apply to the plurality of joined plate members 11, the hard portion 14 may be formed before joining the plate members 11. In this way, the timing for forming the hard portion 14 can be flexibly selected depending on the material of the plate member 11 and the coin method of the plate member 11.

上述された本実施形態に係る重ね接合構造1の具体例を、図7A~図7Dを参照しながら以下に説明する。図7A~図7Dは、板部材11が曲げ部及びフランジ部12を有し、フランジ部12において板部材11同士が重ねられ、接合部13(図7A~図7Dでは図示を省略)によって接合されている種々の重ね接合構造1である。いずれの例においても、接合部13の穴131の周囲には硬質部14が設けられているが、硬質部14の形状は様々なものとすることができる。 A specific example of the overlapping joint structure 1 according to the present embodiment described above will be described below with reference to FIGS. 7A to 7D. 7A to 7D, the plate members 11 have a bent portion and a flange portion 12, the plate members 11 are overlapped at the flange portion 12, and are joined by a joint portion 13 (not shown in FIGS. 7A to 7D). Various overlap joint structures 1 are shown below. In either example, the hard part 14 is provided around the hole 131 of the joint part 13, but the shape of the hard part 14 can be varied.

図7Aは、硬質部14がフランジ部12の端部に沿った長方形形状を有し、且つフランジ部12の内部にのみ設けられた例である。 FIG. 7A shows an example in which the hard part 14 has a rectangular shape along the end of the flange part 12 and is provided only inside the flange part 12.

図7Bは、硬質部14がフランジ部12の端部に沿った長方形形状を有し、且つ板部材11の曲げ部を超えて延在する例である。具体的には、図7Bに例示された重ね接合構造1においては、硬質部14は、フランジ部12の内部のみならず、曲げ部を超えてフランジ部12の外部に延伸している。また、硬質部14は、フランジ部12の端部にも及んでいる。 FIG. 7B is an example in which the hard part 14 has a rectangular shape along the edge of the flange part 12 and extends beyond the bent part of the plate member 11. Specifically, in the lap joint structure 1 illustrated in FIG. 7B, the hard portion 14 extends not only inside the flange portion 12 but also beyond the bent portion to the outside of the flange portion 12. The hard portion 14 also extends to the end of the flange portion 12.

図7Cは、硬質部14が曲げ部からフランジ部12の端部に向けて広がる形状を有する例である。図7Dは、硬質部14が角丸長方形形状を有する例である。この場合、硬質部14の間の距離dを求めるためには、硬質部14の内部の穴131の中心同士を結ぶ線と、これら硬質部14の縁との2つの交点の間の距離を測定すればよい。 FIG. 7C is an example in which the hard part 14 has a shape that widens from the bent part toward the end of the flange part 12. FIG. 7D shows an example in which the hard portion 14 has a rounded rectangular shape. In this case, in order to find the distance d between the hard parts 14, measure the distance between the two intersections of the line connecting the centers of the holes 131 inside the hard parts 14 and the edges of these hard parts 14. do it.

なお、本実施形態に係る重ね接合構造1において、全ての穴131の周囲に硬質部14を設ける必要はない。重ね接合構造1において、変形の生じやすさが一様であるとは限らないからである。例えば、変形が特に生じやすく、穴131へのひずみ集中が危惧される箇所においてのみ硬質部14を設け、その他の箇所には硬質部14を設けないこととしてもよい。即ち、一部の穴131の間にのみ硬質部14が設けられた重ね接合構造1も、本実施形態に係る重ね接合構造1に該当する。 Note that in the overlap joint structure 1 according to the present embodiment, it is not necessary to provide the hard portion 14 around all the holes 131. This is because the ease with which deformation occurs is not necessarily uniform in the overlap joint structure 1. For example, the hard portion 14 may be provided only at locations where deformation is particularly likely to occur and strain concentration in the hole 131 is feared, and the hard portion 14 may not be provided at other locations. That is, the overlap joint structure 1 in which the hard portion 14 is provided only between some of the holes 131 also corresponds to the overlap joint structure 1 according to the present embodiment.

