JP2020158960A - Reinforcing structure of dam body - Google Patents

Reinforcing structure of dam body Download PDF

Info

Publication number
JP2020158960A
JP2020158960A JP2019056067A JP2019056067A JP2020158960A JP 2020158960 A JP2020158960 A JP 2020158960A JP 2019056067 A JP2019056067 A JP 2019056067A JP 2019056067 A JP2019056067 A JP 2019056067A JP 2020158960 A JP2020158960 A JP 2020158960A
Authority
JP
Japan
Prior art keywords
embankment
continuous wall
underground continuous
steel underground
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019056067A
Other languages
Japanese (ja)
Other versions
JP7320362B2 (en
Inventor
森 及川
Mori Oikawa
森 及川
典佳 原田
Noriyoshi Harada
典佳 原田
裕章 中山
Hiroaki Nakayama
裕章 中山
輝樹 西山
Teruki Nishiyama
輝樹 西山
嵩 籾山
Takashi Momiyama
嵩 籾山
健郎 吉原
Tateo Yoshihara
健郎 吉原
忠 原
Tadashi Hara
忠 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kochi University NUC
Nippon Steel Corp
Original Assignee
Kyushu University NUC
Kochi University NUC
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kochi University NUC, Nippon Steel Corp filed Critical Kyushu University NUC
Priority to JP2019056067A priority Critical patent/JP7320362B2/en
Publication of JP2020158960A publication Critical patent/JP2020158960A/en
Application granted granted Critical
Publication of JP7320362B2 publication Critical patent/JP7320362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Revetment (AREA)

Abstract

To provide a reinforcing structure of a dam body capable of suppressing seepage destruction of the dam body, suppressing slide of the dam body by minimizing occurrence of liquefaction inside the dam body, and capable of preventing degradation or dissipation of reinforcement effect causing serious damages.SOLUTION: A dam body 10 has a high impervious part 15 along an upstream slope face 10b, having higher imperviousness than other parts of the dam body 10 and having a predetermined width along the width direction of the dam body 10. A steel-made continuous underground wall 20 is provided in the dam body 10 along the extended direction of the dam body 10. The steel-made continuous underground wall 20 penetrates vertically the high impervious part 15, and an upper end thereof is aligned to an upper surface 10a of the dam body 10, and a lower end is set in a foundation ground S positioned under the dam body.SELECTED DRAWING: Figure 2

Description

本発明は、堤体の補強構造に関する。 The present invention relates to a reinforcing structure of a bank body.

近年、大規模な地震や局所的な集中豪雨に伴い河川堤防やため池堤防の決壊が多数発生しており、また幾つかの大規模地震の発生や気候変動による激甚化災害が想定されていることから、堤体の耐震補強が重要性を増している。 In recent years, many river embankments and reservoir embankments have collapsed due to large-scale earthquakes and localized torrential rains, and several large-scale earthquakes and severe disasters due to climate change are expected. Therefore, seismic reinforcement of the levee body is becoming more important.

このような背景を踏まえ、これまでに鋼矢板を用いた堤防(堤体)の補強技術が提案されている(例えば特許文献1〜4、非特許文献1参照)。
特許文献1に記載の堤体の耐震性能補強構造では、アースフィルダム又はため池等の盛土された堤体のほぼ中央部分の長手方向に2列縦列に鋼矢板で形成された補強用板状体を埋設し、該両補強用板状体の上端部を所定間隔毎に連結部材により連結する二重締切り構造としている。
特許文献2に記載の盛土構造物の液状化対策工法では、盛土構造物の両裾野部付近に連続地中壁を構築し、該連続地中壁の頭部と前記盛土構造物の下部へ向かって斜め下方に配されたアースアンカーとを締結している。
特許文献3に記載の盛土の補強構造では、のり尻を除く盛土の内部に盛土を貫通し、支持地盤に根入れされる深さを持つ少なくとも1列の矢板壁を盛土の長さ方向に連続的に設置し、盛土を構成する地盤中に矢板壁と、矢板壁で締め切られた地盤からなる構造骨格部を形成している。
特許文献4に記載の盛土の補強構造では、連続する盛土の略天端の範囲内に、地中鋼製壁体が前記盛土の連続方向に沿って一列以上設けられ、前記地中鋼製壁体は、支持層より浅い深さで、かつ、地震時や越水時に前記地中鋼製壁体が倒壊しない深さまで根入れされている。
非特許文献1には、堤体内に、堤体の他の部分より遮水性が高く、かつ所定の幅を有する遮水ゾーンを上流側の堤体法面に沿って設けることが記載されている。
Based on this background, techniques for reinforcing embankments (embankments) using steel sheet piles have been proposed (see, for example, Patent Documents 1 to 4 and Non-Patent Documents 1).
In the seismic performance reinforcement structure of the embankment body described in Patent Document 1, a reinforcing plate-like body formed of steel sheet piles in two rows in the longitudinal direction of the substantially central portion of the embankment embankment such as an earth fill dam or a reservoir is provided. It is buried and has a double cutoff structure in which the upper ends of both reinforcing plate-like bodies are connected by connecting members at predetermined intervals.
In the liquefaction countermeasure construction method for the embankment structure described in Patent Document 2, a continuous underground wall is constructed near both skirts of the embankment structure, and the head of the continuous underground wall and the lower part of the embankment structure are directed. It is fastened to the earth anchor arranged diagonally downward.
In the reinforcement structure of the embankment described in Patent Document 3, at least one row of sheet pile walls having a depth rooted in the supporting ground is continuously formed in the length direction of the embankment by penetrating the embankment inside the embankment excluding the glue edge. A structural skeleton consisting of a sheet pile wall and the ground closed by the sheet pile wall is formed in the ground that constitutes the embankment.
In the reinforcement structure of the embankment described in Patent Document 4, one or more rows of underground steel wall bodies are provided along the continuous direction of the embankment within the range of the substantially top end of the continuous embankment, and the underground steel wall is provided. The body is rooted to a depth shallower than the support layer and to a depth at which the underground steel wall body does not collapse in the event of an earthquake or flood.
Non-Patent Document 1 describes that a water-impervious zone having a predetermined width and higher water-shielding property than other parts of the bank body is provided in the bank body along the slope of the bank body on the upstream side. ..

特開2003−321826号公報Japanese Unexamined Patent Publication No. 2003-321826 特開平11−1926号公報Japanese Unexamined Patent Publication No. 11-1926 特開2003−13451号公報Japanese Unexamined Patent Publication No. 2003-13451 特開2012−7394号公報Japanese Unexamined Patent Publication No. 2012-7394

土地改良事業設計指針「ため池整備」(H27年5月)/農林水産省農村振興局整備部監修,公益社団法人農業農村工学会発行Land improvement project design guideline "Reservoir maintenance" (May 2015) / Supervised by the Development Department, Rural Promotion Bureau, Ministry of Agriculture, Forestry and Fisheries, published by Agricultural and Rural Engineering Association

ところで、ため池などの常時に貯水機能を有する堤体被災の原因の一つとして、浸透破壊がある。この浸透破壊が生じるのは、常時満水位から堤体上部のため池側(貯水側または上流側)の上流法面が、浸透破壊の原因となる堤体内部への漏水侵入口となるからである。堤体の上流法面においては、貯水位の上下動による乾湿繰り返し、貯水側への土粒子吸出、波浪による浸食を長期間受け、堤体の地盤強度が低下し、水位上昇により水圧が作用した場合、堤体が局所的に損傷したり破壊することがある。また、集中豪雨などによる水位の急上昇や堤体内部への水分供給も漏水の要因となり得る。堤体が損傷したり破壊すると、ため池の貯留水をせき止めることが困難となる。
また、地震等によってため池の堤体内部に液状化が生じると、堤体のせん断強度が失われて堤体にすべりが生じ、これによって堤体が損傷したり崩壊する虞がある。
By the way, osmosis fracture is one of the causes of damage to the embankment, which has a water storage function at all times, such as a pond. This infiltration fracture occurs because the upstream slope on the pond side (water storage side or upstream side) from the full water level to the upper part of the embankment becomes a water leakage entry port into the inside of the embankment that causes infiltration fracture. .. On the upstream slope of the embankment, the water pressure repeatedly decreased due to the vertical movement of the water storage level, the soil particles were sucked out to the water storage side, and erosion was caused by waves for a long period of time. In that case, the embankment body may be locally damaged or destroyed. In addition, a sudden rise in water level due to torrential rain and water supply to the inside of the embankment can also cause water leakage. If the embankment is damaged or destroyed, it becomes difficult to dam the reservoir water.
In addition, when liquefaction occurs inside the basin of the reservoir due to an earthquake or the like, the shear strength of the basin is lost and the basin slips, which may damage or collapse the basin.

