JP2020157366A - Life prediction method of injector for die cast machine - Google Patents
Life prediction method of injector for die cast machine Download PDFInfo
- Publication number
- JP2020157366A JP2020157366A JP2019062329A JP2019062329A JP2020157366A JP 2020157366 A JP2020157366 A JP 2020157366A JP 2019062329 A JP2019062329 A JP 2019062329A JP 2019062329 A JP2019062329 A JP 2019062329A JP 2020157366 A JP2020157366 A JP 2020157366A
- Authority
- JP
- Japan
- Prior art keywords
- value
- life
- pav
- pmax
- injection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、ダイカストマシンの射出装置を構成する部品、例えばプランジャー機構の寿命予測方法に関する。 The present invention relates to a method for predicting the life of a component, for example, a plunger mechanism, which constitutes an injection device of a die casting machine.
図7はダイカストマシンの射出装置の説明図である。一般的なダイカストマシンは、固定金型2と可動金型3で構成される金型1のキャビティ8に射出装置を用いて高温の溶湯を高圧で充填して製品を成形している。この製品を成形する際、まず溶湯を給湯機によって射出スリーブ4に充填し、射出スリーブ4内に摺動自在に設けたプランジャーチップ5を射出プランジャー6を介して射出シリンダ7によって低速又は高速で前進させることにより溶湯をキャビティ8内に射出する。
一般に射出装置は、長期間に亘って運転、例えば溶湯の射出を繰り返すと、プランジャーチップ5に摩耗が生じ、また、射出スリーブ4内に固化した金属粒が付着することで安定した所定の射出速度が達成できなくなり、射出速度が波打つように変化するなどいわゆるかじりが発生する。
FIG. 7 is an explanatory view of an injection device of a die casting machine. In a general die casting machine, a product is formed by filling a cavity 8 of a mold 1 composed of a fixed mold 2 and a movable mold 3 with a high-temperature molten metal at a high pressure using an injection device. When molding this product, first, the injection sleeve 4 is filled with molten metal by a water heater, and the plunger tip 5 slidably provided in the injection sleeve 4 is placed at low speed or high speed by the injection cylinder 7 via the injection plunger 6. The molten metal is injected into the cavity 8 by advancing with.
In general, when an injection device is repeatedly operated for a long period of time, for example, injection of molten metal is repeated, the plunger tip 5 is worn, and solidified metal particles adhere to the injection sleeve 4, so that a stable predetermined injection is performed. The speed cannot be achieved, and so-called galling occurs, such as the injection speed changing in a wavy manner.
このようなかじりは、異音が発生したり、摺動抵抗が発生したりする。このうち摺動抵抗は、プランジャーチップ5や射出スリーブ4の摩耗を促進し、鋳造部品の寿命が低下する。そうすると消耗品コスト及び交換時間が増加して、結果的に製造コストが増加する。
また摩耗が進行すると充填完了位置の近傍で、プランジャーチップ5と射出スリーブ4の隙間にバリ(カエリバリ)が発生し、突出や射出後退の動作ができず、短時間の停止が繰り返し発生する。極端な場合にはバックフラッシュが発生し、火災等に繋がるおそれがある。
さらにプランジャーチップ5と射出スリーブ4の隙間が増加すると、アルミが差し込み、所望の射出速度が得られず製品不良が発生する。
また、溶湯温度の低下を生じさせて溶湯へ空気を巻き込むことがある。そうすると、キャビティ8内への湯まわりの悪化や製品における巣の発生などの欠陥を生じさせたり、プランジャーチップ5や射出スリーブ4の寿命を短くしたりするおそれがあった。
Such galling causes abnormal noise and sliding resistance. Of these, the sliding resistance accelerates the wear of the plunger tip 5 and the injection sleeve 4, and shortens the life of the cast part. Then, the cost of consumables and the replacement time increase, and as a result, the manufacturing cost increases.
Further, as the wear progresses, burrs (burrs) are generated in the gap between the plunger tip 5 and the injection sleeve 4 in the vicinity of the filling completion position, the protrusion and the injection retreat cannot be performed, and the short-time stop is repeatedly generated. In extreme cases, backflushing may occur, leading to a fire or the like.
Further, when the gap between the plunger tip 5 and the injection sleeve 4 increases, aluminum is inserted, a desired injection speed cannot be obtained, and a product defect occurs.
In addition, the temperature of the molten metal may drop and air may be entrained in the molten metal. Then, there is a risk of causing defects such as deterioration of the hot water circulation in the cavity 8 and generation of nests in the product, and shortening the life of the plunger tip 5 and the injection sleeve 4.
