JP2020158448A - Method for producing iron-polyphenol composite material - Google Patents

Method for producing iron-polyphenol composite material Download PDF

Info

Publication number
JP2020158448A
JP2020158448A JP2019060171A JP2019060171A JP2020158448A JP 2020158448 A JP2020158448 A JP 2020158448A JP 2019060171 A JP2019060171 A JP 2019060171A JP 2019060171 A JP2019060171 A JP 2019060171A JP 2020158448 A JP2020158448 A JP 2020158448A
Authority
JP
Japan
Prior art keywords
iron
polyphenol
composite material
water
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019060171A
Other languages
Japanese (ja)
Other versions
JP7312586B2 (en
Inventor
望美 橋本
Nozomi Hashimoto
望美 橋本
広幸 鈴木
Hiroyuki Suzuki
広幸 鈴木
亮一 森山
Ryoichi Moriyama
亮一 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2019060171A priority Critical patent/JP7312586B2/en
Publication of JP2020158448A publication Critical patent/JP2020158448A/en
Application granted granted Critical
Publication of JP7312586B2 publication Critical patent/JP7312586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

To provide a method for producing iron-polyphenol composite material that consumes less energy, takes less time, and can be carried out in a small reactor.SOLUTION: Provided is a method for producing iron-polyphenol composite material comprising a step (X) in which an aqueous solution or dispersion (B) of iron or an iron compound (A) is brought into contact with a polyphenol source (C) to obtain a reaction product (P), and a step (Y) in which the reaction product (P) is heated to 70°C or higher and dried to a moisture content of 15% or less within 60 hours.SELECTED DRAWING: Figure 1

Description

本発明は、エネルギー消費が少なく、短時間で、小型装置で実施可能な鉄−ポリフェノール複合材の製造方法に関する。 The present invention relates to a method for producing an iron-polyphenol composite material, which consumes less energy and can be carried out in a small device in a short time.

特許文献1には、三価鉄を二価の鉄イオンに還元して維持し、水溶性の鉄イオン(二価鉄イオン)を長期間安定して供給できる水溶性鉄供給剤として、コーヒー豆の粉砕焙煎物および/または茶葉を金属イオン可溶化成分の供給原料として用い、当該金属イオン可溶化成分の供給原料と三価の鉄を含む鉄供給原料とを、水存在下で混合し、得られた反応生成物を有効成分として含有してなる水溶性鉄供給剤が開示されている。
特許文献2には、コーヒー豆の粉砕焙煎物(特にコーヒー粕)や茶葉(特に茶殻)を還元作用成分の供給原料として用い、当該還元作用成分の供給原料と二価もしくは三価を含む鉄供給原料とを水存在下で混合し、得られた反応生成物を活性成分としてなるフェントン反応触媒、このフェントン反応触媒を用いて過酸化水素からヒドロキシラジカルを発生させることを特徴とする殺菌方法、汚染物質分解方法、化学発光を利用した発光方法が開示されている。
Patent Document 1 describes coffee beans as a water-soluble iron feeder capable of reducing and maintaining ferric iron to divalent iron ions and stably supplying water-soluble iron ions (divalent iron ions) for a long period of time. Using the crushed roasted product and / or tea leaves of the above as a feedstock of the metal ion solubilizing component, the feedstock of the metal ion solubilizing component and the iron feedstock containing trivalent iron are mixed in the presence of water. A water-soluble iron feeder containing the obtained reaction product as an active ingredient is disclosed.
In Patent Document 2, crushed roasted coffee beans (particularly coffee cake) and tea leaves (particularly tea husks) are used as a feedstock for a reducing agent, and iron containing divalent or trivalent iron as a feedstock for the reducing ingredient. A Fenton reaction catalyst in which the feedstock is mixed in the presence of water and the obtained reaction product is used as an active ingredient, and a sterilization method characterized by generating hydroxyl radicals from hydrogen peroxide using this Fenton reaction catalyst. A method for decomposing pollutants and a method for emitting light using chemiluminescence are disclosed.

特開2011−211913号公報Japanese Unexamined Patent Publication No. 2011-21913 特開2011−212518号公報Japanese Unexamined Patent Publication No. 2011-212518

これらの先行技術に開示された水溶性鉄供給剤またはフェントン反応触媒の製造方法は、赤玉土をコーヒー粕と混合し、両者合計の倍の重量の水を添加混合し、所定温度で所定時間静置することで反応させ、その後、風乾するという、工業的に実施するには不適当なものであった。本発明が解決しようとする課題は、工業的に実施するのにより好適な方法を提供することである。 The method for producing a water-soluble iron feeder or Fenton reaction catalyst disclosed in these prior arts is to mix Akadama soil with coffee grounds, add and mix twice the total weight of water, and allow it to stand at a predetermined temperature for a predetermined time. It was unsuitable for industrial implementation, in which it was allowed to react by placing it and then air-dried. The problem to be solved by the present invention is to provide a more suitable method for industrial implementation.

本発明は以下を包含する。
[1] 鉄または鉄化合物(A)の水溶液または分散液(B)と、ポリフェノール源(C)とを接触させ、反応生成物(P)を得る工程(X)、および
前記反応生成物(P)を、70℃以上に加熱して、60時間以内に、水分15%以下にまで乾燥する工程(Y)
を含む、鉄−ポリフェノール複合材の製造方法。
[2] 水溶液または分散液(B)をポリフェノール源(C)に噴霧することにより、工程(X)における接触を行う、[1]に記載の鉄−ポリフェノール複合材の製造方法。
[3] (B):(C)の質量比が0.1:1〜2.7:1である範囲で工程(X)を行う、[1]又は[2]に記載の鉄−ポリフェノール複合材の製造方法。
[4] 水分を30〜70%に維持しつつ工程(X)を行う、[1]乃至[3]のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。
[5] 水溶液または分散液(B)中の鉄または鉄化合物(A)の濃度が1質量%超である、[1]乃至[4]のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。
[6] 水溶液または分散液(B)中の鉄または鉄化合物(A)の濃度が30質量%未満である、[1]乃至[5]のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。
[7] 工程(Y)が、熱伝導を促進する工程(y1)および/または排気を促進する工程(y2)を更に含む、[1]乃至[6]のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。
[8] 工程(X)および工程(Y)を連続して、または並行して行う、[1]乃至[7]のいずれか一項]に記載の鉄−ポリフェノール複合材の製造方法。
[9] 工程(X)を2〜48時間行う、[1]乃至[8]のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。
[10] 温度70℃以上で工程(X)を行う、[1]乃至[9]のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。
[11] 鉄または鉄化合物(A)が三価鉄の化合物である、[1]乃至[10]のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。
[12] ポリフェノール源(C)がコーヒーまたは茶である、[1]乃至[11]のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。
The present invention includes the following.
[1] A step (X) of bringing an aqueous solution or dispersion (B) of iron or an iron compound (A) into contact with a polyphenol source (C) to obtain a reaction product (P), and the reaction product (P). ) Is heated to 70 ° C. or higher and dried to a moisture content of 15% or less within 60 hours (Y).
A method for producing an iron-polyphenol composite material, including.
[2] The method for producing an iron-polyphenol composite material according to [1], wherein the contact in the step (X) is performed by spraying the aqueous solution or the dispersion liquid (B) onto the polyphenol source (C).
[3] The iron-polyphenol composite according to [1] or [2], wherein the step (X) is carried out in a range where the mass ratio of (B): (C) is 0.1: 1 to 2.7: 1. Material manufacturing method.
[4] The method for producing an iron-polyphenol composite material according to any one of [1] to [3], wherein the step (X) is carried out while maintaining the water content at 30 to 70%.
[5] The iron-polyphenol composite material according to any one of [1] to [4], wherein the concentration of iron or iron compound (A) in the aqueous solution or dispersion (B) is more than 1% by mass. Production method.
[6] The iron-polyphenol composite material according to any one of [1] to [5], wherein the concentration of iron or iron compound (A) in the aqueous solution or dispersion (B) is less than 30% by mass. Production method.
[7] The iron according to any one of [1] to [6], wherein the step (Y) further comprises a step of promoting heat conduction (y1) and / or a step of promoting exhaust (y2). A method for producing a polyphenol composite material.
[8] The method for producing an iron-polyphenol composite material according to any one of [1] to [7], wherein the step (X) and the step (Y) are carried out continuously or in parallel.
[9] The method for producing an iron-polyphenol composite material according to any one of [1] to [8], wherein the step (X) is carried out for 2 to 48 hours.
[10] The method for producing an iron-polyphenol composite material according to any one of [1] to [9], wherein the step (X) is carried out at a temperature of 70 ° C. or higher.
[11] The method for producing an iron-polyphenol composite material according to any one of [1] to [10], wherein the iron or the iron compound (A) is a compound of ferric iron.
[12] The method for producing an iron-polyphenol composite material according to any one of [1] to [11], wherein the polyphenol source (C) is coffee or tea.

本発明に係る方法は、消費エネルギーを低減し、所要時間を短縮し、反応装置を小型化できるという有利な効果を奏する。 The method according to the present invention has an advantageous effect that energy consumption can be reduced, the required time can be shortened, and the reactor can be miniaturized.