本実施形態に係る重ね接合構造1の用途は特に限定されない。重ね接合構造1の好適な用途の一つとして、接合された複数の鋼板から構成される自動車部品、特に自動車骨格部品が挙げられる。自動車骨格部品は、マルテンサイトを含有する高強度鋼板から構成されるので、本実施形態に係る重ね接合構造1を容易に適用することができ、この場合に自動車の衝突安全性を高めるという顕著な効果が得られる。一方、機械的接合手段132及び/又は摩擦撹拌点接合手段によって接合されるあらゆる板部材11に、本実施形態に係る重ね接合構造1を適用することが可能である。例えば、リベット又は高力ボルトによって接合される橋梁部材、及び摩擦撹拌点接合によって接合されるアルミ製鉄道車両構体等に関しても、本実施形態に係る重ね接合構造1を適用することで、破断の抑制が可能であると考えられる。本実施形態に係る重ね接合構造1を、建築用の建具、梁、リンク部材、簡易倉庫、家具、冷蔵庫、テレビ、コピー機、クーラー室外機などの家電及び什器等に適用することも考えられる。 The application of the overlap joint structure 1 according to this embodiment is not particularly limited. One of the preferred uses of the lap joint structure 1 is automobile parts, especially automobile frame parts, which are made up of a plurality of joined steel plates. Since the automobile frame parts are composed of high-strength steel plates containing martensite, the lap joint structure 1 according to the present embodiment can be easily applied, and in this case, the remarkable effect of improving the collision safety of the automobile is possible. Effects can be obtained. On the other hand, it is possible to apply the lap joint structure 1 according to this embodiment to any plate member 11 that is joined by the mechanical joining means 132 and/or the friction stir point joining means. For example, the lap joint structure 1 according to the present embodiment can be applied to bridge members joined by rivets or high-strength bolts, and aluminum railway vehicle structures joined by friction stir point welding, thereby suppressing breakage. is considered possible. It is also possible to apply the stacked joint structure 1 according to the present embodiment to household appliances and fixtures such as architectural fittings, beams, link members, simple warehouses, furniture, refrigerators, televisions, copy machines, and outdoor cooler units.

次に、本発明の別の態様に係る自動車骨格部品について説明する。本実施形態に係る自動車骨格部品は、本実施形態に係る重ね接合構造1を有する自動車骨格部品である。この自動車骨格部品は、例えばAピラー、Bピラー、サイドシル、バンパー、フロアメンバー、フロントサイドメンバー、リアサイドメンバー又はルーフレールである。以下、本実施形態に係る自動車骨格部品の例を説明する。 Next, an automobile frame component according to another aspect of the present invention will be described. The automobile frame component according to the present embodiment is an automobile frame component having the lap joint structure 1 according to the present embodiment. This automobile frame part is, for example, an A-pillar, a B-pillar, a side sill, a bumper, a floor member, a front side member, a rear side member, or a roof rail. Hereinafter, an example of the automobile frame part according to this embodiment will be explained.

図8は、本実施形態に係る自動車骨格部品の一例であるBピラー2の斜視図である。この図においてサイドパネルアウタは省略されている。図8のBピラー2は、穴131を有する機械的接合部13(図示されていない)と、穴131の周囲に設けられた硬質部14とを有する。ただし、一部の穴131の周囲(図8における、点線で囲まれた領域)には、硬質部は設けられていない。これは、車体の側面衝突時の歪みの量はBピラーの部位に応じて異なり、衝突時に穴からの破断が発生しにくい、歪み量の小さい部位には必ずしも硬質部を設ける必要がないとの理由による。 FIG. 8 is a perspective view of a B-pillar 2, which is an example of an automobile frame component according to this embodiment. In this figure, the side panel outer is omitted. The B-pillar 2 in FIG. 8 has a mechanical joint 13 (not shown) having a hole 131 and a hard part 14 provided around the hole 131. However, no hard portion is provided around some of the holes 131 (areas surrounded by dotted lines in FIG. 8). This is because the amount of distortion during a side collision of the vehicle body varies depending on the part of the B-pillar, and it is not necessarily necessary to provide a hard part in parts where the amount of distortion is small and where breakage from the hole is less likely to occur during a collision. Depends on the reason.