一般に、ダイカストマシンの射出装置を構成する部品、例えばプランジャー機構に用いる鋳込み部品は、熱変形やアルミの固着、潤滑剤の付着状況等によって経年劣化する。各部品はかじりの程度によって摩耗の進展速度に差異が生じている。図8は従来のショット数とかじり度合い関係を示すグラフであり、縦軸にかじり度合い(点数)、横軸にショット数を示している。同図(1)に示すようにかじり度合いが悪いほど、チップAのように少ないショット数でバックフラッシュ等の生産阻害要因が生じて、早期の交換が必要となる。交換したチップBはかじり度合いがAほど悪くない場合、ショット数もAより多くなっている。
バックフラッシュ等の生産阻害要因が発生すると稼働停止してチップを交換するなど生産ロスが大きいため、同図(2)に示すように過去の経験に基づいてあらかじめ定めた交換のタイミング(ショット数量など)に達した時点でチップAからチップBへ、チップBからチップCに交換している。この場合、現時点のかじり度合いによらず一律のタイミングで交換するため、実際にはまだ十分に使用できる部品(同図中のBの使用ロス参照)を廃棄することがあった。
In general, parts constituting the injection device of a die casting machine, for example, cast parts used for a plunger mechanism, deteriorate over time due to thermal deformation, aluminum sticking, lubricant adhesion, and the like. Each part has a difference in the rate of progress of wear depending on the degree of galling. FIG. 8 is a graph showing the relationship between the number of conventional shots and the degree of galling, and the vertical axis shows the degree of galling (points) and the horizontal axis shows the number of shots. As shown in FIG. 1 (1), the worse the degree of galling, the more production-inhibiting factors such as backflushing occur with a small number of shots as in chip A, and early replacement is required. If the degree of galling of the replaced chip B is not as bad as that of A, the number of shots is also larger than that of A.
When a production obstruction factor such as backflush occurs, the operation is stopped and the chip is replaced, resulting in a large production loss. Therefore, as shown in Fig. (2), the replacement timing (shot quantity, etc.) determined in advance based on past experience. ) Is reached, the chip A is replaced with the chip B, and the chip B is replaced with the chip C. In this case, since the parts are replaced at a uniform timing regardless of the current degree of galling, parts that can actually be used sufficiently (see the use loss of B in the figure) may be discarded.
従って、このような欠陥を生じさせるプランジャーチップ機構のかじりを早期に発見してプランジャーチップ5や射出スリーブ4の保守を行うことは、製品の高い品質維持や、ダイカストマシンの破損防止かつ安全維持のために重要であり、従来、種々のかじり検出方法が提案されている(例えば特許文献1に開示有り)。
特許文献1に開示のかじり度合検出方法は、1ショット毎にプランジャーチップ5にかかる鋳造圧力の値を詳細に検出して、鋳造圧力の値からかじり大きさと位置を検出している。しかしながら構成部品の現状のかじり度合いを認識することができるが、その後の寿命に関する情報が得られず、直近の1ショットデータから交換のタイミングを決定するため、急に生産計画の変更が生じるおそれや、交換部品の手配が遅れて稼働停止するおそれなどがあった。
Therefore, it is safe to detect the galling of the plunger tip mechanism that causes such a defect at an early stage and maintain the plunger tip 5 and the injection sleeve 4 to maintain high quality of the product and prevent damage to the die casting machine. It is important for maintenance, and various galling detection methods have been conventionally proposed (for example, disclosed in Patent Document 1).
The galling degree detecting method disclosed in Patent Document 1 detects the value of the casting pressure applied to the plunger tip 5 in detail for each shot, and detects the galling size and the position from the value of the casting pressure. However, although it is possible to recognize the current degree of galling of the components, information on the subsequent life cannot be obtained, and the replacement timing is determined from the latest one-shot data, so there is a risk that the production plan may change suddenly. , There was a risk that the arrangement of replacement parts would be delayed and the operation would stop.
本発明が解決しようとする課題は、上記従来技術の問題点に鑑み、ダイカストマシンの射出装置を構成する部品の寿命(残ショット数)を精度良く予測可能な予測方法を提供することにある。 An object to be solved by the present invention is to provide a predictive method capable of accurately predicting the life (number of remaining shots) of a component constituting an injection device of a die casting machine in view of the above-mentioned problems of the prior art.