本発明に係る方法を従来法と比較したスキーム図である。It is a scheme diagram which compared the method which concerns on this invention with the conventional method. 実施例2において、コーヒーに塩化鉄(III)水溶液をスプレーした直後のサンプルの画像である。FIG. 2 is an image of a sample immediately after spraying an aqueous solution of iron (III) chloride on coffee in Example 2.

図1は従来法と本発明に係る方法との各工程を比較したものである。左側が従来法の代表例のスキームであり、中央が本発明に係る方法の代表的な例のスキームであり、右側には、各工程を時系列に沿って、計量(I)、接触(II)、加温反応(III)、乾燥(IV)、後処理(IV)に区分する線を書き入れてある。 FIG. 1 compares each step between the conventional method and the method according to the present invention. The left side is a scheme of a typical example of the conventional method, the center is a scheme of a typical example of the method according to the present invention, and on the right side, each step is measured (I) and contacted (II) in chronological order. ), Warming reaction (III), drying (IV), and post-treatment (IV).

従来法と本発明に係る方法とを比較すると、接触(II)、乾燥(IV)において大きな違いがある。
従来法においては、接触(II)は、固体である鉄または鉄化合物(A)と、同じく固体であるポリフェノール源(C)とを予め混合し、その混合物に水を投入して、更に撹拌を行うことにより実施するため、固体同士の混合に多大なエネルギーと時間を消費し、かつ、水投入後にも撹拌のために多大なエネルギーと時間を消費するものであった。また、水の投入量が多いため、大きな反応容器が必要であり、乾燥にも多大なエネルギーと時間を要した。
これに対して、本発明に係る方法では、鉄または鉄化合物(A)の水溶液または分散液(B)と、ポリフェノール源(C)とを接触させるのであるが、鉄または鉄化合物(A)の水溶液または分散液(B)は短時間、かつ少ないエネルギーで調製することが可能である。また、鉄または鉄化合物(A)を水溶液または分散液(B)とすることにより接触の手段として噴霧(スプレー)という手段が利用可能となるので、水の使用量を低減することができ、その結果、反応容器を小型化することができると共に、乾燥(IV)におけるエネルギーと時間を節約することができる。
このような相違の結果、従来の鉄−ポリフェノール複合材の製造方法に比較して、本発明に係る方法は、消費エネルギーを低減し、所要時間を短縮し、反応装置を小型化できるという有利な効果を奏する。
Comparing the conventional method and the method according to the present invention, there is a big difference in contact (II) and drying (IV).
In the conventional method, in the contact (II), a solid iron or iron compound (A) and a polyphenol source (C) which is also a solid are mixed in advance, water is added to the mixture, and further stirring is performed. Since it is carried out by performing, a large amount of energy and time are consumed for mixing the solids, and a large amount of energy and time are consumed for stirring even after water is added. In addition, since the amount of water input is large, a large reaction vessel is required, and a large amount of energy and time are required for drying.
On the other hand, in the method according to the present invention, the aqueous solution or dispersion (B) of iron or iron compound (A) is brought into contact with the polyphenol source (C), but the iron or iron compound (A) The aqueous solution or dispersion (B) can be prepared in a short time and with less energy. Further, by converting iron or the iron compound (A) into an aqueous solution or a dispersion liquid (B), a means called spray can be used as a means of contact, so that the amount of water used can be reduced. As a result, the reaction vessel can be miniaturized, and energy and time in drying (IV) can be saved.
As a result of these differences, the method according to the present invention has the advantages of reducing energy consumption, shortening the required time, and downsizing the reactor as compared with the conventional method for producing an iron-polyphenol composite material. It works.

[鉄または鉄化合物(A)]
本発明では、任意の鉄または鉄化合物を用いることができる。
例えば、金属鉄;塩化鉄(III)、硫酸鉄(III)などの水溶性鉄化合物;酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)などの水不溶性鉄化合物;黄鉄鉱、白鉄鉱、菱鉄鉱、磁鉄鉱、針鉄鉱など天然の鉄鉱石;鉄分を含む土壌、ヘム鉄、貝殻などの天然物;およびこれらを酸に溶解したものが挙げられる。
これらのうち、塩化鉄(III)、硫酸鉄(III)などの三価鉄の化合物が好ましく、塩化鉄(III)がより好ましい。
[Iron or iron compound (A)]
In the present invention, any iron or iron compound can be used.
For example, metallic iron; water-soluble iron compounds such as iron (III) chloride and iron (III) sulfate; water-insoluble iron compounds such as iron (III) oxide, iron (III) nitrate and iron (III) hydroxide; Natural iron ores such as white iron ore, rhombic iron ore, magnetic iron ore, and needle iron ore; natural substances such as iron-containing soil, heme iron, and shells; and those obtained by dissolving these in acid.
Of these, compounds of ferric iron such as iron (III) chloride and iron (III) sulfate are preferable, and iron (III) chloride is more preferable.

[水溶液または分散液(B)]
本発明では、前記鉄または鉄化合物(A)を水溶液または分散液(B)に調製して用いる。前記鉄または鉄化合物(A)が水溶性の場合には、通常これを水に投入、又はこれに水を添加し、均一になるまで撹拌することによって水溶液とする。前記鉄または鉄化合物(A)が水不溶性の場合には、これを水中に均一に分散させることによって分散液とする。必要により界面活性剤等の助剤を添加してもよい。
水溶液または分散液(B)中の鉄または鉄化合物(A)の濃度に特段の制限はない。好ましい水溶液または分散液(B)中の鉄または鉄化合物(A)の濃度は、1質量%超、又は5質量%以上であり、30質量%未満、又は20質量%未満、又は16質量%以下である。
使用する水に特段の制限はなく、通常の水で良い。例えば、井戸水、河川・湖沼水、海水、水道水、農業用水、工業用水、脱イオン水、蒸留水などを挙げることができる。本発明の有利な効果を妨げない限り、pH緩衝剤、塩(NaCl、KClなど)、アルコール(エタノール等)、糖類、酸、アルカリなどを含むものであってもよい。
前記鉄または鉄化合物(A)と水との混合方法に特段の制限はなく、慣用の混合方法で足りる。例えば、手動または自動のミキサー、撹拌槽、ボルテックス、シェーカーなどによって行うことができる。混合時の温度は、水が液体状態である温度範囲内であればよく(例えば1〜100℃)、ことさら加熱することなく室温程度(例えば10〜40℃)で混合を行えば、エネルギー面で有利である。
[Aqueous solution or dispersion (B)]
In the present invention, the iron or the iron compound (A) is prepared and used as an aqueous solution or a dispersion (B). When the iron or the iron compound (A) is water-soluble, it is usually added to water, or water is added thereto, and the mixture is stirred until uniform to obtain an aqueous solution. When the iron or the iron compound (A) is water-insoluble, it is uniformly dispersed in water to obtain a dispersion liquid. If necessary, an auxiliary agent such as a surfactant may be added.
There is no particular limitation on the concentration of iron or the iron compound (A) in the aqueous solution or the dispersion (B). The concentration of iron or the iron compound (A) in the preferred aqueous solution or dispersion (B) is more than 1% by mass, or 5% by mass or more, less than 30% by mass, less than 20% by mass, or 16% by mass or less. Is.
There are no particular restrictions on the water used, and ordinary water may be used. For example, well water, river / lake water, seawater, tap water, agricultural water, industrial water, deionized water, distilled water and the like can be mentioned. It may contain a pH buffer, a salt (NaCl, KCl, etc.), an alcohol (ethanol, etc.), a saccharide, an acid, an alkali, etc., as long as it does not interfere with the advantageous effects of the present invention.
The method for mixing the iron or the iron compound (A) with water is not particularly limited, and a conventional mixing method is sufficient. For example, it can be done by a manual or automatic mixer, agitator, vortex, shaker and the like. The temperature at the time of mixing may be within the temperature range in which the water is in a liquid state (for example, 1 to 100 ° C.), and if the water is mixed at about room temperature (for example, 10 to 40 ° C.) without heating, in terms of energy. It is advantageous.