上述した非特許文献1に記載の技術では、地震時に堤体または堤体直下の基礎地盤が液状化して、堤体天端が沈下したり、損傷すると、ため池内の溢れ出た貯留水をせき止めることはできない。
特許文献1に記載の技術では、堤体のほぼ中央部分の長手方向に2列縦列に補強用板状体を埋設し、補強用板状体の上端部を所定間隔毎に連結部材により連結しているが、浸透破壊の起点となる上流法面からの浸透を防ぐことはできない。
また、補強用板状体が2列必要であるため、工事費用が高価となるとともに、堤体に液状化が生じると堤体にすべりが生じ、堤体が損傷する虞がある。
特許文献2に記載の技術では、浸透破壊の起点となる上流法面からの浸透を防ぐことはできない。また堤体の内部に地中連続壁が存在しないので、堤体に液状化が生じて堤体が損傷した場合には、貯留水をせき止めることは不可能である。
特許文献3および4に記載の技術では、浸透破壊の起点となる上流法面からの浸透を防ぐことはできない。また、1列の壁体で堤体を補強できるが、堤体に液状化が生じると堤体にすべりが生じ、堤体が損傷する虞がある。
特許文献1、3および4に記載のように、ため池の盛土された堤体を地中連続壁で補強した場合、設置場所によっては、堤体内に液状化の発生の可能性があって補強効果が低下または消失する可能性があり、このような可能性を考慮した技術は存在しない。
In the technique described in Non-Patent Document 1 described above, when the embankment or the foundation ground directly under the embankment is liquefied during an earthquake and the top of the embankment sinks or is damaged, the overflowing stored water in the reservoir is dammed up. It is not possible.
In the technique described in Patent Document 1, reinforcing plate-shaped bodies are embedded in two rows and columns in the longitudinal direction of a substantially central portion of the bank body, and the upper ends of the reinforcing plate-shaped bodies are connected by connecting members at predetermined intervals. However, it is not possible to prevent infiltration from the upstream slope, which is the starting point of infiltration failure.
In addition, since two rows of reinforcing plate-like bodies are required, the construction cost becomes high, and if the bank body is liquefied, the bank body may slip and the bank body may be damaged.
The technique described in Patent Document 2 cannot prevent permeation from the upstream slope, which is the starting point of permeation fracture. Moreover, since there is no continuous underground wall inside the embankment, it is impossible to dam the stored water when the embankment is liquefied and the embankment is damaged.
The techniques described in Patent Documents 3 and 4 cannot prevent permeation from the upstream slope, which is the starting point of permeation fracture. Further, although the bank body can be reinforced with one row of wall bodies, if the bank body is liquefied, the bank body may slip and the bank body may be damaged.
As described in Patent Documents 1, 3 and 4, when the embankment embankment of the reservoir is reinforced with an underground continuous wall, liquefaction may occur inside the embankment depending on the installation location, and the reinforcement effect. There is a possibility that the amount will decrease or disappear, and there is no technology that takes this possibility into consideration.

本発明は、前記事情に鑑みてなされたもので、ため池の近傍に設けられた堤体の浸透破壊を抑止できるとともに、堤体の内部における水位面を低下させることで、堤体自体の強度を上げ、液状化の発生を最小限とし、また地中連続壁自体の剛性で堤体が更に補強されることで堤体のすべりを抑制し、補強効果の低下または消失を防ぐことができる堤体の補強構造を提供することを目的とする。 The present invention has been made in view of the above circumstances, and can suppress the infiltration failure of the embankment body provided in the vicinity of the reservoir, and lower the water level inside the embankment body to increase the strength of the embankment body itself. Reservoir, liquefaction is minimized, and the rigidity of the continuous underground wall itself further reinforces the embankment, which suppresses slippage of the embankment and prevents the reinforcement effect from decreasing or disappearing. It is intended to provide a reinforcing structure for.

前記目的を達成するために、本発明の堤体の補強構造は、ため池の外周の少なくとも一部に設けられた堤体を補強する堤体の補強構造であって、
前記堤体を挟んで前記ため池側を上流側とすると、
前記堤体は、前記上流側の前記堤体の上流法面に沿って、前記堤体の他の部分より遮水性が高く、かつ前記堤体の幅方向に沿って所定の幅を有する高遮水性部分を有し、
前記堤体に鋼製地中連続壁が前記堤体の延在方向に沿って設けられ、
前記鋼製地中連続壁は、前記高遮水性部分を上下に貫通するとともに、上端が前記堤体の天端に揃えられ、下端が前記堤体または当該堤体の下方に位置する基礎地盤に設置されていることを特徴とする。
In order to achieve the above object, the reinforcing structure of the bank body of the present invention is a reinforcing structure of the bank body provided at least a part of the outer periphery of the reservoir and reinforcing the bank body.
Assuming that the reservoir side is the upstream side across the bank body,
The embankment has a higher water impermeability than other parts of the embankment along the upstream slope of the embankment on the upstream side, and has a predetermined width along the width direction of the embankment. Has an aqueous part,
A steel underground continuous wall is provided on the bank body along the extending direction of the bank body.
The steel underground continuous wall penetrates the highly impermeable portion up and down, and the upper end is aligned with the top end of the embankment body, and the lower end is on the embankment body or the foundation ground located below the embankment body. It is characterized by being installed.

ここで鋼製地中連続壁としては、鋼矢板を複数連結してなるものが好適に使用されるが、これに限るものではない。例えば、鋼管矢板を複数連結してなるものや、鋼矢板と鋼管矢板を複数連結してなるものを使用してもよい。
また、「鋼製地中連続壁の上端が堤体の天端に揃えられ」とは、鋼製地中連続壁の上端が堤体の天端から上方または下方に1m以内の範囲に位置していることを含む。
また、高遮水性部分は、例えば、刃金土などの通常の地盤材料より遮水性の高い遮水性地盤材料によって形成される。このような高遮水性部分は、堤体に既設で設けられている場合が多いが、堤体に新設で設けてもよい。
Here, as the steel underground continuous wall, one in which a plurality of steel sheet piles are connected is preferably used, but the present invention is not limited to this. For example, one in which a plurality of steel pipe sheet piles are connected, or one in which a plurality of steel sheet piles and steel pipe sheet piles are connected may be used.
In addition, "the upper end of the continuous steel underground wall is aligned with the top of the embankment" means that the upper end of the continuous steel underground wall is located within 1 m above or below the top of the embankment. Including that.
Further, the highly water-impervious portion is formed of a water-impervious ground material having a higher water-impervious property than a normal ground material such as a blade metal soil. In many cases, such a highly impermeable portion is already provided on the embankment body, but it may be newly provided on the embankment body.

本発明においては、鋼製地中連続壁は、堤体の上流法面に沿って、堤体の他の部分より遮水性が高く、かつ堤体の幅方向に沿って所定の幅を有する高遮水性部分を上下に貫通するともに、上端が堤体の天端付近に揃えられ、下端が堤体または当該堤体の下方に位置する基礎地盤に設置されているので、上流法面から水平方向に浸透してきた水は鋼製地中連続壁で遮水されて下方に向かう。したがって、高遮水性部分と鋼製地中連続壁で流水量差を形成して、鋼製地中連続壁の背後(下流側)の堤体内で確実に先に排水させ、堤体内の水位を下げることができる。
このように、鋼製地中連続壁より内側(下流側)の堤体内部における地盤の地下水位を低下させることができるので、堤体の地震時のせん断強度を確保して、堤体内の有効応力を低下させず、堤体全体における液状化の発生を最小限とすることができ、鋼製地中連続壁自体の剛性と確保された堤体自体のせん断剛性により堤体のすべりを抑制し、甚大な被害を引き起こす要因となる補強効果の低下または消失を防ぐことができる。
In the present invention, the steel underground continuous wall has a higher water impermeability than other parts of the embankment along the upstream slope of the embankment and has a predetermined width along the width direction of the embankment. It penetrates the water-impervious part up and down, the upper end is aligned near the top of the embankment, and the lower end is installed on the embankment or the foundation ground located below the embankment, so it is horizontal from the upstream slope. The water that has permeated into the water is blocked by a continuous wall in the steel ground and heads downward. Therefore, a difference in the amount of water flow is formed between the highly impermeable portion and the continuous steel underground wall, and the water level in the embankment is raised by ensuring that the water is drained first in the embankment behind (downstream side) the steel underground continuous wall. Can be lowered.
In this way, it is possible to lower the ground ground water level inside the embankment body inside (downstream side) from the continuous steel underground wall, so that the shear strength of the embankment body during an earthquake can be ensured and it is effective inside the embankment body. It is possible to minimize the occurrence of liquefaction in the entire embankment without reducing the stress, and the rigidity of the continuous steel underground wall itself and the shear rigidity of the secured embankment itself suppress the slip of the embankment. , It is possible to prevent a decrease or disappearance of the reinforcing effect, which is a factor causing great damage.

また、堤体の上流法面から水平方向に浸透してきた水は鋼製地中連続壁で遮水されて下方に向かうので、つまり鋼製地中連続壁に止水性能を担保させることで、堤体内の水流をコントロールし鋼製地中連続壁面近傍において下向きに方向転換して、動水勾配を低減できるので、堤体内のパイピングを抑制して、堤体の浸透破壊を抑止できるとともに、貯留水が常に存在しているため池であっても、工事費用を安価に留めつつ堤体の安定性を確保することができる。
また、鋼製地中連続壁を堤体の幅方向において1列とすることによって、工期・工費を抑制することができる。
In addition, the water that has permeated horizontally from the upstream slope of the embankment is blocked by the continuous steel underground wall and heads downward, that is, by ensuring the water blocking performance of the continuous steel underground wall. By controlling the water flow inside the embankment and turning downward near the continuous wall surface in the steel ground, the hydraulic gradient can be reduced, so piping inside the embankment can be suppressed, osmotic destruction of the embankment can be suppressed, and storage can be performed. Even in a pond where water is always present, the stability of the embankment can be ensured while keeping the construction cost low.
Further, by arranging the continuous steel underground walls in a row in the width direction of the bank body, the construction period and construction cost can be suppressed.