本発明は、上記課題を解決するための第1の手段として、射出プランジャーの移動範囲内に評価区間を設定してN分割し、各分割区間にかかる鋳造圧力の平均値をPm値(m=1、2、…N)とし、前記評価区間X〜YのPm値の積算値Psum値を評価区間の長さY−Xで除した値をPav値とし、前記評価区間X〜Yの鋳造圧力Pm値の最大値をPmax値とし、その発生ストローク値をSt値としたとき、前記Pav値と前記Pmax値のそれぞれに、あらかじめ決めた数値との隔たりに対する基準値を設け、前記Pav値と前記Pmax値をそれぞれの隔たりと比較し、前記Pav値と前記Pmax値のそれぞれにかじり度合いの点数を付ける工程と、
前記射出プランジャーのショット数ごとに前記点数を積算した値が、あらかじめ定めた部品寿命となる寿命積算値に達したときに部品交換と判断する工程と、を有することを特徴とするダイカストマシンの射出装置の寿命予測方法を提供することにある。
上記第1の手段によれば、構成部品の交換時期を高精度で予測することができる。
In the present invention, as a first means for solving the above problems, an evaluation section is set within the moving range of the injection plunger and divided into N, and the average value of the casting pressure applied to each divided section is a Pm value (m). = 1, 2, ... N), and the value obtained by dividing the integrated value Psum value of the Pm values of the evaluation sections X to Y by the length YX of the evaluation section is used as the Pav value, and the casting of the evaluation sections X to Y is performed. When the maximum value of the pressure Pm value is the Pmax value and the generated stroke value is the St value, a reference value for the distance between the Pav value and the Pmax value is set for each of the Pav value and the Pav value. A step of comparing the Pmax value with each distance and scoring the degree of galling for each of the Pav value and the Pmax value.
A die casting machine characterized by having a step of determining that a part is to be replaced when the value obtained by accumulating the points for each shot number of the injection plunger reaches a life integrated value which is a predetermined part life. The purpose is to provide a method for predicting the life of an injection device.
According to the first means, it is possible to predict the replacement time of the component parts with high accuracy.
本発明は、上記課題を解決するための第2の手段として、第1の手段において、部品交換した後、前記部品寿命に至るまでの残ショット数Lは、部品寿命をM、鋳造済みのショット数をN、累積点数をAとしたとき、L=M/(A/N)−Nから求めることを特徴とするダイカストマシンの射出装置の寿命予測方法を提供することにある。
上記第2の手段によれば、部品交換後に、一定数のショットを鋳造した実績値に基づいて部品寿命に至るまでの予測ショット数を求めることができる。
According to the present invention, as a second means for solving the above problems, in the first means, the number of remaining shots L from the replacement of parts to the life of the parts is M for the life of the parts and shots for which the parts have been cast. An object of the present invention is to provide a method for predicting the life of an injection device of a die casting machine, which is obtained from L = M / (A / N) -N, where N is a number and A is a cumulative score.
According to the second means, it is possible to obtain the predicted number of shots until the part life is reached based on the actual value of casting a certain number of shots after the parts are replaced.
本発明は、上記課題を解決するための第3の手段として、第1又は第2の手段において、前記かじり度合いの点数は、かじり度合いに応じて任意の値を加算したことを特徴とするダイカストマシンの射出装置の寿命予測方法を提供することにある。
上記第3の手段によれば、寿命予測の精度を高めることができる。
The present invention is characterized in that, as a third means for solving the above-mentioned problems, in the first or second means, the score of the degree of galling is an arbitrary value added according to the degree of galling. The purpose is to provide a method for predicting the life of an injection device of a machine.
According to the third means, the accuracy of life prediction can be improved.
本発明は、上記課題を解決するための第4の手段として、第1ないし第3のいずれか1の手段において、前記点数を積算した値が、前記寿命積算値に達したとき部品交換のアラームを発生することを特徴とするダイカストマシンの射出装置の寿命予測方法を提供することにある。
上記第4の手段によれば、部品交換が必要となる前にあらかじめ交換部品を手配するなど稼働時間のロスを少なくできる。
In the present invention, as a fourth means for solving the above-mentioned problems, in any one of the first to third means, when the value obtained by accumulating the points reaches the life integrated value, a component replacement alarm is given. It is an object of the present invention to provide a method for predicting the life of an injection device of a die casting machine, which is characterized by generating.
According to the fourth means, it is possible to reduce the loss of operating time by arranging replacement parts in advance before the parts need to be replaced.
本発明によれば、構成部品の残ショット数などを高精度で寿命予測することができる。 According to the present invention, it is possible to predict the life of a component component with high accuracy, such as the number of remaining shots.