[ポリフェノール源(C)]
本発明において用いるポリフェノール源(C)は、ポリフェノールを含有する素材、またはポリフェノールを生成し得る素材であれば、特に限定されない。例えば、木質材もしくは草質材またはその処理物、麦芽、大麦、小麦などの穀物原料、コーヒー豆、茶葉、ホップなどが挙げられる。
好ましくは、コーヒー豆、茶葉を用いることができる。また、両者を混合して用いることもできる。
コーヒー豆としては、原料コーヒー豆、乾燥コーヒー豆、焙煎コーヒー豆、焙煎粉砕コーヒー豆、これを水浸漬して得られる抽出成分(飲用に供されるコーヒー)、抽出成分を乾燥粉末化したもの、コーヒー粕などが挙げられる。
茶葉としては、原料茶葉、乾燥茶葉、発酵茶葉、これらを水浸漬して得られる抽出成分(飲用に供される緑茶、紅茶、ウーロン茶など)、抽出成分を乾燥粉末化したもの、茶殻などが挙げられる。
なお、飲用に供された後のコーヒー粕や茶殻は、抽出により鉄成分が減少してしまっている可能性が高い。それらはまた、保管中の腐敗を防止するため、本発明方法に用いる前に、含水率を許容範囲内に制御するための処理を必要とする場合もある。一方、消費前のコーヒーや茶葉を使用することは限られた資源の競合を招くおそれがある。したがって、コーヒーや茶のうち、規格をはずれて飲料として供されない、いわゆる規格外品を本発明方法に用いるポリフェノール源(C)に転用することが、資源の有効利用の観点から推奨される。
[Polyphenol source (C)]
The polyphenol source (C) used in the present invention is not particularly limited as long as it is a material containing polyphenol or a material capable of producing polyphenol. For example, wood or herbaceous materials or processed products thereof, grain raw materials such as malt, barley and wheat, coffee beans, tea leaves, hops and the like can be mentioned.
Preferably, coffee beans and tea leaves can be used. Further, both can be mixed and used.
As coffee beans, raw coffee beans, dried coffee beans, roasted coffee beans, roasted ground coffee beans, extracted components obtained by immersing them in water (coffee used for drinking), and extracted components were dried and powdered. Things, coffee beans, etc.
Examples of tea leaves include raw tea leaves, dried tea leaves, fermented tea leaves, extracted components obtained by immersing them in water (green tea, black tea, oolong tea, etc. used for drinking), dried powdered extracted components, tea leaves, etc. Be done.
It is highly possible that the iron content of coffee grounds and tea leaves after being used for drinking has been reduced by extraction. They may also require treatment to control the moisture content within acceptable limits before use in the methods of the invention to prevent spoilage during storage. On the other hand, the use of coffee or tea leaves before consumption may lead to competition for limited resources. Therefore, it is recommended from the viewpoint of effective use of resources to divert so-called non-standard products of coffee and tea that are not served as beverages out of the standard to the polyphenol source (C) used in the method of the present invention.

[工程(X)]
水溶液または分散液(B)とポリフェノール源(C)との接触は慣用の手段によって行うことができる。例えば、水溶液または分散液(B)中にポリフェノール源(C)を投入してもよく、水溶液または分散液(B)をポリフェノール源(C)に注いでもよい。水溶液または分散液(B)が液体であるという特性を活用する観点からは、水溶液または分散液(B)をポリフェノール源(C)に散布又は噴霧することにより、工程(X)における接触を行うことが好ましい。水溶液または分散液(B)をポリフェノール源(C)に噴霧すると、装置が小型化でき、使用水量を節約できるので、特に好ましい。
[Step (X)]
The contact between the aqueous solution or the dispersion (B) and the polyphenol source (C) can be carried out by conventional means. For example, the polyphenol source (C) may be put into the aqueous solution or the dispersion (B), or the aqueous solution or the dispersion (B) may be poured into the polyphenol source (C). From the viewpoint of utilizing the characteristic that the aqueous solution or the dispersion liquid (B) is a liquid, the contact in the step (X) is performed by spraying or spraying the aqueous solution or the dispersion liquid (B) on the polyphenol source (C). Is preferable. Spraying the aqueous solution or the dispersion (B) onto the polyphenol source (C) is particularly preferable because the device can be miniaturized and the amount of water used can be saved.

水溶液または分散液(B):ポリフェノール源(C)の質量比に特段の制限はない。好ましい質量比の範囲は、0.1:1以上、又は0.2:1以上、又は0.3:1以上であり、好ましくは2.7:1以下、又は2.6:1以下、又は2.5:1以下である。 There is no particular limitation on the mass ratio of the aqueous solution or dispersion (B): polyphenol source (C). The preferred mass ratio range is 0.1: 1 or greater, 0.2: 1 or greater, or 0.3: 1 or greater, preferably 2.7: 1 or greater, or 2.6: 1 or greater, or 2.5: 1 or less.

工程(X)においては、鉄または鉄化合物(A)とポリフェノール源(C)とを反応させることが肝要なため、水分を維持しつつ行う。好ましい含水率の範囲は、30%以上、又は35%以上、又は40%以上であり、70%以下、又は65%以下、又は60%以下である。水分を維持するためには系を密閉、封止してもよく、反応中に失われる水分を随時補充してもよい。 In the step (X), since it is important to react the iron or the iron compound (A) with the polyphenol source (C), the step (X) is carried out while maintaining the water content. The preferred range of moisture content is 30% or more, 35% or more, or 40% or more, 70% or less, 65% or less, or 60% or less. In order to maintain the water content, the system may be sealed and sealed, or the water content lost during the reaction may be replenished at any time.

工程(X)を行う時間に特段の制限はない。工程(X)は通常、鉄または鉄化合物(A)とポリフェノール源(C)との反応が完了するまで行うが、事情により反応途中で切り上げても差し支えない。反応途中から工程(Y)を開始してもよい。好ましい工程(X)の時間は、2時間以上、又は3時間以上、又は4時間以上であり、48時間以下、又は36時間以下、又は24時間以下である。 There is no particular limitation on the time during which step (X) is performed. The step (X) is usually carried out until the reaction between the iron or the iron compound (A) and the polyphenol source (C) is completed, but it may be rounded up in the middle of the reaction depending on the circumstances. The step (Y) may be started from the middle of the reaction. The time of the preferred step (X) is 2 hours or more, 3 hours or more, or 4 hours or more, 48 hours or less, 36 hours or less, or 24 hours or less.

工程(X)を行う温度に特段の制限はない。反応が進行する限り、室温でも差し支えない。反応速度を上げて生産性を高めるという観点から好ましい工程(X)の温度は、70℃以上、又は80℃以上、又は90℃以上である。温度は工程(X)を通じて一定であってもよく、経時的に変化させてもよい。 There is no particular limitation on the temperature at which step (X) is performed. Room temperature is acceptable as long as the reaction proceeds. The temperature of the step (X), which is preferable from the viewpoint of increasing the reaction rate and increasing the productivity, is 70 ° C. or higher, 80 ° C. or higher, or 90 ° C. or higher. The temperature may be constant throughout step (X) or may be varied over time.

[反応生成物(P)]
上記工程によって得られた反応生成物(P)は、前記鉄または鉄化合物(A)由来の三価鉄が還元された二価鉄イオン(水溶性鉄イオン)を有するものである。
鉄−ポリフェノール複合材が安定に合成されているかどうかは、生成物をpH安定性試験に供することによって確かめることができる。具体的な手順については、後記する実施例の項で説明する。
[Reaction product (P)]
The reaction product (P) obtained by the above step has a divalent iron ion (water-soluble iron ion) obtained by reducing trivalent iron derived from the iron or the iron compound (A).
Whether or not the iron-polyphenol composite is stably synthesized can be confirmed by subjecting the product to a pH stability test. The specific procedure will be described in the section of Examples described later.

[工程(Y)]
工程(Y)は、前記反応生成物(P)を乾燥する工程である。工程(Y)は、工程(X)に連続して行ってもよく、工程(X)と並行して行ってもよい。前者は、例えば、反応生成物(P)を単離することなく、工程(X)→工程(Y)の順で行う態様である。後者は、例えば、水分と温度を精密に制御することにより、反応を進行させながら同時に乾燥も行う態様である。
[Step (Y)]
The step (Y) is a step of drying the reaction product (P). The step (Y) may be performed continuously with the step (X) or may be performed in parallel with the step (X). The former is, for example, an embodiment in which the reaction product (P) is not isolated and is carried out in the order of step (X) → step (Y). The latter is an embodiment in which, for example, by precisely controlling the water content and temperature, drying is performed at the same time as the reaction proceeds.

反応生成物(P)を乾燥させる温度は70℃以上であり、好ましくは80℃以上、より好ましくは90℃以上である。乾燥温度の上限には特段の制限はないが、通常200℃以下、好ましくは120℃以下、又は110℃以下、又は100℃以下である。 The temperature at which the reaction product (P) is dried is 70 ° C. or higher, preferably 80 ° C. or higher, and more preferably 90 ° C. or higher. The upper limit of the drying temperature is not particularly limited, but is usually 200 ° C. or lower, preferably 120 ° C. or lower, 110 ° C. or lower, or 100 ° C. or lower.

反応生成物(P)を含水率15%以下にまで乾燥させる時間は60時間以内とする。好ましい乾燥時間は48時間以内、又は24時間以内、又は12時間以内、又は6時間以内である。最短の乾燥時間は、反応生成物(P)を含水率15%以下にするために必要な時間であり、反応生成物(P)の量、初期含水率、乾燥手段の能力等さまざまな要因によって変動し得る。なお、含水率は市販の水分計で容易に測定することができる。または、揮発成分の大半が水である場合、乾燥前後の重量を測定することにより、容易に測定することができる。 The time for drying the reaction product (P) to a water content of 15% or less shall be 60 hours or less. The preferred drying time is within 48 hours, or within 24 hours, or within 12 hours, or within 6 hours. The shortest drying time is the time required to reduce the moisture content of the reaction product (P) to 15% or less, depending on various factors such as the amount of the reaction product (P), the initial moisture content, and the ability of the drying means. Can fluctuate. The water content can be easily measured with a commercially available moisture meter. Alternatively, when most of the volatile components are water, it can be easily measured by measuring the weight before and after drying.