図9は、図8のBピラー2のIX-IX断面図である。このBピラー2は、通常の鋼板であるBピラーインナ22と、高強度鋼板であるBピラーリンフォース21と、アルミ又は軟鋼であるサイドパネルアウタ23とから構成される。これらが板部材11に該当し、特にBピラーリンフォース21は主板部材に該当する。Bピラーリンフォース21、Bピラーインナ22、及びサイドパネルアウタ23はその両端で接合され、主板部材に該当するBピラーリンフォース21には硬質部14が設けられている。 FIG. 9 is a sectional view taken along line IX-IX of the B-pillar 2 in FIG. The B-pillar 2 is composed of a B-pillar inner 22 made of a normal steel plate, a B-pillar reinforcement 21 made of a high-strength steel plate, and a side panel outer 23 made of aluminum or mild steel. These correspond to the plate member 11, and in particular, the B pillar reinforcement 21 corresponds to the main plate member. The B-pillar reinforcement 21, the B-pillar inner 22, and the side panel outer 23 are joined at both ends, and the B-pillar reinforcement 21, which corresponds to the main plate member, is provided with a hard portion 14.

図10は、本実施形態に係る自動車骨格部品の一例であるAピラー3及びルーフレール4の斜視図である。図10に示された部品でも、一部の穴131の周囲にのみ硬質部14が設けられる。 FIG. 10 is a perspective view of an A-pillar 3 and a roof rail 4, which are examples of automobile frame parts according to this embodiment. Also in the part shown in FIG. 10, the hard portion 14 is provided only around some of the holes 131.

図11は、図10に示されたルーフレール4のXI-XI断面図である。この自動車骨格部品は、高強度鋼板であるルーフレールインナ42と、高強度鋼板であるルーフレールアウタリンフォース41と、アルミ又は軟鋼であるサイドパネルアウタ43とから構成される。これらが板部材11に該当し、特にルーフレールアウタリンフォース41は主板部材に該当する。ルーフレールインナ42、ルーフレールアウタリンフォース41、及びサイドパネルアウタ43はその両端で接合され、主板部材に該当するルーフレールアウタリンフォース41には硬質部14が設けられている。 FIG. 11 is a sectional view taken along line XI-XI of the roof rail 4 shown in FIG. This automobile frame component is composed of a roof rail inner 42 made of a high-strength steel plate, a roof rail outer reinforcement 41 made of a high-strength steel plate, and a side panel outer 43 made of aluminum or mild steel. These correspond to the plate member 11, and especially the roof rail outer reinforcement 41 corresponds to the main plate member. The roof rail inner 42, the roof rail outer reinforcement 41, and the side panel outer 43 are joined at both ends, and the roof rail outer reinforcement 41, which corresponds to the main plate member, is provided with a hard portion 14.

図12は、本実施形態に係る自動車骨格部品の一例であるBピラーのヒンジリンフォース5の斜視図である。この自動車骨格部品では、ハット状部材52と、ハット状部材の内側に沿って配された高強度鋼板51とが機械的接合手段である接合部13によって接合されており、高強度鋼板の接合部13の穴131の周囲には硬質部14が設けられている。フロアメンバーにも、図12に示される構成を用いることができる。 FIG. 12 is a perspective view of the hinge reinforcement 5 of the B-pillar, which is an example of the automobile frame component according to the present embodiment. In this automobile frame part, a hat-shaped member 52 and a high-strength steel plate 51 arranged along the inside of the hat-shaped member are joined by a joint 13 that is a mechanical joining means, and the high-strength steel plate joint A hard portion 14 is provided around the hole 131 of the hole 13 . The configuration shown in FIG. 12 can also be used for the floor member.