本発明のダイカストマシンの射出装置の寿命予測方法の実施形態について、図面を参照しながら、以下詳細に説明する。図1は射出ストローク、射出速度、鋳造圧力の関係を示すグラフである。図2は評価区間X−Yの説明図である。図3は本発明のダイカストマシンの射出装置の寿命予測方法の処理フロー図である。図4は図3の処理Aの詳細フロー図である。図5は評価点数の説明図である。図6は本発明のショット数とかじり度合いの関係を示す説明図である。
一般的なダイカストマシンの鋳造作業は、型締め、注湯、射出開始、冷却(凝固)、型開き、製品取出、製品検知、金型スプレー、射出後退、チップ潤滑までの工程で製品1つが成形される1ショット(1サイクルともいう)とし、このショットを繰り返し行っている(図3参照)。本発明は射出開始時のプランジャーチップ5にかかる鋳造圧力の値を詳細に検出(具体的に射出波形を採取した後(図3中のS1)、時間、射出ストローク、射出速度、ヘッド圧、ロッド圧、鋳造圧力などの採取データを得る(図3中のS2)。)そして、鋳造圧力の値(図3中のS3)からかじり大きさと位置を検出している。
An embodiment of a method for predicting the life of the injection device of the die casting machine of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a graph showing the relationship between the injection stroke, the injection speed, and the casting pressure. FIG. 2 is an explanatory diagram of the evaluation section XY. FIG. 3 is a processing flow chart of a method for predicting the life of the injection device of the die casting machine of the present invention. FIG. 4 is a detailed flow chart of the process A of FIG. FIG. 5 is an explanatory diagram of evaluation points. FIG. 6 is an explanatory diagram showing the relationship between the number of shots of the present invention and the degree of galling.
In general die casting machine casting work, one product is molded in the process of mold clamping, pouring, injection start, cooling (solidification), mold opening, product removal, product detection, mold spraying, injection retreat, and chip lubrication. This shot is repeated as one shot (also referred to as one cycle) (see FIG. 3). The present invention detects in detail the value of the casting pressure applied to the plunger tip 5 at the start of injection (specifically, after collecting the injection waveform (S1 in FIG. 3), time, injection stroke, injection speed, head pressure, Collected data such as rod pressure and casting pressure are obtained (S2 in FIG. 3), and the galling size and position are detected from the value of casting pressure (S3 in FIG. 3).
図1に射出プランジャー6で射出した時の、射出速度と鋳造圧力の射出波形を示す。横軸にプランジャーチップ5のストロークをとって、縦軸に射出速度(m/s)と鋳造圧力(MPa)を示している。射出速度は低速の区間と高速の区間に分けられ、この図であればストロークが535mmまでは低速で、ストロークが535mm以上では高速になっている。本実施形態では、評価区間を一例として20mm〜535mmとした。また評価区間のN等分の幅を1mmとした。各分割区間にかかる鋳造圧力の平均値をPm値とした(m=1、2、・・・N)。一方、鋳造圧力は、その値は変動しながら、プランジャーチップ5が先に進んでいる。この図の中でPm値は鋳造圧力の波形を示し、Pmax値は評価区間のなかのPm値の最大値を示している。 FIG. 1 shows the injection waveforms of the injection speed and the casting pressure when the injection plunger 6 is used for injection. The stroke of the plunger tip 5 is taken on the horizontal axis, and the injection speed (m / s) and the casting pressure (MPa) are shown on the vertical axis. The injection speed is divided into a low speed section and a high speed section. In this figure, the stroke is low up to 535 mm and high speed when the stroke is 535 mm or more. In the present embodiment, the evaluation section is set to 20 mm to 535 mm as an example. The width of the evaluation section divided into N equal parts was set to 1 mm. The average value of the casting pressure applied to each division section was taken as the Pm value (m = 1, 2, ... N). On the other hand, the plunger tip 5 is advancing while the value of the casting pressure fluctuates. In this figure, the Pm value shows the waveform of the casting pressure, and the Pmax value shows the maximum value of the Pm value in the evaluation section.
次に、プランジャーチップ5の移動範囲内に評価区間(X〜Y)を設定する(図2参照)。プランジャーチップ5が移動する時の鋳造圧力を、評価区間でN等分する。N等分したきざみ幅が例えば1mmであれば、幅1mm区切りで鋳造圧力を計測する。射出ストローク1mmごとの鋳造圧力平均値をダイカストマシンのPC内で演算しPm値(MPa)とする。
ここで、評価区間と鋳造圧力の値について模擬的に説明する。評価区間をXからYとした時、鋳造圧力のきざみを例として1mmとするとPmの値はその1mm幅の値の平均値をとることにする。
前記圧力Pmの定義をもとに、図2は鋳造圧力と射出速度の波形を書き直したものである。
かじりを評価、管理したい低速区間の射出ストローク範囲を設定する。評価区間X〜Y(mm)(Y>X)は図2では20〜535mmとなっている。
高速区間も評価可能であるが、高速区間の鋳造圧力値はゲート抵抗や射出速度設定値に依存し変化する。
Next, the evaluation section (XY) is set within the moving range of the plunger tip 5 (see FIG. 2). The casting pressure when the plunger tip 5 moves is divided into N equal parts in the evaluation section. If the step width divided into N equal parts is, for example, 1 mm, the casting pressure is measured at intervals of 1 mm in width. The average casting pressure value for each injection stroke of 1 mm is calculated in the PC of the die casting machine and used as the Pm value (MPa).
Here, the evaluation section and the value of the casting pressure will be described in a simulated manner. When the evaluation section is changed from X to Y and the step of the casting pressure is 1 mm as an example, the value of Pm is the average value of the values of the width of 1 mm.
