JP2020157196A - Gas Separation Membrane Complex and Method for Producing Gas Separation Membrane Complex - Google Patents

Gas Separation Membrane Complex and Method for Producing Gas Separation Membrane Complex Download PDF

Info

Publication number
JP2020157196A
JP2020157196A JP2019057233A JP2019057233A JP2020157196A JP 2020157196 A JP2020157196 A JP 2020157196A JP 2019057233 A JP2019057233 A JP 2019057233A JP 2019057233 A JP2019057233 A JP 2019057233A JP 2020157196 A JP2020157196 A JP 2020157196A
Authority
JP
Japan
Prior art keywords
gas separation
separation membrane
inorganic filler
support
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019057233A
Other languages
Japanese (ja)
Inventor
洋一 生越
Yoichi Ogose
洋一 生越
高向 芳典
Yoshinori Takamukai
芳典 高向
丈博 小林
Takehiro Kobayashi
丈博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019057233A priority Critical patent/JP2020157196A/en
Publication of JP2020157196A publication Critical patent/JP2020157196A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a gas separation membrane complex that prevents a flow rate and a concentration of separation gas from changing even in a high temperature-high humidity environment.SOLUTION: A gas separation membrane complex 1 has a support 2, and a gas separation membrane 5 provided on one side of the support 2. The gas separation membrane 5 has a polymer component 51 and an inorganic filler 52.SELECTED DRAWING: Figure 1

Description

本開示は、気体分離膜複合体及び気体分離膜複合体の製造方法に関し、より詳細には、気体分離膜を有する気体分離膜複合体及び気体分離膜複合体の製造方法に関する。 The present disclosure relates to a gas separation membrane complex and a method for producing a gas separation membrane complex, and more particularly to a gas separation membrane complex having a gas separation membrane and a method for producing a gas separation membrane complex.

近年、燃焼機器、空調機器、医療機器等の分野において、空気等の二種類以上の気体が混合した混合気体から、例えば酸素や窒素等の特定の気体を分離、濃縮するための気体分離膜の研究が行われている。気体分離膜による気体分離法では、気体分離膜を気体が透過する際の透過速度の差を利用して、特定の気体を分離濃縮する。 In recent years, in the fields of combustion equipment, air conditioning equipment, medical equipment, etc., gas separation membranes for separating and concentrating specific gases such as oxygen and nitrogen from a mixed gas in which two or more types of gases such as air are mixed. Research is being conducted. In the gas separation method using a gas separation membrane, a specific gas is separated and concentrated by utilizing the difference in the permeation rate when the gas permeates the gas separation membrane.

例えば、特許文献1には、ポリ(4−メチルペンテン−1)とポリフマル酸エステルとを含む気体分離層を備える気体分離複合膜が記載されている。 For example, Patent Document 1 describes a gas separation composite membrane including a gas separation layer containing poly (4-methylpentene-1) and a polyfumaric acid ester.

特開2017−164675号公報Japanese Unexamined Patent Publication No. 2017-164675

気体分離膜を、例えば燃料電池自動車(Fuel Cell Vehicle)等の高温高湿下で長時間にわたって用いる場合、気体分離膜中の高分子成分が収縮し、気体分離膜による分離気体の流量及び濃度が変化し、気体分離性能が低下するおそれがある。 When the gas separation membrane is used for a long time under high temperature and high humidity of, for example, a fuel cell vehicle, the polymer component in the gas separation membrane shrinks, and the flow rate and concentration of the separated gas by the gas separation membrane increase. It may change and the gas separation performance may deteriorate.

本開示の目的は、高温高湿下であっても分離気体の流量及び濃度が低下しにくい気体分離膜複合体及び気体分離膜複合体の製造方法を提供することである。 An object of the present disclosure is to provide a gas separation membrane composite and a method for producing a gas separation membrane composite in which the flow rate and concentration of the separation gas are unlikely to decrease even under high temperature and high humidity.

本開示に係る気体分離膜複合体は、支持体と、前記支持体の一面に設けられた気体分離膜と、を備え、前記気体分離膜は、高分子成分と、無機充填材と、を含有する。 The gas separation membrane composite according to the present disclosure includes a support and a gas separation membrane provided on one surface of the support, and the gas separation membrane contains a polymer component and an inorganic filler. To do.

本開示に係る気体分離膜複合体の製造方法は、高分子成分及び無機充填材を有機溶媒に分散させて液状材料を準備する第一工程と、前記液状材料を水面に供給し、前記液状材料から前記有機溶媒を蒸発させて前記水面上に気体分離膜を作製する第二工程と、前記気体分離膜に支持体の一面を接触させて、前記気体分離膜を前記支持体に転写する第三工程と、を有する。 The method for producing a gas separation membrane composite according to the present disclosure includes a first step of dispersing a polymer component and an inorganic filler in an organic solvent to prepare a liquid material, and supplying the liquid material to the water surface to supply the liquid material. The second step of producing a gas separation membrane on the water surface by evaporating the organic solvent from the above, and the third step of bringing the gas separation membrane into contact with one surface of the support to transfer the gas separation membrane to the support. It has a process.

本開示によれば、高温下であっても分離気体の流量及び濃度が低下しにくい気体分離膜複合体を得ることができる。 According to the present disclosure, it is possible to obtain a gas separation membrane composite in which the flow rate and concentration of the separation gas do not easily decrease even at a high temperature.

図1は、本開示の一実施形態に係る気体分離膜複合体の断面図である。FIG. 1 is a cross-sectional view of the gas separation membrane composite according to the embodiment of the present disclosure. 図2は、本開示の一実施形態に係る気体分離膜複合体の製造方法を示す概略図である。FIG. 2 is a schematic view showing a method for producing a gas separation membrane composite according to an embodiment of the present disclosure. 図3は、本開示の実施例の気体分離膜複合体を用いた流量変化量を示すグラフである。FIG. 3 is a graph showing the amount of change in the flow rate using the gas separation membrane composite of the examples of the present disclosure.

以下、本開示の実施形態を図1及び図2を用いて説明する。図1は、本開示の一実施形態に係る気体分離膜複合体1の断面図である。図2は、本開示の一実施形態に係る気体分離膜複合体1の製造方法を示す概略図である。 Hereinafter, embodiments of the present disclosure will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of the gas separation membrane composite 1 according to the embodiment of the present disclosure. FIG. 2 is a schematic view showing a method for producing the gas separation membrane composite 1 according to the embodiment of the present disclosure.

本実施形態に係る気体分離膜複合体1は、図1に示すように、支持体2と、支持体2の一面4Aに設けられた気体分離膜5と、を備える。気体分離膜5は、高分子成分51と、無機充填材52と、を含有する。 As shown in FIG. 1, the gas separation membrane composite 1 according to the present embodiment includes a support 2 and a gas separation membrane 5 provided on one surface 4A of the support 2. The gas separation membrane 5 contains a polymer component 51 and an inorganic filler 52.

気体分離膜5は、二種類以上の気体が混合した混合気体から、特定の気体を選択的に分離、濃縮することができる。気体の種類によって気体分離膜5を透過する速度に違いがあるため、この速度の違いによって気体を分離濃縮することができる。例えば、酸素が気体分離膜5を透過する速度が、窒素が気体分離膜5を透過する速度よりも速い場合、酸素と窒素とを含む空気から酸素を分離濃縮することで酸素富化空気を得ることができる。気体分離膜5を透過する速度が速く、分離されて濃縮される気体を分離気体という。本実施形態では、気体分離膜5が無機充填材52を含有するため、高温高湿下であっても、気体分離膜5における分離気体の流量及び濃度が変化しにくく、良好な気体分離性能を保つことができる。その理由は、以下によるものであると考えられる。気体分離膜5が無機充填材52を含有すると、熱、水蒸気等により気体分離膜5中の高分子成分51が収縮しようとする場合に、高分子鎖に接着した無機充填材52同士が接触したとしても高分子鎖は無機充填材52により固定されているため鎖間の空隙を確保することができる。これにより高分子成分51が収縮しすぎることを抑制することができる。このため、気体分離膜5中に分離気体が通り抜けるための十分な空間が確保されることで、高温下であっても分離気体の流量及び濃度が低下しにくくなると考えられる。 The gas separation membrane 5 can selectively separate and concentrate a specific gas from a mixed gas in which two or more types of gases are mixed. Since the speed of permeation through the gas separation membrane 5 differs depending on the type of gas, the gas can be separated and concentrated by this difference in speed. For example, when the rate at which oxygen permeates the gas separation membrane 5 is faster than the rate at which nitrogen permeates the gas separation membrane 5, oxygen-enriched air is obtained by separating and concentrating oxygen from air containing oxygen and nitrogen. be able to. A gas that penetrates the gas separation membrane 5 at a high speed and is separated and concentrated is called a separation gas. In the present embodiment, since the gas separation membrane 5 contains the inorganic filler 52, the flow rate and concentration of the separated gas in the gas separation membrane 5 are unlikely to change even under high temperature and high humidity, and good gas separation performance can be obtained. Can be kept. The reason is considered to be as follows. When the gas separation membrane 5 contains the inorganic filler 52, the inorganic fillers 52 adhered to the polymer chains come into contact with each other when the polymer component 51 in the gas separation membrane 5 tends to shrink due to heat, steam, or the like. Even so, since the polymer chains are fixed by the inorganic filler 52, voids between the chains can be secured. As a result, it is possible to prevent the polymer component 51 from shrinking too much. Therefore, it is considered that the flow rate and concentration of the separated gas are less likely to decrease even at a high temperature by ensuring a sufficient space in the gas separation membrane 5 for the separated gas to pass through.

気体分離膜5は、一層で構成されていてもよく、二層以上の複数の層から構成されていてもよい。気体分離膜5が複数の層から構成される場合、気体分離膜5は、気体を分離するための分離層と、分離層を保護するための保護層とを含んでもよい。本実施形態では、図1に示すように気体分離膜5は分離層のみを含み、分離層そのものが気体分離膜5として機能する。 The gas separation membrane 5 may be composed of one layer, or may be composed of a plurality of layers of two or more layers. When the gas separation membrane 5 is composed of a plurality of layers, the gas separation membrane 5 may include a separation layer for separating gas and a protective layer for protecting the separation layer. In the present embodiment, as shown in FIG. 1, the gas separation membrane 5 includes only the separation layer, and the separation layer itself functions as the gas separation membrane 5.

気体分離膜5は高分子成分51を含有する。高分子成分51の材料は特に限定されず、分離気体の透過係数が高くなるように適宜選択することができる。 The gas separation membrane 5 contains a polymer component 51. The material of the polymer component 51 is not particularly limited, and can be appropriately selected so that the permeability coefficient of the separated gas is high.

高分子成分51は、ポリ(4−メチルペンテン−1)、シロキサン系化合物、一置換ポリジフェニルアセチレン、及び二置換ポリジフェニルアセチレンからなる群から選択される少なくとも一種の化合物を含むことが好ましい。この場合、気体分離膜5は、例えば酸素等の気体に対する高い透過係数を有するため、気体分離膜複合体1の気体分離性能が向上する。 The polymer component 51 preferably contains at least one compound selected from the group consisting of poly (4-methylpentene-1), siloxane compounds, monosubstituted polydiphenylacetylene, and disubstituted polydiphenylacetylene. In this case, since the gas separation membrane 5 has a high permeability coefficient to a gas such as oxygen, the gas separation performance of the gas separation membrane composite 1 is improved.

気体分離膜5は無機充填材52を含有する。無機充填材52の材料は特に限定されず、分離気体の透過係数が高くなり、高温下での気体分離性能が低下しにくい材料を適宜選択することができる。 The gas separation membrane 5 contains an inorganic filler 52. The material of the inorganic filler 52 is not particularly limited, and a material that has a high permeability coefficient of the separated gas and does not easily deteriorate the gas separation performance at a high temperature can be appropriately selected.

無機充填材52は、シリカ、アルミナ、酸化チタン、及びガラスフリットからなる群から選択される少なくとも一種の化合物を含むことが好ましい。この場合、無機充填材52は、気体分離膜5中に良好に分散されるため、無機充填材52間の高分子を構成している高分子鎖間の空隙(自由体積)が気体分離膜5中に均一に形成されやすく、高分子成分51の収縮がより抑制される。そのため、高温高湿下においても分離気体の流量及び濃度の低下をより防ぎやすく、気体分離膜5の気体分離性能を良好に保ちやすい。また、無機充填材52として上記の無機材料を用いることで、高湿環境下において無機充填材52が吸湿することにより膨潤し、気体分離膜5中の高分子成分51の収縮が抑制されやすくなる。無機充填材52として、上記の化合物を一種単独で用いてもよく、二種以上を併用してもよい。 The inorganic filler 52 preferably contains at least one compound selected from the group consisting of silica, alumina, titanium oxide, and glass frit. In this case, since the inorganic filler 52 is well dispersed in the gas separation membrane 5, the voids (free volume) between the polymer chains constituting the polymer between the inorganic fillers 52 are formed in the gas separation membrane 5. It is easy to be formed uniformly in the polymer component 51, and the shrinkage of the polymer component 51 is further suppressed. Therefore, it is easier to prevent a decrease in the flow rate and concentration of the separated gas even under high temperature and high humidity, and it is easy to maintain good gas separation performance of the gas separation membrane 5. Further, by using the above-mentioned inorganic material as the inorganic filler 52, the inorganic filler 52 swells due to absorption of moisture in a high humidity environment, and the shrinkage of the polymer component 51 in the gas separation membrane 5 is easily suppressed. .. As the inorganic filler 52, the above compounds may be used alone or in combination of two or more.

無機充填材52は、ナノ粒子であることが好ましい。無機充填材52がナノ粒子であることで、気体分離膜5中において高分子成分51が無機充填材52間の空隙に入り込みやすくなり、高温下における高分子成分51の収縮をより抑制することができる。これにより、高温下における分離気体の流量及び濃度の低下をより防ぎやすい。 The inorganic filler 52 is preferably nanoparticles. Since the inorganic filler 52 is nanoparticles, the polymer component 51 easily enters the voids between the inorganic fillers 52 in the gas separation membrane 5, and the shrinkage of the polymer component 51 at high temperature can be further suppressed. it can. This makes it easier to prevent a decrease in the flow rate and concentration of the separated gas at high temperatures.

無機充填材52の平均粒径は、気体分離膜5の厚み未満であることが好ましい。この場合、気体分離膜5から無機充填材52が露出しにくくなるため、均一な気体分離膜5を得ることができる。また、気体分離膜5中において高分子成分51が無機充填材52間の空隙に入り込みやすくなり、高温高湿下における高分子成分51の収縮をより抑制することができる。なお、無機充填材52の平均粒径は、Malvern Panalytical社製のゼータサイザーナノZSを用い、動的光散乱法による粒度分布の測定値から、個数基準による頻度の一番多い粒径を平均粒径として求めることができる。 The average particle size of the inorganic filler 52 is preferably less than the thickness of the gas separation membrane 5. In this case, since the inorganic filler 52 is less likely to be exposed from the gas separation membrane 5, a uniform gas separation membrane 5 can be obtained. Further, the polymer component 51 easily enters the voids between the inorganic fillers 52 in the gas separation membrane 5, and the shrinkage of the polymer component 51 under high temperature and high humidity can be further suppressed. As for the average particle size of the inorganic filler 52, the Zetasizer Nano ZS manufactured by Malvern Panasonic is used, and the average particle size is the most frequently used particle size based on the number based on the measured value of the particle size distribution by the dynamic light scattering method. It can be calculated as the diameter.