本実施形態に係る重ね接合構造1の説明においては、2枚又は3枚の板部材11を重ね合せた重ね部に接合部を形成した重ね接合構造を例示したが、4枚以上の板部材11を重ね合せてもよい。また、本実施形態に係る重ね接合構造1の説明においては、2枚又は3枚の板部材11のうち1枚の板部材11又は2枚の板部材11に硬質部が形成される場合について説明したが、例えば、4枚以上(複数)の板部材11を重ね合せた重ね部に接合部を形成して、重ね接合構造を構成してもよく、かかる場合、硬質部が形成された板部材11の枚数は、任意に設定することができる。また、板部材11を重ね合せて形成する重ね部をフランジ部とする必要はない。部分補強等を目的として、フランジを有しない板部材11同士を重ね合せて接合する重ね接合構造なども本実施形態に係る重ね接合構造に含まれることはいうまでもない。 In the description of the stacked joint structure 1 according to the present embodiment, a stacked joint structure in which a joint part is formed at the overlapped part where two or three plate members 11 are stacked is illustrated, but four or more plate members 11 may be superimposed. In addition, in the explanation of the overlap joint structure 1 according to the present embodiment, a case where a hard portion is formed in one plate member 11 or two plate members 11 out of two or three plate members 11 will be explained. However, for example, a joint part may be formed in the overlapped part of four or more (plurality) of plate members 11 to form a stacked joint structure, and in such a case, the plate member on which the hard part is formed. The number of 11 sheets can be set arbitrarily. Further, the overlapping portion formed by overlapping the plate members 11 does not need to be a flange portion. It goes without saying that the overlap joint structure according to this embodiment also includes a overlap joint structure in which plate members 11 without flanges are overlapped and joined together for the purpose of partial reinforcement or the like.

図13に示す、板部材A及びBのいずれも硬質部を備えない試料、及び図14に示す、板部材Aのみ硬質部を備える試料を作成した。ここで、図13及び図14の(A)は試料(リベット接合のもの)の平面図であり、図13及び図14の(A)は試料(リベット接合のもの)の側面図である。なお、図14および図15において板部材Aは、幅20mmの平行部と、平行部の両端に設けられた幅35mmの保持部(肩部)とを有する、長さ200mmの板(評点間隔70mm)である。図14および図15において板部材Bは、板部材Aの平行部に重ねられた、幅20mm及び長さ80mmの板である。穴の縁と評点との間の距離は8mmとした。板部材A及び板部材Bの種別は下表の通りとした。 A sample shown in FIG. 13 in which neither plate member A nor B has a hard part, and a sample shown in FIG. 14 in which only plate member A has a hard part were created. Here, (A) in FIGS. 13 and 14 is a plan view of the sample (riveted), and (A) in FIGS. 13 and 14 is a side view of the sample (riveted). Note that in FIGS. 14 and 15, plate member A is a 200 mm long plate (rating interval 70 mm ). In FIGS. 14 and 15, plate member B is a plate having a width of 20 mm and a length of 80 mm, which is stacked on the parallel portion of plate member A. The distance between the edge of the hole and the score was 8 mm. The types of plate member A and plate member B are as shown in the table below.

Figure 0007389315000001
Figure 0007389315000001

図14の試料において、硬質部はレーザ照射によって形成した。レーザ照射条件は以下の通りとした。
・発振機 :半導体レーザ
・レーザ出力:1.0~2.5kW
・速度 :0.3~1.0m/min
・ビーム形状:矩形(幅:10~20mmに調整)
In the sample shown in FIG. 14, the hard portion was formed by laser irradiation. The laser irradiation conditions were as follows.
・Oscillator: Semiconductor laser ・Laser output: 1.0 to 2.5kW
・Speed: 0.3~1.0m/min
・Beam shape: Rectangular (width: adjusted to 10-20mm)

そして、表2の試料No.1~11に引張試験を行い、その破断歪を測定した。測定結果を表2に示す。なお、表2において硬質部「なし」と記載された試料の形状は図13に示されるものとし、その他の試料の形状は図14に示されるものとした。 And sample No. of Table 2. Tensile tests were conducted on samples Nos. 1 to 11, and their breaking strains were measured. The measurement results are shown in Table 2. Note that the shape of the sample described as "no hard part" in Table 2 was as shown in FIG. 13, and the shape of the other samples was as shown in FIG. 14.