Based on the definition of the pressure Pm, FIG. 2 is a rewrite of the waveforms of the casting pressure and the injection speed.
Set the injection stroke range of the low speed section where you want to evaluate and manage galling. The evaluation sections X to Y (mm) (Y> X) are 20 to 535 mm in FIG.
The high-speed section can also be evaluated, but the casting pressure value in the high-speed section changes depending on the gate resistance and the injection speed set value.
前にも述べたようにPm値(MPa)は評価区間X〜Yの1mm刻みの分割区間の平均圧力値である(図3中のS4)。
評価区間X〜Y(mm)(図4中のS5)のPm値(MPa)を積算してPsum値(MPa)とする。評価区間距離Y−X(mm)で除して一般化して、Psum/(Y−X)=Pav値(MPa/mm)とする(図4中のS6)。これにより、鋳造圧力と射出ストロークの面積を一般化することができる。これにより、低い鋳造圧力でも、幅が広いとかじり度合が悪いと判定する。
評価区間X〜Y(mm)の鋳造圧力またはPm値の最大値とその発生ストローク値を抽出する。Pmax値(MPa)とSt値(mm)である(図4中のS7)。これは、鋳造圧力のピークの大きさに着目して評価するものである。すなわち幅が狭くても、高い鋳造圧力ピークは悪いと判定する。
Pav値(MPa/mm)にa個の隔たりAaを設け、a回の評価を実施し、点数を付ける。隔たりAaは変更できるようにしてもよいし、固定値でもよい(図4中のS8)。
As described above, the Pm value (MPa) is the average pressure value of the evaluation sections X to Y in 1 mm increments (S4 in FIG. 3).
The Pm values (MPa) of the evaluation sections X to Y (mm) (S5 in FIG. 4) are integrated to obtain the Psum value (MPa). The evaluation section distance is divided by YX (mm) and generalized to Psum / (YX) = Pav value (MPa / mm) (S6 in FIG. 4). This makes it possible to generalize the casting pressure and the area of the injection stroke. As a result, even if the casting pressure is low, it is determined that the degree of galling is poor if the width is wide.
The maximum value of the casting pressure or Pm value in the evaluation sections X to Y (mm) and the generated stroke value thereof are extracted. Pmax value (MPa) and St value (mm) (S7 in FIG. 4). This is evaluated by paying attention to the magnitude of the peak of the casting pressure. That is, even if the width is narrow, a high casting pressure peak is judged to be bad.
The Pav value (MPa / mm) is provided with a gap Aa, the evaluation is performed a times, and a score is given. The distance Aa may be changeable or may be a fixed value (S8 in FIG. 4).
例えば、隔たりA1、A2、・・・・Aaの場合Pav値≧A1なら1点、Pav値≧A2なら1点追加・・・Pav値≧Aaなら1点追加し、最大a点となるようにする(図4中のS9)。
Pmax値(MPa)にb個の隔たりBbを設け、b回の評価を実施する。前記Pav値のように点数付ける。隔たりBbは変更できるようにし、固定しておいてもよい(図4中のS10)。
例えば隔たりB1、B2、・・・・Bbの場合Pmax値≧B1なら1点、Pmax値≧B2なら1点追加・・・Pmax値≧Bbなら1点追加し、最大b点となるようにする(図4中のS11)。
かじり度合いの点数付け、すなわちa,b段階評価の点数(図4中のS9とS11)の合計を算出する(図3中のS12)。
For example, if the distance is A1, A2, ... Aa, 1 point is added if Pav value ≥ A1, 1 point is added if Pav value ≥ A2 ... If Pav value ≥ Aa, 1 point is added so that the maximum a point is obtained. (S9 in FIG. 4).
The Pmax value (MPa) is provided with b gaps Bb, and the evaluation is performed b times. Score like the Pav value. The gap Bb may be changed and fixed (S10 in FIG. 4).
For example, in the case of distances B1, B2, ... Bb, 1 point is added if Pmax value ≥ B1, 1 point is added if Pmax value ≥ B2 ... 1 point is added if Pmax value ≥ Bb so that the maximum is b points. (S11 in FIG. 4).
The degree of galling is scored, that is, the total of the scores for the a and b grades (S9 and S11 in FIG. 4) is calculated (S12 in FIG. 3).