また、本発明の前記構成において、前記鋼製地中連続壁の透水係数をks(cm/s)、前記高遮水性部分の透水係数をka(cm/s)、前記鋼製地中連続壁の厚さをc(cm)、前記鋼製地中連続壁が前記高遮水性部分を貫通する深度における前記高遮水性部分の幅をa(cm)とすると、
前記鋼製地中連続壁の前記高遮水性部分への貫通長さb(cm)が、下記(1)式を満たしてもよい。

Figure 2020158960
Further, in the configuration of the present invention, the hydraulic conductivity of the steel underground continuous wall is ks (cm / s), the hydraulic conductivity of the highly impermeable portion is ka (cm / s), and the steel underground continuous wall. Is c (cm), and the width of the highly impermeable portion at the depth at which the steel underground continuous wall penetrates the highly impermeable portion is a (cm).
The penetration length b (cm) of the steel underground continuous wall to the highly impermeable portion may satisfy the following equation (1).
Figure 2020158960

このような構成によれば、鋼製地中連続壁の前記高遮水性部分への貫通長さb(cm)を、鋼製地中連続壁の透水係数ks(cm/s)、高遮水性部分の透水係数ka(cm/s)、鋼製地中連続壁の厚さc(cm)、鋼製地中連続壁が高遮水性部分を貫通する深度における高遮水性部分の幅a(cm)に基づいて設定できる。 According to such a configuration, the penetration length b (cm) of the continuous steel underground wall to the highly impermeable portion is determined by the water permeability coefficient ks (cm / s) of the continuous steel underground wall and the high water impermeability. Water permeability coefficient ka (cm / s) of the part, thickness c (cm) of the steel underground continuous wall, width a (cm) of the high water-impervious part at the depth at which the steel underground continuous wall penetrates the high-water-impervious part. ) Can be set.

また、本発明の前記構成において、前記鋼製地中連続壁の前記高遮水性部分への貫通長さをb(cm)、前記鋼製地中連続壁の厚さをc(cm)、前記鋼製地中連続壁が前記高遮水性部分を貫通する深度における前記高遮水性部分の幅をa(cm)、前記高遮水性部分の透水係数をka(cm/s)とすると、
前記鋼製地中連続壁の透水係数ks(cm/s)が、下記(2)式を満たしてもよい。

Figure 2020158960
Further, in the configuration of the present invention, the penetration length of the steel underground continuous wall to the highly water-impervious portion is b (cm), the thickness of the steel underground continuous wall is c (cm), and the above. Assuming that the width of the highly impermeable portion at the depth at which the steel underground continuous wall penetrates the highly impermeable portion is a (cm) and the water permeability coefficient of the highly impermeable portion is ka (cm / s).
The hydraulic conductivity ks (cm / s) of the steel underground continuous wall may satisfy the following equation (2).
Figure 2020158960

このような構成によれば、鋼製地中連続壁の透水係数ks(cm/s)を、鋼製地中連続壁の高遮水性部分への貫通長さb(cm)、鋼製地中連続壁の厚さをc(cm)、鋼製地中連続壁が高遮水性部分を貫通する深度における高遮水性部分の幅a(cm)、高遮水性部分の透水係数ka(cm/s)に基づいて設定できる。 According to such a configuration, the water permeability coefficient ks (cm / s) of the continuous steel underground wall is set to the penetration length b (cm) of the continuous steel underground wall to the highly impermeable portion, and the steel underground. The thickness of the continuous wall is c (cm), the width of the highly impermeable portion at the depth at which the continuous steel underground wall penetrates the highly impermeable portion, and the water permeability coefficient ka (cm / s) of the highly impermeable portion. ) Can be set.

また、本発明の前記構成において、前記鋼製地中連続壁のうち、前記高遮水性部分を貫通している部分より下方の部分の少なくとも一部が透水性を有していてもよい。 Further, in the configuration of the present invention, at least a part of the steel underground continuous wall below the portion penetrating the highly impermeable portion may have water permeability.

このような構成によれば、鋼製地中連続壁のうち、高遮水性部分を貫通している部分より下方の部分の少なくとも一部が透水性を有しているので、高遮水性部分より下方の堤体下部地盤やその下方の軟弱層となっている地盤において、水流による水圧上昇を抑え有効応力低下を抑止できる。
また、高遮水性部分を支える下部地盤において、地盤の有効応力の低下を限定的に抑えることができるため、高遮水性部分の崩壊を防止できる。
さらに、堤体より下方の下部自然地盤における地下水流を阻害することがない。
According to such a configuration, at least a part of the continuous steel underground wall below the portion penetrating the highly impermeable portion has water permeability, so that the portion is more permeable than the highly impermeable portion. In the lower ground below the embankment and the soft layer below it, the increase in water pressure due to water flow can be suppressed and the decrease in effective stress can be suppressed.
Further, in the lower ground supporting the highly impermeable portion, the decrease in the effective stress of the ground can be suppressed to a limited extent, so that the collapse of the highly impermeable portion can be prevented.
Furthermore, it does not obstruct the groundwater flow in the lower natural ground below the bank body.

本発明によれば、堤体の浸透破壊を抑止できるとともに、堤体の内部における液状化の発生を最小限とすることで、堤体のすべりを抑制し、補強効果の低下または消失を防ぐことができる。 According to the present invention, it is possible to suppress the permeation fracture of the embankment body and minimize the occurrence of liquefaction inside the embankment body to suppress the slippage of the embankment body and prevent the reduction or disappearance of the reinforcing effect. Can be done.

本発明の実施の形態に係る堤体の補強構造を模式的に示すもので、概略斜視図である。The reinforcing structure of the embankment body which concerns on embodiment of this invention is schematically shown, and is the schematic perspective view. 同、(A)は堤体の横断面図、(B)は高遮水性部分の流水量を説明するための図である。In the same, (A) is a cross-sectional view of the bank body, and (B) is a view for explaining the amount of water flowing in the highly impermeable portion. 堤体に鋼製地中連続壁を設けることの意義について説明するための模式図である。It is a schematic diagram for demonstrating the significance of providing a steel underground continuous wall in a bank body. 高遮水性部分を有する堤体に鋼製地中連続壁を設けることの意義について説明するための模式図である。It is a schematic diagram for demonstrating the significance of providing a steel underground continuous wall in a bank body having a highly water-impervious part. 本発明の実施の形態に係る堤体の補強構造に使用される鋼製地中連続壁を示す斜視図である。It is a perspective view which shows the steel underground continuous wall used for the reinforcement structure of the embankment body which concerns on embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態について説明する。
図1は実施の形態に係る堤体の補強構造を模式的に示す概略図、図2は堤体と地盤の横断面図である。
まず、本実施の形態を説明する前に、ため池の堤体に鋼製地中連続壁を設けることの意義について説明する。
図3(a)〜図3(d)に示すように、堤体10の左側を上流側とすると、堤体10の上流側にため池11があり、このため池11の貯留水の一部が堤体10の上流側の上流法面10bから堤体10の内部に次第に浸透していく。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view schematically showing a reinforcing structure of a bank body according to an embodiment, and FIG. 2 is a cross-sectional view of the bank body and the ground.
First, before explaining the present embodiment, the significance of providing a continuous steel underground wall on the bank body of the pond will be described.
As shown in FIGS. 3A to 3D, assuming that the left side of the bank body 10 is the upstream side, there is a reservoir 11 on the upstream side of the bank body 10, and a part of the stored water of the reservoir 11 is a bank. It gradually penetrates into the inside of the bank body 10 from the upstream slope 10b on the upstream side of the body 10.

図3(a)に示すように、堤体10の天端10aの幅方向(図3(a)において左右方向)の中央部から鋼製地中連続壁20を鉛直に打設し、その下端を堤体10の直下に位置する基礎地盤12まで根入れするとともに上端を天端10aに揃えた場合、堤体10の内部において鋼製地中連続壁20より上流側の地盤中の水が飽和して液状化し易くなる。なお、以下では液状化範囲を薄墨で表現し、図3(a)では液状化範囲をL1で示す。一方、鋼製地中連続壁20より下流側の地盤には、天端10aから降雨が浸透するが、鋼製地中連続壁20より下流側に、当該降雨による浸透水の堤体外への排出を妨げるものがなく、液状化範囲とはならない。
これに対して、図3(b)に示すように、鋼製地中連続壁20を堤体10の天端10aの上流側の端部近傍(上流側の法肩近傍)から打設した場合、堤体10の内部において鋼製地中連続壁20より上流側の地盤の体積が図3(a)の場合に比して小さくなるため、液状化範囲L2を液状化範囲L1より減少させることができる。
一方、図3(c)に示すように、鋼製地中連続壁20を堤体10の天端10aの下流側の端部近傍(下流側の法肩近傍)から打設した場合、堤体10の内部において鋼製地中連続壁20より上流側の地盤の体積が図3(a)の場合に比して大きくなるため、液状化範囲L3が液状化範囲L1より増大し問題となる。
また、図3(d)に示すように、鋼製地中連続壁20を堤体10の上流法面10bの上下方向略中央部から打設した場合、堤体10の内部において鋼製地中連続壁20より上流側の地盤の体積が図3(b)の場合に比して小さくなるため、液状化範囲L4を液状化範囲L2よりさらに減少させることができるが、鋼製地中連続壁20が上流法面10bから突出しているので、ため池11の貯水量が減少するという問題がある。
As shown in FIG. 3A, a steel underground continuous wall 20 is vertically driven from the central portion in the width direction (horizontal direction in FIG. 3A) of the top end 10a of the bank body 10, and the lower end thereof. When the foundation ground 12 located directly below the embankment body 10 is rooted and the upper end is aligned with the top end 10a, the water in the ground upstream of the steel underground continuous wall 20 is saturated inside the embankment body 10. It becomes easy to liquefy. In the following, the liquefaction range is represented by light ink, and in FIG. 3A, the liquefaction range is indicated by L1. On the other hand, the ground downstream of the steel underground continuous wall 20 is infiltrated with rainfall from the top 10a, but the infiltrated water due to the rainfall is discharged to the outside of the embankment on the downstream side of the steel underground continuous wall 20. There is nothing to prevent it, and it does not fall within the liquefaction range.
On the other hand, as shown in FIG. 3B, when the steel underground continuous wall 20 is driven from the vicinity of the upstream end of the top end 10a of the embankment 10 (near the upstream side of the shoulder). Since the volume of the ground on the upstream side of the steel underground continuous wall 20 inside the embankment 10 is smaller than that in the case of FIG. 3A, the liquefaction range L2 should be reduced from the liquefaction range L1. Can be done.
On the other hand, as shown in FIG. 3C, when the steel underground continuous wall 20 is driven from the vicinity of the downstream end of the top end 10a of the embankment 10 (near the downstream side of the shoulder), the embankment body Since the volume of the ground on the upstream side of the steel underground continuous wall 20 inside 10 is larger than that in the case of FIG. 3A, the liquefaction range L3 is larger than the liquefaction range L1 and causes a problem.
Further, as shown in FIG. 3D, when the steel underground continuous wall 20 is driven from the substantially central portion in the vertical direction of the upstream slope 10b of the bank body 10, the steel ground is inside the bank body 10. Since the volume of the ground on the upstream side of the continuous wall 20 is smaller than that in the case of FIG. 3B, the liquefaction range L4 can be further reduced from the liquefaction range L2, but the steel underground continuous wall Since 20 protrudes from the upstream slope 10b, there is a problem that the amount of water stored in the reservoir 11 decreases.