Figure 0007389315000002
Figure 0007389315000002

表2に示されるように、硬質部を有しない板部材から構成された重ね接合構造の試料No.1及び8では、図13に破断部Zとして示すように、穴を起点として破断が生じた。一方、硬質部を有する板部材Aを含む重ね接合構造の試料No.2~7、及びNo.9~11では、図14に破断部Zとして示すように、母材から破断が生じた。この結果から、硬質部を設けることによって穴へのひずみ集中が緩和されていることがわかる。参考に、穴から破断が生じたNo.1の引張試験後の写真を図15に示す。 As shown in Table 2, sample No. 1 has a lap joint structure made of plate members without a hard part. In Nos. 1 and 8, the breakage occurred starting from the hole, as shown as a breakage point Z in FIG. On the other hand, sample No. 1 has a lap joint structure including a plate member A having a hard portion. 2 to 7, and No. In No. 9 to No. 11, a break occurred from the base material, as shown as a break Z in FIG. 14. This result shows that the provision of the hard part alleviates the concentration of strain on the hole. For reference, No. 1 in which the break occurred from the hole. A photograph after the tensile test of No. 1 is shown in FIG.

また、表2に示されるように、硬質部を有しない板部材から構成された重ね接合構造の試料No.1及び8と比較して、硬質部を有する板部材Aを含む重ね接合構造の試料No.2~7、及びNo.9~11の方が優れた破断歪を有した。この結果から、硬質部を設けて穴へのひずみ集中を緩和することにより、重ね接合構造の伸びが改善することがわかる。 In addition, as shown in Table 2, sample No. 1 has a lap joint structure composed of plate members without a hard part. In comparison with Sample No. 1 and 8, Sample No. 8 has a lap joint structure including plate member A having a hard portion. 2 to 7, and No. Nos. 9 to 11 had better breaking strain. This result shows that the elongation of the lap joint structure is improved by providing a hard part to alleviate strain concentration in the hole.

本発明によれば、複数の板部材を重ね合せて形成された重ね部を、非溶融接合手段によって接合した場合に、接合部に形成された穴を起点に板部材が破断するのを抑制し、破断するまでの伸びを大きくすることが可能な重ね接合部材の重ね接合構造を提供することができる。例えば、本発明を自動車に適用した場合、その衝突時の乗員保護性能を飛躍的に向上させることができる。従って、本発明は高い産業上の利用可能性を有する。 According to the present invention, when the overlapping portion formed by overlapping a plurality of plate members is joined by a non-melting joining means, the plate member is prevented from breaking starting from the hole formed in the joining portion. , it is possible to provide a lap joint structure of lap joint members that can increase elongation until breakage. For example, when the present invention is applied to an automobile, the occupant protection performance in the event of a collision can be dramatically improved. Therefore, the present invention has high industrial applicability.

1 重ね接合構造
11 板部材
12 フランジ部
13 接合部
131 穴
132 機械的接合手段
132’ ナゲット
133 摩擦撹拌点接合手段
14 硬質部
2 Bピラー
21 Bピラーリンフォース
22 Bピラーインナ
23 サイドパネルアウタ
3 Aピラー
4 ルーフレール
41 ルーフレールアウタリンフォース
42 ルーフレールインナ
43 サイドパネルアウタ
5 ヒンジリンフォース
51 高強度鋼板
52 ハット状部材
X 電極
Y 回転ツール
1 Overlapping joint structure 11 Plate member 12 Flange part 13 Joint part 131 Hole 132 Mechanical joining means 132' Nugget 133 Friction stir point joining means 14 Hard part 2 B pillar 21 B pillar reinforcement 22 B pillar inner 23 Side panel outer 3 A pillar 4 Roof rail 41 Roof rail outer reinforcement 42 Roof rail inner 43 Side panel outer 5 Hinge reinforcement 51 High-strength steel plate 52 Hat-shaped member X Electrode Y Rotating tool