図5は実際の鋳造(ショット数(No)35回)で得られたPsum値、Pav値、Pmax値、St値のそれぞれの値と隔たりとの比較により得られたかじり度合の点数である。このデータでは、隔たりがPav値、Pmax値ともに5個で比較している例である。これから、わかるようにPav値(a評価)、Pmax(b評価)値の点数はともに0〜5までの点数で評価されている。またPav値とPmax値を和したかじり度合の点数(n評価)の点数とSt値がショット毎に表示されている。これによると、かじり度合の点数(n評価)が10点の場合最もかじりの可能性が大きいことを示している。本表では点数の10の多い場所、すなわちストロークSt値が450mmから535mmにかじりの度合が大きいことが判断できる。
かじり度合いの点数(合計)の積算を行い、所定稼働時間経過後に残寿命(残ショット数)の予測計算を行う(図3中のS13)。図6は本発明のショット数とかじり度合いの関係を示す説明図である。同図(2)に示すように、1ショット毎の点数を積算していくと、チップA積算値aのような右肩上がりのほぼ直線状に現れる。
FIG. 5 shows the score of the degree of galling obtained by comparing each value of the Psum value, Pav value, Pmax value, and St value obtained in the actual casting (number of shots (No) 35 times) with the distance. In this data, the gap is an example in which both the Pav value and the Pmax value are compared with five. From this, as can be seen, the scores of the Pav value (a evaluation) and the Pmax (b evaluation) value are both evaluated with a score from 0 to 5. In addition, the score (n evaluation) of the degree of galling, which is the sum of the Pav value and the Pmax value, and the St value are displayed for each shot. According to this, it is shown that the possibility of galling is the highest when the score of the degree of galling (n evaluation) is 10 points. In this table, it can be determined that the place where the number of points is 10 is large, that is, the stroke St value is from 450 mm to 535 mm and the degree of galling is large.
The points (total) of the degree of galling are integrated, and the remaining life (number of remaining shots) is predicted and calculated after the lapse of a predetermined operating time (S13 in FIG. 3). FIG. 6 is an explanatory diagram showing the relationship between the number of shots of the present invention and the degree of galling. As shown in FIG. 2 (2), when the points for each shot are integrated, they appear in a substantially straight line rising to the right like the chip A integrated value a.
なおショット毎のかじり度合いの点数(平均値)をショット数の時系列にプロットした場合には、かじり度合いの点数の平均値、ショット毎のかじり度合いの点数の傾向、例えば、かじり度合いがショット毎に増加しているのか、又は減少しているのか、あるいはショット全般に大きい点数が出ているのか、又はショットの局部的に大きな点数が出ているのかなどが視覚的に認識できる。
またかじり度合い(摩耗の具合等)に応じて、合計点数が大きいときなどの場合に任意の値を加算しても良い。これにより高精度の寿命予測が行える。
すでに部品交換した実績値がある場合、部品寿命に至るまでの残ショット数Lは、部品寿命をM、鋳造済みのショット数をN、累積点数をAとしたとき、L=M/(A/N)−Nから求めることができる。なお、鋳造済みのショット数Nは多いほど、寿命予測の精度は上がる。
When the number of gnawing points (average value) for each shot is plotted in the time series of the number of shots, the average value of the gnawing degree points and the tendency of the gnawing degree points for each shot, for example, the gnawing degree is for each shot. It is possible to visually recognize whether the number is increasing or decreasing, whether the shot has a large score in general, or whether the shot has a locally large score.
Further, depending on the degree of galling (the degree of wear, etc.), an arbitrary value may be added when the total score is large. This makes it possible to predict the life with high accuracy.
If there is an actual value of parts replacement, the number of remaining shots L until the part life is reached is L = M / (A /) when the part life is M, the number of cast shots is N, and the cumulative number is A. N) It can be obtained from -N. The larger the number of shots N cast, the higher the accuracy of life prediction.
S13で得られたかじり度合いの積算値と、残寿命(残ショット数)の予測値を記憶する(図3中のS14)。
かじり度合いの累積値と残寿命予測値を表示する(図3中のS15)。
かじり度合い点数の積算値を設定する(寿命積算値)(図3中のS16)。あらかじめ部品寿命となる寿命積算値cを決定する。本実施形態の寿命積算値cとは、例えば、過去に交換した部品の使用実績値を参考にして決定することができ、直ちに部品交換が必要ではなく、まだ数ショット行える状態の積算値である。
積算値が寿命積算値に達したとき警報を発し又は警告する(図3中のS17)。これにより、部品交換が必要となる前にあらかじめ交換部品を手配するなど稼働時間のロスを少なくできる。
警告後、必要に応じて、次サイクルは行わず(No)鋳造終了して部品交換を行う。一方、積算値が寿命積算値に達するまでは、次サイクルを行う(Yes)。
このような本発明のダイカストマシンの射出装置の寿命予測方法によれば、図6(1)に示すようにチップAの製品寿命(要部品交換)に達する前にチップBを手配し、部品交換を行うことができ、チップAの使用ロスを大幅に削減できる。またダイカストマシンの射出装置を構成する部品、例えばプランジャー機構、射出スリーブ、プランジャーチップの残ショット数などを高精度で寿命予測することができる。
The integrated value of the degree of galling obtained in S13 and the predicted value of the remaining life (number of remaining shots) are stored (S14 in FIG. 3).