反応生成物(P)を乾燥する手段は、反応生成物(P)を、70℃以上に加熱して、60時間以内に、水分15%以下、好ましくは12%以下にまで乾燥し得る手段であれば、特に限定されない。工程(Y)において、70℃以上に加熱する工程は必須であり、そのための手段として乾燥機を例示することができる。乾燥機は、製品をその都度出し入れする回分式の乾燥機であってもよく、製品がその中を所定時間かけて通過する連続式の乾燥機であってもよい。所定時間内に乾燥工程を完了させるため、工程(Y)に、熱伝導を促進する工程(y1)および/または排気を促進する工程(y2)を更に含めることが好ましい。そのためには、乾燥機に熱風循環機構、強制排気機構などを併設することが好ましい。 The means for drying the reaction product (P) is a means capable of heating the reaction product (P) to 70 ° C. or higher and drying the reaction product (P) to a moisture content of 15% or less, preferably 12% or less within 60 hours. If there is, there is no particular limitation. In the step (Y), the step of heating to 70 ° C. or higher is indispensable, and a dryer can be exemplified as a means for that purpose. The dryer may be a batch type dryer in which the product is taken in and out each time, or may be a continuous type dryer in which the product passes through the product over a predetermined time. In order to complete the drying step within a predetermined time, it is preferable that the step (Y) further includes a step (y1) for promoting heat conduction and / or a step (y2) for promoting exhaust. For that purpose, it is preferable to equip the dryer with a hot air circulation mechanism, a forced exhaust mechanism, and the like.

[後工程]
工程(Y)で得られた鉄−ポリフェノール複合材(粗生成物)は、慣用の手段により最終製品へと仕上げることができる。このような後工程としては、精製、粉砕、篩別、珪砂などの担体への担持処理、打錠などがあるが、これらに限定されるわけではない。
[Post-process]
The iron-polyphenol composite (crude product) obtained in step (Y) can be finished into a final product by conventional means. Such post-processes include, but are not limited to, purification, pulverization, sieving, support treatment on a carrier such as silica sand, and tableting.

[用途]
鉄−ポリフェノール複合材は、粉末、顆粒、濃縮液など農業園芸分野において慣用の形態に加工することにより、植物栽培用の水溶性鉄イオン供給剤の製造のために使用することができる。また、鉄−ポリフェノール複合材は、粉末、顆粒、濃縮液など食品及び医薬用途において慣用の形態に加工することにより、経口摂取用水溶性鉄イオン供給剤の製造のために使用することができる。更に、鉄−ポリフェノール複合材は、汚染水や汚染土壌に含まれる汚染物質を分解する汚染物質分解剤の製造のために使用することもできる。また、鉄−ポリフェノール複合材は、ルミノール、ロフィン、ルシゲニン、シュウ酸ジフェニル、塩化オキサリル、ルシゲニンなどの発光基質と併用して化学発光を利用した発光剤の製造に使用することができる。
[Use]
The iron-polyphenol composite can be used for the production of water-soluble iron ion feeders for plant cultivation by processing into forms commonly used in the field of agriculture and horticulture such as powders, granules and concentrates. In addition, the iron-polyphenol composite material can be used for the production of a water-soluble iron ion feeder for oral ingestion by processing it into a form commonly used in food and pharmaceutical applications such as powders, granules and concentrates. In addition, iron-polyphenol composites can also be used to produce pollutant decomposing agents that decompose pollutants contained in contaminated water and contaminated soil. Further, the iron-polyphenol composite material can be used for producing a luminescent agent using chemiluminescence in combination with a luminescent substrate such as luminol, loffin, lucigenin, diphenyl oxalate, oxalyl chloride, and lucigenin.

以下に実施例、比較例を参照して本発明を更に詳しく説明するが、本発明は以下の実施例、比較例によってなんら制限を受けるものではない。 The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited by the following Examples and Comparative Examples.

使用した測定方法は次のとおりである。
[フェナントロリン−銀比色定量法]
(1)試薬
0.2%フェナントロリン液
1gの市販のα,α’−フェナントロリンを500mLの10%酢酸液に溶解する。
10%塩酸ヒドロキシルアミン液
10gの塩酸ヒドロキシルアミンを蒸留水に溶かして100mLにする。
酢酸塩緩衝液
136.1gの酢酸ナトリウムを750mLの蒸留水に溶かし、氷酢酸でpHを5.5に調整後、1Lにする。
100pm鉄(II)標準液
モール塩((NHSO・FeSO・6HO)0.7022gを正確に秤りとり、硫酸(1:5)10mLを含む蒸留水(pH1.0以下)に溶かした後、1000mLに定容する。
(2)検量線の作成
10ppmの鉄標準液を0、0.8、1.6、2.4、3.2、4.0mL、20mLメスフラスコにとる。10%塩酸ヒドロキシルアミン液2mL、フェナントロリン液2mL、酢酸塩緩衝液5mLを順次加え、よく混ぜた後、蒸留水で20mLに定容する。約20〜30分放置した後、波長510nmで吸光度を測定する。
(3)試料の測定
試料0.20mLを20mLメスフラスコにとる。10%塩酸ヒドロキルアミン2mL(全鉄量を定量する場合には添加し、鉄(II)量のみを定量する場合には添加しない)、フェナントロリン液2mL、酢酸塩緩衝液5mLを順次加え、よく混ぜた後、蒸留水で20mLに定容する。約20〜30分放置した後、波長510nmで吸光度を測定する。
The measurement method used is as follows.
[Phenanthroline-silver colorimetric method]
(1) Reagent
1 g of 0.2% phenanthroline solution is dissolved in 500 mL of 10% acetic acid solution of commercially available α, α'-phenanthroline.
10% Hydroxylamine Hydroxylamine Solution Dissolve 10 g of hydroxylamine hydrochloride in distilled water to make 100 mL.
136.1 g of sodium acetate buffer is dissolved in 750 mL of distilled water, the pH is adjusted to 5.5 with glacial acetic acid, and the pH is adjusted to 1 L.
100pm iron (II) standard solution Mohr's salt placed precisely weighed a ((NH 4) 2 SO 4 · FeSO 4 · 6H 2 O) 0.7022g, sulfate (1: 5) of distilled water containing 10 mL (pH 1.0 After dissolving in (below), the volume is adjusted to 1000 mL.
(2) Preparation of calibration curve 10 ppm iron standard solution is placed in a 0, 0.8, 1.6, 2.4, 3.2, 4.0 mL, 20 mL volumetric flask. Add 2 mL of 10% hydroxylamine hydrochloride solution, 2 mL of phenanthroline solution, and 5 mL of acetate buffer solution in that order, mix well, and then adjust to 20 mL with distilled water. After leaving it for about 20 to 30 minutes, the absorbance is measured at a wavelength of 510 nm.
(3) Measurement of sample Take 0.20 mL of the sample into a 20 mL volumetric flask. Add 2 mL of 10% hydrokiluamine hydrochloride (added when quantifying the total amount of iron, not added when quantifying only the amount of iron (II)), 2 mL of phenanthroline solution, and 5 mL of acetate buffer, and mix well. After that, the volume is adjusted to 20 mL with distilled water. After leaving it for about 20 to 30 minutes, the absorbance is measured at a wavelength of 510 nm.

[フォーリンデニス法によるポリフェノール量測定]
(1)試薬
フォーリンデニス試薬
タングステン酸ナトリウム25g、リンモリブデン酸5g、リン酸12.5mL、水188mLを混合して2時間沸騰後、水を加えて1000mLに調製する。
10%炭酸ナトリウム
炭酸ナトリウム10gを100mLの水に溶解する。
(2)サンプル準備
測定サンプル1gに熱水(95℃前後)90mLを加え、1時間撹拌抽出する。放冷後、100mLのメスフラスコに移し、水で定容する。この液を発色に使用する。
(3)検量線の作成
標準液は、コーヒーについてはクロロゲン酸、茶については没食子酸エチルとする。20mLメスフラスコに100ppm標準液を0、0.4、0.8、1.2、1.6mL加える。これにフォーリンデニス試薬5mLを加える。3分後に炭酸ナトリウム溶液5mLを加える。純水で20mLに定容する。60分後上澄みを取って700nmの吸光度を測る。
(4)分析操作
任意の量(例えば0.1mL)のサンプルを20mLメスフラスコに加える。これにフォーリンデニス試薬5mLを加える。3分後に炭酸ナトリウム溶液5mLを加える。純水で20mLに定容する。60分後上澄みを取って700nmの吸光度を測る。
[Measurement of polyphenol amount by Foreign Dennis method]
(1) Reagent
Foreign Dennis Reagent 25 g of sodium tungstate, 5 g of phosphomolybdic acid, 12.5 mL of phosphoric acid, and 188 mL of water are mixed and boiled for 2 hours, and then water is added to prepare 1000 mL.
10% Sodium Carbonate 10 g of sodium carbonate is dissolved in 100 mL of water.
(2) Sample preparation 90 mL of hot water (around 95 ° C.) is added to 1 g of the measurement sample, and the mixture is stirred and extracted for 1 hour. After allowing to cool, transfer to a 100 mL volumetric flask and settle in water. This liquid is used for color development.
(3) Preparation of calibration curve The standard solution is chlorogenic acid for coffee and ethyl gallate for tea. Add 0, 0.4, 0.8, 1.2, 1.6 mL of 100 ppm standard solution to a 20 mL volumetric flask. Add 5 mL of Foreign Dennis Reagent to this. After 3 minutes, add 5 mL of sodium carbonate solution. The volume is adjusted to 20 mL with pure water. After 60 minutes, remove the supernatant and measure the absorbance at 700 nm.
(4) Analytical operation Add an arbitrary amount (for example, 0.1 mL) of a sample to a 20 mL volumetric flask. Add 5 mL of Foreign Dennis Reagent to this. After 3 minutes, add 5 mL of sodium carbonate solution. The volume is adjusted to 20 mL with pure water. After 60 minutes, remove the supernatant and measure the absorbance at 700 nm.

使用したpH緩衝液の調製方法は次のとおりである。
酢酸−酢酸ナトリウム緩衝液
酢酸ナトリウム(キシダ化学株式会社製)136.1gに水を700mL加え、酢酸(和光純薬工業株式会社製)でpH4.0、pH5.0になるよう調整し、1000mLにした。
水酸化ナトリウム−MES緩衝液
2−モルホリノエタンスルホン酸一水塩(MES、株式会社同仁化学研究所製)21.325gを300〜400mLの水に溶解させる。その後、1000mLにし、適量をとり、水酸化ナトリウム(和光純薬工業株式会社製)でpH6.0、pH7.0、pH8.0に調整した。
アンモニア−塩化アンモニウム緩衝液
塩化アンモニウム67.5gにアンモニア水570mLを加え、水で1000mLとし、pH9.0、pH10.0に調整した。
The method for preparing the pH buffer used is as follows.
Acetic acid-sodium acetate buffer Add 700 mL of water to 136.1 g of sodium acetate (manufactured by Kishida Chemical Industries, Ltd.) and adjust to pH 4.0 and pH 5.0 with acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) to 1000 mL. did.
21.325 g of sodium hydroxide-MES buffer 2-morpholinoethanesulfonic acid monohydrate (MES, manufactured by Dojin Chemical Laboratory Co., Ltd.) is dissolved in 300 to 400 mL of water. Then, the volume was adjusted to 1000 mL, an appropriate amount was taken, and the pH was adjusted to 6.0, pH 7.0, and pH 8.0 with sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.).
Ammonia-ammonium chloride buffer solution 570 mL of ammonia water was added to 67.5 g of ammonium chloride to make 1000 mL of water, and the pH was adjusted to 9.0 and 10.0.

Bis−Tris緩衝液
300mLビーカーにBis−Tris試薬(ビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、株式会社同仁化学研究所製)5.231gをとり、イオン交換水100mLを加え、溶解した後、全容を250mLにした(A液とした)。300mLビーカーに塩酸(和光純薬工業株式会社製)2.25mLをとり、イオン交換水で全容を250mLとした(B液とした)。A液にB液を添加し、pH6.0、pH7.0に調整した。
CHES緩衝液
1000mLビーカーにCHES(N−シクロヘキシル−2−アミノエタンスルホン酸、株式会社同仁化学研究所製)を20.729gとり、イオン交換水300〜400mLに完全に溶解した後、イオン交換水で全容1000mLとした(A液とした)。4gの水酸化ナトリウム(和光純薬工業株式会社製)をイオン交換水200〜300mLに溶解した後、イオン交換水で全容を1000mLとした(B液とした)。A液にB液を添加し、pH9.0、pH10.0に調整した。
POPSO緩衝液
POPSOの遊離酸は難溶のためモノナトリウム塩溶液を調製して使用する。
39.237gのPOPSO(ピペラジン−1,4−ビス(2−ヒドロキシ−3−プロパンスルホン酸)二水塩、株式会社同仁化学研究所製)と4gの水酸化ナトリウム(和光純薬工業株式会社製)をイオン交換水300〜400mLに完全に溶解した後、イオン交換水で全容を1000mLとする(A液とする)。4gの水酸化ナトリウム(和光純薬工業株式会社製)をイオン交換水200〜300mLに溶解した後、イオン交換水で全容を1000mLとする(B液とする)。A液にB液を添加し、pH8.0に調整した。
5.231 g of Bis-Tris reagent (bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, manufactured by Dojin Chemical Laboratory Co., Ltd.) was taken in a 300 mL beaker of Bis-Tris buffer , and 100 mL of ion-exchanged water was added to dissolve it. After that, the whole volume was adjusted to 250 mL (referred to as solution A). 2.25 mL of hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in a 300 mL beaker, and the total volume was adjusted to 250 mL with ion-exchanged water (referred to as solution B). Solution B was added to solution A to adjust the pH to 6.0 and 7.0.
Take 20.729 g of CHES (N-cyclohexyl-2-aminoethanesulfonic acid, manufactured by Dojin Chemical Laboratory Co., Ltd.) in a 1000 mL beaker of CHES buffer solution , completely dissolve it in 300 to 400 mL of ion-exchanged water, and then use ion-exchanged water. The total volume was 1000 mL (solution A). After dissolving 4 g of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) in 200 to 300 mL of ion-exchanged water, the whole volume was adjusted to 1000 mL with ion-exchanged water (referred to as solution B). Solution B was added to solution A to adjust the pH to 9.0 and 10.0.
POPSO buffer solution Since the free acid of POPSO is poorly soluble, a monosodium salt solution is prepared and used.
39.237 g of POPSO (piperazin-1,4-bis (2-hydroxy-3-propanesulfonic acid) dihydrate, manufactured by Dojin Chemical Laboratory Co., Ltd.) and 4 g of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) ) Is completely dissolved in 300 to 400 mL of ion-exchanged water, and then the whole volume is made 1000 mL with ion-exchanged water (referred to as solution A). After dissolving 4 g of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) in 200 to 300 mL of ion-exchanged water, make the whole volume 1000 mL with ion-exchanged water (referred to as solution B). Solution B was added to solution A to adjust the pH to 8.0.

[実施例1]
(1)鉄−ポリフェノール複合材の製造
A4サイズのSUSバットにポリフェノール源として規格外品のコーヒー(使用前、粒度0.1〜3mm)106gをとり、塩化鉄(III)(和光純薬工業株式会社製)16%水溶液107.5gをスプレーしながら混合した(スプレー時間5分)。(水溶液全量混合時のコーヒーの含水率=(0.84×107.5g)/(106g+107.5g)=42.3%)その後、乾燥機で70℃、5時間乾燥させ、鉄−ポリフェノール複合材を得た。
[Example 1]
(1) Production of iron-polyphenol composite material
Take 106 g of non-standard coffee (before use, particle size 0.1 to 3 mm) as a polyphenol source in an A4 size SUS bat, and add 107.5 g of a 16% aqueous solution of iron (III) chloride (manufactured by Wako Pure Chemical Industries, Ltd.). Mixing while spraying (spray time 5 minutes). (Moisture content of coffee when the entire amount of the aqueous solution is mixed = (0.84 × 107.5 g) / (106 g + 107.5 g) = 42.3%) Then, the iron-polyphenol composite material is dried at 70 ° C. for 5 hours in a dryer. Got

(2)pH安定性の測定
鉄−ポリフェノール複合材が安定に合成されているかどうかを判断する方法として、pH安定性の試験を行った。
上で得られた鉄−ポリフェノール複合材からサンプル1gをとり、精製水で100gにし、1時間撹拌し、ろ紙(型式:No.1、φ125mm、アドバンテック社製)でろ別し、ろ液をサンプル抽出液とした。サンプル抽出液のFe濃度を測定した。Fe濃度が40ppmになるようにサンプル抽出液を希釈し、希釈液をサンプル瓶(アズワン株式会社製、ラボランスクリュー管瓶)に10mL加え、さらに各pH緩衝液を10mL加え、経時変化を観察した。なお、pH5.0、6.0、7.0、8.0、9.0、10.0の各緩衝液を加えたときの各サンプルのpHを測定した結果はそれぞれpH4.7、6.2、7.0、7.4、8.5、9.3であった。
観察の結果、17時間後にpH9.0、10.0のサンプルで沈殿が観察されるまで抽出液は安定であり、その後41時間後になってpH6.0のサンプルでも沈殿が観察された。
(2) Measurement of pH stability A pH stability test was conducted as a method for determining whether or not the iron-polyphenol composite material was stably synthesized.
Take 1 g of a sample from the iron-polyphenol composite material obtained above, make 100 g with purified water, stir for 1 hour, filter with filter paper (model: No. 1, φ125 mm, manufactured by Advantech), and extract the filtrate as a sample. It was made into a liquid. The Fe concentration of the sample extract was measured. The sample extract was diluted so that the Fe concentration became 40 ppm, 10 mL of the diluted solution was added to the sample bottle (Laboran screw tube bottle manufactured by AS ONE Corporation), and 10 mL of each pH buffer solution was added, and the change over time was observed. .. The results of measuring the pH of each sample when the buffer solutions of pH 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0 were added were pH 4.7 and 6, respectively. It was 2, 7.0, 7.4, 8.5, 9.3.
As a result of observation, the extract was stable until a precipitate was observed in the sample having a pH of 9.0 and 10.0 after 17 hours, and then a precipitate was also observed in the sample having a pH of 6.0 after 41 hours.

(3)Fe(II)/[Fe(II)+Fe(III)]濃度比の測定
サンプル抽出液中のFe(II)とFe(III)の合計量に対するFe(II)の濃度比の測定を、分光光度計(型式:U−1800、株式会社日立ハイテクノロジーズ製)を用いて、フェナントロリン比色定量法により行った。その結果、Fe(II)/[Fe(II)+Fe(III)]濃度比は94.5%であった。
鉄−ポリフェノールが生成されることによって、3価のFeがほぼ2価に還元されることが確認された。
(3) Measurement of Fe (II) / [Fe (II) + Fe (III)] concentration ratio Measurement of the concentration ratio of Fe (II) to the total amount of Fe (II) and Fe (III) in the sample extract. , A spectrophotometer (model: U-1800, manufactured by Hitachi High-Technologies Co., Ltd.) was used to perform phenanthroline colorimetric quantification. As a result, the concentration ratio of Fe (II) / [Fe (II) + Fe (III)] was 94.5%.
It was confirmed that trivalent Fe was reduced to almost divalent by the production of iron-polyphenol.

[実施例2]
(1)鉄−ポリフェノール複合材の製造
A4サイズのSUSバットにポリフェノール源として規格外品の前記コーヒー(使用前、豆なし)20gをとり、下記表1に示した濃度の塩化鉄(III)(和光純薬工業)水溶液をスプレーしながら、(スプレー時間10分以内で)混合した。スプレー直後のサンプルの画像を図2に示す。その後、乾燥機で70℃、5時間(塩化鉄(III)1%水溶液の場合のみ、更に追加で90℃、2時間)乾燥させ、又は95℃、2.5時間乾燥させ、鉄−ポリフェノール複合材を得た。
[Example 2]
(1) Production of iron-polyphenol composite material 20 g of the non-standard coffee (before use, without beans) was taken as a polyphenol source in an A4 size SUS bat, and iron (III) chloride (III) at the concentration shown in Table 1 below was taken. Wako Pure Chemical Industries, Ltd.) While spraying the aqueous solution, the mixture was mixed (within a spray time of 10 minutes or less). An image of the sample immediately after spraying is shown in FIG. Then, it is dried in a dryer at 70 ° C. for 5 hours (only in the case of a 1% aqueous solution of iron (III) chloride, an additional 90 ° C. for 2 hours), or at 95 ° C. for 2.5 hours, and the iron-polyphenol composite is dried. I got the wood.

(2)pH安定性の測定
鉄−ポリフェノール複合材が安定に合成されているかどうかを判断する方法として、pH安定性の試験を行った。
上で得られた鉄−ポリフェノール複合材からサンプル1gをとり、精製水で100gにし、1時間撹拌し、ろ紙(型式:No.1、φ125mm、アドバンテック社製)でろ別し、ろ液をサンプル抽出液とした。サンプル抽出液のFe濃度を測定した。Fe濃度が40ppmになるようにサンプル抽出液を希釈し、希釈液をサンプル瓶(アズワン株式会社製、ラボランスクリュー管瓶)に10mL加え、さらに各pH緩衝液を10mL加え、経時変化を観察した。
観察の結果、22時間後にpH6.0〜pH8.0のサンプルで沈殿が観察されるまで抽出液は安定であった。
(2) Measurement of pH stability A pH stability test was conducted as a method for determining whether or not the iron-polyphenol composite material was stably synthesized.
Take 1 g of a sample from the iron-polyphenol composite material obtained above, make 100 g with purified water, stir for 1 hour, filter with filter paper (model: No. 1, φ125 mm, manufactured by Advantech), and extract the filtrate as a sample. It was made into a liquid. The Fe concentration of the sample extract was measured. The sample extract was diluted so that the Fe concentration became 40 ppm, 10 mL of the diluted solution was added to the sample bottle (Laboran screw tube bottle manufactured by AS ONE Corporation), and 10 mL of each pH buffer solution was added, and the change over time was observed. ..
As a result of observation, the extract was stable until a precipitate was observed in the sample having a pH of 6.0 to 8.0 after 22 hours.

(3)Fe(II)/[Fe(II)+Fe(III)]濃度比の測定
実施例1と同様にサンプル抽出液中のFe(II)とFe(III)の合計量に対するFe(II)の濃度比の測定を、分光光度計(型式:U−1800、株式会社日立ハイテクノロジーズ製)を用いて、フェナントロリン比色定量法により行った。結果は表1に併せて示す。
(3) Measurement of Fe (II) / [Fe (II) + Fe (III)] concentration ratio Fe (II) with respect to the total amount of Fe (II) and Fe (III) in the sample extract as in Example 1. The concentration ratio of (1) was measured by a spectrophotometer (model: U-1800, manufactured by Hitachi High-Technologies Co., Ltd.) by a phenanthroline specific color quantification method. The results are also shown in Table 1.

表1のようなスプレー直後の含水率、乾燥温度、乾燥時間で、Fe(II)の鉄を含有する鉄ポリフェノール複合材が生成できることがわかった。 It was found that an iron polyphenol composite material containing Fe (II) iron can be produced with the water content, drying temperature, and drying time immediately after spraying as shown in Table 1.

[実施例3]
(1)鉄−ポリフェノール複合材の製造
150mLガラス製サンプル瓶にポリフェノール源として規格外品の前記コーヒー粉(使用前)17.7gをとり、塩化鉄(III)(関東化学株式会社製)2.3gを40gの水に溶解した濃度5.4%の水溶液を、スプレー(アズワン株式会社製、容量500mL)で、コーヒー粉に室温で約2分間かけて噴霧した。噴霧直後のコーヒー粉全体における含水率は67%であった。
サンプル瓶にラップをかけ、更に蓋を閉めた。このように作製した試料を3つ用意し、これらを95℃に設定した熱風乾燥機(タバイエスペック社製、型式:PH−200)に入れ、下記表2に示した加温時間に従い、それぞれ1時間、2時間、3時間加温(加熱)した。加温後、サンプル瓶のラップをはずし、蓋を開け、瓶から内容物をバット(寸法23cm×29cm×深さ5cm)に取り出して、70℃に設定した熱風乾燥機で3時間乾燥し、鉄−ポリフェノール複合材を得た。
この鉄−ポリフェノール複合材の含水率を水分計(株式会社ケット科学研究所製、赤外水分計、型式:FD−220)を用いて測定した。結果は表2に併せて示す。
得られた鉄−ポリフェノール複合材1gに対し、99gのイオン交換水を加え、1時間撹拌、抽出したものを抽出液とし、以下の試験に供した。
[Example 3]
(1) Production of iron-polyphenol composite material Take 17.7 g of the nonstandard coffee powder (before use) as a polyphenol source in a 150 mL glass sample bottle, and iron (III) chloride (manufactured by Kanto Chemical Co., Inc.) 2. An aqueous solution having a concentration of 5.4% in which 3 g was dissolved in 40 g of water was sprayed onto coffee powder at room temperature for about 2 minutes by a spray (manufactured by AS ONE Co., Ltd., capacity 500 mL). The water content of the entire coffee powder immediately after spraying was 67%.
The sample bottle was wrapped and the lid was closed. Three samples prepared in this way were prepared, placed in a hot air dryer (manufactured by Tabie Spec Co., Ltd., model: PH-200) set at 95 ° C., and 1 each according to the heating time shown in Table 2 below. It was heated (heated) for 2 hours and 3 hours. After heating, remove the wrap of the sample bottle, open the lid, take out the contents from the bottle to a bat (dimensions 23 cm x 29 cm x depth 5 cm), dry in a hot air dryer set at 70 ° C for 3 hours, and iron. -A polyphenol composite was obtained.
The water content of this iron-polyphenol composite material was measured using a moisture meter (infrared moisture meter manufactured by Kett Scientific Research Institute, Inc., model: FD-220). The results are also shown in Table 2.
To 1 g of the obtained iron-polyphenol composite material, 99 g of ion-exchanged water was added, the mixture was stirred for 1 hour, and the extracted solution was used as an extract and subjected to the following tests.

(2)pH安定性の測定
上で得られた鉄−ポリフェノール複合材1gに対し、99gのイオン交換水を加え、1時間撹拌、抽出したものを抽出液とし、pH安定性の試験を行った。
観察の結果、168時間後まで沈殿は観察されなかった。
(2) Measurement of pH stability To 1 g of the iron-polyphenol composite obtained above, 99 g of ion-exchanged water was added, stirred for 1 hour, and the extracted solution was used as an extract to test the pH stability. ..
As a result of observation, no precipitation was observed until after 168 hours.

(3)Fe(II)/[Fe(II)+Fe(III)]濃度比の測定
実施例1と同様にサンプル抽出液中のFe(II)とFe(III)の合計量に対するFe(II)の濃度比の測定を、分光光度計(型式:U−1800、株式会社日立ハイテクノロジーズ)を用いて、フェナントロリン比色定量法により行った。結果は表2に併せて示す。
(3) Measurement of Fe (II) / [Fe (II) + Fe (III)] concentration ratio Fe (II) with respect to the total amount of Fe (II) and Fe (III) in the sample extract as in Example 1. The concentration ratio of the above was measured by a spectrophotometer (model: U-1800, Hitachi High-Technologies Co., Ltd.) by the phenanthroline specific color quantification method. The results are also shown in Table 2.

(4)フォーリンデニス法によるポリフェノール量測定
サンプル抽出液中のポリフェノール量の測定を、上述した方法により行った。結果は表2に併せて示す。
(4) Measurement of Polyphenol Amount by Foreign Dennis Method The polyphenol amount in the sample extract was measured by the method described above. The results are also shown in Table 2.

[比較例4]
150mLガラス製サンプル瓶にポリフェノール源として規格外品の前記コーヒー粉(使用前)17.7g、塩化鉄(III)(関東化学株式会社製)2.3g、水50gを入れ、スパチュラーで約1分間、手動で撹拌混合した。混合直後のコーヒー粉全体における含水率は71%であった。
サンプル瓶にラップをかけ、更に蓋を閉めた。このように作製した試料を6つ用意し、これらを瓶に蓋をして、70℃に設定した熱風乾燥機(タバイエスペック社製、型式:PH−200)に入れ、下記表4に示した加温時間に従い、7、16、24、30時間加温(加熱)した。加温後、サンプル瓶のラップをはずし、蓋を開け、瓶から内容物をバット(寸法23cm×29cm×深さ5cm)に取り出して、70℃に設定した熱風乾燥機で3.5時間乾燥し、鉄−ポリフェノール複合材を得た。
乾燥前後の試料の重量を測定し、乾燥後の含水率を下記のように得た。
[Comparative Example 4]
Put 17.7 g of the non-standard coffee powder (before use), 2.3 g of iron (III) chloride (manufactured by Kanto Chemical Co., Inc.), and 50 g of water as a polyphenol source in a 150 mL glass sample bottle, and use a spatula for about 1 minute. , Manually stirred and mixed. The water content of the entire coffee powder immediately after mixing was 71%.
The sample bottle was wrapped and the lid was closed. Six samples prepared in this way were prepared, the bottles were covered, and placed in a hot air dryer (manufactured by Tabie Spec Co., Ltd., model: PH-200) set at 70 ° C., and shown in Table 4 below. According to the heating time, it was heated (heated) for 7, 16, 24, and 30 hours. After heating, remove the wrap of the sample bottle, open the lid, take out the contents from the bottle to a bat (dimensions 23 cm x 29 cm x depth 5 cm), and dry in a hot air dryer set at 70 ° C for 3.5 hours. , An iron-polyphenol composite was obtained.
The weight of the sample before and after drying was measured, and the water content after drying was obtained as follows.

実施例3と比較例4とを比較すると、実施例3では加温前含水率67%から加温1〜3時間、乾燥3時間で乾燥後含水率4.5〜5.3%が達成できるのに対し、比較例4では加温前含水率71%から加温7〜30時間、乾燥3.5時間でも乾燥後含水率は5.95%以上である。 Comparing Example 3 and Comparative Example 4, in Example 3, the moisture content before heating is 67%, the moisture content after heating is 1-3 hours, and the moisture content after drying is 4.5 to 5.3% in 3 hours. On the other hand, in Comparative Example 4, the moisture content before heating was 71% to 7 to 30 hours after heating, and the moisture content after drying was 5.95% or more even after 3.5 hours of drying.

[実施例5]
(1)鉄−ポリフェノール複合材の製造
コーティングマシン(株式会社啓文社製作所製、KC−152(S))のドラムに、下記表4に従い、ポリフェノール源として規格外品の前記コーヒー(使用前)を仕込んだ。コーティングマシンを運転し、ドラムを回転させながら、農薬散布用スプレー容器から塩化鉄(III)(関東化学工業)の10%水溶液をコーヒーに、水溶液全量を約10分以内で、スプレーした。このコーヒーをポリ袋をしいたバットに取り出し、45Lポリ袋でバットごと包み、ポリ袋の口を縛った。この包みを95℃に設定した熱風乾燥機に入れ、3時間加温した。加温時間経過後、ポリ袋をはずし、バット上のコーヒーを95℃で52時間、熱風乾燥機内で乾燥し、鉄−ポリフェノール複合材を得た。
この鉄−ポリフェノール複合材の含水率を水分計(株式会社ケット科学研究所製、赤外水分計、型式:FD−220)を用いて測定した。これらの結果を表4に示す。
[Example 5]
(1) Manufacture of iron-polyphenol composite material On the drum of a coating machine (KC-152 (S) manufactured by Keibunsha Co., Ltd.), the nonstandard coffee (before use) is applied as a polyphenol source according to Table 4 below. I prepared it. While operating the coating machine and rotating the drum, a 10% aqueous solution of iron (III) chloride (Kanto Chemical Co., Inc.) was sprayed onto coffee from a spray container for spraying pesticides, and the entire amount of the aqueous solution was sprayed within about 10 minutes. This coffee was taken out into a bat with a plastic bag, wrapped in a 45 L plastic bag together with the bat, and the mouth of the plastic bag was tied. This package was placed in a hot air dryer set at 95 ° C. and heated for 3 hours. After the heating time had elapsed, the plastic bag was removed, and the coffee on the vat was dried at 95 ° C. for 52 hours in a hot air dryer to obtain an iron-polyphenol composite material.
The water content of this iron-polyphenol composite material was measured using a moisture meter (infrared moisture meter manufactured by Kett Scientific Research Institute, Inc., model: FD-220). These results are shown in Table 4.

(2)pH安定性の測定
実施例2と同様の方法でpH安定性の試験を行った。
観察の結果、168時間後まで沈殿は観察されなかった。
(2) Measurement of pH stability A pH stability test was conducted in the same manner as in Example 2.
As a result of observation, no precipitation was observed until after 168 hours.

(3)Fe(II)/[Fe(II)+Fe(III)]濃度比の測定
実施例1と同様にサンプル抽出液中のFe(II)とFe(III)の合計量に対するFe(II)の濃度比の測定を、分光光度計(U−1800、日立ハイテクノロジーズ)を用いて、フェナントロリン比色定量法により行った。結果は表4に併せて示す。
(3) Measurement of Fe (II) / [Fe (II) + Fe (III)] concentration ratio Fe (II) with respect to the total amount of Fe (II) and Fe (III) in the sample extract as in Example 1. The concentration ratio of iris was measured by a spectrophotometer (U-1800, Hitachi High-Technologies) by the phenanthroline colorimetric quantification method. The results are also shown in Table 4.

表4の結果から、Fe(II)/[Fe(II)+Fe(III)]が約90%前後の鉄を含有する鉄−ポリフェノール複合材を、kgオーダーで得られることがわかった。 From the results in Table 4, it was found that an iron-polyphenol composite material containing iron in which Fe (II) / [Fe (II) + Fe (III)] was about 90% could be obtained on the order of kg.

本発明の鉄−ポリフェノール複合材の製造方法は、従来法と比較して、消費エネルギーを低減し、所要時間を短縮し、反応装置を小型化できるという有利な効果を奏する。 The method for producing an iron-polyphenol composite material of the present invention has an advantageous effect that energy consumption can be reduced, the required time can be shortened, and the reactor can be miniaturized as compared with the conventional method.

Claims (12)

鉄または鉄化合物(A)の水溶液または分散液(B)と、ポリフェノール源(C)とを接触させ、反応生成物(P)を得る工程(X)、および
前記反応生成物(P)を、70℃以上に加熱して、60時間以内に、水分15%以下にまで乾燥する工程(Y)
を含む、鉄−ポリフェノール複合材の製造方法。
The step (X) of bringing the aqueous solution or dispersion (B) of iron or the iron compound (A) into contact with the polyphenol source (C) to obtain the reaction product (P), and the reaction product (P) are described. Step (Y) of heating to 70 ° C. or higher and drying to a moisture content of 15% or less within 60 hours.
A method for producing an iron-polyphenol composite material, including.
水溶液または分散液(B)をポリフェノール源(C)に噴霧することにより、工程(X)における接触を行う、請求項1に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to claim 1, wherein the contact in the step (X) is performed by spraying the aqueous solution or the dispersion liquid (B) onto the polyphenol source (C). (B):(C)の質量比が0.1:1〜2.7:1である範囲で工程(X)を行う、請求項1又は2に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to claim 1 or 2, wherein the step (X) is carried out in a range where the mass ratio of (B): (C) is 0.1: 1 to 2.7: 1. 水分を30〜70%に維持しつつ工程(X)を行う、請求項1乃至請求項3のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to any one of claims 1 to 3, wherein the step (X) is carried out while maintaining the water content at 30 to 70%. 水溶液または分散液(B)中の鉄または鉄化合物(A)の濃度が1質量%超である、請求項1乃至請求項4のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to any one of claims 1 to 4, wherein the concentration of iron or iron compound (A) in the aqueous solution or dispersion (B) is more than 1% by mass. 水溶液または分散液(B)中の鉄または鉄化合物(A)の濃度が30質量%未満である、請求項1乃至請求項5のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to any one of claims 1 to 5, wherein the concentration of iron or iron compound (A) in the aqueous solution or dispersion (B) is less than 30% by mass. 工程(Y)が、熱伝導を促進する工程(y1)および/または排気を促進する工程(y2)を更に含む、請求項1乃至請求項6のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。 The iron-polyphenol composite material according to any one of claims 1 to 6, wherein the step (Y) further includes a step (y1) for promoting heat conduction and / or a step (y2) for promoting exhaust. Manufacturing method. 工程(X)および工程(Y)を連続して、または並行して行う、請求項1乃至請求項7のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to any one of claims 1 to 7, wherein the step (X) and the step (Y) are carried out continuously or in parallel. 工程(X)を2〜48時間行う、請求項1乃至請求項8のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to any one of claims 1 to 8, wherein the step (X) is carried out for 2 to 48 hours. 温度70℃以上で工程(X)を行う、請求項1乃至請求項9のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to any one of claims 1 to 9, wherein the step (X) is performed at a temperature of 70 ° C. or higher. 鉄または鉄化合物(A)が三価鉄の化合物である、請求項1乃至請求項10のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to any one of claims 1 to 10, wherein the iron or the iron compound (A) is a compound of ferric iron. ポリフェノール源(C)がコーヒーまたは茶である、請求項1乃至請求項11のいずれか一項に記載の鉄−ポリフェノール複合材の製造方法。 The method for producing an iron-polyphenol composite material according to any one of claims 1 to 11, wherein the polyphenol source (C) is coffee or tea.
JP2019060171A 2019-03-27 2019-03-27 Method for producing iron-polyphenol composite material Active JP7312586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060171A JP7312586B2 (en) 2019-03-27 2019-03-27 Method for producing iron-polyphenol composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060171A JP7312586B2 (en) 2019-03-27 2019-03-27 Method for producing iron-polyphenol composite material

Publications (2)

Publication Number Publication Date
JP2020158448A true JP2020158448A (en) 2020-10-01
JP7312586B2 JP7312586B2 (en) 2023-07-21

Family

ID=72641770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060171A Active JP7312586B2 (en) 2019-03-27 2019-03-27 Method for producing iron-polyphenol composite material

Country Status (1)

Country Link
JP (1) JP7312586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539610A (en) * 2022-03-15 2022-05-27 集美大学 Method for recovering and preparing antibacterial agent from agar production waste liquid

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100200501A1 (en) * 2008-05-16 2010-08-12 Verutek Technologies ,Inc. Green synthesis of nanometals using plant extracts and use thereof
JP2011211913A (en) * 2010-03-31 2011-10-27 National Agriculture & Food Research Organization Water-soluble iron-supplying agent having reducing power and using coffee grounds or tea dregs as raw material
JP2011212518A (en) * 2010-03-31 2011-10-27 National Agriculture & Food Research Organization Fenton reaction catalyst using coffee ground or tea dreg as raw material
JP2015044154A (en) * 2013-08-28 2015-03-12 独立行政法人農業・食品産業技術総合研究機構 Photocatalyst using reducing organic material
CN104525137A (en) * 2014-12-04 2015-04-22 安徽农业大学 Defluorination biological adsorbent made by tea residue modification, preparation method and application thereof
JP2015211967A (en) * 2015-06-29 2015-11-26 国立研究開発法人農業・食品産業技術総合研究機構 Fenton reaction catalyst using reducible organic matter as raw material
CN105503967A (en) * 2016-01-04 2016-04-20 广州孺子牛生物科技有限公司 Method for directly synthesizing tea polyphenol metal complex with tea as raw material
JP2016108265A (en) * 2014-12-04 2016-06-20 フジッコ株式会社 Persistent antioxidant
JP2016195579A (en) * 2015-04-06 2016-11-24 株式会社神戸製鋼所 Iron feeding method, iron feeding material, plant cultivation method, culture method of euglena, and method for cultivating fish and shellfish
JP2018050478A (en) * 2016-09-26 2018-04-05 鉄也 野中 Production method of iron-containing liquid to be provided for drinking or food, production method of beverage, production method of powdered soft drink, production method of food and iron feeding material
US20180279638A1 (en) * 2015-10-01 2018-10-04 The Governing Council Of The University Of Toronto Iron-fortified tea preparations

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100200501A1 (en) * 2008-05-16 2010-08-12 Verutek Technologies ,Inc. Green synthesis of nanometals using plant extracts and use thereof
JP2011211913A (en) * 2010-03-31 2011-10-27 National Agriculture & Food Research Organization Water-soluble iron-supplying agent having reducing power and using coffee grounds or tea dregs as raw material
JP2011212518A (en) * 2010-03-31 2011-10-27 National Agriculture & Food Research Organization Fenton reaction catalyst using coffee ground or tea dreg as raw material
JP2015044154A (en) * 2013-08-28 2015-03-12 独立行政法人農業・食品産業技術総合研究機構 Photocatalyst using reducing organic material
CN104525137A (en) * 2014-12-04 2015-04-22 安徽农业大学 Defluorination biological adsorbent made by tea residue modification, preparation method and application thereof
JP2016108265A (en) * 2014-12-04 2016-06-20 フジッコ株式会社 Persistent antioxidant
JP2016195579A (en) * 2015-04-06 2016-11-24 株式会社神戸製鋼所 Iron feeding method, iron feeding material, plant cultivation method, culture method of euglena, and method for cultivating fish and shellfish
JP2015211967A (en) * 2015-06-29 2015-11-26 国立研究開発法人農業・食品産業技術総合研究機構 Fenton reaction catalyst using reducible organic matter as raw material
US20180279638A1 (en) * 2015-10-01 2018-10-04 The Governing Council Of The University Of Toronto Iron-fortified tea preparations
CN105503967A (en) * 2016-01-04 2016-04-20 广州孺子牛生物科技有限公司 Method for directly synthesizing tea polyphenol metal complex with tea as raw material
JP2018050478A (en) * 2016-09-26 2018-04-05 鉄也 野中 Production method of iron-containing liquid to be provided for drinking or food, production method of beverage, production method of powdered soft drink, production method of food and iron feeding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539610A (en) * 2022-03-15 2022-05-27 集美大学 Method for recovering and preparing antibacterial agent from agar production waste liquid
CN114539610B (en) * 2022-03-15 2023-09-15 集美大学 Method for recycling and preparing antibacterial agent from agar production waste liquid

Also Published As

Publication number Publication date
JP7312586B2 (en) 2023-07-21

Similar Documents

Publication Publication Date Title
CN109266337A (en) A kind of regulation preparation method and application of multicolor fluorescence carbon dots
CN104857846B (en) Formaldehyde scavenger
CA2826179A1 (en) Method for producing amino acid chelate compounds, amino acid chelate compounds and use of amino acid chelate compounds
CN107055609B (en) A kind of preparation method of ultra-pure 3Y yttrium stable zirconium oxides
CN101658168B (en) Effervescent tablet of plant growth regulator composition and preparation method thereof
US20210229067A1 (en) Method for preparing high-absorptivity silica as lutein carrier
MXPA06000581A (en) Reducing agent for the soluble chromate content of cement and methods for the production thereof.
JP7312586B2 (en) Method for producing iron-polyphenol composite material
CN101010008A (en) Method for stabilizing copper hydroxide
NO309977B1 (en) Cement blend in dry form, as well as a method for reducing the amount of water-soluble chromate in a dry cement blend
JP4312820B1 (en) Instant green tea
CN110016332B (en) H+Modified red fluorescent gold nanocluster and preparation method and application thereof
EL-Moslamy et al. Bioprocess strategies and characterization of anti-multidrug resistant human pathogens copper/copper oxide nanoparticles from citrus peel waste extracts
JP4418846B2 (en) Instant green tea
JP2005518372A (en) Powder trace elements, methods and devices for making them
US20150342915A1 (en) Instantized product and methods
CN104034562A (en) Gold loaded carbon chemical component standard substance and preparation method thereof
CN109364968A (en) Low-temperature denitration catalyst and preparation method, mold and preparation method
Abdalla Selective spectrophotometric determination of some cephalosporins in pharmaceutical formulations
CN109534473A (en) A kind of water treatment agent and preparation method thereof handling acid trade effluent
RU2176918C1 (en) Alfalfa extract-base biologically active preparation and method of its preparing
EP3284717A1 (en) Powder containing ferric pyrophosphate and method for producing same
JPS5930863A (en) Stable ultramarine and its preparation
EP1176137B1 (en) Powdery s,s-ethylenediamine-n,n'-disuccinic acid iron complex and process for producing the same
CN108251115A (en) High fluorophor of a kind of stability and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7312586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150