Claims (7)

重ね合わせられた複数の板部材と、
前記複数の板部材の重ね部に設けられた、機械的接合手段又は摩擦撹拌点接合手段によって構成された複数の接合部と、
を備え、
前記複数の接合部は、前記機械的接合手段が挿通される穴、又は摩擦撹拌点接合によって形成された穴を有し、
前記複数の板部材のうち1枚以上において、前記穴の周囲に硬質部が設けられており、
前記硬質部は、前記板部材の一部となっており、かつ、前記板部材の板厚方向の全体に亘って設けられており、
前記穴が、前記複数の板部材のうち1枚以上を貫通することを特徴とする重ね接合構造。
A plurality of overlapping plate members,
A plurality of joints formed by mechanical joining means or friction stir point joining means provided at the overlapped portions of the plurality of plate members;
Equipped with
The plurality of joints have a hole through which the mechanical joint means is inserted, or a hole formed by friction stir point welding,
A hard part is provided around the hole in one or more of the plurality of plate members,
The hard part is a part of the plate member and is provided over the entire thickness direction of the plate member,
The stacked joint structure is characterized in that the hole passes through one or more of the plurality of plate members .
前記穴の縁と、前記穴の周囲の前記硬質部の縁との間の最短距離D、
前記穴の径K、
前記硬質部のビッカース硬さH1、及び
前記硬質部が設けられた前記板部材のビッカース硬さH2
が、式1を満たすことを特徴とする請求項1に記載の重ね接合構造。
D≧K×H2/{2×(H1-H2)} (式1)
the shortest distance D between the edge of the hole and the edge of the hard part around the hole;
The diameter K of the hole,
Vickers hardness H1 of the hard part; and Vickers hardness H2 of the plate member provided with the hard part.
The lap joint structure according to claim 1, wherein: satisfies formula 1.
D≧K×H2/{2×(H1-H2)} (Formula 1)
複数の前記硬質部の間の距離d、及び前記穴の径Kが式2を満たすことを特徴とする請求項1又は2に記載の重ね接合構造。
d≧2×K (式2)
The overlapping joint structure according to claim 1 or 2, wherein a distance d between the plurality of hard parts and a diameter K of the hole satisfy Expression 2.
d≧2×K (Formula 2)
前記硬質部が設けられた板部材が、引張強さが1180MPa以下の鋼板であることを特徴とする請求項1~のいずれか一項に記載の重ね接合構造。 The lap joint structure according to any one of claims 1 to 3 , wherein the plate member provided with the hard portion is a steel plate having a tensile strength of 1180 MPa or less. 前記硬質部が、板厚と引張強さとの積が最も大きい主板部材に設けられることを特徴とする請求項1~のいずれか一項に記載の重ね接合構造。 The overlap joint structure according to any one of claims 1 to 4 , wherein the hard portion is provided on the main plate member having the largest product of plate thickness and tensile strength. 請求項1~のいずれか一項に記載の重ね接合構造を有する自動車骨格部品。 An automobile frame component having the lap joint structure according to any one of claims 1 to 5 . Aピラー、Bピラー、サイドシル、フロアメンバー、バンパー、フロントサイドメンバー、リアサイドメンバー、バッテリーフレーム、又はルーフレールであることを特徴とする請求項に記載の自動車骨格部品。 The automobile frame part according to claim 6 , which is an A-pillar, a B-pillar, a side sill, a floor member, a bumper, a front side member, a rear side member, a battery frame, or a roof rail.
JP2019060342A 2019-03-27 2019-03-27 Lap joint structure and automobile frame parts Active JP7389315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060342A JP7389315B2 (en) 2019-03-27 2019-03-27 Lap joint structure and automobile frame parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060342A JP7389315B2 (en) 2019-03-27 2019-03-27 Lap joint structure and automobile frame parts