また、図4(a)〜図4(d)に示すように、刃金土等の遮水性が高い地盤材料を上流法面10bに沿って設けることによって、堤体10の内部に所定幅の高遮水性部分15を設けた場合、ため池11の貯留水の一部が上流法面10bから堤体10の内部に次第に浸透していくのを抑制できる。 Further, as shown in FIGS. 4 (a) to 4 (d), by providing a ground material having high water impermeability such as blade metal soil along the upstream slope 10b, a predetermined width is provided inside the bank body 10. When the highly impermeable portion 15 is provided, it is possible to prevent a part of the stored water of the reservoir 11 from gradually infiltrating from the upstream slope 10b into the inside of the bank body 10.

図4(a)に示すように、堤体10の天端10aの幅方向(図4(a)において左右方向)の中央部から鋼製地中連続壁20を鉛直に打設し、その下端を堤体10の直下に位置する基礎地盤12まで根入れするとともに上端を天端10aに揃えた場合(すなわち、鋼製地中連続壁20が高遮水性部分15を貫通しない場合)、高遮水性部分15と鋼製地中連続壁20との間の地盤に、天端10aから降雨が浸透して、当該降雨による浸透水が溜り、当該地盤中の水が飽和して液状化し易くなる。なお、液状化範囲をL11で示す。
これに対して、図4(b)に示すように、鋼製地中連続壁20を堤体10の天端10aの上流側の端部近傍から打設した場合、鋼製地中連続壁20が高遮水性部分15を上下に貫通し、鋼製地中連続壁20より上流側では堤体10の内部の地盤に降雨が浸透し難いため、地盤中の水が飽和せず、液状化しない。
一方、図4(c)に示すように、鋼製地中連続壁20を堤体10の天端10aの下流側の端部近傍から打設した場合、図4(a)の場合と同様に、鋼製地中連続壁20が高遮水性部分15を貫通せず、液状化し易くなる。さらに、図4(c)では、堤体10の内部において鋼製地中連続壁20より上流側の地盤の体積が図4(a)の場合に比して大きくなるため、液状化範囲L13が液状化範囲L11より増大し問題となる。
また、図4(d)に示すように、鋼製地中連続壁20を堤体10の上流法面10bの上下方向略中央部から打設した場合、鋼製地中連続壁20より上流側では、地盤中の水が飽和せず、液状化しない。しかし、鋼製地中連続壁20が上流法面10bから突出しているので、ため池11の貯水量が減少するという問題がある。
As shown in FIG. 4A, a steel underground continuous wall 20 is vertically driven from the central portion in the width direction (horizontal direction in FIG. 4A) of the top end 10a of the bank body 10, and the lower end thereof. When the foundation ground 12 located directly below the bank body 10 is rooted and the upper end is aligned with the top end 10a (that is, when the steel underground continuous wall 20 does not penetrate the high water-impervious portion 15), the high-impervious part is high. Rainfall permeates into the ground between the water-based portion 15 and the steel underground continuous wall 20 from the top end 10a, and the permeated water due to the rainfall accumulates, and the water in the ground is saturated and easily liquefied. The liquefaction range is indicated by L11.
On the other hand, as shown in FIG. 4B, when the steel underground continuous wall 20 is driven from the vicinity of the upstream end of the top end 10a of the bank body 10, the steel underground continuous wall 20 is placed. Penetrates the highly impermeable portion 15 up and down, and rainfall does not easily penetrate into the ground inside the embankment 10 on the upstream side of the steel underground continuous wall 20, so that the water in the ground is not saturated and does not liquefy. ..
On the other hand, as shown in FIG. 4C, when the steel underground continuous wall 20 is driven from the vicinity of the downstream end of the top end 10a of the bank body 10, the same as in the case of FIG. 4A. , The steel underground continuous wall 20 does not penetrate the highly impermeable portion 15, and is easily liquefied. Further, in FIG. 4 (c), the volume of the ground on the upstream side of the steel underground continuous wall 20 inside the bank body 10 is larger than that in the case of FIG. 4 (a), so that the liquefaction range L13 is set. It increases from the liquefaction range L11 and becomes a problem.
Further, as shown in FIG. 4D, when the steel underground continuous wall 20 is driven from the substantially central portion in the vertical direction of the upstream slope 10b of the bank body 10, the steel underground continuous wall 20 is on the upstream side. Then, the water in the ground is not saturated and does not liquefy. However, since the steel underground continuous wall 20 projects from the upstream slope 10b, there is a problem that the amount of water stored in the reservoir 11 decreases.

このように、堤体10の内部の液状化を抑止するには、ため池11の貯留水の一部が堤体10の上流法面10bから堤体10の内部に浸透していくのを抑制するために、上述したように高遮水性部分15を設けるとともに、鋼製地中連続壁20を天端10aから高遮水性部分15を貫通するようにして設ける、つまり図4(b)に示すようにして堤体10を補強すればよい。
この場合、鋼製地中連続壁20は堤体10の天端10aから高遮水性部分15の上面を通って当該高遮水性部分15を上下に貫通するように打設するのが好ましく、さらに鋼製地中連続壁20の上端は堤体10の天端10aと揃えてもよいし、天端10aから下方に1m以内の範囲にあってもよい。また、鋼製地中連続壁20の上端を天端10aより上方に突出させてもよい。
In this way, in order to suppress the liquefaction inside the bank body 10, it is possible to prevent a part of the stored water of the reservoir 11 from permeating into the inside of the bank body 10 from the upstream slope 10b of the bank body 10. Therefore, as described above, the high impermeable portion 15 is provided, and the steel underground continuous wall 20 is provided so as to penetrate the high impermeable portion 15 from the top end 10a, that is, as shown in FIG. 4 (b). The bank body 10 may be reinforced.
In this case, it is preferable that the steel underground continuous wall 20 is driven from the top end 10a of the bank body 10 through the upper surface of the high impermeable portion 15 so as to vertically penetrate the high impermeable portion 15. The upper end of the steel underground continuous wall 20 may be aligned with the top end 10a of the bank body 10 or may be within 1 m below the top end 10a. Further, the upper end of the steel underground continuous wall 20 may be projected above the top end 10a.

次に、本実施の形態の堤体の補強構造について説明する。
本実施の形態では、本発明の堤体の補強構造をため池の一つである谷池の堤体に適用した例について説明するが、ため池の一つである皿池の堤体に適用してもよい。
図1に示すように、本実施の形態では、谷を堤体10によって堰き止めることによって谷池(ため池)11が形成されている。ため池11の周囲は堤体10を除いて、岩盤や硬質地盤等によって形成された地山12によって囲まれている。
なお、図1において、ため池11の周囲の地山12を平面視において略半分の楕円筒状に図示しているが、地山12の形状、つまりため池11の形状はこれに限ることはなく、また、地山12も谷の斜面と連続していてもよい。
また、ため池が皿池の場合、堤体によってため池の外周が囲まれているが、堤体はため池の外周の少なくとも一部に設けられていればよい。
この場合、堤体が設けられていない部分は地山等の既設の地盤でかつ堤体またはそれ以上の高さを有する突部によって形成される。したがって、ため池の外周は、堤体および突部によって形成された土構造物によって囲まれることになる。なお、土構造物は、基本的に土を主体として形成された構造物であって、その内部や表面にコンクリート等で形成された各種施設や物品が設けられたものを含む。
Next, the reinforcing structure of the bank body of the present embodiment will be described.
In the present embodiment, an example in which the reinforcing structure of the embankment body of the present invention is applied to the embankment body of the valley pond, which is one of the reservoirs, will be described, but it is applied to the embankment body of the dish pond, which is one of the reservoirs. May be good.
As shown in FIG. 1, in the present embodiment, the valley pond (reservoir) 11 is formed by blocking the valley with the bank body 10. Except for the embankment 10, the reservoir 11 is surrounded by the ground 12 formed by rock, hard ground, and the like.
In FIG. 1, the ground 12 around the pond 11 is shown in a substantially half elliptical cylinder shape in a plan view, but the shape of the ground 12, that is, the shape of the pond 11 is not limited to this. Further, the ground 12 may also be continuous with the slope of the valley.
Further, when the reservoir is a dish pond, the outer circumference of the reservoir is surrounded by the embankment body, but the embankment body may be provided at least a part of the outer circumference of the reservoir.
In this case, the portion where the embankment body is not provided is formed by an existing ground such as a ground and a protrusion having a height of the embankment body or higher. Therefore, the outer circumference of the pond will be surrounded by the soil structure formed by the embankment and the protrusion. The soil structure is basically a structure formed mainly of soil, and includes a structure in which various facilities and articles made of concrete or the like are provided inside or on the surface thereof.

図2(A)に示すように、本実施の形態では堤体10は断面台形状に形成され、当該堤体10の底部は基礎地盤Sの表層部を構成する軟弱層S1の表面(上面)に設置されているが、これに限らず、堤体10の底部は軟弱層S1の表面から食い込むようにして設置されていてもよく、この場合、堤体10の底面は軟弱層S1の表面と平行であってもよいし、傾斜していてもよい。また、堤体10が設置される軟弱層S1の表面が水平面に対して傾斜していてもよい。なお、軟弱層S1の下方には支持層S2があり、軟弱層S1と支持層S2とによって基礎地盤Sが構成されている。
また、本実施の形態ではため池11は平面視円形状であるが、これに限ることはない。例えば、平面視楕円形状、長円形状、多角形状等であってもよい。
As shown in FIG. 2A, in the present embodiment, the bank body 10 is formed in a trapezoidal cross section, and the bottom portion of the bank body 10 is the surface (upper surface) of the soft layer S1 constituting the surface layer portion of the foundation ground S. However, the bottom surface of the bank body 10 may be installed so as to bite from the surface of the soft layer S1. In this case, the bottom surface of the bank body 10 is the surface of the soft layer S1. It may be parallel or inclined. Further, the surface of the soft layer S1 on which the bank body 10 is installed may be inclined with respect to the horizontal plane. There is a support layer S2 below the soft layer S1, and the foundation ground S is composed of the soft layer S1 and the support layer S2.
Further, in the present embodiment, the reservoir 11 has a circular shape in a plan view, but the present invention is not limited to this. For example, it may have an elliptical shape in a plan view, an oval shape, a polygonal shape, or the like.

堤体10を挟んでため池11側(図2(A)において左側)を上流側とすると、堤体10は、上流側の上流法面10bに沿って、堤体10の他の部分より遮水性が高く、かつ堤体10の幅方向(図2(A)において左右方向)に沿って所定の幅aを有する高遮水性部分15を有している。ここで、「堤体10の他の部分」とは、堤体10を構成する地盤でかつ高遮水性部分15を除く部分のことをいう。
高遮水性部分15は、刃金土のような遮水性の高い地盤材料によって横断面平行四辺形状に形成されているが、高遮水性部分15の横断面形状は、平行四辺形状に限ることはなく、鋼製地中連続壁20が堤体10の内部において高遮水性部分15を上下に貫通できるような形状であればよい。
本実施の形態では、高遮水性部分15の上面は、堤体10の天端10aの上流側略半分を占めており、天端10aと面一になっている。また、高遮水性部分15の上流側の傾斜面は、堤体10の上流法面10bのほぼ全域を構成している。このため、ため池11に貯留されている貯留水の一部が上流法面10bから堤体10の内部に次第に浸透していくのを抑制できる。
Assuming that the pond 11 side (the left side in FIG. 2A) is the upstream side with the bank body 10 in between, the bank body 10 is more water-impervious than the other parts of the bank body 10 along the upstream slope 10b on the upstream side. Has a high water-impervious portion 15 having a predetermined width a along the width direction (left-right direction in FIG. 2A) of the bank body 10. Here, the "other part of the bank body 10" means a part of the ground constituting the bank body 10 excluding the highly impermeable portion 15.
The high water-impervious portion 15 is formed in a cross-sectional parallel quadrilateral shape by a highly water-impervious ground material such as blade metal soil, but the cross-sectional shape of the high water-impervious portion 15 is limited to the parallel quadrilateral shape. The shape may be such that the steel underground continuous wall 20 can penetrate the highly impermeable portion 15 vertically inside the embankment body 10.
In the present embodiment, the upper surface of the highly impermeable portion 15 occupies approximately half of the upstream side of the top end 10a of the bank body 10 and is flush with the top end 10a. Further, the inclined surface on the upstream side of the highly impermeable portion 15 constitutes almost the entire area of the upstream slope 10b of the bank body 10. Therefore, it is possible to prevent a part of the stored water stored in the reservoir 11 from gradually infiltrating from the upstream slope 10b into the inside of the bank body 10.

なお、本実施の形態では、高遮水性部分15は既設の堤体10に設けられたものであるが、これに限ることはない。例えば、高遮水性部分15の一部を新たな刃金土のような遮水性の高い地盤材料で入れ替えてもよいし、高遮水性部分15に遮水性の高い地盤材料を増加してよい。さらに、堤体10を新設で施工する際に、高遮水性部分15を新設で施工してもよい。 In the present embodiment, the highly impermeable portion 15 is provided on the existing bank body 10, but the present invention is not limited to this. For example, a part of the high water-impervious portion 15 may be replaced with a new ground material having a high water-imperme such as a blade metal soil, or a ground material having a high water-imperme may be added to the high water-impervious part 15. Further, when the bank body 10 is newly constructed, the highly impermeable portion 15 may be newly constructed.

また、堤体10には、鋼製地中連続壁20が堤体10の延在方向(図2(A)において紙面と直交する方向)に沿って設けられている。
すなわち、堤体10の内部には、鋼製地中連続壁20が堤体10の延在方向(長手方向)に沿って平面視おいて連続的に一直線状に設置されている(図1参照)。つまり、鋼製地中連続壁20はため池11の堤体10の長手方向の一端部から他端部にかけて一直線状に連続的に設置されている。
さらに、鋼製地中連続壁20は、堤体10の幅方向における中央部より上流側に寄った位置、つまり堤体10の上流側の法肩近傍から鉛直に打設されている。
Further, the bank body 10 is provided with a steel underground continuous wall 20 along the extending direction of the bank body 10 (direction orthogonal to the paper surface in FIG. 2A).
That is, inside the embankment body 10, steel underground continuous walls 20 are continuously installed in a straight line in a plan view along the extending direction (longitudinal direction) of the embankment body 10 (see FIG. 1). ). That is, the steel underground continuous wall 20 is continuously installed in a straight line from one end to the other end of the bank body 10 of the reservoir 11 in the longitudinal direction.
Further, the steel underground continuous wall 20 is vertically driven from a position closer to the upstream side than the central portion in the width direction of the bank body 10, that is, from the vicinity of the shoulder on the upstream side of the bank body 10.

また、鋼製地中連続壁20は、高遮水性部分15を上下に貫通するとともに、上端が堤体10の天端10a(高遮水性部分15の上面)に揃えられ、下端が堤体10の下方でかつ軟弱層S1より下方に位置する支持層S2に根入れされている。鋼製地中連続壁20の下端は、耐震性を考慮すると支持層S2に根入れされるのが好ましいが、浸透破壊だけを考慮した場合、堤体10の底部またはその近傍に設置されたり、軟弱層S1に設置されたり、支持層S2の上面に当てるだけでもよい。 Further, the steel underground continuous wall 20 penetrates the high impermeable portion 15 vertically, and the upper end is aligned with the top end 10a of the embankment body 10 (the upper surface of the highly impermeable portion 15), and the lower end is the embankment body 10. It is embedded in the support layer S2 located below and below the soft layer S1. The lower end of the steel underground continuous wall 20 is preferably rooted in the support layer S2 in consideration of earthquake resistance, but when only infiltration failure is considered, it may be installed at or near the bottom of the bank body 10. It may be installed on the soft layer S1 or simply applied to the upper surface of the support layer S2.

また、鋼製地中連続壁20のうち、高遮水性部分15を貫通している部分(図2(A)において高さbの部分を貫通している部分)より下方の部分の少なくとも一部は透水性を有している。例えば、鋼製地中連続壁20の高遮水性部分15を貫通している部分より下方で、かつ堤体10の下部を構成する堤体下部地盤や、軟弱層S1に設けられている鋼製地中連続壁20の下端部には、透水孔17(図5参照)が設けられている。 Further, at least a part of the steel underground continuous wall 20 below the portion penetrating the highly impermeable portion 15 (the portion penetrating the portion having the height b in FIG. 2A). Has water permeability. For example, a steel material provided in the lower ground of the embankment body, which is below the portion penetrating the highly impermeable portion 15 of the steel underground continuous wall 20 and constitutes the lower part of the embankment body 10, and the soft layer S1. A water permeation hole 17 (see FIG. 5) is provided at the lower end of the underground continuous wall 20.