The cumulative value of the degree of galling and the predicted value of the remaining life are displayed (S15 in FIG. 3).
An integrated value of the degree of galling points is set (integrated life value) (S16 in FIG. 3). The life integrated value c, which is the component life, is determined in advance. The life integrated value c of the present embodiment is, for example, an integrated value in a state where it can be determined with reference to the actual usage value of the parts replaced in the past, the parts need not be replaced immediately, and several shots can still be performed. ..
When the integrated value reaches the life integrated value, an alarm is issued or a warning is issued (S17 in FIG. 3). As a result, it is possible to reduce the loss of operating time, such as arranging replacement parts in advance before parts need to be replaced.
After the warning, if necessary, the next cycle is not performed (No), casting is completed, and parts are replaced. On the other hand, the next cycle is performed (Yes) until the integrated value reaches the life integrated value.
According to the method of predicting the life of the injection device of the die casting machine of the present invention, as shown in FIG. 6 (1), the chip B is arranged and the parts are replaced before the product life of the chip A (replacement of parts required) is reached. Can be performed, and the usage loss of the chip A can be significantly reduced. In addition, the life of parts constituting the injection device of the die casting machine, such as the plunger mechanism, the injection sleeve, and the number of remaining shots of the plunger tip, can be predicted with high accuracy.
以上、本発明の好ましい実施形態について説明した。しかしながら、本発明は、上記実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において、種々の変更が可能である。
また、本発明は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。
The preferred embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
Further, the present invention is not limited to the combinations shown in the embodiments, and can be implemented by various combinations.
本発明のダイカストマシンの射出装置の寿命予測方法は特に、ダイカストマシンの射出装置において産業上の利用可能性を有する。 The method for predicting the life of a die casting machine injection device of the present invention has industrial applicability, especially in a die casting machine injection device.
1 金型
2 固定型
3 可動型
4 射出スリーブ
5 プランジャーチップ
6 射出プランジャー
8 キャビティ
1 Mold 2 Fixed mold 3 Movable mold 4 Injection sleeve 5 Plunger tip 6 Injection plunger 8 Cavity
Claims (4)
前記射出プランジャーのショット数ごとに前記点数を積算した値が、あらかじめ定めた部品寿命となる寿命積算値に達したときに部品交換と判断する工程と、を有することを特徴とするダイカストマシンの射出装置の寿命予測方法。 An evaluation section is set within the movement range of the injection plunger and divided into N, and the average value of the casting pressure applied to each divided section is set to the Pm value (m = 1, 2, ... N), and the evaluation sections XY The value obtained by dividing the integrated value Pm value of the Pm value by the length YX of the evaluation section is defined as the Pav value, the maximum value of the casting pressure Pm value in the evaluation sections X to Y is defined as the Pmax value, and the generated stroke value is St. When used as a value, a reference value for a distance between the Pav value and the Pmax value is set for each of the predetermined values, the Pav value and the Pmax value are compared with the respective distances, and the Pav value and the Pmax value are compared with each other. The process of scoring the degree of galling for each value and
A die casting machine characterized by having a step of determining that a part is to be replaced when the value obtained by accumulating the points for each shot number of the injection plunger reaches a life integrated value which is a predetermined part life. How to predict the life of the injection device.
部品交換した後、前記部品寿命に至るまでの残ショット数Lは、部品寿命をM、鋳造済みのショット数をN、累積点数をAとしたとき、L=M/(A/N)−Nから求めることを特徴とするダイカストマシンの射出装置の寿命予測方法。 In the method for predicting the life of the injection device of the die casting machine according to claim 1.
The number of remaining shots L until the part life is reached after the part is replaced is L = M / (A / N) -N when the part life is M, the number of shots cast is N, and the cumulative number is A. A method for predicting the life of an injection device of a die casting machine, which is characterized by obtaining from.
前記かじり度合いの点数は、かじり度合いに応じて任意の値を加算したことを特徴とするダイカストマシンの射出装置の寿命予測方法。 In the method for predicting the life of the injection device of the die casting machine according to claim 1 or 2.
A method for predicting the life of an injection device of a die casting machine, characterized in that an arbitrary value is added to the score of the degree of galling according to the degree of galling.
前記点数を積算した値が、前記寿命積算値に達したとき部品交換のアラームを発生することを特徴とするダイカストマシンの射出装置の寿命予測方法。 In the method for predicting the life of an injection device of a die casting machine according to any one of claims 1 to 3.