無機充填材52の平均粒径は、1000nm以下であることが好ましい。この場合、気体分離膜5中において高分子成分51が無機充填材52間の空隙に入り込みやすくなるとともに、無機充填材52間の空隙が大きくなりすぎて空隙内で高分子成分51の高分子鎖間の空隙(自由体積)が収縮することをより抑制しやすくなる。そのため、高温高湿下における高分子成分51の収縮をより防ぎやすくなり、高温高湿下における分離気体の流量及び濃度が変化しにくい。無機充填材52の平均粒径は、10nm以上50nm以下であることがより好ましい。無機充填材52の平均粒径が10nm以上であることで、気体分離膜5中に無機充填材52同士の接触により空隙が確保されやすくなり、高分子成分51の収縮がより抑制される。また、無機充填材52の平均粒径が50nm以下であることで、無機充填材52間の空隙が大きくなりすぎて空隙内で高分子成分51が収縮することをより抑制しやすくなる。無機充填材52の平均粒径は、10nm以上30nm以下であることが特に好ましい。 The average particle size of the inorganic filler 52 is preferably 1000 nm or less. In this case, the polymer component 51 easily enters the voids between the inorganic fillers 52 in the gas separation membrane 5, and the voids between the inorganic fillers 52 become too large, so that the polymer chains of the polymer component 51 enter the voids. It becomes easier to suppress the contraction of the gap (free volume) between them. Therefore, it becomes easier to prevent the shrinkage of the polymer component 51 under high temperature and high humidity, and the flow rate and concentration of the separated gas under high temperature and high humidity are unlikely to change. The average particle size of the inorganic filler 52 is more preferably 10 nm or more and 50 nm or less. When the average particle size of the inorganic filler 52 is 10 nm or more, voids are easily secured by contact between the inorganic fillers 52 in the gas separation membrane 5, and the shrinkage of the polymer component 51 is further suppressed. Further, when the average particle size of the inorganic filler 52 is 50 nm or less, it becomes easier to prevent the gap between the inorganic fillers 52 from becoming too large and shrinking of the polymer component 51 in the gap. The average particle size of the inorganic filler 52 is particularly preferably 10 nm or more and 30 nm or less.

気体分離膜5中における無機充填材52の量は、100質量部の高分子成分51に対して10質量部以上100質量部以下であることが好ましい。無機充填材52の量が、10質量部以上であることで、気体分離膜5中に無機充填材52同士の接触により空隙が確保されやすくなり、高分子成分51の収縮がより抑制される。また、無機充填材52の量が100質量部以下であることで、無機充填材52が凝集するのを防ぎやすくなり、気体分離膜5中に無機充填材52が均一に分散されやすくなる。このため、無機充填材52間の空隙が気体分離膜5中に均一に形成されやすく、高温高湿下においても高分子成分51の収縮がより抑制される。気体分離膜5中における無機充填材52の量は、100質量部の高分子成分51に対して20質量部以上70質量部以下であることがより好ましい。 The amount of the inorganic filler 52 in the gas separation membrane 5 is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the polymer component 51. When the amount of the inorganic filler 52 is 10 parts by mass or more, the gaps are easily secured by the contact between the inorganic fillers 52 in the gas separation membrane 5, and the shrinkage of the polymer component 51 is further suppressed. Further, when the amount of the inorganic filler 52 is 100 parts by mass or less, it becomes easy to prevent the inorganic filler 52 from aggregating, and the inorganic filler 52 is easily dispersed uniformly in the gas separation membrane 5. Therefore, the voids between the inorganic fillers 52 are likely to be uniformly formed in the gas separation membrane 5, and the shrinkage of the polymer component 51 is further suppressed even under high temperature and high humidity. The amount of the inorganic filler 52 in the gas separation membrane 5 is more preferably 20 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the polymer component 51.

気体分離膜5は、必要に応じて、酸化防止剤、着色剤、可塑剤、分散剤等の添加剤を更に含有してもよい。 The gas separation membrane 5 may further contain additives such as an antioxidant, a colorant, a plasticizer, and a dispersant, if necessary.

気体分離膜5の厚みは、0.05μm以上0.2μm以下の範囲内であることが好ましい。この場合、気体の透過量が高くなり、気体分離膜複合体1の気体分離性能が高まる。気体分離膜5の厚みは、0.08μm以上0.12μm以下の範囲内であることがより好ましい。なお、気体分離膜5が複数の層からなる場合、気体分離膜5の厚みとは、気体分離膜5を構成するそれぞれの層の厚みの合計を意味する。 The thickness of the gas separation membrane 5 is preferably in the range of 0.05 μm or more and 0.2 μm or less. In this case, the permeation amount of the gas is increased, and the gas separation performance of the gas separation membrane composite 1 is enhanced. The thickness of the gas separation membrane 5 is more preferably in the range of 0.08 μm or more and 0.12 μm or less. When the gas separation membrane 5 is composed of a plurality of layers, the thickness of the gas separation membrane 5 means the total thickness of each layer constituting the gas separation membrane 5.

気体分離膜複合体1は、上述した気体分離膜5と、支持体2とを有する。 The gas separation membrane complex 1 has the gas separation membrane 5 described above and the support 2.

支持体2の材料は特に限定されず、気体分離膜複合体1の気体分離性能に影響を及ぼさず、気体分離膜5を支持できる強度を有するものを用いればよい。支持体2は、一層で構成されていてもよく、二層以上の複数の層から構成されていてもよい。本実施形態では、図1に示すように、支持体2は、繊維層3と多孔質膜4とを含む二層構構造を有するが、支持体2は、繊維層3のみを有する一層構造であってもよく、多孔質膜4のみを有する一層構造であってもよい。また、支持体2は、複数の繊維層3と一つの多孔質膜4とを有する多層構造であってもよく、一つの繊維層3と複数の多孔質膜4とを有する多層構造であってもよく、複数の繊維層3と複数の多孔質膜4とを有する多層構造であってもよい。支持体2は、繊維層3及び多孔質膜4以外の、気体分離膜5を支持可能な一つ又は複数の層で形成されていてもよい。 The material of the support 2 is not particularly limited, and a material having a strength capable of supporting the gas separation membrane 5 without affecting the gas separation performance of the gas separation membrane composite 1 may be used. The support 2 may be composed of one layer, or may be composed of a plurality of layers of two or more layers. In the present embodiment, as shown in FIG. 1, the support 2 has a two-layer structure including the fiber layer 3 and the porous membrane 4, but the support 2 has a one-layer structure having only the fiber layer 3. It may be present, or it may have a single-layer structure having only the porous membrane 4. Further, the support 2 may have a multilayer structure having a plurality of fiber layers 3 and one porous film 4, and may have a multilayer structure having one fiber layer 3 and a plurality of porous films 4. It may be a multilayer structure having a plurality of fiber layers 3 and a plurality of porous films 4. The support 2 may be formed of one or more layers capable of supporting the gas separation membrane 5 other than the fiber layer 3 and the porous membrane 4.

本実施形態では、繊維層3の一面3Aに多孔質膜4が形成され、多孔質膜4の繊維層3とは反対側の面4Aに気体分離膜5が配置される。支持体2が繊維層3を有することで、支持体2は高い強度を有することができるため、支持体2は気体分離膜5を良好に支持することができる。 In the present embodiment, the porous membrane 4 is formed on one surface 3A of the fiber layer 3, and the gas separation membrane 5 is arranged on the surface 4A of the porous film 4 opposite to the fiber layer 3. Since the support 2 has the fiber layer 3, the support 2 can have high strength, so that the support 2 can satisfactorily support the gas separation membrane 5.

繊維層3の材料は特に限定されず、繊維を含む層であればよい。繊維層3に用いられる繊維の例は、ポリエステル、ポリフェニレンスルファイド、ポリアミド、ポリイミド、及びポリアミドイミド等の合成繊維並びに絹、コットン、ウール、及び麻等の天然繊維を含む。繊維層3は、これらの繊維のうちの一種のみを含んでもよく、二種類以上を含んでもよい。繊維層3は、例えば、不織布であってもよく、織布であってもよい。 The material of the fiber layer 3 is not particularly limited as long as it is a layer containing fibers. Examples of fibers used in the fiber layer 3 include synthetic fibers such as polyester, polyphenylene sulfide, polyamide, polyimide, and polyamideimide, as well as natural fibers such as silk, cotton, wool, and linen. The fiber layer 3 may contain only one of these fibers, or may contain two or more of these fibers. The fiber layer 3 may be, for example, a non-woven fabric or a woven fabric.

繊維層3はポリエステル(融点約265℃)、ポリフェニレンスルファイド(融点約295℃)、ポリアミド(融点約225℃)、ポリイミド(融点約260℃)、及びポリアミドイミド(融点約300℃)からなる群から選択される少なくとも一種の繊維を含有することが好ましい。この場合、繊維層3を含む支持体2は、良好な耐熱性を有することができる。繊維層3は、ポリエステル繊維を含有することがより好ましく、ポリエチレンテレフタラート繊維を含有することが更に好ましい。 The fiber layer 3 is a group consisting of polyester (melting point about 265 ° C.), polyphenylene sulfide (melting point about 295 ° C.), polyamide (melting point about 225 ° C.), polyimide (melting point about 260 ° C.), and polyamideimide (melting point about 300 ° C.). It preferably contains at least one fiber selected from. In this case, the support 2 including the fiber layer 3 can have good heat resistance. The fiber layer 3 more preferably contains polyester fibers, and further preferably contains polyethylene terephthalate fibers.

繊維層3は、200℃以上の融点を有する繊維を少なくとも一種含有することが好ましい。この場合、繊維層3を含む支持体2はより優れた耐熱性を有することができるため、支持体2を備える気体分離膜複合体1は、高温の環境下においても優れた信頼性を有することができる。繊維層3は、225℃以上の融点を有する繊維を少なくとも一種含有することがより好ましい。繊維層3を構成する繊維の融点の上限は特に限定されないが、繊維層3は、例えば350℃以下の融点を有する繊維からなっていてよい。繊維層3は、200℃以上の融点を有する繊維と200℃未満の融点を有する繊維との両方を含有してもよく、200℃以上の融点を有する繊維のみを含有してもよい。繊維層3が200℃以上の融点を有する繊維のみを含有する場合、繊維層3を含む支持体2は特に優れた耐熱性を有することができる。 The fiber layer 3 preferably contains at least one fiber having a melting point of 200 ° C. or higher. In this case, since the support 2 including the fiber layer 3 can have more excellent heat resistance, the gas separation membrane composite 1 provided with the support 2 has excellent reliability even in a high temperature environment. Can be done. It is more preferable that the fiber layer 3 contains at least one fiber having a melting point of 225 ° C. or higher. The upper limit of the melting point of the fibers constituting the fiber layer 3 is not particularly limited, but the fiber layer 3 may be made of fibers having a melting point of, for example, 350 ° C. or lower. The fiber layer 3 may contain both a fiber having a melting point of 200 ° C. or higher and a fiber having a melting point of less than 200 ° C., or may contain only a fiber having a melting point of 200 ° C. or higher. When the fiber layer 3 contains only fibers having a melting point of 200 ° C. or higher, the support 2 including the fiber layer 3 can have particularly excellent heat resistance.

繊維層3の厚みは、10μm以上500μm以下の範囲内であることが好ましい。繊維層3の厚みがこの範囲内であることで、支持体2に十分な強度を付与することができる。繊維層3の厚みは、50μm以上300μm以下の範囲内であることがより好ましい。 The thickness of the fiber layer 3 is preferably in the range of 10 μm or more and 500 μm or less. When the thickness of the fiber layer 3 is within this range, sufficient strength can be imparted to the support 2. The thickness of the fiber layer 3 is more preferably in the range of 50 μm or more and 300 μm or less.

繊維層3は、繊維以外の成分を含有してもよい。例えば、繊維層3は、撥水剤を含有してもよい。図1に示すように、支持体2が繊維層3と多孔質膜4との両方を有する場合、繊維層3が撥水剤を含有することで、繊維層3の一面3Aに多孔質膜4を形成する際に、多孔質膜4の形成に用いられるポリエーテルスルホン含有溶液が繊維層3に染み込みすぎることを防ぐことができ、多孔質膜4を安定して形成することができる。このため、支持体2の多孔質膜4上に気体分離膜5を良好に形成することができる。 The fiber layer 3 may contain components other than fibers. For example, the fiber layer 3 may contain a water repellent. As shown in FIG. 1, when the support 2 has both the fiber layer 3 and the porous film 4, the fiber layer 3 contains a water repellent agent, so that the porous film 4 is formed on one surface 3A of the fiber layer 3. When the porous film 4 is formed, it is possible to prevent the polyether sulfone-containing solution used for forming the porous film 4 from permeating too much into the fiber layer 3, and the porous film 4 can be stably formed. Therefore, the gas separation membrane 5 can be satisfactorily formed on the porous membrane 4 of the support 2.

撥水剤としては、例えば、シリコーン系撥水剤、フッ素系撥水剤、シリコーン系撥水剤とフッ素系撥水剤との混合撥水剤等を用いることができる。撥水剤として、フッ素系撥水剤を用いることが好ましく、フルオロメタアクリレートポリマを含有する撥水剤を用いることが特に好ましい。 As the water repellent, for example, a silicone-based water repellent, a fluorine-based water repellent, a mixed water-repellent agent of a silicone-based water repellent and a fluorine-based water repellent, and the like can be used. As the water repellent, it is preferable to use a fluorine-based water repellent, and it is particularly preferable to use a water repellent containing a fluoromethacrylate polymer.

繊維層3が撥水剤を含有する場合、撥水剤の含有量は特に限定されず、繊維層3の多孔質膜4が設けられる面3Aが十分な撥水性を発揮するよう適宜調整すればよい。繊維層3の一面3Aの撥水性が高すぎると、繊維層3と多孔質膜4との密着性が低下してしまう。また、繊維層3の一面3Aの撥水性が低すぎると、多孔質膜4が安定的に形成されない。このため、撥水剤の含有量は、繊維層3と多孔質膜4との密着性を損なわず、多孔質膜4が安定的に形成されるよう、撥水剤の撥水性能に応じて適宜調整されることが好ましい。 When the fiber layer 3 contains a water repellent, the content of the water repellent is not particularly limited, and the surface 3A on which the porous film 4 of the fiber layer 3 is provided may be appropriately adjusted so as to exhibit sufficient water repellency. Good. If the water repellency of one surface 3A of the fiber layer 3 is too high, the adhesion between the fiber layer 3 and the porous film 4 is lowered. Further, if the water repellency of one surface 3A of the fiber layer 3 is too low, the porous film 4 is not stably formed. Therefore, the content of the water-repellent agent depends on the water-repellent performance of the water-repellent agent so that the porous film 4 is stably formed without impairing the adhesion between the fiber layer 3 and the porous film 4. It is preferable to adjust as appropriate.

繊維層3は、繊維層3に撥水剤を塗布することによって撥水剤を含有できる。撥水剤を、繊維層3の一面3Aに塗布してもよく、一面3Aとは反対側の面3Bに塗布してもよく、繊維層3の両面3A及び3Bに塗布してもよい。ただし、不織布の一面3Aに直接撥水剤を塗布すると、撥水性が高くなり繊維層3と多孔質膜4との密着性が低下しやすくなるため、撥水剤は、繊維層3の一面3Aとは反対側の面4Bにのみ塗布されることが好ましい。 The fiber layer 3 can contain a water repellent agent by applying a water repellent agent to the fiber layer 3. The water repellent may be applied to one surface 3A of the fiber layer 3, may be applied to the surface 3B opposite to the one surface 3A, or may be applied to both sides 3A and 3B of the fiber layer 3. However, if the water repellent is applied directly to the one surface 3A of the non-woven fabric, the water repellency becomes high and the adhesion between the fiber layer 3 and the porous film 4 tends to decrease. Therefore, the water repellent is applied to the one surface 3A of the fiber layer 3. It is preferable to apply only to the surface 4B on the opposite side.

本実施形態では、支持体2は、繊維層3の一面3Aに設けられた多孔質膜4を有する。多孔質膜4の材料は特に限定されず、多孔質膜4中に十分な空洞が形成され、気体分離膜複合体1の気体分離性能に影響を及ぼしにくい材料であればよい。多孔質膜4は、例えばポリエーテルスルホンを含有することが好ましい。この場合、多孔質膜4中において、平均表面孔径が比較的小さい緻密層と、平均表面孔径が緻密層よりも大きい空洞層とが安定して形成されるため、支持体2に十分な強度を確保することができるとともに、多孔質膜4の圧力損失を低くすることができる。 In the present embodiment, the support 2 has a porous film 4 provided on one surface 3A of the fiber layer 3. The material of the porous membrane 4 is not particularly limited, and any material may be used as long as it has sufficient cavities formed in the porous membrane 4 and does not easily affect the gas separation performance of the gas separation membrane composite 1. The porous membrane 4 preferably contains, for example, a polyether sulfone. In this case, in the porous film 4, a dense layer having a relatively small average surface pore diameter and a hollow layer having an average surface pore diameter larger than that of the dense layer are stably formed, so that the support 2 has sufficient strength. It can be secured and the pressure loss of the porous membrane 4 can be reduced.

本実施形態のように、支持体2が繊維層3と多孔質膜4との両方を有する場合、例えばポリエーテルスルホンを溶媒に溶解させたポリエーテルスルホン含有溶液を繊維層3の一面3A上に塗工し、ポリエーテルスルホン含有溶液が塗工された繊維層3を、水凝固液に浸漬することで形成することができる。ポリエーテルスルホン含有溶液の溶媒としては、例えば、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン(NMP)等を用いることができる。ポリエーテルスルホン含有溶液中のポリエーテルスルホンの濃度は、特に限定されず、繊維層3に良好に塗工することができる粘度を有するように、適宜調整される。 When the support 2 has both the fiber layer 3 and the porous film 4 as in the present embodiment, for example, a polyether sulfone-containing solution in which polyether sulfone is dissolved in a solvent is placed on one surface 3A of the fiber layer 3. It can be formed by immersing the fiber layer 3 coated with the polyether sulfone-containing solution in a water coagulating solution. As the solvent of the solution containing polyether sulfone, for example, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP) and the like can be used. The concentration of the polyether sulfone in the solution containing the polyether sulfone is not particularly limited, and is appropriately adjusted so as to have a viscosity capable of satisfactorily coating the fiber layer 3.

支持体2が多孔質膜4を有する場合、多孔質膜4の厚みは、10μm以上50μm以下の範囲内であることが好ましい。この場合、多孔質膜4の圧力損失を低くするとともに、十分な強度を確保することができる。多孔質膜4の厚みは、15μm以上30μm以下の範囲内であることがより好ましい。 When the support 2 has the porous film 4, the thickness of the porous film 4 is preferably in the range of 10 μm or more and 50 μm or less. In this case, the pressure loss of the porous membrane 4 can be reduced and sufficient strength can be secured. The thickness of the porous membrane 4 is more preferably in the range of 15 μm or more and 30 μm or less.

支持体2の厚みは、20μm以上550μm以下の範囲内であることが好ましい。この場合、支持体2は、気体分離膜5を支持するのに十分な強度を有する。支持体2の厚みは、60μm以上350μm以下の範囲内であることがより好ましい。 The thickness of the support 2 is preferably in the range of 20 μm or more and 550 μm or less. In this case, the support 2 has sufficient strength to support the gas separation membrane 5. The thickness of the support 2 is more preferably in the range of 60 μm or more and 350 μm or less.

気体分離膜複合体1の厚みは、特に限定されないが、例えば、20μm以上550μm以下の範囲内であることが好ましく、60μm以上350μm以下の範囲内であることがより好ましい。 The thickness of the gas separation membrane composite 1 is not particularly limited, but is preferably in the range of 20 μm or more and 550 μm or less, and more preferably in the range of 60 μm or more and 350 μm or less.

本実施形態に係る気体分離膜複合体1の製造方法は、高分子成分51及び無機充填材52を有機溶媒に分散させて液状材料50を準備する第一工程と、液状材料50を水面に供給し、液状材料50から有機溶媒を蒸発させて水面上に気体分離膜5を作製する第二工程と、気体分離膜5に支持体2の一面4Aを接触させて、気体分離膜5を支持体2に転写する第三工程と、を有する。 The method for producing the gas separation membrane composite 1 according to the present embodiment includes a first step of dispersing the polymer component 51 and the inorganic filler 52 in an organic solvent to prepare the liquid material 50, and supplying the liquid material 50 to the water surface. Then, in the second step of producing the gas separation membrane 5 on the water surface by evaporating the organic solvent from the liquid material 50, the gas separation membrane 5 is brought into contact with one surface 4A of the support 2 to form the gas separation membrane 5 as a support. It has a third step of transferring to 2.

まず、第一工程について説明する。第一工程では、図2に示すように、容器60内で、有機溶媒に高分子成分51及び無機充填材52を分散させた液状材料50を準備する。液状材料50を準備するのに用いられる有機溶媒は特に限定されず、後述する気体分離膜5の成膜時に良好に蒸発するものを用いることができる。有機溶媒の例は、テトラヒドロフラン及び1−クロロブタンを含む。有機溶媒としてこれらの溶媒のうちの一種を単独で用いてもよく二種を混合溶媒として用いてもよい。有機溶媒の量は特に限定されず、気体分離膜5を良好に成膜できるよう適宜調整される。 First, the first step will be described. In the first step, as shown in FIG. 2, a liquid material 50 in which the polymer component 51 and the inorganic filler 52 are dispersed in an organic solvent is prepared in the container 60. The organic solvent used to prepare the liquid material 50 is not particularly limited, and one that evaporates well during the film formation of the gas separation film 5 described later can be used. Examples of organic solvents include tetrahydrofuran and 1-chlorobutane. One of these solvents may be used alone as the organic solvent, or two of these solvents may be used as a mixed solvent. The amount of the organic solvent is not particularly limited, and is appropriately adjusted so that the gas separation film 5 can be formed well.

第一工程では、超音波振動によって無機充填材52を有機溶媒中に分散させることが好ましい。本実施形態では、図2に示すように、管61によって容器60と接続された容器62内に超音波ホモジナイザー63を差し込み、容器62内で超音波振動によって無機充填材52を有機溶媒中に分散させている。無機充填材52を超音波振動によって有機溶媒中に分散させることで、気体分離膜5中に無機充填材52がより良好に分散されやすく、気体分離膜5中における高分子成分51の収縮がより抑制される。また、液状材料50中における無機充填材52の分散性が高まることで、液状材料50の流動性を向上することができるため、気体分離膜5を良好に成膜しやすくなる。無機充填材52が良好に分散された液状材料50は管61を通じて容器60に供給される。容器60内の液状材料50は、後述する第二工程へと管65を通じて供給される。容器60内の液状材料50が一定量を超えた場合には、管64を通じて液状材料50を容器62内に戻し、超音波振動によって無機充填材52を再度分散させてもよい。また、液状材料50を準備した後に、フィルターを用いて濾過を行うことで無機充填材52の凝集を取り除いてから第二工程へと液状材料50を供給してもよい。 In the first step, it is preferable to disperse the inorganic filler 52 in the organic solvent by ultrasonic vibration. In the present embodiment, as shown in FIG. 2, the ultrasonic homogenizer 63 is inserted into the container 62 connected to the container 60 by the pipe 61, and the inorganic filler 52 is dispersed in the organic solvent by ultrasonic vibration in the container 62. I'm letting you. By dispersing the inorganic filler 52 in the organic solvent by ultrasonic vibration, the inorganic filler 52 is more easily dispersed in the gas separation membrane 5, and the shrinkage of the polymer component 51 in the gas separation membrane 5 is more likely to occur. It is suppressed. Further, since the dispersibility of the inorganic filler 52 in the liquid material 50 is increased, the fluidity of the liquid material 50 can be improved, so that the gas separation film 5 can be easily formed into a good film. The liquid material 50 in which the inorganic filler 52 is well dispersed is supplied to the container 60 through the pipe 61. The liquid material 50 in the container 60 is supplied through the pipe 65 to the second step described later. When the amount of the liquid material 50 in the container 60 exceeds a certain amount, the liquid material 50 may be returned to the container 62 through the pipe 64, and the inorganic filler 52 may be dispersed again by ultrasonic vibration. Further, after preparing the liquid material 50, the liquid material 50 may be supplied to the second step after removing the agglomeration of the inorganic filler 52 by performing filtration using a filter.

次に、第二工程について説明する。第二工程では、図2に示すように、液状材料50を水面に供給し、液状材料50から有機溶媒を蒸発させて水面上に気体分離膜5を作製する。水面展開法に用いる製造容器70には、水71が入れられている。容器60から管65を通して製造容器70内の水71中に液状材料50を供給する。水71中に供給して液状材料50は水面に拡散して浮き、有機溶媒が蒸発する。これにより、水71の水面上に気体分離膜5が形成される。 Next, the second step will be described. In the second step, as shown in FIG. 2, the liquid material 50 is supplied to the water surface, and the organic solvent is evaporated from the liquid material 50 to prepare the gas separation membrane 5 on the water surface. Water 71 is contained in the manufacturing container 70 used in the water surface development method. The liquid material 50 is supplied from the container 60 through the pipe 65 into the water 71 in the manufacturing container 70. The liquid material 50 is supplied into the water 71 and diffuses and floats on the water surface, and the organic solvent evaporates. As a result, the gas separation membrane 5 is formed on the water surface of the water 71.

次に、第三工程について説明する。第三工程では、図3に示すように、気体分離膜5に支持体2の一面4Aを接触させて、気体分離膜5を支持体2に転写する。図2に示すように、製造容器70内の水71の水面と対向する位置に三つのローラー80,81,82が配置されている。ローラー81には、支持体2がロール状に巻かれている。ローラー81は、支持体2を水71の水面へと送出する。次いで、ローラー80がローラー81から送出された支持体2をローラー80の位置で水71の水面に浮いている気体分離膜5に接触させる。これにより、水71の水面上に浮いている気体分離膜5が支持体2に転写される。そして、気体分離膜5が転写された支持体2、すなわち気体分離膜複合体1をローラー82で巻き取りながら、連続して気体分離膜5を支持体2に転写させる。これにより、支持体2の一面4A上に気体分離膜5が設けられた気体分離膜複合体1を得ることができる。このようにして得られた気体分離膜複合体1を所定の形状および大きさに切断することにより、所望の形状及び大きさを有する気体分離膜複合体1を得ることができる。 Next, the third step will be described. In the third step, as shown in FIG. 3, one surface 4A of the support 2 is brought into contact with the gas separation membrane 5, and the gas separation membrane 5 is transferred to the support 2. As shown in FIG. 2, three rollers 80, 81, 82 are arranged at positions in the manufacturing container 70 facing the water surface of the water 71. The support 2 is wound around the roller 81 in a roll shape. The roller 81 sends the support 2 to the water surface of the water 71. Next, the roller 80 brings the support 2 delivered from the roller 81 into contact with the gas separation membrane 5 floating on the water surface of the water 71 at the position of the roller 80. As a result, the gas separation membrane 5 floating on the water surface of the water 71 is transferred to the support 2. Then, the support 2 to which the gas separation membrane 5 is transferred, that is, the gas separation membrane composite 1, is wound by the roller 82, and the gas separation membrane 5 is continuously transferred to the support 2. As a result, it is possible to obtain a gas separation membrane composite 1 in which the gas separation membrane 5 is provided on one surface 4A of the support 2. By cutting the gas separation membrane composite 1 thus obtained into a predetermined shape and size, the gas separation membrane composite 1 having a desired shape and size can be obtained.

なお、気体分離膜複合体1の製造方法は上記の方法に限られない。例えば、気体分離膜複合体1は、支持体2の表面4Aを気体分離膜5の材料を含有する溶液でコーティングすることで形成されてもよい。この場合、液状材料50を気体分離膜5の材料として用いてもよい。また、支持体2が複数の層を有する多層構造である場合には、支持体2の製造と気体分離膜5の形成とを連続的に行ってもよい。 The method for producing the gas separation membrane composite 1 is not limited to the above method. For example, the gas separation membrane composite 1 may be formed by coating the surface 4A of the support 2 with a solution containing the material of the gas separation membrane 5. In this case, the liquid material 50 may be used as the material for the gas separation membrane 5. When the support 2 has a multi-layer structure having a plurality of layers, the support 2 may be manufactured and the gas separation membrane 5 may be formed continuously.

以下、本開示を実施例によって具体的に説明する。なお、本開示は、この実施例のみには制限されない。 Hereinafter, the present disclosure will be specifically described with reference to Examples. The present disclosure is not limited to this embodiment.

1.気体分離膜複合体の作製
1−1.実施例1
テトラヒドロフラン27.17gにナノシリカ粒子(平均粒径15nm)0.60gを添加し、スターラーで攪拌しながら、超音波ホモジナイザーを用いて5kWの出力で2分間ナノシリカ粒子を分散させ、無機充填材の分散液を準備した。次いで、1−クロロブタン420.62gにPDPA(一置換ポリジフェニルアセチレン)1.91g及びPDMS(ポリジメチルシロキサン)0.10gを添加し、スターラーで攪拌しながら、圧力ホモジナイザーを用いて5kWの出力で2分間PDPA及びPDMSを分散させ、高分子成分の分散液を準備した。この高分子成分の分散液に、無機充填材の分散液を添加し、更にポリフマル酸エステル0.20gを添加してから、スターラーで攪拌しながら、圧力ホモジナイザーを用いて5kWの出力で2分間成分を分散させ、高分子成分(PDPA及びPDMS)100質量部に対してナノシリカ粒子を30質量部含有する気体分離膜用の液状材料を得た。なお、ポリフマル酸エステルは、加水分解し、飛散するため、高分子成分には含まれない。同様に、高分子成分100質量部に対してナノシリカ粒子を5質量部、10質量部、20質量部、及び50質量部含有する液状材料を得た。
1. 1. Preparation of Gas Separation Membrane Complex 1-1. Example 1
0.60 g of nanosilica particles (average particle size 15 nm) was added to 27.17 g of tetrahydrofuran, and the nanosilica particles were dispersed with an ultrasonic homogenizer at an output of 5 kW for 2 minutes while stirring with a stirrer to disperse the inorganic filler. Prepared. Next, 1.91 g of PDPA (monosubstituted polydiphenylacetylene) and 0.10 g of PDMS (polydimethylsiloxane) were added to 420.62 g of 1-chlorobutane, and while stirring with a stirrer, 2 at an output of 5 kW using a pressure homogenizer. PDPA and PDMS were dispersed for 1 minute to prepare a dispersion of polymer components. A dispersion of an inorganic filler is added to the dispersion of the polymer component, and 0.20 g of polyfumaric acid ester is further added, and then the component is used for 2 minutes at an output of 5 kW using a pressure homogenizer while stirring with a stirrer. Was dispersed to obtain a liquid material for a gas separation membrane containing 30 parts by mass of nanosilica particles with respect to 100 parts by mass of polymer components (PDPA and PDMS). The polyfumolic acid ester is not included in the polymer component because it is hydrolyzed and scattered. Similarly, a liquid material containing 5 parts by mass, 10 parts by mass, 20 parts by mass, and 50 parts by mass of nanosilica particles with respect to 100 parts by mass of the polymer component was obtained.

上記で得られたナノシリカ粒子の含有量の異なる液状材料の各々を用いて、気体分離膜複合体を製造した。液状材料を水面に展開し薄膜の気体分離膜を形成し、ポリエーテルスルホン含有溶液(濃度30質量%、溶媒ジメチルホルムアミド)を用いて形成された厚み25μmのポリエーテルスルホン膜に気体分離膜を転写した。その後、気体分離膜の転写を3回繰り返し、ポリエーテルスルホン膜上に4層の気体分離膜を有する実施例1の気体分離膜複合体を得た。 A gas separation membrane composite was produced using each of the liquid materials having different contents of the nanosilica particles obtained above. A liquid material is developed on the water surface to form a thin gas separation membrane, and the gas separation membrane is transferred to a 25 μm-thick polyether sulfone membrane formed using a polyether sulfone-containing solution (concentration: 30% by mass, solvent dimethylformamide). did. Then, the transfer of the gas separation membrane was repeated three times to obtain the gas separation membrane composite of Example 1 having four layers of gas separation membranes on the polyether sulfone membrane.

1−2.実施例2
平均粒径が100nmナノシリカ粒子を用いたこと以外は、実施例1と同じ方法で実施例2の気体分離膜複合体を得た。なお、実施例2では、高分子成分100質量部に対してナノシリカ粒子を10質量部、50質量部、及び70質量部含有する液状材料を調整し、これらの液状材料を用いて気体分離膜複合体を得た。
1-2. Example 2
A gas separation membrane composite of Example 2 was obtained in the same manner as in Example 1 except that nanosilica particles having an average particle size of 100 nm were used. In Example 2, a liquid material containing 10 parts by mass, 50 parts by mass, and 70 parts by mass of nanosilica particles was prepared with respect to 100 parts by mass of the polymer component, and the gas separation membrane composite was used using these liquid materials. I got a body.

1−3.比較例1
1−クロロブタン420.62gにPDPA(一置換ポリジフェニルアセチレン)1.91g及びPDMS(ポリジメチルシロキサン)0.10gを添加し、スターラーで攪拌しながら、圧力ホモジナイザーを用いて5kWの出力で2分間PDPA及びPDMSを分散させ、高分子成分の分散液を準備した。この高分子成分の分散液に、更にポリフマル酸エステル0.20gを添加してから、スターラーで攪拌しながら、圧力ホモジナイザーを用いて5kWの出力で2分間成分を分散させ、ナノシリカ粒子を含有しない液状材料を得た。
1-3. Comparative Example 1
To 420.62 g of 1-chlorobutane, 1.91 g of PDPA (monosubstituted polydiphenylacetylene) and 0.10 g of PDMS (polydimethylsiloxane) were added, and PDPA was used for 2 minutes at an output of 5 kW using a pressure homogenizer while stirring with a stirrer. And PDMS were dispersed to prepare a dispersion of polymer components. After further adding 0.20 g of polyfumolic acid ester to the dispersion of the polymer component, the component is dispersed for 2 minutes at an output of 5 kW using a pressure homogenizer while stirring with a stirrer, and a liquid containing no nanosilica particles. Obtained the material.

上記で得られたナノシリカ粒子を含有しない液状材料を用いて、気体分離膜複合体を製造した。液状材料を水面に展開し薄膜の気体分離膜を形成し、ポリエーテルスルホン含有溶液(濃度30質量%、溶媒ジメチルホルムアミド)を用いて形成された厚み25μmのポリエーテルスルホン膜に気体分離膜を転写した。その後、気体分離膜の転写を3回繰り返し、ポリエーテルスルホン膜上に4層の気体分離膜を有する比較例1の気体分離膜複合体を得た。 A gas separation membrane composite was produced using the liquid material obtained above that does not contain nanosilica particles. A liquid material is developed on the water surface to form a thin gas separation membrane, and the gas separation membrane is transferred to a 25 μm-thick polyether sulfone membrane formed using a polyether sulfone-containing solution (concentration: 30% by mass, solvent dimethylformamide). did. Then, the transfer of the gas separation membrane was repeated three times to obtain a gas separation membrane composite of Comparative Example 1 having four layers of gas separation membranes on the polyether sulfone membrane.

2.流量変化率の測定
各実施例及び比較例の気体分離膜複合体を用いて、流量変化率を次のように測定した。バルブから気体分離膜複合体へと一方向に酸素が流れる装置(酸素透過装置)を準備し、気体分離膜がバルブ側になるように気体分離膜複合体を配置した。この装置を用いて、バルブの上流と気体分離膜複合体の下流との圧力差を98.0kPa(735mmHg)に設定した。気体分離膜複合体の単位面積10.2cmあたりに酸素5cmが透過するのに要した時間を測定した。この測定値から、初期の酸素流量を算出した。
2. 2. Measurement of Flow Rate Change Rate The flow rate change rate was measured as follows using the gas separation membrane composites of each Example and Comparative Example. A device (oxygen permeation device) in which oxygen flows in one direction from the valve to the gas separation membrane complex was prepared, and the gas separation membrane complex was arranged so that the gas separation membrane was on the valve side. Using this device, the pressure difference between the upstream of the valve and the downstream of the gas separation membrane composite was set to 98.0 kPa (735 mmHg). The time required for oxygen 5 cm 3 to permeate per unit area 10.2 cm 2 of the gas separation membrane composite was measured. The initial oxygen flow rate was calculated from this measured value.

次いで、気体分離膜複合体を、温度110℃、湿度85%Rhのプレッシャークッカー内に2000時間放置した。その後、酸素透過装置を用いて、上記と同様の方法で熱処理後の酸素流量を算出した。 Next, the gas separation membrane composite was left in a pressure cooker at a temperature of 110 ° C. and a humidity of 85% Rh for 2000 hours. Then, using an oxygen permeation device, the oxygen flow rate after the heat treatment was calculated by the same method as described above.

算出した初期の酸素流量及び熱処理後の酸素流量から、下記の式に基づいて流量変化率を求めた。その結果を後掲の表1及び図3に示す。
流量変化率(%)=100×(熱処理後の酸素流量−初期の酸素流量)/初期の酸素流量
From the calculated initial oxygen flow rate and the oxygen flow rate after the heat treatment, the flow rate change rate was calculated based on the following formula. The results are shown in Table 1 and FIG. 3 below.
Flow rate change rate (%) = 100 x (oxygen flow rate after heat treatment-initial oxygen flow rate) / initial oxygen flow rate

Figure 2020157196
Figure 2020157196

1 気体分離膜複合体
2 支持体
5 気体分離膜
51 高分子成分
52 無機充填材
1 Gas Separation Membrane Complex 2 Support 5 Gas Separation Membrane 51 Polymer Component 52 Inorganic Filler

Claims (10)

支持体と、
前記支持体の一面に設けられた気体分離膜と、を備え
前記気体分離膜は、高分子成分と、無機充填材と、を含有する、
気体分離膜複合体。
With the support
A gas separation membrane provided on one surface of the support is provided, and the gas separation membrane contains a polymer component and an inorganic filler.
Gas separation membrane complex.
前記無機充填材の平均粒径は、前記気体分離膜の厚み未満である、
請求項1に記載の気体分離膜複合体。
The average particle size of the inorganic filler is less than the thickness of the gas separation membrane.
The gas separation membrane composite according to claim 1.
前記気体分離膜の前記厚みは、0.05μm以上0.2μm以下である、
請求項2に記載の気体分離膜複合体。
The thickness of the gas separation membrane is 0.05 μm or more and 0.2 μm or less.
The gas separation membrane composite according to claim 2.
前記無機充填材は、ナノ粒子である、
請求項1〜3のいずれか1項に記載の気体分離膜複合体。
The inorganic filler is nanoparticles.
The gas separation membrane composite according to any one of claims 1 to 3.
前記無機充填材の平均粒径は、1000nm以下である、
請求項1〜4のいずれか1項に記載の気体分離膜複合体。
The average particle size of the inorganic filler is 1000 nm or less.
The gas separation membrane composite according to any one of claims 1 to 4.
前記無機充填材の平均粒径は、10nm以上50nm以下である、
請求項5に記載の気体分離膜複合体。
The average particle size of the inorganic filler is 10 nm or more and 50 nm or less.
The gas separation membrane composite according to claim 5.
前記高分子成分100質量部に対する前記無機充填材の量は、10質量部以上100質量部以下である、
請求項1〜6のいずれか1項に記載の気体分離膜複合体。
The amount of the inorganic filler with respect to 100 parts by mass of the polymer component is 10 parts by mass or more and 100 parts by mass or less.
The gas separation membrane composite according to any one of claims 1 to 6.
前記無機充填材は、シリカ、アルミナ、酸化チタン、及びガラスフリットからなる群から選択される少なくとも一種の化合物を含む、
請求項1〜7のいずれか1項に記載の気体分離膜複合体。
The inorganic filler comprises at least one compound selected from the group consisting of silica, alumina, titanium oxide, and glass frit.
The gas separation membrane composite according to any one of claims 1 to 7.
高分子成分及び無機充填材を有機溶媒に分散させて液状材料を準備する第一工程と、
前記液状材料を水面に供給し、前記液状材料から前記有機溶媒を蒸発させて前記水面上に気体分離膜を作製する第二工程と、
前記気体分離膜に支持体の一面を接触させて、前記気体分離膜を前記支持体に転写する第三工程と、を有する
気体分離膜複合体の製造方法。
The first step of preparing a liquid material by dispersing the polymer component and the inorganic filler in an organic solvent,
A second step of supplying the liquid material to the water surface and evaporating the organic solvent from the liquid material to form a gas separation membrane on the water surface.
A method for producing a gas separation membrane composite, comprising a third step of bringing one surface of a support into contact with the gas separation membrane and transferring the gas separation membrane to the support.
前記第一工程では、超音波振動によって前記無機充填材を前記有機溶媒中に分散させる、
請求項9に記載の気体分離膜複合体の製造方法。
In the first step, the inorganic filler is dispersed in the organic solvent by ultrasonic vibration.
The method for producing a gas separation membrane composite according to claim 9.
JP2019057233A 2019-03-25 2019-03-25 Gas Separation Membrane Complex and Method for Producing Gas Separation Membrane Complex Pending JP2020157196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019057233A JP2020157196A (en) 2019-03-25 2019-03-25 Gas Separation Membrane Complex and Method for Producing Gas Separation Membrane Complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057233A JP2020157196A (en) 2019-03-25 2019-03-25 Gas Separation Membrane Complex and Method for Producing Gas Separation Membrane Complex

Publications (1)

Publication Number Publication Date
JP2020157196A true JP2020157196A (en) 2020-10-01

Family

ID=72640853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057233A Pending JP2020157196A (en) 2019-03-25 2019-03-25 Gas Separation Membrane Complex and Method for Producing Gas Separation Membrane Complex

Country Status (1)

Country Link
JP (1) JP2020157196A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278330A (en) * 1985-06-04 1986-12-09 Matsushita Electric Ind Co Ltd Selective gas permeable membrane
JP2009131824A (en) * 2006-12-28 2009-06-18 Shin Etsu Polymer Co Ltd Permselective material and air conditioning system
JP2018027520A (en) * 2016-08-17 2018-02-22 富士フイルム株式会社 Gas separation membrane, gas separation membrane module, and gas separation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278330A (en) * 1985-06-04 1986-12-09 Matsushita Electric Ind Co Ltd Selective gas permeable membrane
JP2009131824A (en) * 2006-12-28 2009-06-18 Shin Etsu Polymer Co Ltd Permselective material and air conditioning system
JP2018027520A (en) * 2016-08-17 2018-02-22 富士フイルム株式会社 Gas separation membrane, gas separation membrane module, and gas separation device

Similar Documents

Publication Publication Date Title
CA2831579C (en) Asymmetric nanotube containing membranes
JP6020592B2 (en) Porous hollow fiber membrane and method for producing the same
TWI526243B (en) Porous multi - layer filter
JP2019500212A (en) Permselective graphene oxide membrane
JP6378206B2 (en) A novel technique for the preparation of multilayer polymer type mixed matrix membranes and an apparatus for membrane distillation
CN111214965A (en) Reverse osmosis membrane and preparation method and application thereof
JP2015037791A (en) Gas separation membrane
WO2007125944A1 (en) Gas separation membrane
WO2014156192A1 (en) Production method for acidic-gas separating composite membrane, and acidic-gas separating membrane module
Alam et al. Graphene oxide, an effective nanoadditive for a development of hollow fiber nanocomposite membrane with antifouling properties
WO2015046141A1 (en) Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module
JP6432508B2 (en) Method for producing film having nanostructure on surface
JP6979612B2 (en) Method for Producing Porous Membrane Support, Gas Separation Membrane Complex, Porous Membrane Support and Method for Producing Gas Separation Membrane Complex
JP2020157196A (en) Gas Separation Membrane Complex and Method for Producing Gas Separation Membrane Complex
CN111346524B (en) Composite body
JP2011067812A (en) Steam-permeable membrane, hollow fiber membrane, and humidifier
WO2017014130A1 (en) Porous membrane, water treatment membrane and method for producing porous membrane
JPH0747221A (en) Composite membrane for gas separation and its preparation
US9669608B2 (en) Porous polytetrafluoroethylene composite and method for producing the same
KR20170092132A (en) Thin film nanocomposite membranes with vertically-embedded CNT for desalination and method for preparing the same
US10814286B2 (en) Semipermeable membrane and method for producing semipermeable membrane
JP2016068081A (en) Separation membrane element
JP2008133560A (en) Hollow fiber and humidifier for fuel cell using the same
Wang et al. Nanoprecipitation for ultrafiltration membranes
CN108778474B (en) Method for producing laminate and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307