鋼製地中連続壁20は、図5に示すように、ハット形の鋼矢板16を複数連結することによって形成されている。
鋼矢板16はウェブ16aと、このウェブ16aの両端部にそれぞれ形成されたフランジ16bと、このフランジ16bのウェブ16aと逆側の端部に形成されたアーム16cとを備え、このアーム16cの先端部に継手16dが形成されている。
そして、隣り合う鋼矢板16,16どうしは継手16d,16dを互いに嵌合することによって連結され、これによって鋼製地中連続壁20が形成されている。
鋼製地中連続壁20を構成する鋼矢板はハット形の鋼矢板に限ることはなく、U形の鋼矢板、直線鋼矢板であってもよい。また、鋼製地中連続壁20は、鋼矢板に限られず、鋼管杭または鋼管矢板で構成されていてもよいし、これらを組み合わせて構成されていてもよい。
As shown in FIG. 5, the steel underground continuous wall 20 is formed by connecting a plurality of hat-shaped steel sheet piles 16.
The steel sheet pile 16 includes a web 16a, flanges 16b formed at both ends of the web 16a, and an arm 16c formed at an end of the flange 16b opposite to the web 16a, and the tip of the arm 16c. A joint 16d is formed in the portion.
The adjacent steel sheet piles 16 and 16 are connected to each other by fitting the joints 16d and 16d to each other, whereby the steel underground continuous wall 20 is formed.
The steel sheet pile constituting the steel underground continuous wall 20 is not limited to the hat-shaped steel sheet pile, and may be a U-shaped steel sheet pile or a straight steel sheet pile. Further, the steel underground continuous wall 20 is not limited to the steel sheet pile, and may be composed of a steel pipe pile or a steel pipe sheet pile, or may be composed by combining these.

ウェブ16aは、上側ウェブ16a1と、下側ウェブ16a2とによって一体的に形成され、下側ウェブ16a2には、複数(多数)の楕円形状または円形状の透水孔17が上下左右に所定間隔で設けられ、上側ウェブ16a1には、透水孔17は設けられていない。
そして、透水孔17が設けられている下側ウェブ16a2を有する下側部分が上述した透水性を有している部分となっている。
The web 16a is integrally formed by the upper web 16a1 and the lower web 16a2, and the lower web 16a2 is provided with a plurality (many) elliptical or circular water permeation holes 17 at predetermined intervals in the vertical and horizontal directions. The upper web 16a1 is not provided with a water permeation hole 17.
The lower portion having the lower web 16a2 provided with the water permeable hole 17 is the portion having the above-mentioned water permeability.

また、透水性を有している部分はこれに限らず、図示は省略するが、例えば、複数の鋼矢板を連結することによって形成された鋼製地中連続壁において、所定数の鋼矢板を他の鋼矢板より短く形成することによって、鋼製地中連続壁の下端部の一部に鋼矢板の幅分の開口を形成し、この開口を上述した透水性を有している部分としてもよい。 Further, the portion having water permeability is not limited to this, and the illustration is omitted, but for example, in a steel underground continuous wall formed by connecting a plurality of steel sheet piles, a predetermined number of steel sheet piles are formed. By forming it shorter than other steel sheet piles, an opening corresponding to the width of the steel sheet pile is formed in a part of the lower end of the continuous steel underground wall, and this opening can also be used as the portion having the above-mentioned water permeability. Good.

本実施の形態では、図2(A)に示すように、ため池11の貯留水の一部が堤体10の上流法面10bから水平方向に浸透してくるが、この浸透水は鋼製地中連続壁20で遮水されて下方に向かい、さらに、鋼製地中連続壁20の下端部に設けられた透水孔17(図5参照)を通って鋼製地中連続壁20の背面側の軟弱層S1に流れる。なお、図2(A)において水の流れを太線矢印で示す。
したがって、図2(B)に示すように、堤体10の横断面において、高遮水性部分15の一部である直角三角部分を流れる全流水量を、鋼製地中連続壁20の、前記直角三角形部分に対向する部位を透水する全流水量より多くすることで、高遮水性部分15と鋼製地中連続壁20との間で流水量差を形成して、鋼製地中連続壁20の背後(下流側)の堤体10内で確実に先に排水させ、堤体10内の水位を下げることができる。
つまり、下記式(3)を満たすことによって、高遮水性部分15と鋼製地中連続壁20との間で流水量差を形成して、堤体10内の水位を下げることができる。
In the present embodiment, as shown in FIG. 2 (A), a part of the stored water of the reservoir 11 permeates horizontally from the upstream slope 10b of the embankment body 10, and this permeated water is made of steel. Water is blocked by the intermediate continuous wall 20 and heads downward, and further, through a water permeation hole 17 (see FIG. 5) provided at the lower end of the steel underground continuous wall 20, the back side of the steel underground continuous wall 20. Flows into the soft layer S1 of. In FIG. 2A, the flow of water is indicated by a thick arrow.
Therefore, as shown in FIG. 2 (B), in the cross section of the embankment body 10, the total amount of water flowing through the right-angled triangular portion which is a part of the highly impermeable portion 15 is measured by the steel underground continuous wall 20. By increasing the amount of water flowing through the portion facing the right triangle portion, a difference in the amount of flowing water is formed between the highly impermeable portion 15 and the steel underground continuous wall 20 to form a steel underground continuous wall. It is possible to surely drain the water in the embankment body 10 behind (downstream side) 20 and lower the water level in the embankment body 10.
That is, by satisfying the following equation (3), a difference in the amount of flowing water can be formed between the highly impermeable portion 15 and the steel underground continuous wall 20, and the water level in the embankment 10 can be lowered.

Figure 2020158960
Figure 2020158960

上記(3)式において、左辺は、前記直角三角形部分において水平方向に水が流れるとした場合に、水頭差(dx)、前記直角三角形部分の各高さにおける流線長(a/b・x)の積分値および高遮水性部分(刃金土)15の透水係数kaから定まる全流水量であり、右辺は、鋼製地中連続壁20において水平方向に水が流れるとした場合に、水頭差(b)、鋼製地中連続壁20の厚さを流線長(c)、および鋼製地中連続壁20の透水係数ksから定まる全流水量である。なお、(3)式の左辺において、aは鋼製地中連続壁20が高遮水性部分15を貫通する深度における高遮水性部分15の幅(鋼製地中連続壁20の、堤体10の幅方向に高遮水性部分15と直交する2面のうち、上流側に位置する、高遮水性部分15と接する面の最下端部から、上流法面10bまでの水平距離)、bは鋼製地中連続壁20の高遮水性部分15への貫通長さ(前記最下端部から、天端10aまでの距離)である。また上式において、全流水量を求める際の流水に直交する、流水方向の投影断面積として、奥行き方向(堤体の延在方向)は単位長さとし、高さ方向は、前記直角三角形部と鋼製地中連続壁部では同一のbとしており、左辺と右辺で同一の項目となるため省略している。 In the above equation (3), the left side is the head difference (dx) and the streamline length (a / b · x) at each height of the right triangle portion, assuming that water flows in the horizontal direction in the right triangle portion. ) And the water permeation coefficient ka of the highly impermeable portion (blade metal soil) 15. The right side is the head when water flows in the horizontal direction on the continuous steel underground wall 20. The difference (b) is the total amount of flowing water determined by the streamline length (c) of the thickness of the steel underground continuous wall 20 and the water permeation coefficient ks of the steel underground continuous wall 20. In addition, in the left side of the formula (3), a is the width of the high impermeable portion 15 at the depth at which the steel underground continuous wall 20 penetrates the high impermeable portion 15 (the embankment body 10 of the steel underground continuous wall 20). Of the two surfaces orthogonal to the high impermeable portion 15 in the width direction of, the horizontal distance from the lowermost end of the surface in contact with the high impermeable portion 15 located on the upstream side to the upstream slope 10b), b is steel. It is the penetration length of the continuous wall 20 in the ground production to the highly impermeable portion 15 (distance from the lowermost end portion to the top end 10a). Further, in the above equation, the projected cross-sectional area in the flowing water direction, which is orthogonal to the flowing water when calculating the total amount of flowing water, is the unit length in the depth direction (extending direction of the bank body) and the height direction is the right triangle portion. It is the same b in the continuous wall part in the steel ground, and it is omitted because it is the same item on the left side and the right side.

そして、本実施の形態では、鋼製地中連続壁20の透水係数をks(cm/s)、高遮水性部分15の透水係数をka(cm/s)、鋼製地中連続壁20の厚さをc(cm)、鋼製地中連続壁20が高遮水性部分15を貫通する深度における高遮水性部分15の幅をa(cm)とすると、鋼製地中連続壁20の高遮水性部分15への貫通長さb(cm)を、上記(3)式に基づいて下記(1)式を満たすように設定する。 Then, in the present embodiment, the water permeability coefficient of the steel underground continuous wall 20 is ks (cm / s), the water permeability coefficient of the highly impermeable portion 15 is ka (cm / s), and the steel underground continuous wall 20 Assuming that the thickness is c (cm) and the width of the high water-impervious portion 15 at the depth at which the steel underground continuous wall 20 penetrates the high water-impervious part 15 is a (cm), the height of the steel underground continuous wall 20 is high. The penetration length b (cm) to the water-impervious portion 15 is set so as to satisfy the following equation (1) based on the above equation (3).

Figure 2020158960
Figure 2020158960

例えば、鋼製地中連続壁(鋼矢板)の透水係数ks:1×10−6(cm/s)、
鋼製地中連続壁の板厚(鋼矢板板厚)c:1.08(cm)、
高遮水性部分(刃金土)の透水係数ka:5×10−5(cm/s)、
鋼製地中連続壁が高遮水性部分を貫通する深度における高遮水性部分の幅a:250(cm)とすると、
鋼製地中連続壁の高遮水性部分への貫通長さb>102.48(cm)となる。つまり、鋼製地中連続壁の高遮水性部分への貫通長さb(cm)を102.48(cm)より長く設定すればよい。
なお、高遮水性部分の透水係数は、遮水性材料として、現場にて締め固めた状態の透水係数の最大値(土地改良事業設計指針「ため池整備」、農林水産省)とした。
For example, the hydraulic conductivity of a continuous steel underground wall (steel sheet pile) ks: 1 × 10-6 (cm / s),
Steel underground continuous wall plate thickness (steel sheet pile plate thickness) c: 1.08 (cm),
Permeability coefficient ka of highly impermeable part (blade metal soil): 5 × 10-5 (cm / s),
Assuming that the width of the highly impermeable portion a: 250 (cm) at the depth at which the continuous steel underground wall penetrates the highly impermeable portion,
The penetration length b> 102.48 (cm) to the highly impermeable portion of the steel underground continuous wall. That is, the penetration length b (cm) of the steel underground continuous wall to the highly impermeable portion may be set longer than 102.48 (cm).
The hydraulic conductivity of the highly impermeable portion was set to the maximum value of the hydraulic conductivity in the state of being compacted at the site as an impermeable material (land improvement project design guideline "reservoir maintenance", Ministry of Agriculture, Forestry and Fisheries).

また、本実施の形態では、鋼製地中連続壁の高遮水性部分への貫通長さをb(cm)、鋼製地中連続壁の厚さをc(cm)、鋼製地中連続壁が高遮水性部分を貫通する深度における高遮水性部分の幅をa(cm)、高遮水性部分の透水係数をka(cm/s)とすると、鋼製地中連続壁の透水係数ks(cm/s)を、上記(3)式または(1)式に基づいて下記(2)式を満たすように設定する。 Further, in the present embodiment, the penetration length of the continuous steel underground wall to the highly impermeable portion is b (cm), the thickness of the continuous steel underground wall is c (cm), and the continuous steel underground wall is continuous. Assuming that the width of the highly impermeable portion at the depth at which the wall penetrates the highly impermeable portion is a (cm) and the water permeability coefficient of the highly impermeable portion is ka (cm / s), the water permeability coefficient ks of the continuous steel underground wall (Cm / s) is set so as to satisfy the following equation (2) based on the above equation (3) or (1).

Figure 2020158960
Figure 2020158960

例えば、鋼製地中連続壁の板厚(鋼矢板板厚)c:1.08(cm)、
鋼製地中連続壁の高遮水性部分への貫通長さb:200(cm)、
高遮水性部分(刃金土)の透水係数ka:5×10−5(cm/s)
鋼製地中連続壁が高遮水性部分を貫通する深度における高遮水性部分の幅a:250(cm)とすると、
鋼製地中連続壁の透水係数ks(cm/s)<1.14×10−6(cm/s)となる。つまり、鋼製地中連続壁に必要な透水係数ksを1.14×10−6(cm/s)より低く設定すればよい。
なお、高遮水性部分の透水係数は上記と同様である。
For example, plate thickness of continuous steel underground wall (steel sheet pile plate thickness) c: 1.08 (cm),
Penetration length b: 200 (cm), through the highly impermeable part of the steel underground continuous wall,
Permeability coefficient ka of highly impermeable part (blade metal soil): 5 × 10-5 (cm / s)
Assuming that the width of the highly impermeable portion a: 250 (cm) at the depth at which the continuous steel underground wall penetrates the highly impermeable portion,
The hydraulic conductivity of the continuous steel underground wall is ks (cm / s) <1.14 × 10-6 (cm / s). That is, the hydraulic conductivity ks required for a continuous steel underground wall may be set lower than 1.14 × 10-6 (cm / s).
The hydraulic conductivity of the highly impermeable portion is the same as above.

以上のように、本実施の形態によれば、鋼製地中連続壁20は、堤体10の上流法面10bに沿って、堤体10の他の部分より遮水性が高く、かつ堤体10の幅方向に沿って所定の幅を有する高遮水性部分15を上下に貫通するともに、上端が堤体10の天端10aに揃えられ、下端が堤体10の下方に位置する基礎地盤Sの支持層S2に設置(根入れ)されているので、上流法面10bから水平方向に浸透してきた水は鋼製地中連続壁20で遮水されて下方に向かう。したがって、高遮水性部分15と鋼製地中連続壁20との間で流水量差を形成して、鋼製地中連続壁20の背後(下流側)の堤体10内で確実に先に排水させ、堤体10内の水位を下げることができる。
このように、鋼製地中連続壁20より内側(下流側)の堤体内部における地盤の地下水位を低下させることができるので、堤体10のせん断強度を確保して、堤体10内の有効応力を低下させず、堤体全体における液状化の発生を最小限とすることができ、鋼製地中連続壁自体の剛性と確保された堤体自体のせん断剛性により堤体10のすべりを抑制し、補強効果の低下または消失を防ぐことができる。
As described above, according to the present embodiment, the steel underground continuous wall 20 has a higher water impermeability than the other parts of the embankment body 10 along the upstream slope 10b of the embankment body 10, and the embankment body. The foundation ground S which penetrates the highly impermeable portion 15 having a predetermined width along the width direction of 10 up and down, has the upper end aligned with the top end 10a of the embankment body 10, and the lower end is located below the embankment body 10. Since it is installed (rooted) in the support layer S2 of the above, the water that has permeated in the horizontal direction from the upstream slope 10b is blocked by the steel underground continuous wall 20 and heads downward. Therefore, a difference in water flow is formed between the highly impermeable portion 15 and the steel underground continuous wall 20, and the embankment body 10 behind (downstream side) the steel underground continuous wall 20 is surely first. It can be drained and the water level in the embankment 10 can be lowered.
In this way, the ground ground water level inside the embankment body inside (downstream side) the steel underground continuous wall 20 can be lowered, so that the shear strength of the embankment body 10 can be ensured and the inside of the embankment body 10 can be lowered. It is possible to minimize the occurrence of liquefaction in the entire embankment without reducing the effective stress, and the slip of the embankment 10 can be prevented by the rigidity of the continuous steel underground wall itself and the shear rigidity of the secured embankment itself. It can be suppressed and the reduction or disappearance of the reinforcing effect can be prevented.

また、堤体10の上流法面10bから水平方向に浸透してきた水は鋼製地中連続壁20で遮水されて下方に向かうので、つまり鋼製地中連続壁20に止水性能を担保させることで、堤体10内の水流をコントロールし、鋼製地中連続壁面近傍において下向きに方向転換して、動水勾配を低減できるので、堤体10内のパイピングを抑制して、堤体10の浸透破壊を抑止できるとともに、貯留水が常に存在しているため池11であっても、工事費用を安価に留めつつ堤体の安定性を確保することができる。
また、鋼製地中連続壁20を堤体10の幅方向において1列とすることによって、工期・工費を抑制することができる。
In addition, the water that has permeated horizontally from the upstream slope 10b of the bank body 10 is blocked by the steel underground continuous wall 20 and heads downward, that is, the steel underground continuous wall 20 guarantees the water stopping performance. By doing so, the water flow in the embankment 10 can be controlled, the direction can be changed downward in the vicinity of the continuous wall surface in the steel ground, and the hydraulic gradient can be reduced. Therefore, the piping in the embankment 10 can be suppressed and the embankment body can be suppressed. In addition to being able to suppress the infiltration destruction of No. 10, even in the pond 11 where the stored water is always present, the stability of the embankment body can be ensured while keeping the construction cost low.
Further, by arranging the steel underground continuous walls 20 in a row in the width direction of the bank body 10, the construction period and construction cost can be suppressed.

さらに、堤体10が損傷した場合にも,鋼製地中連続壁20がフェイルセーフのように機能し、ため池11の貯留水をせき止めることが可能となる。
また、鋼製地中連続壁20のうち、高遮水性部分15を貫通している部分より下方の部分の少なくとも一部が透水性を有しているので、高遮水性部分15より下方の堤体下部地盤やその下方の軟弱層S1となっている地盤において、水流による水圧上昇を抑え有効応力低下を抑止できる。
また、高遮水性部分15を支える下部地盤(軟弱層S1)において、地盤の有効応力の低下を限定的に抑えることができるため、高遮水性部分15の崩壊を防止でき、さらに、堤体10より下方の下部地盤(軟弱層S1)における地下水流を阻害することがない。
Further, even if the bank body 10 is damaged, the steel underground continuous wall 20 functions like a fail-safe, and the stored water in the reservoir 11 can be dammed up.
Further, since at least a part of the steel underground continuous wall 20 below the portion penetrating the highly impermeable portion 15 has water permeability, the bank below the highly impermeable portion 15 In the lower part of the body and the ground that is the soft layer S1 below it, the increase in water pressure due to the water flow can be suppressed and the decrease in effective stress can be suppressed.
Further, in the lower ground (soft layer S1) that supports the highly impermeable portion 15, the decrease in the effective stress of the ground can be suppressed to a limited extent, so that the collapse of the highly impermeable portion 15 can be prevented, and further, the embankment body 10 It does not obstruct the groundwater flow in the lower ground (soft layer S1) below.

なお、本実施の形態では、図2(A)に示すように、鋼製地中連続壁20を堤体10の上流側の法肩近傍から打設して、高遮水性部分15を上下に貫通させたが、鋼製地中連続壁20の打設位置は前記法肩近傍に限ることはない。例えば、堤体10の天端10aの幅方向中央部から打設して、高遮水性部分15を上下に貫通させてもよい。要は、高遮水性部分15を堤体10の内部において上下に貫通させるように、鋼製地中連続壁20を堤体10の天端10aから打設すればよい。 In the present embodiment, as shown in FIG. 2A, the steel underground continuous wall 20 is driven from the vicinity of the shoulder on the upstream side of the embankment 10, and the highly impermeable portion 15 is moved up and down. Although it was penetrated, the casting position of the steel underground continuous wall 20 is not limited to the vicinity of the shoulder. For example, it may be driven from the central portion in the width direction of the top end 10a of the bank body 10 to penetrate the highly impermeable portion 15 vertically. In short, the steel underground continuous wall 20 may be driven from the top end 10a of the embankment body 10 so that the highly impermeable portion 15 penetrates vertically inside the embankment body 10.

10 堤体
10a 天端
10b 上流法面
11 ため池
20 鋼製地中連続壁
S 基礎地盤
S1 軟弱層
S2 支持層
10 Embankment body 10a Top end 10b Upstream slope 11 Reservoir 20 Steel underground continuous wall S Foundation ground S1 Soft layer S2 Support layer

Claims (4)

ため池の外周の少なくとも一部に設けられた堤体を補強する堤体の補強構造であって、
前記堤体を挟んで前記ため池側を上流側とすると、
前記堤体は、前記上流側の前記堤体の上流法面に沿って、前記堤体の他の部分より遮水性が高く、かつ前記堤体の幅方向に沿って所定の幅を有する高遮水性部分を有し、
前記堤体に鋼製地中連続壁が前記堤体の延在方向に沿って設けられ、
前記鋼製地中連続壁は、前記高遮水性部分を上下に貫通するとともに、上端が前記堤体の天端に揃えられ、下端が前記堤体または当該堤体の下方に位置する基礎地盤に設置されていることを特徴とする堤体の補強構造。
It is a reinforcement structure of the embankment body that reinforces the embankment body provided at least a part of the outer circumference of the reservoir.
Assuming that the reservoir side is the upstream side across the bank body,
The embankment has a higher water impermeability than other parts of the embankment along the upstream slope of the embankment on the upstream side, and has a predetermined width along the width direction of the embankment. Has an aqueous part,
A steel underground continuous wall is provided on the bank body along the extending direction of the bank body.
The steel underground continuous wall penetrates the highly impermeable portion up and down, and the upper end is aligned with the top end of the embankment body, and the lower end is on the embankment body or the foundation ground located below the embankment body. Reinforcement structure of the embankment, which is characterized by being installed.
前記鋼製地中連続壁の透水係数をks(cm/s)、前記高遮水性部分の透水係数をka(cm/s)、前記鋼製地中連続壁の厚さをc(cm)、前記鋼製地中連続壁が前記高遮水性部分を貫通する深度における前記高遮水性部分の幅をa(cm)とすると、
前記鋼製地中連続壁の前記高遮水性部分への貫通長さb(cm)が、下記(1)式を満たすことを特徴とする請求項1に記載の堤体の補強構造。
Figure 2020158960
The hydraulic conductivity of the steel underground continuous wall is ks (cm / s), the hydraulic conductivity of the highly impermeable portion is ka (cm / s), and the thickness of the steel underground continuous wall is c (cm). Assuming that the width of the highly impermeable portion at the depth at which the steel underground continuous wall penetrates the highly impermeable portion is a (cm).
The reinforcing structure for a bank body according to claim 1, wherein the penetration length b (cm) of the steel underground continuous wall into the highly impermeable portion satisfies the following equation (1).
Figure 2020158960
前記鋼製地中連続壁の前記高遮水性部分への貫通長さをb(cm)、前記鋼製地中連続壁の厚さをc(cm)、前記鋼製地中連続壁が前記高遮水性部分を貫通する深度における前記高遮水性部分の幅をa(cm)、前記高遮水性部分の透水係数をka(cm/s)とすると、
前記鋼製地中連続壁の透水係数ks(cm/s)が、下記(2)式を満たすことを特徴とする請求項1に記載の堤体の補強構造。
Figure 2020158960
The penetration length of the steel underground continuous wall to the highly impermeable portion is b (cm), the thickness of the steel underground continuous wall is c (cm), and the steel underground continuous wall is the height. Assuming that the width of the highly impermeable portion at the depth penetrating the impermeable portion is a (cm) and the water permeability coefficient of the highly impermeable portion is ka (cm / s).
The reinforcing structure of a bank body according to claim 1, wherein the hydraulic conductivity ks (cm / s) of the steel underground continuous wall satisfies the following equation (2).
Figure 2020158960
前記鋼製地中連続壁のうち、前記高遮水性部分を貫通している部分より下方の部分の少なくとも一部が透水性を有していることを特徴とする請求項1〜3のいずれか1項に記載の堤体の補強構造。
Any of claims 1 to 3, wherein at least a part of the steel underground continuous wall below the portion penetrating the highly impermeable portion has water permeability. Reinforcement structure of the embankment body described in item 1.
JP2019056067A 2019-03-25 2019-03-25 Design method for reinforcement structure of cut-off wall Active JP7320362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019056067A JP7320362B2 (en) 2019-03-25 2019-03-25 Design method for reinforcement structure of cut-off wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019056067A JP7320362B2 (en) 2019-03-25 2019-03-25 Design method for reinforcement structure of cut-off wall

Publications (2)

Publication Number Publication Date
JP2020158960A true JP2020158960A (en) 2020-10-01
JP7320362B2 JP7320362B2 (en) 2023-08-03

Family

ID=72642128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019056067A Active JP7320362B2 (en) 2019-03-25 2019-03-25 Design method for reinforcement structure of cut-off wall

Country Status (1)

Country Link
JP (1) JP7320362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115030108A (en) * 2022-06-23 2022-09-09 清华大学 Silt dam with reinforced concrete precast sheet pile combined reinforcement and efficiency enhancement and construction method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100524A (en) * 1995-10-06 1997-04-15 Fujita Corp Development method of fill dam
JP2000248538A (en) * 1999-03-02 2000-09-12 Natl Res Inst Of Agricultural Engineering Manufacture of banking material using bottom mud of reservoir and repairing/reinforcing method of bank body of reservoir and crusher
JP2003013451A (en) * 2001-07-02 2003-01-15 Sumitomo Metal Ind Ltd Reinforcing structure of banking
JP2009287365A (en) * 2008-06-02 2009-12-10 Hokukon Co Ltd Composite bottom gutter for dam body of pool
JP2010024745A (en) * 2008-07-22 2010-02-04 Jfe Steel Corp Reinforcing structure of dike
JP2011214252A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Structure for reinforcing embankment
JP2013014962A (en) * 2011-07-05 2013-01-24 Nippon Steel & Sumitomo Metal Structure for reinforcing levee
JP2014177854A (en) * 2012-06-01 2014-09-25 Nippon Steel & Sumitomo Metal Reinforcement structure of dike

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100524A (en) * 1995-10-06 1997-04-15 Fujita Corp Development method of fill dam
JP2000248538A (en) * 1999-03-02 2000-09-12 Natl Res Inst Of Agricultural Engineering Manufacture of banking material using bottom mud of reservoir and repairing/reinforcing method of bank body of reservoir and crusher
JP2003013451A (en) * 2001-07-02 2003-01-15 Sumitomo Metal Ind Ltd Reinforcing structure of banking
JP2009287365A (en) * 2008-06-02 2009-12-10 Hokukon Co Ltd Composite bottom gutter for dam body of pool
JP2010024745A (en) * 2008-07-22 2010-02-04 Jfe Steel Corp Reinforcing structure of dike
JP2011214252A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Structure for reinforcing embankment
JP2013014962A (en) * 2011-07-05 2013-01-24 Nippon Steel & Sumitomo Metal Structure for reinforcing levee
JP2014177854A (en) * 2012-06-01 2014-09-25 Nippon Steel & Sumitomo Metal Reinforcement structure of dike

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115030108A (en) * 2022-06-23 2022-09-09 清华大学 Silt dam with reinforced concrete precast sheet pile combined reinforcement and efficiency enhancement and construction method
CN115030108B (en) * 2022-06-23 2023-03-21 清华大学 Steel-concrete precast sheet pile combined reinforced and synergistic silt dam and construction method

Also Published As

Publication number Publication date
JP7320362B2 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
JP5157710B2 (en) Embankment reinforcement structure
JP2003013451A (en) Reinforcing structure of banking
JP5817272B2 (en) Embankment reinforcement structure
CN103556602B (en) Structural body for preventing starting of gully debris flows and design method of structural body
CN103526722A (en) Debris flow gabion prevention and control structural body and design method thereof
JP6164949B2 (en) Filling reinforcement structure
CN105862659B (en) High-frequency debris flow shore protection and diversion method
JP6082916B2 (en) Underground steel wall structure and construction method of underground steel wall structure
JP7320362B2 (en) Design method for reinforcement structure of cut-off wall
JP5407995B2 (en) Filling reinforcement structure
CN2878518Y (en) Stress releasing cage
JP5348054B2 (en) Filling reinforcement structure
JP7183816B2 (en) Embankment reinforcement structure
JP5407642B2 (en) Composite dike and its construction method
JP7183819B2 (en) Levee body seepage failure prevention structure
JP2018044337A (en) Structure and method for reinforcing embankment
JP5669192B2 (en) Quay structure or revetment structure
JP7410489B2 (en) Embankment reinforcement structure
KR20150021098A (en) Waterside structures reinforced method
JP7183818B2 (en) Embankment reinforcement structure
JP2020070539A (en) Banking structure
JP7172754B2 (en) Embankment reinforcement structure
JPH01226920A (en) Earthquake-proof construction of river embankment
JP4056522B2 (en) Levee reinforced drain structure and levee reinforced drain construction method
CN116575489A (en) Large-scale foundation ditch water seepage prevention system for civil engineering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R150 Certificate of patent or registration of utility model

Ref document number: 7320362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150