Publications (2)

Publication Number Publication Date
JP2020159488A JP2020159488A (en) 2020-10-01
JP7389315B2 true JP7389315B2 (en) 2023-11-30

Family

ID=72642562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060342A Active JP7389315B2 (en) 2019-03-27 2019-03-27 Lap joint structure and automobile frame parts

Country Status (1)

Country Link
JP (1) JP7389315B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230137468A (en) * 2021-03-23 2023-10-04 제이에프이 스틸 가부시키가이샤 Elements for friction welding
JP2022154578A (en) * 2021-03-30 2022-10-13 川崎重工業株式会社 Joint structure and jointing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195109A (en) 2010-03-23 2011-10-06 Honda Motor Co Ltd Vehicle body side structure
WO2015119159A1 (en) 2014-02-06 2015-08-13 新日鐵住金株式会社 Lap-welding method, lap joint, production method for lap joint, and automotive part

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926087Y2 (en) * 1976-09-08 1984-07-30 株式会社東芝 Installation equipment for synthetic resin boards for markings
JPH10251743A (en) * 1997-03-14 1998-09-22 Mitsubishi Motors Corp Method for strengthening bolt or rivet hole of steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195109A (en) 2010-03-23 2011-10-06 Honda Motor Co Ltd Vehicle body side structure
WO2015119159A1 (en) 2014-02-06 2015-08-13 新日鐵住金株式会社 Lap-welding method, lap joint, production method for lap joint, and automotive part

Also Published As

Publication number Publication date
JP2020159488A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US10549388B2 (en) Method of welding overlapped portion, method of manufacturing overlap-welded member, overlap-welded member, and automotive part
EP1806200A1 (en) Method for bonding iron-based member with aluminum-based member
Gould Joining aluminum sheet in the automotive industry—A 30 year history
JP7370150B2 (en) Lap joint structure and automobile frame parts
JP6079466B2 (en) Lap welded member of high strength steel plate and method for producing the same
JP5629244B2 (en) Dissimilar material joining member, dissimilar material joining method
WO2019088207A1 (en) Overlapping bonded structure
JP7389315B2 (en) Lap joint structure and automobile frame parts
Zvorykina et al. Dissimilar metal joining of aluminum to steel by hybrid process of adhesive bonding and projection welding using a novel insert element
Abe et al. Rectangular shear clinching for joining of ultra-high strength steel sheets
JP2006198675A (en) Mounting structure of steel-made member for car and aluminum alloy-made member
Kapil et al. A new approach for dissimilar aluminum-steel impact spot welding using vaporizing foil actuators
Meinhardt et al. Analysing resistance element welding with upset auxiliary joining steel-elements under shear load
JP2020159489A (en) Stacked-joint structure and automobile frame component
Furusako et al. Current Problems and the Answer Techniques in Welding Technique of Auto Bodies—First Part
JP2007283313A (en) Joined body of dissimilar materials
Babalo et al. High speed circular hemming; a novel joining process for thin and low-ductile sheets
WO2020196566A1 (en) Joint structure, automobile part, and method for manufacturing joint structure
Başer Resistance spot welding of Zn-coated third generation automotive steels using mid-frequency direct current technology
US11590601B2 (en) Method of joining steel work-pieces having different gauge ratios
Suzuki et al. Dissimilar metals Joining Process using GMAW has High strength and One side access characteristic, and the Automation robot system
WO2007063646A1 (en) Bonded object of different materials
Spišák et al. Alternative joining methods in car body production
JP2020151757A (en) Welded structure and its manufacturing method
Psyk et al. Incremental magnetic pulse welding of dissimilar sheet metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230815

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7389315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151