A method for predicting the life of an injection device of a die casting machine, characterized in that an alarm for parts replacement is generated when the integrated value of the points reaches the integrated life value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019062329A JP7180498B2 (en) | 2019-03-28 | 2019-03-28 | Life Prediction Method for Injection Device of Die Casting Machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019062329A JP7180498B2 (en) | 2019-03-28 | 2019-03-28 | Life Prediction Method for Injection Device of Die Casting Machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020157366A true JP2020157366A (en) | 2020-10-01 |
JP7180498B2 JP7180498B2 (en) | 2022-11-30 |
Family
ID=72640970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019062329A Active JP7180498B2 (en) | 2019-03-28 | 2019-03-28 | Life Prediction Method for Injection Device of Die Casting Machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7180498B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022138830A1 (en) * | 2020-12-25 | 2022-06-30 | 芝浦機械株式会社 | Molding machine, and method for operating molding machine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03275264A (en) * | 1990-03-22 | 1991-12-05 | Ube Ind Ltd | Method for detecting gnawing of pressurizing plunger in pressurize casting machine |
JPH04345818A (en) * | 1991-05-23 | 1992-12-01 | Sekisui Chem Co Ltd | Defective appearance forecasting method for injection molded product |
JPH1158479A (en) * | 1993-07-08 | 1999-03-02 | Toyo Mach & Metal Co Ltd | Molding machine with function for indicating periodical inspection |
JP2002263814A (en) * | 2001-03-09 | 2002-09-17 | Japan Steel Works Ltd:The | Method for injection-molding low melting point alloy |
JP2014113608A (en) * | 2012-12-07 | 2014-06-26 | Aisin Aw Co Ltd | Method for predicting seizure of mold, and program |
JP2017104871A (en) * | 2015-12-07 | 2017-06-15 | 宇部興産機械株式会社 | Galling degree detection method of injection plunger |
-
2019
- 2019-03-28 JP JP2019062329A patent/JP7180498B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03275264A (en) * | 1990-03-22 | 1991-12-05 | Ube Ind Ltd | Method for detecting gnawing of pressurizing plunger in pressurize casting machine |
JPH04345818A (en) * | 1991-05-23 | 1992-12-01 | Sekisui Chem Co Ltd | Defective appearance forecasting method for injection molded product |
JPH1158479A (en) * | 1993-07-08 | 1999-03-02 | Toyo Mach & Metal Co Ltd | Molding machine with function for indicating periodical inspection |
JP2002263814A (en) * | 2001-03-09 | 2002-09-17 | Japan Steel Works Ltd:The | Method for injection-molding low melting point alloy |
JP2014113608A (en) * | 2012-12-07 | 2014-06-26 | Aisin Aw Co Ltd | Method for predicting seizure of mold, and program |
JP2017104871A (en) * | 2015-12-07 | 2017-06-15 | 宇部興産機械株式会社 | Galling degree detection method of injection plunger |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022138830A1 (en) * | 2020-12-25 | 2022-06-30 | 芝浦機械株式会社 | Molding machine, and method for operating molding machine |
Also Published As
Publication number | Publication date |
---|---|
JP7180498B2 (en) | 2022-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7677295B2 (en) | Die casting process incorporating computerized pattern recognition techniques | |
EP1439046B1 (en) | Automated molding technology for thermoplastic injection molding | |
US4583579A (en) | Method of die casting | |
JP7180498B2 (en) | Life Prediction Method for Injection Device of Die Casting Machine | |
JP2022538023A (en) | A system for tracking and evaluating the condition of refractory components in metallurgical facilities | |
EP2162254B1 (en) | Die casting control method | |
JP6587139B2 (en) | Evaluation method of galling degree of injection plunger mechanism | |
JP2009053094A (en) | Mold temperature analysis method | |
JP2013111603A (en) | Method of evaluating mold powder in continuous casting and continuous casting method using the same | |
US6772821B1 (en) | System for manufacturing die castings | |
US6779583B1 (en) | Die casting process incorporating iterative process parameter adjustments | |
JP2022090725A (en) | Quality management method for die cast product | |
JP7308054B2 (en) | die casting machine | |
JP2011152766A (en) | Molded component manufacturing apparatus | |
JP7517048B2 (en) | Galling correlation index acquisition device and casting method | |
JP6107838B2 (en) | Quality control method and apparatus for injection molded products | |
JP7300888B2 (en) | Casting condition determination method | |
Shanmugaraja et al. | Application of Taguchi and RSM techniques for optimising the parameters of pressure die casting process | |
JP2009202169A (en) | Die cooling control method and die cooling control device | |
JP2022157641A (en) | Die casting device and die cast manufacturing method | |
JP2763798B2 (en) | Detection method of fluctuation of injection speed in die casting machine | |
JP6725877B2 (en) | Die casting initial temperature setting method | |
JP2021041435A (en) | Temperature measurement device for casting mold | |
Roorda | Influence of Mold Coating Wear on Heat Transfer Coefficient in Aluminum Permanent Molds | |
Walunj et al. | Review on Die Design for Die Casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210916 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210917 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7180498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |