WO2017014130A1 - Porous membrane, water treatment membrane and method for producing porous membrane - Google Patents

Porous membrane, water treatment membrane and method for producing porous membrane Download PDF

Info

Publication number
WO2017014130A1
WO2017014130A1 PCT/JP2016/070710 JP2016070710W WO2017014130A1 WO 2017014130 A1 WO2017014130 A1 WO 2017014130A1 JP 2016070710 W JP2016070710 W JP 2016070710W WO 2017014130 A1 WO2017014130 A1 WO 2017014130A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
layer
membrane
porous membrane
skin layer
Prior art date
Application number
PCT/JP2016/070710
Other languages
French (fr)
Japanese (ja)
Inventor
知行 福世
遠藤 守信
健司 竹内
Original Assignee
昭和電工株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社, 国立大学法人信州大学 filed Critical 昭和電工株式会社
Priority to JP2017529574A priority Critical patent/JP6757072B2/en
Publication of WO2017014130A1 publication Critical patent/WO2017014130A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials

Definitions

  • the present invention relates to a porous membrane, a water treatment membrane, and a method for producing a porous membrane.
  • This application claims priority based on Japanese Patent Application No. 2015-146013 for which it applied to Japan on July 23, 2015, and uses the content here.
  • Separation membranes used for water treatment include UF membranes (Ultrafiltration Membrane), NF membranes (Nanofiltration Membrane), RO membranes (Reverse Osmosis Membrane), FO There are membranes (Forward Osmosis Membrane).
  • the NF membrane and the RO membrane usually have a three-layer structure of a nonwoven fabric, a porous membrane, and a membrane that exhibits the function of NF or RO.
  • the UF film, the film exhibiting the function of NF or RO may be collectively referred to as a functional film.
  • polyimide resins are excellent in heat resistance and chemical resistance, they are attracting attention as resins constituting porous membranes, and methods for producing porous membranes are also being studied.
  • Patent Document 1 discloses that a porous film is obtained by precipitating a polyimide precursor solution in a poor solvent.
  • Patent Document 2 discloses that a polyamideimide solution is precipitated in a poor solvent to obtain a porous film.
  • the membranes obtained in Patent Documents 1 and 2 have pore diameters and surface irregularities on the order of ⁇ m.
  • Patent Document 3 discloses that a fluorine-containing polyimide is precipitated from a solution with a poor solvent to produce a porous film having a skin layer, and further, an NF film is obtained by ion irradiation and plasma treatment.
  • JP 2002-201305 A Japanese Patent Application Laid-Open No. 2014-094501 Japanese Patent Laying-Open No. 2005-081226 JP 2013-202461 A
  • a porous polyimide membrane When a porous polyimide membrane is applied to a water treatment membrane, that is, to form a UF membrane or an NF functional membrane or an RO functional membrane to form an NF membrane or an RO membrane, the pore diameter and surface of the porous membrane It is required that the unevenness is small (for example, 1 ⁇ m or less) and the water permeability is high. If the water permeability is low, the porous membrane cannot be used as a water treatment membrane. When the pore diameter and surface irregularities of the porous membrane are large, the thin NF functional membrane or RO functional membrane tends to be damaged.
  • porous membrane of Patent Document 3 requires special ion irradiation. Moreover, the resulting porous membrane has low water permeability and is not practical.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a porous film having both high water permeability and low surface roughness, a water treatment film provided with the porous film, and a method for producing the porous film.
  • the method for producing a porous membrane according to one aspect of the present invention includes a step of dissolving a polyimide resin or a precursor thereof in a solvent to obtain a cast solution containing the polyimide resin or a precursor thereof, and a method based on the cast solution.
  • a drying step, and a step of removing the skin layer from the dried porous structure by an etching process is a step of dissolving a polyimide resin or a precursor thereof in a solvent to obtain a cast solution containing the polyimide resin or a precursor thereof, and a method based on the cast solution.
  • the step of removing the skin layer may be performed by an etching process.
  • a curing treatment may be performed between the drying step and the skin layer removing step.
  • the curing treatment may be a heat treatment.
  • the etching process may be a plasma process.
  • the plasma may be oxygen plasma generated at a high frequency.
  • the casting solution may contain a water-soluble compound.
  • a porous film according to one embodiment of the present invention includes a porous layer that includes a polyimide resin as a main component and includes a layer having finger-like pores and two layers having no finger-like pores sandwiching the layer. Is.
  • a porous film according to one embodiment of the present invention includes a porous layer that includes a polyimide resin as a main component and includes a layer having finger-like pores and two layers having no finger-like pores sandwiching the layer. The surface of one of the two layers is oxidized.
  • the porous membrane may have a water permeability of 0.5 [m 3 / (m 2 ⁇ day ⁇ MPa)] or more.
  • the porous membrane may have a water permeability of 200 [m 3 / (m 2 ⁇ day ⁇ MPa)] or less.
  • the porous membrane may be capable of separating Blue Dextran 2000 (trade name) in the solute removal test.
  • the surface of the porous film may be oxidized.
  • a water treatment membrane according to one embodiment of the present invention includes the porous membrane.
  • a porous film having both high water permeability and small surface irregularities can be provided.
  • the water treatment membrane of one embodiment of the present invention it is possible to provide a water treatment membrane including a porous membrane that has both high water permeability and small surface irregularities.
  • a method for producing a porous membrane in which high water permeability and small surface irregularities are compatible can be provided.
  • (A) is the SEM image taken from the surface (surface which was not in contact with the base material) side of the porous membrane manufactured in Example 1, and (b) is simply in an argon atmosphere without plasma etching treatment.
  • 2 is an SEM image taken from the surface side of the porous film that was heat-treated for the same time as in Example 1.
  • (A) XPS measurement was performed on the surface side surface that was not in contact with the base material before the oxygen plasma etching treatment, and (b) XPS was measured on the surface after the oxygen plasma etching treatment (after removal of the skin layer). The result of the measurement is shown.
  • (A) is an SEM image taken from the surface side of the porous membrane produced in Example 2, and (b) is produced under the same conditions as in Example 2 except that the oxygen plasma etching time was 60 seconds. It is a SEM image taken from the surface side of the made porous membrane.
  • the porous film according to the first embodiment has a polyimide-based resin as a main component, a layer having finger-like holes (corresponding to a “second layer” described later), and no finger-like holes sandwiching the layer. It consists of a porous layer having two layers (corresponding to “first layer” and “third layer” described later).
  • the porous membrane which concerns on one Embodiment can be manufactured by removing a skin layer from the porous structure which consists of the skin layer and porous layer which were produced by the below-mentioned method.
  • the polyimide resin in the present embodiment includes a wide range of polymer compounds containing imide bonds such as polyamideimide, polyesterimide, and polyetherimide, in addition to polyimide, which is a polymer compound containing imide bonds in the repeating unit.
  • the porous film contains a polyimide resin as a main component of the polymer component.
  • “including a polyimide resin as a main component” means that 60% by mass or more of the polymer component includes a polyimide resin. The case where 100 mass% of polyimide resin is included is also included.
  • the porous membrane is not particularly limited, but it preferably contains 60% by mass or more and 100% by mass or less of a polyimide resin as a main component of the polymer component, and contains 80% by mass or more and 100% by mass or less. It is more preferable.
  • the porous membrane may contain other polymer components.
  • the other polymer component is not particularly limited, but is preferably compatible with the polyimide resin.
  • FIG. 1 shows an electron microscope (SEM) image of a cross section of a porous structure made of polyamideimide composed of a skin layer and a porous layer.
  • SEM electron microscope
  • the porous structure shown in FIG. 1 is produced using a non-solvent induced phase separation method (NIPS: Nonsolvent Induced Phase Separation).
  • NIPS Nonsolvent Induced Phase Separation
  • the skin layer having no pores means a skin layer having no pore structure exhibiting water permeability that can be used as a porous membrane constituting the water treatment membrane.
  • the skin layer has almost no pores of a size (diameter) through which water can permeate, and is almost dense.
  • the presence of the skin layer is clear in the SEM image of the porous structure produced by the non-solvent induced phase separation method.
  • the porous structure tends to have an inclined structure in which the pore diameter gradually increases from the skin layer toward the inside of the porous layer (for example, Patent Document 4).
  • the pore diameter changes continuously from the skin layer to the inside of the porous layer, and the skin layer and the porous layer cannot be simply distinguished by the presence or absence of pores.
  • the pores in the porous structure communicate with each other.
  • the skin layer and the porous layer can be distinguished from the viewpoint of water permeability.
  • the RO function membrane assumes the separation function.
  • the porous membrane is required to rapidly pass the water separated by the RO functional membrane, that is, to have high water permeability.
  • the skin layer is a layer that prevents the predetermined water permeability in the water treatment film, and is a portion of the porous structure that should be removed in order to ensure the predetermined water permeability.
  • the porous membrane according to an embodiment of the present invention is obtained by removing a portion (skin layer) having a certain depth from the surface of the porous structure in order to ensure a predetermined water permeability. In the schematic diagram shown in FIG.
  • the porous membrane is manufactured by removing a portion of a certain depth from the surface of the porous structure to a portion having a large number of pores having a pore diameter of the order of 100 nm. Can do. Below the portion with many holes of the order of 100 nm (corresponding to the “first layer” described later), it has a finger-like shape (finger-like shape) and the maximum diameter in the minor axis direction is about 5 to 30 ⁇ m. There is a portion (corresponding to a “second layer” described later) including a large hole having a length of about 40 to 100 ⁇ m. If the portion including the large hole is removed, the unevenness of the scraped surface is too large, and the functional film placed on the surface is easily damaged.
  • Factors that determine water permeability include not only the diameter of the holes, but also the degree of bending of the passages that connect the holes (curvature, bending coefficient), hydrophilicity / hydrophobicity, and the like. These elements are related to each other, and the magnitude of water permeability cannot be determined only by the value or degree of each element. However, the size of the pore size is a major factor that determines the size of the water permeability, and the pore size is a measure of the size of the water permeability.
  • FIG. 2A shows a schematic cross-sectional view of a porous structure prepared by a non-solvent induced phase separation method.
  • FIG. 2B shows a schematic cross-sectional view of a porous film in which the skin layer is removed from the porous structure.
  • a skin layer and a porous layer are formed in order from the surface side on which the functional film is placed.
  • the porous layer has a portion having a large number of pores having a typical pore diameter of about 0.05 to 0.2 ⁇ m (first layer) and a long axis in the direction from the skin layer to the porous layer.
  • three SEM images vertically arranged in the center row are SEM images of the first layer, the second layer, and the third layer in order from the top. That is, the porous layer has a three-layer structure of a first layer, a second layer, and a third layer.
  • the three SEM images in the second column in FIG. 1 show typical structures of the first layer, the second layer, and the third layer in order from the top.
  • the average size of the holes in the first layer is usually smaller than the average size of the holes in the third layer.
  • the average hole diameter of the hole exposed on the surface of the first layer (the surface on which the functional film is placed when the porous film is used as the water treatment film) is exemplified, it is 0.05 ⁇ m or more and 0.2 ⁇ m or less.
  • the “finger-like hole” described in the present specification is a hole having the above finger-like shape.
  • the hole diameter in the present specification is, for example, the hole diameter of a surface hole that can be measured using an SEM image.
  • SEM image For example, if necessary, the surface of the porous film subjected to antistatic treatment such as Pt sputter deposition is observed, imaged, and observed so that a pore diameter of about 10 nm to 1000 nm can be discriminated with a field of view of about 2 ⁇ m square. 10 SEM images are taken at different positions, and an average pore diameter can be obtained by image analysis. Image analysis can be performed in accordance with the method described in the standard of particle size analysis (JIS Z 8827-1 Particle size analysis-Image analysis method-Part 1: Static image analysis method).
  • FIG. 3 shows SEM images before and after removing the skin layer by oxygen plasma etching from the porous structure produced by the non-solvent induced phase separation method.
  • (A) is an SEM image before removing the skin layer
  • (b) is an SEM image after removing the skin layer.
  • Both (a) and (b) are, in order from the left, a cross-sectional SEM image, an enlarged SEM image near the skin layer, and an SEM image taken from the surface side.
  • the cross-sectional SEM image has a scale of 10 ⁇ m, and the SEM image obtained by enlarging the vicinity of the skin layer and the SEM image taken from the surface side have a scale of 0.1 ⁇ m.
  • the skin layer was 0.1 ⁇ m.
  • skin layer surface looks flat in the SEM image, but after removing the skin layer, the porous layer is exposed and many pores with a maximum diameter of about 500 nm are visible.
  • the thickness of the skin layer depends on the conditions of the non-solvent induced phase separation method for producing the porous structure, but as an example, it is about 0.1 to 3 ⁇ m.
  • the thickness of the porous layer also depends on the conditions of the non-solvent induced phase separation method for producing the porous structure, but as an example, it is about 30 to 150 ⁇ m.
  • the breakdown is that the portion with many holes having a hole diameter of about 0.05 to 0.5 ⁇ m has a thickness of about 1 to 5 ⁇ m, the part including a larger hole has a thickness of about 40 to 130 ⁇ m, and the hole diameter is 0.1
  • the portion with many holes of about 1 ⁇ m is about 2-20 ⁇ m thick.
  • the maximum diameter of the pores exposed on the surface after removing the skin layer from the porous structure is preferably 500 nm or less.
  • the maximum pore size is more preferably 300 nm or less, and the maximum pore size is more preferably 200 nm or less.
  • the porous membrane according to one embodiment of the present invention preferably has a water permeability of 0.5 [m 3 / (m 2 ⁇ day ⁇ MPa)] or more. This is to allow water separated by the functional membrane to pass quickly at a practical level. From this viewpoint, the water permeability is more preferably 1 [m 3 / (m 2 ⁇ day ⁇ MPa)] or more, and 1.5 [m 3 / (m 2 ⁇ day ⁇ MPa)] or more. Is more preferable.
  • the porous membrane which concerns on one Embodiment of this invention is 200 [m ⁇ 3 > / (m ⁇ 2 > * day * MPa)] or less.
  • the water permeability is more preferably 100 [m 3 / (m 2 ⁇ day ⁇ MPa)] or less, and further 70 [m 3 / (m 2 ⁇ day ⁇ MPa)] or less. preferable.
  • the water permeability means a proportionality constant (Lp) in the Hagen-Poiseuille equation shown below.
  • Jv water permeability (flux) [m 3 / (m 2 ⁇ day)]
  • A is a coefficient for unit conversion [dimensionless]
  • is surface porosity [dimensionless]
  • is kinematic viscosity Coefficient [Pa ⁇ s]
  • is the flexibility coefficient [dimensionless]
  • ⁇ x is the film thickness [m]
  • ⁇ P is the transmembrane pressure difference [MPa]
  • Lp is the water permeability [m 3 / (m 2 ⁇ day ⁇ MPa )].
  • Water permeability is evaluated as follows, for example. First, the porous membrane is filled with pure water, and pressurized with gas from above. And water permeability is evaluated by measuring the permeation
  • the porous membrane which concerns on one Embodiment of this invention can isolate
  • Blue Dextran 2000 (trade name) can be separated” means that when a porous film is filled with a 100 mass ppm aqueous solution of Blue Dextran 2000 and subjected to pressure filtration, the rejection rate is 95. % Or more. More specifically, the calculation is performed as follows. First, a membrane sample is cut into a circle having a diameter of 25 mm and mounted on a filtration device (stirring type ultra holder UHP-25K, manufactured by Advantech). Then, about 5 ml of 100 mass ppm blue dextran 2000 aqueous solution (stock solution) is placed on the attached membrane, and the pressure is increased to 0.3 MPa with nitrogen gas from above, and the filtrate is recovered by filtration.
  • the absorbance (wavelength 620 nm) of the stock solution and the filtrate is measured, and the concentration of Blue Dextran 2000 in the filtrate is calculated.
  • the rejection rate R [%] is calculated by the following formula from the concentration Cb [ppm] in the stock solution and the concentration Cp [ppm] in the filtrate.
  • the method for removing the skin layer There is no particular limitation on the method for removing the skin layer.
  • the surface of the porous membrane is oxidized.
  • the surface of the porous film has a higher oxygen concentration than when the skin layer is removed by a method other than etching using oxygen plasma.
  • the degree of oxidation is a standard, the removal of the skin layer by oxygen plasma etching increases the surface O / C ratio (the ratio of oxygen to carbon) by about 30%. For this reason, there is an effect that the surface can be hydrophilized by removing the skin layer by oxygen plasma etching.
  • a porous film formed by removing a skin layer means that a material that cannot be used as a porous film (support for a functional film) of a water treatment film because of having a skin layer is water It means a porous film obtained by scraping the surface layer to such an extent that it can be used as a porous film for a treatment film.
  • the porous film according to the second embodiment is composed of a porous layer having a polyimide resin as a main component, a layer having finger-like holes, and two layers having no finger-like holes sandwiching the layer.
  • the surface of one of the two layers (first layer) is oxidized.
  • the porous film according to the second embodiment is one of the two layers having no finger-like holes (the surface of the first layer is oxidized).
  • the porous film according to the second embodiment can be manufactured by removing the skin layer of the porous structure composed of the skin layer and the porous layer by oxygen plasma etching. Since the porous film according to the second embodiment is the same as the porous film according to the first embodiment except that the skin layer of the porous structure is removed, the porous film according to the first embodiment. The contents described above can be applied.
  • membrane which concerns on one Embodiment of this invention is equipped with the above-mentioned porous membrane.
  • the above-described porous membrane is used as the functional membrane
  • the above-mentioned porous membrane is used as a support material on which the functional membrane is placed.
  • a film is used. It is not limited to these water treatment membranes, but can be used in water treatment membranes to which the functions of the porous membrane described above can be applied.
  • the method for producing a porous membrane includes a step of dissolving a polyimide resin or a precursor thereof in a solvent to obtain a cast solution containing the polyimide resin or a precursor thereof, A step of coating on a base material, a step of forming a porous structure having a skin layer on the surface on the opposite side of the base material by bringing the casting solution into contact with a non-solvent, and the porous structure body And drying the skin layer by an etching process.
  • FIG. 4 is a flow diagram schematically showing an example of the steps of the method for producing the porous membrane. A method for producing a porous membrane will be described with reference to the flowchart shown in FIG.
  • a polyimide resin or a precursor thereof is dissolved in a solvent to produce a porous membrane solution (cast solution) containing the polyimide resin or a precursor thereof ((a) in FIG. 4). It is preferable to dissolve the additives described later in the porous membrane solution.
  • the obtained porous membrane solution is applied onto a substrate ((b) of FIG. 4).
  • the schematic diagram shown in FIG. 4 shows a state of application by a doctor blade.
  • a porous structure having a skin layer on a surface not in contact with the substrate by a non-solvent induced phase separation method by immersing the substrate coated with the solution for the porous membrane in a coagulation bath containing a non-solvent A body is formed ((c) of FIG. 4). It is preferable that the time from the substrate coated with the porous membrane solution to the immersion in the coagulation bath is 10 seconds or less. If it is 10 seconds or less, the solvent evaporation amount of the applied porous membrane solution is small, and the membrane structure can be easily controlled.
  • the obtained porous structure is dried at a temperature of 50 to 90 ° C. to remove the solvent ((d) in FIG. 4).
  • the dried porous structure is cured at a temperature of 200 to 300 ° C. ((e) of FIG. 4).
  • the skin layer is removed from the cured porous structure by plasma etching (FIG. 4F).
  • the curing process in FIG. 4E can also be performed after the skin layer removing process in FIG.
  • Polyimide resin precursor>
  • the resin which is a material constituting the porous film a polyimide resin having heat resistance and excellent mechanical strength and chemical resistance is used.
  • the polyimide resin includes a wide range of polymer compounds containing imide bonds such as polyamideimide, polyesterimide, and polyetherimide, in addition to polyimide, which is a polymer compound containing imide bonds in the repeating unit.
  • Polyamideimide resin can be usually produced by polymerizing by reaction of trimellitic anhydride and diisocyanate, or by reaction of trimellitic anhydride chloride and diamine, and then imidizing.
  • a polyimide resin can be manufactured by obtaining a polyamic acid (polyimide-type resin precursor) by reaction with a tetracarboxylic-acid component and a diamine component, and imidating it further, for example.
  • a porous layer is composed of a polyimide resin, the solubility becomes worse when imidized. Therefore, first, a porous structure is formed at the polyamic acid stage and then imidized (thermal imidization, chemical imidization, etc.). It is preferable.
  • the solvent for the porous membrane solution is not particularly limited as long as it has solubility (good solvent for the resin component) according to the chemical skeleton of the resin component to be dissolved.
  • solubility good solvent for the resin component
  • dimethyl sulfoxide N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), 2-pyrrolidone, ⁇ -butyrolactone, and mixtures thereof Can do.
  • a water-soluble additive water-soluble organic compound or water-soluble polymer
  • water-soluble polymer water-soluble organic compound or water-soluble polymer
  • the water-soluble additive include diethylene glycol, triethylene glycol, polyethylene glycol, poly N-vinyl pyrrolidone, polyethylene oxide, polyvinyl alcohol, polyacrylic acid, polysaccharides and derivatives thereof, and mixtures thereof.
  • diethylene glycol, triethylene glycol, polyethylene glycol and poly N-vinyl pyrrolidone are preferable in that they can suppress the formation of coarse pores in the porous structure and improve the mechanical strength of the porous membrane.
  • These water-soluble additives can be used alone or in combination of two or more.
  • the pore diameter can be adjusted by adding water to the porous membrane solution.
  • the water-soluble additive is very effective for making the porous structure into a uniform sponge-like porous structure, and various structures can be obtained by changing the type and amount of the water-soluble additive. .
  • a water-soluble additive is very suitably used as an additive for forming a porous film for the purpose of imparting desired pore characteristics.
  • the water-soluble additive is an unnecessary component that should not be removed and does not ultimately constitute a porous membrane.
  • These unnecessary components are removed by washing in the step of phase conversion by immersion in the coagulation liquid. Furthermore, unnecessary components are removed by heating in a heat treatment step for curing, which will be described later.
  • the amount of the water-soluble additive when it is preferable that the connectivity is low, the amount of the water-soluble additive is preferably the minimum amount. There is a tendency for the strength to decrease as the connectivity increases. Therefore, it is not preferable to add the water-soluble additive in excess of 10 times or more the resin that dissolves the water-soluble additive. Further, an excessive addition of 10 times or more of the resin to be dissolved is not preferable because it requires a longer washing time.
  • the water-soluble additive is not essential and may not be used.
  • the water-soluble additive is 0 parts by mass or more and 500 parts by mass or less, the water is 0 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the resin component.
  • the solvent of a resin component is 200 mass parts or more and 900 mass parts or less.
  • the water-soluble additive is preferably 0 to 400 parts by mass, more preferably 50 to 300 parts by mass, with respect to 100 parts by mass of the resin component.
  • the pore connectivity increases as the amount of the water-soluble additive is increased.
  • Water is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, relative to 100 parts by mass of the resin component. By making the amount of water below this value, the possibility that the resin component will precipitate from the solvent is reduced.
  • the solvent of the resin component is preferably 250 parts by mass or more and 700 parts by mass or less, and more preferably 300 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the resin component.
  • the viscosity of the casting liquid is lowered. (Specifically, it is difficult to apply by repelling a non-porous substrate, and it is difficult to apply by permeating too much in the case of a porous substrate). It can suppress that the porosity of the made porous structure is too high, and becomes brittle.
  • the concentration of the resin component is preferably 10 to 30% by mass. The amount of water added can be used to adjust the pore size.
  • a nonporous substrate, a porous substrate, or the like can be used as the substrate on which the porous membrane solution (cast solution) is applied.
  • the type and roughness of the surface material of the base material affect the ease of peeling of the porous film, the pore diameter, the open area ratio, and the smoothness of the porous film, and therefore it is preferable to select appropriately according to the purpose.
  • non-porous substrates include glass plates; polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate (PET); polycarbonate resins, styrene resins, polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF).
  • PET polyethylene terephthalate
  • PVDF polyvinylidene fluoride
  • the porous base material When using a porous base material, since this porous base material is used as a constituent member of the water treatment film as it is, it is preferable that the porous base material also has high heat resistance.
  • porous substrates having heat resistance include aromatic polyamide resins (aramid resins), polyphenylene sulfide resins, liquid crystalline polyester resins, polyimide resins, polyether ether ketone resins (PEEK resins), poly Examples thereof include those made of benzoxazole resin (PBO resin), cellulosic fibers, glass fibers, ceramic fibers, and metal fibers including stainless steel fibers.
  • ⁇ Application> As means for applying the porous membrane solution (cast solution) onto the substrate, for example, a doctor blade, an applicator, or the like can be used. Depending on the purpose, methods such as spin coating and dip coating can also be used.
  • the coagulation-rich liquid used in the non-solvent-induced phase separation method contains a solvent (non-solvent of the resin component) that coagulates the dissolved polyimide resin or its precursor component, and the solvent of the polyimide resin component If it is a solvent miscible with, there will be no restriction
  • any solvent that coagulates polyamideimide resin or polyamic acid may be used.
  • water-alcohol such as monohydric alcohol such as methanol and ethanol, polyhydric alcohol such as glycerin; Molecules; water-soluble coagulation liquids such as a mixture thereof can be used.
  • the porous structure is dried by heating.
  • the heating temperature and the heating time only have to be able to remove the solvent. For example, it can be 2 to 10 hours at 50 to 90 ° C. Drying can be performed in air
  • a curing treatment may be performed between the step of drying the porous structure and the step of removing the skin layer.
  • the dried porous structure can be self-supporting, if the curing process is performed before the etching process for removing the skin layer, there is an advantage that the handling becomes stable.
  • the curing process may be performed by heat treatment. What is the heating temperature and heating time for curing? For example, it can be performed at 200 to 300 ° C. for 1 to 24 hours.
  • the heat treatment for curing can be performed in an argon atmosphere, for example. You may carry out under reduced pressure or nitrogen gas and an atmospheric condition.
  • the etching method is not particularly limited as long as the skin layer can be removed from the porous structure.
  • plasma etching or etching with a chemical such as an alkaline solution can be used.
  • Plasma etching is easy to control the amount of scraping from the porous structure.
  • the pore diameter continuously changes from the skin layer to the inside of the porous layer (first layer). Therefore, by controlling the scraping amount, the average hole diameter exposed on the scraped surface can be controlled.
  • a porous film having a desired water permeability can be obtained by controlling the amount to be scraped off.
  • Plasma etching can be performed using parallel plate electrodes. According to the plasma etching using parallel plate electrodes, the skin layer parallel to the surface of the porous structure can be removed.
  • oxygen plasma etching oxygen plasma etching, plasma etching with argon or nitrogen can be used.
  • oxygen plasma etching oxygen plasma etching
  • plasma etching with argon or nitrogen can be used.
  • the surface of the porous film can be hydrophilized and the water permeability can be further improved.
  • a porous membrane in which the pore diameter of the pores on the surface is controlled can be produced by controlling the amount scraped from the surface of the porous structure. That is, since the porous structure includes pores having a large average pore diameter gradually from the surface toward the inside of the porous film, the pore diameter on the surface can be increased by increasing the amount of scraping.
  • Example 1 Polyamideimide resin (Toluon 4000T-LV (trade name) manufactured by Solvay Advanced Polymers) was dried in a vacuum dryer at 170 ° C. for 12 hours. 100 parts by weight of polyamideimide resin after drying is put into 350 parts by weight of NMP (Wako Pure Chemical Industries, Ltd., Wako Special Grade), mixed in a glass bottle for 5 days with a rotary mixer at 50 ° C., dissolved, and polyamide An imide resin solution was prepared.
  • NMP Wired Chemical Industries, Ltd., Wako Special Grade
  • a predetermined amount of 100 parts by mass of a polyamideimide resin solution and PEG200 ((polyethylene glycol 200) (manufactured by Wako Pure Chemical Industries, Ltd., Wako First Grade)) is weighed into a PP (polypropylene) container, and a planetary agitator (stock)
  • a porous membrane solution (casting solution) was prepared by mixing and defoaming using a product name “Awatori Nertaro (registered trademark) Shinky ARE-310” manufactured by Shinky Co., Ltd.
  • the prepared porous membrane solution was applied in a range of 70 mm ⁇ 100 mm using a doctor blade. did.
  • a glass plate was put into a tank filled with pure water, and the coating film was gelled by non-solvent induced phase separation (NIPS). The coating film naturally separated from the glass plate by gelation.
  • NIPS non-solvent induced phase separation
  • the peeled coating film was sandwiched between cellulose 5C filter papers, put into a dryer with glass plates sandwiched from above and below, and dried at 80 ° C. for 4 hours in an air atmosphere. Thereafter, the sheet was taken out from the filter paper, sandwiched between grapho foils GTA (trade name), transferred to a gas purge furnace, and cured by being kept at 280 ° C. for 1 hour in an argon atmosphere.
  • GTA trade name
  • a polyamideimide porous structure having a skin layer (pores communicated) was obtained.
  • the polyamideimide porous structure having this skin layer was subjected to 50 W of high frequency plasma treatment in an oxygen atmosphere using a parallel plate high frequency plasma processing apparatus (manufactured by Samco, RF plasma etching system FA-1 (product name)). For 60 seconds.
  • the results are shown in Table 1.
  • Example 1 The production conditions were the same as those of Example 1 except that oxygen plasma etching was not performed.
  • the porous film that was not subjected to oxygen plasma etching (the porous structure as it was) could not permeate water and did not pass solute.
  • PVPK30 is poly N-vinylpyrrolidone manufactured by Nippon Shokubai Co., Ltd.
  • PVPK85 is poly N-vinylpyrrolidone manufactured by Nippon Shokubai Co., Ltd.
  • SUS is a stainless steel fiber filter manufactured by Nippon Seisen Co., Ltd. (Naslon filter (trade name)).
  • SA is a stainless steel fiber filter manufactured by Nippon Seisen Co., Ltd. (Naslon filter (trade name)).
  • BD is Blue Dextran 2000 (trade name) having a molecular weight of 2,000,000 manufactured by GE Healthcare Japan.
  • the hydrodynamic diameter is 50-60 nm.
  • Cytochrome C is Cytochrome c manufactured by Wako Pure Chemical Industries, Ltd. for biochemistry. It is derived from the equine heart and is TCA treated.
  • the hydrodynamic diameter is 3-5 nm.
  • DR80 is Direct Red 80 manufactured by Tokyo Chemical Industry Co., Ltd.
  • FIG. 5A shows an SEM image taken from the surface side (the side not in contact with the substrate) of the porous membrane produced in Example 1.
  • FIG. FIG. 5B is an SEM image of Comparative Example 1 taken from the surface side of a porous film that was simply subjected to heat treatment in an argon atmosphere for the same time as Example 1 without an oxygen plasma etching process.
  • the lower SEM image is enlarged 10 times the upper SEM image.
  • the upper SEM image has a scale of 1 ⁇ m
  • the lower SEM image has a scale of 0.1 ⁇ m. From the SEM image of FIG.
  • the pores on the surface of the porous membrane produced in Example 1 have an exposed maximum pore size of about 200 nm and an average pore size of about 50 nm. I understand.
  • the SEM image of Comparative Example 1 in FIG. 5 (b) without performing the oxygen plasma etching process, simply performing the heat treatment in the argon atmosphere for the same time as Example 1, It turned out that the surface of the hole diameter required for a porous membrane is not obtained.
  • the water permeability was 40 [m 3 / (m 2 ⁇ day ⁇ MPa)].
  • BD could be separated, but cytochrome C and DR80 could not be separated.
  • FIG. 6A shows the result of XPS measurement on the surface before the oxygen plasma etching process (Comparative Example 1).
  • FIG. 6B shows the surface after the oxygen plasma etching process (after removing the skin layer; Example 1). The result of having performed XPS measurement about is shown.
  • the horizontal axis is the binding energy (eV)
  • the vertical axis is the intensity (cps: counts per second).
  • Table 2 shows the results of calculating the concentrations of C, N, and O on the surface based on the XPS measurement results.
  • the O / C on the surface was 70% or more, from 0.17 to 0.30. It was found that the surface was oxidized by the oxygen plasma etching performed for removing the skin layer.
  • Example 2 The production conditions were the same as those of Example 1 except that the additive was DEG and the oxygen plasma etching time was 30 seconds.
  • the water permeability was 2.5 [m 3 / (m 2 ⁇ day ⁇ MPa)]. Moreover, all of BD, cytochrome C, and DR80 were separable. Thus, the porous film of the present invention could be produced even when the additive and plasma etching time were changed.
  • FIG. 7A shows an SEM image taken from the surface side of the porous membrane produced in Example 2.
  • FIG. 7B is an SEM image taken from the surface side of the porous membrane manufactured under the same conditions as in Example 2 except that the oxygen plasma etching time was 60 seconds.
  • the lower SEM image is 10 times larger than the upper SEM image.
  • the upper SEM image has a scale of 1 ⁇ m
  • the lower SEM image has a scale of 0.1 ⁇ m. From the SEM image of FIG. 7 (a), the pores on the surface of the porous membrane produced in Example 2 are exposed with a maximum pore size of about 70 nm and an average pore size of about 20 nm. I understand.
  • Example 3 The production conditions were the same as those of Example 1 except that the polyimide resin was AI002.
  • the porous membrane prepared in Example 3 water permeability was 5 [m 3 / (m 2 ⁇ day ⁇ MPa)]. Further, BD and cytochrome C could be separated, but DR80 could not be separated. Thus, even if it changed the polyimide-type resin, the predetermined porous film was able to be manufactured.
  • Example 4 The production conditions were the same as those of Example 1 except that the additive was PVPK85 in addition to PEG200 and the oxygen plasma etching time was 180 seconds.
  • the water permeability was 10 [m 3 / (m 2 ⁇ day ⁇ MPa)]. Further, BD and cytochrome C could be separated, but DR80 could not be separated. Thus, even if the additive and the plasma etching time were changed, a predetermined porous film could be produced.
  • Example 5 The production conditions were the same as those of Example 1 except that the additive was PVPK30 in addition to PEG200 and the oxygen plasma etching time was 120 seconds.
  • the water permeability was 1.5 [m 3 / (m 2 ⁇ day ⁇ MPa)]. Further, BD and cytochrome C could be separated, but DR80 could not be separated. Thus, even if the additive and the plasma etching time were changed, a predetermined porous film could be produced.
  • Example 6 The production conditions were the same as those in Example 1 except that the coated substrate was porous SUS (stainless fiber). Unlike a glass plate substrate, the porous SUS substrate does not naturally peel off the coating film due to NIPS. Therefore, drying, curing, and etching were performed in a state where the coating film was attached to a porous SUS substrate.
  • the coated substrate was porous SUS (stainless fiber). Unlike a glass plate substrate, the porous SUS substrate does not naturally peel off the coating film due to NIPS. Therefore, drying, curing, and etching were performed in a state where the coating film was attached to a porous SUS substrate.
  • the water permeability was 30 [m 3 / (m 2 ⁇ day ⁇ MPa)].
  • BD could be separated, but cytochrome C and DR80 could not be separated.
  • the predetermined porous membrane could be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This method for producing a porous membrane comprises: a step wherein a polyimide resin or a precursor thereof is dissolved into a solvent, thereby obtaining a casting liquid that contains the polyimide resin or a precursor thereof; a step wherein the casting liquid is applied over a base; a step wherein the casting liquid is brought into contact with a non-solvent material, thereby forming a porous structure having a skin layer on a surface that is not in contact with the base; a step wherein the porous structure is dried; and a step wherein the skin layer is removed from the dried porous structure.

Description

多孔質膜、水処理膜及び多孔質膜の製造方法Porous membrane, water treatment membrane and method for producing porous membrane
 本発明は、多孔質膜、水処理膜及び多孔質膜の製造方法に関する。本願は、2015年7月23日に、日本に出願された特願2015-146013に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a porous membrane, a water treatment membrane, and a method for producing a porous membrane. This application claims priority based on Japanese Patent Application No. 2015-146013 for which it applied to Japan on July 23, 2015, and uses the content here.
 水処理に用いられる分離膜(水処理膜)には、UF膜(Ultrafiltration Membrane:限外ろ過膜)、NF膜(Nanofiltration Membrane:ナノろ過膜)、RO膜(ReverseOsmosis Membrane:逆浸透膜)、FO膜(Forward Osmosis Membrane:正浸透膜)などがある。
 NF膜及びRO膜は通常、不織布、多孔質膜、NFあるいはROの機能を発揮する膜の三層構造を有する。
 以下では、UF膜、NFあるいはROの機能を発揮する膜を、機能膜と総称することがある。
Separation membranes (water treatment membranes) used for water treatment include UF membranes (Ultrafiltration Membrane), NF membranes (Nanofiltration Membrane), RO membranes (Reverse Osmosis Membrane), FO There are membranes (Forward Osmosis Membrane).
The NF membrane and the RO membrane usually have a three-layer structure of a nonwoven fabric, a porous membrane, and a membrane that exhibits the function of NF or RO.
Hereinafter, the UF film, the film exhibiting the function of NF or RO may be collectively referred to as a functional film.
 ポリイミド系樹脂は、耐熱性、耐薬品性に優れるため、多孔質膜を構成する樹脂として注目され、多孔質膜を製造する方法も検討されている。 Since polyimide resins are excellent in heat resistance and chemical resistance, they are attracting attention as resins constituting porous membranes, and methods for producing porous membranes are also being studied.
 特許文献1には、ポリイミド前駆体溶液を貧溶媒中で析出させて多孔質膜を得ることが開示されている。特許文献2には、ポリアミドイミド溶液を貧溶媒中で析出させて多孔質膜を得ることが開示されている。特許文献1,2で得られる膜は孔径および表面の凹凸がμmオーダーである。 Patent Document 1 discloses that a porous film is obtained by precipitating a polyimide precursor solution in a poor solvent. Patent Document 2 discloses that a polyamideimide solution is precipitated in a poor solvent to obtain a porous film. The membranes obtained in Patent Documents 1 and 2 have pore diameters and surface irregularities on the order of μm.
 特許文献3では、含フッ素ポリイミドを溶液から貧溶媒で析出させることでスキン層のある多孔質膜を作製し、さらにイオン照射及びプラズマ処理を施すことでNF膜を得ることが開示されている。 Patent Document 3 discloses that a fluorine-containing polyimide is precipitated from a solution with a poor solvent to produce a porous film having a skin layer, and further, an NF film is obtained by ion irradiation and plasma treatment.
特開2002-201305号公報JP 2002-201305 A 特開2014-094501号公報Japanese Patent Application Laid-Open No. 2014-094501 特開2005-081226号公報Japanese Patent Laying-Open No. 2005-081226 特開2013-202461号公報JP 2013-202461 A
 特許文献1及び2に記載の多孔質膜では、孔径がμmオーダーであるため、UF膜(Ultrafiltration Membrane:限外ろ過膜)の機能は得られない。
 また、多孔質膜の孔径がμmオーダーであるということは、多孔質膜の表面の凹凸がμmオーダーであるということである。NF膜(Nanofiltration Membrane:ナノろ過膜)、RO膜(ReverseOsmosis Membrane:逆浸透膜)の支持材(多孔質膜)としても、μmオーダーの凹凸を有する表面に厚さ500nm以下の薄いNFあるいはROの機能を有する膜(以下、NF機能膜あるいはRO機能膜という)を載せることは難しい。膜をうまく載せたとしてもNF機能膜あるいはRO機能膜の上から圧力をかけると膜が破れやすい。
In the porous membranes described in Patent Documents 1 and 2, since the pore diameter is on the order of μm, the function of a UF membrane (Ultrafiltration Membrane: ultrafiltration membrane) cannot be obtained.
Moreover, the pore diameter of the porous membrane being on the order of μm means that the irregularities on the surface of the porous membrane are on the order of μm. As a support material (porous membrane) for NF membrane (Nanofiltration Membrane) and RO membrane (Reverse Osmosis Membrane), a thin NF or RO with a thickness of 500 nm or less on the surface having irregularities of μm order. It is difficult to mount a film having a function (hereinafter referred to as NF function film or RO function film). Even if the membrane is successfully placed, the membrane is easily broken when pressure is applied from above the NF functional membrane or RO functional membrane.
 多孔質ポリイミド膜を水処理膜に適用する場合、すなわち、UF膜としたり、NF機能膜あるいはRO機能膜を載せてNF膜、RO膜としたりするためには、多孔質膜の孔径および表面の凹凸が小さい(例えば、1μm以下)ことと透水性が高いことが要求される。透水性が低いと、多孔質膜を水処理膜として使えない。多孔質膜の孔径および表面の凹凸が大きいと、薄いNF機能膜あるいはRO機能膜が破損しやすくなる。 When a porous polyimide membrane is applied to a water treatment membrane, that is, to form a UF membrane or an NF functional membrane or an RO functional membrane to form an NF membrane or an RO membrane, the pore diameter and surface of the porous membrane It is required that the unevenness is small (for example, 1 μm or less) and the water permeability is high. If the water permeability is low, the porous membrane cannot be used as a water treatment membrane. When the pore diameter and surface irregularities of the porous membrane are large, the thin NF functional membrane or RO functional membrane tends to be damaged.
 また、特許文献3の多孔質膜は、特殊なイオン照射が必要である。その上、得られた多孔質膜の透水性は低く、実用的ではない。 Also, the porous membrane of Patent Document 3 requires special ion irradiation. Moreover, the resulting porous membrane has low water permeability and is not practical.
 本発明は、上記事情に鑑みてなされたものであり、高い透水性と低い表面凹凸が両立された多孔質膜、それを備えた水処理膜及び多孔質膜の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a porous film having both high water permeability and low surface roughness, a water treatment film provided with the porous film, and a method for producing the porous film. And
 上記課題を解決するために、以下の手段を採用した。 In order to solve the above problems, the following means were adopted.
 本発明の一態様に係る多孔質膜の製造方法は、ポリイミド系樹脂又はその前駆体を溶媒に溶解して、ポリイミド系樹脂又はその前駆体を含むキャスト液を得る工程と、前記キャスト液を基材上に塗布する工程と、前記キャスト液を、非溶媒に接触させることにより、前記基材の反対側の表面にスキン層を有する多孔質構造体を形成する工程と、前記多孔質構造体を乾燥する工程と、前記乾燥した多孔質構造から、エッチング処理によって前記スキン層を除去する工程とを有するものである。 The method for producing a porous membrane according to one aspect of the present invention includes a step of dissolving a polyimide resin or a precursor thereof in a solvent to obtain a cast solution containing the polyimide resin or a precursor thereof, and a method based on the cast solution. A step of coating on a material, a step of forming a porous structure having a skin layer on the surface on the opposite side of the base material by bringing the casting solution into contact with a non-solvent, and the porous structure. A drying step, and a step of removing the skin layer from the dried porous structure by an etching process.
 上記多孔質膜の製造方法において、前記スキン層を除去する工程が、エッチング処理により行ってもよい。 In the method for producing a porous film, the step of removing the skin layer may be performed by an etching process.
 上記多孔質膜の製造方法において、前記乾燥する工程と前記スキン層を除去する工程との間に硬化処理をおこなってもよい。 In the method for producing a porous film, a curing treatment may be performed between the drying step and the skin layer removing step.
 上記多孔質膜の製造方法において、前記硬化処理は熱処理であってもよい。 In the method for manufacturing a porous membrane, the curing treatment may be a heat treatment.
 上記多孔質膜の製造方法において、前記エッチング処理はプラズマ処理であってもよい。 In the porous film manufacturing method, the etching process may be a plasma process.
 上記多孔質膜の製造方法において、前記プラズマは高周波で発生させた酸素プラズマであってもよい。 In the above porous membrane manufacturing method, the plasma may be oxygen plasma generated at a high frequency.
 上記多孔質膜の製造方法において、前記キャスト液は水溶性化合物を含むものであってもよい。 In the above porous membrane production method, the casting solution may contain a water-soluble compound.
 本発明の一態様に係る多孔質膜は、ポリイミド系樹脂を主成分とし、フィンガーライク孔を有する層と、該層を挟む、フィンガーライク孔を有さない2つの層とを有する多孔層からなるものである。 A porous film according to one embodiment of the present invention includes a porous layer that includes a polyimide resin as a main component and includes a layer having finger-like pores and two layers having no finger-like pores sandwiching the layer. Is.
 本発明の一態様に係る多孔質膜は、ポリイミド系樹脂を主成分とし、フィンガーライク孔を有する層と、該層を挟む、フィンガーライク孔を有さない2つの層とを有する多孔層からなり、前記2つの層のうちの一方の層の表面が酸化されているものである。 A porous film according to one embodiment of the present invention includes a porous layer that includes a polyimide resin as a main component and includes a layer having finger-like pores and two layers having no finger-like pores sandwiching the layer. The surface of one of the two layers is oxidized.
 上記多孔質膜は、透水性が0.5[m/(m・day・MPa)]以上であってもよい。 The porous membrane may have a water permeability of 0.5 [m 3 / (m 2 · day · MPa)] or more.
 上記多孔質膜は、透水性が200[m/(m・day・MPa)]以下であってもよい。 The porous membrane may have a water permeability of 200 [m 3 / (m 2 · day · MPa)] or less.
 上記多孔質膜は、溶質除去テストにおいて、ブルーデキストラン2000(商品名)を分離できるものであってもよい。 The porous membrane may be capable of separating Blue Dextran 2000 (trade name) in the solute removal test.
 上記多孔質膜は、表面が酸化されていてもよい。 The surface of the porous film may be oxidized.
 本発明の一態様に係る水処理膜は、上記多孔質膜を備えたものである。 A water treatment membrane according to one embodiment of the present invention includes the porous membrane.
 本発明の一態様にかかる多孔質膜によれば、高い透水性と小さな表面凹凸が両立された多孔質膜を提供することができる。
 本発明の一態様にかかる水処理膜によれば、高い透水性と小さな表面凹凸が両立された多孔質膜を備えた水処理膜を提供することができる。
 本発明の一態様にかかる多孔質膜の製造方法によれば、高い透水性と小さな表面凹凸が両立された多孔質膜の製造方法を提供することができる。
According to the porous film of one embodiment of the present invention, a porous film having both high water permeability and small surface irregularities can be provided.
According to the water treatment membrane of one embodiment of the present invention, it is possible to provide a water treatment membrane including a porous membrane that has both high water permeability and small surface irregularities.
According to the method for producing a porous membrane according to one embodiment of the present invention, a method for producing a porous membrane in which high water permeability and small surface irregularities are compatible can be provided.
スキン層と多孔層とからなる、ポリアミドイミド製の多孔質構造の断面のSEM像である。It is a SEM image of the cross section of the porous structure made from a polyamideimide which consists of a skin layer and a porous layer. (a)非溶媒誘起相分離法で作製された多孔質構造の断面模式図であり、(b)は多孔質構造からスキン層が除去された多孔質膜の断面模式図を示す。(A) It is a cross-sectional schematic diagram of the porous structure produced by the non-solvent induced phase separation method, (b) shows the cross-sectional schematic diagram of the porous film from which the skin layer was removed from the porous structure. (a)は非溶媒誘起相分離法で作製された多孔質構造から酸素プラズマエッチングによってスキン層を除去する前のSEM像であり、(b)はスキン層を除去した後のSEM像である。(A) is an SEM image before removing a skin layer by oxygen plasma etching from a porous structure produced by a non-solvent induced phase separation method, and (b) is an SEM image after removing the skin layer. 多孔質膜の製造方法の工程の一例を模式図で示したフロー図である。It is the flowchart which showed an example of the process of the manufacturing method of a porous membrane with the schematic diagram. (a)は実施例1で製造された多孔質膜の表面(基材と接触していなかった面)側から撮ったSEM像であり、(b)はプラズマエッチング処理なしで、単にアルゴン雰囲気中で実施例1と同じ時間加熱処理を行った多孔質膜の表面側から撮ったSEM像である。(A) is the SEM image taken from the surface (surface which was not in contact with the base material) side of the porous membrane manufactured in Example 1, and (b) is simply in an argon atmosphere without plasma etching treatment. 2 is an SEM image taken from the surface side of the porous film that was heat-treated for the same time as in Example 1. (a)に、酸素プラズマエッチング処理前の基材と接触していなかった面側の表面についてXPS測定を行った結果、(b)に酸素プラズマエッチング処理後(スキン層除去後)の表面についてXPS測定を行った結果を示す。(A) XPS measurement was performed on the surface side surface that was not in contact with the base material before the oxygen plasma etching treatment, and (b) XPS was measured on the surface after the oxygen plasma etching treatment (after removal of the skin layer). The result of the measurement is shown. (a)は実施例2で製造された多孔質膜の表面側から撮ったSEM像であり、(b)は酸素プラズマエッチング時間が60秒であった点以外は実施例2と同じ条件で製造された多孔質膜の表面側から撮ったSEM像である。(A) is an SEM image taken from the surface side of the porous membrane produced in Example 2, and (b) is produced under the same conditions as in Example 2 except that the oxygen plasma etching time was 60 seconds. It is a SEM image taken from the surface side of the made porous membrane.
 以下、多孔質膜、それを備えた水処理膜及びその製造方法について、図面を用いてその構成を説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の趣旨から逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。 Hereinafter, the configuration of the porous membrane, the water treatment membrane including the porous membrane, and the manufacturing method thereof will be described with reference to the drawings. In the drawings used in the following description, in order to make the features easy to understand, the portions that become the features may be shown in an enlarged manner for the sake of convenience. The materials, dimensions, and the like exemplified in the following description are merely examples, and the present invention is not limited to them. Additions, omissions, substitutions, and other configurations are not limited to the scope of the present invention. It can be changed.
(多孔質膜)
 第1実施形態に係る多孔質膜は、ポリイミド系樹脂を主成分とし、フィンガーライク孔を有する層(後述する「第2層」に相当)と、該層を挟む、フィンガーライク孔を有さない2つの層(後述する「第1層」、「第3層」に相当)とを有する多孔層からなるものである。一実施形態に係る多孔質膜は、後述方法により作製したスキン層と多孔層とからなる多孔質構造体のうち、スキン層を除去することにより製造することができる。
 本実施形態におけるポリイミド系樹脂とは、繰り返し単位にイミド結合を含む高分子化合物であるポリイミド以外に、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド等のイミド結合を含む高分子化合物を広く含む。
(Porous membrane)
The porous film according to the first embodiment has a polyimide-based resin as a main component, a layer having finger-like holes (corresponding to a “second layer” described later), and no finger-like holes sandwiching the layer. It consists of a porous layer having two layers (corresponding to “first layer” and “third layer” described later). The porous membrane which concerns on one Embodiment can be manufactured by removing a skin layer from the porous structure which consists of the skin layer and porous layer which were produced by the below-mentioned method.
The polyimide resin in the present embodiment includes a wide range of polymer compounds containing imide bonds such as polyamideimide, polyesterimide, and polyetherimide, in addition to polyimide, which is a polymer compound containing imide bonds in the repeating unit.
 多孔質膜は、高分子成分の主成分としてポリイミド系樹脂を含む。ここで、「主成分としてポリイミド系樹脂を含む」とは、高分子成分中に、60質量%以上がポリイミド系樹脂を含むことを意味する。ポリイミド系樹脂を100質量%含む場合も含む。多孔質膜は、特に限定されるものではないが、高分子成分の主成分として、ポリイミド系樹脂を60質量%以上、100質量%以下含むことが好ましく、80質量%以上、100質量%以下含むことがより好ましい。多孔質膜は、他の高分子成分を含むものであってもよい。他の高分子成分としては、特に限定されるものではないが、ポリイミド系樹脂と相溶するものが好ましい。 The porous film contains a polyimide resin as a main component of the polymer component. Here, “including a polyimide resin as a main component” means that 60% by mass or more of the polymer component includes a polyimide resin. The case where 100 mass% of polyimide resin is included is also included. The porous membrane is not particularly limited, but it preferably contains 60% by mass or more and 100% by mass or less of a polyimide resin as a main component of the polymer component, and contains 80% by mass or more and 100% by mass or less. It is more preferable. The porous membrane may contain other polymer components. The other polymer component is not particularly limited, but is preferably compatible with the polyimide resin.
 図1に、スキン層と多孔層とからなる、ポリアミドイミド製の多孔質構造の断面の電子顕微鏡(SEM)像を示す。図1において、最も左側のSEM像は多孔質構造のほぼ全体の断面SEM像であり、矢印の先のSEM像はその矢印の根元の丸で囲んだ部分を拡大したSEM像である。図1に示す多孔質構造の例では、スキン層は約2μmの厚さを有する。
 図1のSEM像を見れば、スキン層の存在は明確であり、スキン層はそれに続く多孔層とは明らかにSEM像の見え方が異なる。
FIG. 1 shows an electron microscope (SEM) image of a cross section of a porous structure made of polyamideimide composed of a skin layer and a porous layer. In FIG. 1, the leftmost SEM image is a cross-sectional SEM image of almost the entire porous structure, and the SEM image at the tip of the arrow is an enlarged SEM image of the part surrounded by the circle at the base of the arrow. In the example of the porous structure shown in FIG. 1, the skin layer has a thickness of about 2 μm.
From the SEM image of FIG. 1, the presence of the skin layer is clear, and the skin layer clearly differs from the subsequent porous layer in the appearance of the SEM image.
 図1に示す多孔質構造は、非溶媒誘起相分離法(NIPS:Nonsolvent Induced Phase Separation)を用いて作製されたものである。この方法を用いると、表面側から、孔のないスキン層とそれに連続した多孔層とを有する多孔質構造が形成できることが知られている(例えば、特許文献3参照)。ここで、孔のないスキン層とは、水処理膜を構成する多孔質膜として用いることができるほどの透水性を示す孔構造を有さないスキン層を意味する。スキン層は、水が透過できるサイズ(径)の孔がほとんどなく、ほぼ緻密になっている。 The porous structure shown in FIG. 1 is produced using a non-solvent induced phase separation method (NIPS: Nonsolvent Induced Phase Separation). When this method is used, it is known that a porous structure having a skin layer without pores and a continuous porous layer can be formed from the surface side (see, for example, Patent Document 3). Here, the skin layer having no pores means a skin layer having no pore structure exhibiting water permeability that can be used as a porous membrane constituting the water treatment membrane. The skin layer has almost no pores of a size (diameter) through which water can permeate, and is almost dense.
 図1に示す通り、非溶媒誘起相分離法で作製された多孔質構造はSEM像においてスキン層の存在は明確である。一般には、多孔質構造は、スキン層から多孔層内部に向かうにつれて細孔の孔径が除々に粗大化する、傾斜構造を有するものとなり易い(例えば、特許文献4)。すなわち、孔径はスキン層から多孔層内部へ連続的に変化していくものであり、スキン層と多孔層は単に、孔の有無で区別できるものではない。ここで、多孔質構造内の孔は互いに連通している。
 スキン層と多孔層の区別は例えば、透水性の観点で行うことができる。水処理膜例えば、RO膜において、分離機能はRO機能膜が担うものである。これに対し、多孔質膜はRO機能膜で分離された水を速やかに通過させること、すなわち、透水性が高いことが求められる。この観点から、スキン層は、水処理膜において所定の透水性の確保を妨げる層であり、多孔質構造のうち、所定の透水性の確保するためには除去されるべき部分である。
 本発明の一実施形態に係る多孔質膜は、所定の透水性を確保するために、多孔質構造のうち、表面から一定の深さの部分(スキン層)を除去することにより得られる。
 後述する図2に示す模式図でいうと、多孔質膜は、多孔質構造の表面から、孔径が100nmオーダー程度の孔が多い部分までにおいて一定の深さの部分を除去することにより製造することができる。孔径が100nmオーダー程度の孔が多い部分(後述する「第1層」に相当)の下には、フィンガーライクな形状(指のような形状)でその短軸方向の最大径が5~30μm程度で長さが40~100μm程度の大きな孔を含む部分(後述する「第2層」に相当)がある。この大きな孔を含む部分まで除去してしまうと、削り取った表面の凹凸が大き過ぎて、その上に載せる機能膜が破損しやすくなる。
As shown in FIG. 1, the presence of the skin layer is clear in the SEM image of the porous structure produced by the non-solvent induced phase separation method. In general, the porous structure tends to have an inclined structure in which the pore diameter gradually increases from the skin layer toward the inside of the porous layer (for example, Patent Document 4). In other words, the pore diameter changes continuously from the skin layer to the inside of the porous layer, and the skin layer and the porous layer cannot be simply distinguished by the presence or absence of pores. Here, the pores in the porous structure communicate with each other.
For example, the skin layer and the porous layer can be distinguished from the viewpoint of water permeability. In a water treatment membrane, for example, an RO membrane, the RO function membrane assumes the separation function. On the other hand, the porous membrane is required to rapidly pass the water separated by the RO functional membrane, that is, to have high water permeability. From this point of view, the skin layer is a layer that prevents the predetermined water permeability in the water treatment film, and is a portion of the porous structure that should be removed in order to ensure the predetermined water permeability.
The porous membrane according to an embodiment of the present invention is obtained by removing a portion (skin layer) having a certain depth from the surface of the porous structure in order to ensure a predetermined water permeability.
In the schematic diagram shown in FIG. 2, which will be described later, the porous membrane is manufactured by removing a portion of a certain depth from the surface of the porous structure to a portion having a large number of pores having a pore diameter of the order of 100 nm. Can do. Below the portion with many holes of the order of 100 nm (corresponding to the “first layer” described later), it has a finger-like shape (finger-like shape) and the maximum diameter in the minor axis direction is about 5 to 30 μm. There is a portion (corresponding to a “second layer” described later) including a large hole having a length of about 40 to 100 μm. If the portion including the large hole is removed, the unevenness of the scraped surface is too large, and the functional film placed on the surface is easily damaged.
 透水性を決定づける要素としては、孔の径だけでなく、孔同士を連通する通路の曲がり程度(曲路率、屈曲度係数)、親水性・疎水性などがある。これらの要素は互いに関連しており、各要素の値あるいは程度だけで透水性の大小を決めることはできない。しかしながら、孔径の大小は透水性の大小を決める主要な要因であり、孔径は透水性の大小の目安になる。 Factors that determine water permeability include not only the diameter of the holes, but also the degree of bending of the passages that connect the holes (curvature, bending coefficient), hydrophilicity / hydrophobicity, and the like. These elements are related to each other, and the magnitude of water permeability cannot be determined only by the value or degree of each element. However, the size of the pore size is a major factor that determines the size of the water permeability, and the pore size is a measure of the size of the water permeability.
 図2(a)に、非溶媒誘起相分離法で作製された多孔質構造の断面模式図を示す。また、図2(b)に、多孔質構造からスキン層が除去された多孔質膜の断面模式図を示す。
 図2(a)に示す通り、機能膜が載せられる面側から順に、スキン層、多孔層が形成されている。
 図2(a)に示す例では、多孔層は、典型的な孔径が0.05~0.2μm程度の孔が多い部分(第1層)と、スキン層から多孔層に向かう方向に長軸を有するフィンガーライクな形状(指のような形状)でその短軸方向の典型的な最大径が5~30μm程度で典型的な長さが40~100μm程度の大きな孔を含む部分(第2層)と、孔径が0.1~1μm程度の孔が多い部分(第3層)とからなる。図1において、中央の列に縦に並ぶ3つのSEM像は上から順に第1層、第2層、第3層のSEM像である。
 すなわち、多孔層は、第1層、第2層、第3層の三層構造を有する。図1の2列目の3つのSEM像は上から順に、第1層、第2層、第3層の典型的な構造を示す。第1層が有する孔の平均サイズは通常、第3層が有する孔の平均サイズよりも小さい。
 また、第1層の表面(多孔質膜を水処理膜に用いる場合、機能膜を載せる面)側に露出する孔の平均孔径を例示すると、0.05μm以上、0.2μm以下である。
 なお、本明細書中に記載する「フィンガーライク孔」は、上記のフィンガーライクな形状の孔のことである。
FIG. 2A shows a schematic cross-sectional view of a porous structure prepared by a non-solvent induced phase separation method. FIG. 2B shows a schematic cross-sectional view of a porous film in which the skin layer is removed from the porous structure.
As shown in FIG. 2A, a skin layer and a porous layer are formed in order from the surface side on which the functional film is placed.
In the example shown in FIG. 2 (a), the porous layer has a portion having a large number of pores having a typical pore diameter of about 0.05 to 0.2 μm (first layer) and a long axis in the direction from the skin layer to the porous layer. A portion including a large hole having a typical maximum diameter in the short axis direction of about 5 to 30 μm and a typical length of about 40 to 100 μm (second layer) ) And a portion (third layer) having many pores having a pore diameter of about 0.1 to 1 μm. In FIG. 1, three SEM images vertically arranged in the center row are SEM images of the first layer, the second layer, and the third layer in order from the top.
That is, the porous layer has a three-layer structure of a first layer, a second layer, and a third layer. The three SEM images in the second column in FIG. 1 show typical structures of the first layer, the second layer, and the third layer in order from the top. The average size of the holes in the first layer is usually smaller than the average size of the holes in the third layer.
Moreover, when the average hole diameter of the hole exposed on the surface of the first layer (the surface on which the functional film is placed when the porous film is used as the water treatment film) is exemplified, it is 0.05 μm or more and 0.2 μm or less.
In addition, the “finger-like hole” described in the present specification is a hole having the above finger-like shape.
 ここで、本明細書における孔径とは例えば、SEM像を用いて計測することができる表面の孔の孔径のことである。
 例えば、必要に応じてPtスパッタ蒸着等の帯電防止処理を施した多孔質膜表面をSEMにて、2μm角程度の視野で10nm~1000nm程度の孔径が判別できるように観察、像撮影し、観察位置を変えて10枚SEM像を撮影して、画像解析により平均の孔径を得ることができる。画像解析は、粒子径解析の規格(JIS Z 8827-1 粒子径解析-画像解析法-第1部: 静的画像解析法)に記載の手法に準拠して行うことができる。
Here, the hole diameter in the present specification is, for example, the hole diameter of a surface hole that can be measured using an SEM image.
For example, if necessary, the surface of the porous film subjected to antistatic treatment such as Pt sputter deposition is observed, imaged, and observed so that a pore diameter of about 10 nm to 1000 nm can be discriminated with a field of view of about 2 μm square. 10 SEM images are taken at different positions, and an average pore diameter can be obtained by image analysis. Image analysis can be performed in accordance with the method described in the standard of particle size analysis (JIS Z 8827-1 Particle size analysis-Image analysis method-Part 1: Static image analysis method).
 図3に、非溶媒誘起相分離法で作製された多孔質構造から、酸素プラズマエッチングによってスキン層を除去する前後のSEM像を示す。(a)は、スキン層を除去する前のSEM像であり、(b)は、スキン層を除去した後のSEM像である。(a)及び(b)のいずれも、左から順に、断面のSEM像、スキン層近傍を拡大したSEM像、表面側から撮ったSEM像である。断面のSEM像は目盛り1つが10μmであり、スキン層近傍を拡大したSEM像及び表面側から撮ったSEM像は目盛り1つが0.1μmである。この例では、スキン層は、0.1μmであった。 FIG. 3 shows SEM images before and after removing the skin layer by oxygen plasma etching from the porous structure produced by the non-solvent induced phase separation method. (A) is an SEM image before removing the skin layer, and (b) is an SEM image after removing the skin layer. Both (a) and (b) are, in order from the left, a cross-sectional SEM image, an enlarged SEM image near the skin layer, and an SEM image taken from the surface side. The cross-sectional SEM image has a scale of 10 μm, and the SEM image obtained by enlarging the vicinity of the skin layer and the SEM image taken from the surface side have a scale of 0.1 μm. In this example, the skin layer was 0.1 μm.
 スキン層を除去する前の表面(スキン層表面)はSEM像で平坦に見えるが、スキン層を除去した後は多孔層がむき出しとなり、最大径500nm程度の孔が多数見えている。 The surface before removing the skin layer (skin layer surface) looks flat in the SEM image, but after removing the skin layer, the porous layer is exposed and many pores with a maximum diameter of about 500 nm are visible.
 スキン層の厚さは、多孔質構造を作製した非溶媒誘起相分離法の条件にもよるが、目安として一例を挙げれば、0.1~3μm程度である。 The thickness of the skin layer depends on the conditions of the non-solvent induced phase separation method for producing the porous structure, but as an example, it is about 0.1 to 3 μm.
 多孔層の厚さも、多孔質構造を作製した非溶媒誘起相分離法の条件にもよるが、目安として一例を挙げれば、30~150μm程度である。その内訳は、孔径が0.05~0.5μm程度の孔が多い部分が厚さ1~5μm程度であり、より大きな孔を含む部分が厚さ40~130μm程度であり、孔径が0.1~1μm程度の孔が多い部分が厚さ2~20μm程度である。 The thickness of the porous layer also depends on the conditions of the non-solvent induced phase separation method for producing the porous structure, but as an example, it is about 30 to 150 μm. The breakdown is that the portion with many holes having a hole diameter of about 0.05 to 0.5 μm has a thickness of about 1 to 5 μm, the part including a larger hole has a thickness of about 40 to 130 μm, and the hole diameter is 0.1 The portion with many holes of about 1 μm is about 2-20 μm thick.
 多孔質構造からスキン層を除去した後に表面に露出した孔の孔径の最大径は500nm以下であることが好ましい。孔径が小さいと表面の凹凸も小さくなるため、多孔質膜上に載せる機能膜が破損するのを防止できる。孔径の最大径は300nm以下であることがより好ましく、孔径の最大径は200nm以下であることがさらに好ましい。 The maximum diameter of the pores exposed on the surface after removing the skin layer from the porous structure is preferably 500 nm or less. When the pore size is small, the surface irregularities are also small, and therefore it is possible to prevent the functional film placed on the porous film from being damaged. The maximum pore size is more preferably 300 nm or less, and the maximum pore size is more preferably 200 nm or less.
 本発明の一実施形態に係る多孔質膜は、透水性が0.5[m/(m・day・MPa)]以上であることが好ましい。機能膜で分離された水を実用的なレベルで速やかに通過させるためである。この観点から、透水性は、1[m/(m・day・MPa)]以上であることがより好ましく、1.5[m/(m・day・MPa)]以上であることがさらに好ましい。 The porous membrane according to one embodiment of the present invention preferably has a water permeability of 0.5 [m 3 / (m 2 · day · MPa)] or more. This is to allow water separated by the functional membrane to pass quickly at a practical level. From this viewpoint, the water permeability is more preferably 1 [m 3 / (m 2 · day · MPa)] or more, and 1.5 [m 3 / (m 2 · day · MPa)] or more. Is more preferable.
 また、本発明の一実施形態に係る多孔質膜は、透水性が200[m/(m・day・MPa)]以下であることが好ましい。これ以上大きな透水性を有する場合には、孔径が大きすぎる。これは表面の凹凸が大きいということでもあり、その結果として、その上に載せた機能膜が破損しやすくなる。この観点から、透水性は、100[m/(m・day・MPa)]以下であることがより好ましく、70[m/(m・day・MPa)] 以下であることがさらに好ましい。 Moreover, it is preferable that the porous membrane which concerns on one Embodiment of this invention is 200 [m < 3 > / (m < 2 > * day * MPa)] or less. When the water permeability is larger than this, the pore diameter is too large. This also means that the unevenness of the surface is large, and as a result, the functional film placed thereon is easily damaged. From this viewpoint, the water permeability is more preferably 100 [m 3 / (m 2 · day · MPa)] or less, and further 70 [m 3 / (m 2 · day · MPa)] or less. preferable.
 ここで、透水性とは、以下に示すハーゲン・ポアズイユの式の比例定数(Lp)のことである。
Figure JPOXMLDOC01-appb-M000001
 この式において、Jvは透水量(フラックス)[m3/(m2・day)]、Aは単位換算のための係数[無次元]、εは表面多孔性[無次元]、ηは動粘性係数[Pa・s]、τは屈曲度係数[無次元]、Δxは膜厚[m]、ΔPは膜間差圧[MPa]、Lpは透水性[m3/(m2・day・MPa)]、を示す。
Here, the water permeability means a proportionality constant (Lp) in the Hagen-Poiseuille equation shown below.
Figure JPOXMLDOC01-appb-M000001
In this equation, Jv is water permeability (flux) [m 3 / (m 2 · day)], A is a coefficient for unit conversion [dimensionless], ε is surface porosity [dimensionless], and η is kinematic viscosity Coefficient [Pa · s], τ is the flexibility coefficient [dimensionless], Δx is the film thickness [m], ΔP is the transmembrane pressure difference [MPa], Lp is the water permeability [m 3 / (m 2 · day · MPa )].
 透水性は例えば、以下のように評価する。まず多孔質膜の上に純水を満たし、その上からガスで加圧する。そして、加圧ろ過したときの水の透過速度を測定することにより、透水性を評価する。 Water permeability is evaluated as follows, for example. First, the porous membrane is filled with pure water, and pressurized with gas from above. And water permeability is evaluated by measuring the permeation | transmission speed | rate of water when carrying out pressure filtration.
 また、本発明の一実施形態に係る多孔質膜は、溶質除去テストにおいて、ブルーデキストラン2000(商品名)(分子量200万以上、GEヘルスケア・ジャパン株式会社))を分離できる(言い換えると、多孔質膜を通り抜けることができない)ことが好ましい。この溶質が分離できない(言い換えると、多孔質膜を通り抜ける)ほど孔径が大きい場合には、表面の凹凸が大きすぎる。表面の凹凸が大きいと、その上に載せた機能膜が破損しやすくなる。 Moreover, the porous membrane which concerns on one Embodiment of this invention can isolate | separate Blue Dextran 2000 (brand name) (Molecular weight 2 million or more, GE Healthcare Japan Co., Ltd.) in a solute removal test (in other words, porous It is preferred that it cannot pass through the membrane. If the pore size is so large that the solute cannot be separated (in other words, passes through the porous membrane), the surface irregularities are too large. When the unevenness on the surface is large, the functional film placed on the surface tends to be damaged.
 ここで、「溶質除去テストにおいて、ブルーデキストラン2000(商品名)を分離できる」とは、多孔質膜の上にブルーデキストラン2000の100質量ppm水溶液を満たして加圧ろ過した場合に、排除率95%以上であることをいう。より具体的には、以下のように算出する。まず、膜サンプルを直径25mmの円形に切り抜き、ろ過装置(撹拌型ウルトラホルダー UHP-25K、アドバンテック製)に装着する。そして装着した膜上に100質量ppmブルーデキストラン2000水溶液(原液)を約5ml入れ、その上から窒素ガスで0.3MPaに加圧し、ろ過を行い濾液を回収する。原液とろ液の吸光度(波長620nm)を測定し、ろ液中のブルーデキストラン2000の濃度を算出する。排除率R[%]は、原液中の濃度Cb[ppm]とろ液中の濃度Cp[ppm]から下記の式で算出する。
Figure JPOXMLDOC01-appb-M000002
Here, “in the solute removal test, Blue Dextran 2000 (trade name) can be separated” means that when a porous film is filled with a 100 mass ppm aqueous solution of Blue Dextran 2000 and subjected to pressure filtration, the rejection rate is 95. % Or more. More specifically, the calculation is performed as follows. First, a membrane sample is cut into a circle having a diameter of 25 mm and mounted on a filtration device (stirring type ultra holder UHP-25K, manufactured by Advantech). Then, about 5 ml of 100 mass ppm blue dextran 2000 aqueous solution (stock solution) is placed on the attached membrane, and the pressure is increased to 0.3 MPa with nitrogen gas from above, and the filtrate is recovered by filtration. The absorbance (wavelength 620 nm) of the stock solution and the filtrate is measured, and the concentration of Blue Dextran 2000 in the filtrate is calculated. The rejection rate R [%] is calculated by the following formula from the concentration Cb [ppm] in the stock solution and the concentration Cp [ppm] in the filtrate.
Figure JPOXMLDOC01-appb-M000002
 スキン層を除去する方法は特に制限はない。プラズマによるドライプロセスのエッチング、アルカリ溶液やクロム酸溶液によるウェットプロセスのエッチングがある。酸素プラズマを用いたエッチングによってスキン層を除去することが好ましい。この場合には、多孔質膜の表面は酸化されている。言い換えると、多孔質膜の表面は、酸素プラズマによるエッチング以外の方法でスキン層を除去した場合に比べて、酸素濃度が高くなっている。酸化の程度は目安ではあるが、酸素プラズマエッチングによるスキン層の除去により、表面のO/C比率(酸素と炭素の比率)は、30%程度増大する。このため、酸素プラズマエッチングによるスキン層の除去により、表面を親水化できるという効果がある。 There is no particular limitation on the method for removing the skin layer. There are dry process etching using plasma and wet process etching using an alkaline solution or chromic acid solution. It is preferable to remove the skin layer by etching using oxygen plasma. In this case, the surface of the porous membrane is oxidized. In other words, the surface of the porous film has a higher oxygen concentration than when the skin layer is removed by a method other than etching using oxygen plasma. Although the degree of oxidation is a standard, the removal of the skin layer by oxygen plasma etching increases the surface O / C ratio (the ratio of oxygen to carbon) by about 30%. For this reason, there is an effect that the surface can be hydrophilized by removing the skin layer by oxygen plasma etching.
 上述の通り、SEM像においてスキン層はそれに続く多孔層とは見え方は異なるものの、スキン層と多孔層とは一体に形成されたものである。孔のサイズはスキン層から多孔層内部へ連続的に変化していくものであり、スキン層と多孔層の間に明確な線引きができるものではない。従って、「スキン層を除去してなる多孔質膜」とは、従来、スキン層を有するために水処理膜の多孔質膜(機能膜の支持体)として用いることができなかった材料を、水処理膜の多孔質膜として用いることができる程度に表面層を削り取ってなる多孔質膜を意味するものである。 As described above, in the SEM image, the skin layer is different from the subsequent porous layer, but the skin layer and the porous layer are integrally formed. The size of the pores changes continuously from the skin layer to the inside of the porous layer, and a clear line cannot be drawn between the skin layer and the porous layer. Therefore, “a porous film formed by removing a skin layer” means that a material that cannot be used as a porous film (support for a functional film) of a water treatment film because of having a skin layer is water It means a porous film obtained by scraping the surface layer to such an extent that it can be used as a porous film for a treatment film.
 実際、多孔質構造からスキン層を除去する際は、エッチング処理の条件を変えて表面層の削り深さを変え、削り深さの異なる多孔質膜ごとに多孔質膜の透水性を計測することにより、水処理膜の多孔質膜として用いることができる所定の透水性が得られる削り深さ(あるいは、エッチング処理条件)を決定する。この削り取った表面層がスキン層に相当する。こうして得られたエッチング処理条件に基づいて多孔質構造からスキン層を除去することにより、実用的に同程度の透水性を有する多孔質膜を得ることができる。 In fact, when removing the skin layer from the porous structure, change the etching conditions to change the depth of the surface layer, and measure the water permeability of the porous membrane for each porous membrane with a different depth. Thus, the shaving depth (or the etching process conditions) at which a predetermined water permeability that can be used as the porous film of the water treatment film is obtained is determined. This scraped surface layer corresponds to the skin layer. By removing the skin layer from the porous structure based on the etching treatment conditions thus obtained, a porous film having practically the same water permeability can be obtained.
 第2実施形態に係る多孔質膜は、ポリイミド系樹脂を主成分とし、フィンガーライク孔を有する層と、該層を挟む、フィンガーライク孔を有さない2つの層とを有する多孔層からなり、2つの層のうちの一方の層(第1層)の表面が酸化されている。第2実施形態に係る多孔質膜は、第1実施形態に係る多孔質膜に比べて、フィンガーライク孔を有さない2つの層のうち一方の層(第1層の表面が酸化されている点が異なる。第2実施形態に係る多孔質膜は、スキン層と多孔層とからなる多孔質構造体の前記スキン層を酸素プラズマエッチングによって除去することにより製造できる。
 第2実施形態に係る多孔質膜は、第1実施形態に係る多孔質膜と、多孔質構造体のスキン層を除去してなる点は同じであるから、第1実施形態に係る多孔質膜について述べた内容を適用できる。
The porous film according to the second embodiment is composed of a porous layer having a polyimide resin as a main component, a layer having finger-like holes, and two layers having no finger-like holes sandwiching the layer. The surface of one of the two layers (first layer) is oxidized. Compared to the porous film according to the first embodiment, the porous film according to the second embodiment is one of the two layers having no finger-like holes (the surface of the first layer is oxidized). The porous film according to the second embodiment can be manufactured by removing the skin layer of the porous structure composed of the skin layer and the porous layer by oxygen plasma etching.
Since the porous film according to the second embodiment is the same as the porous film according to the first embodiment except that the skin layer of the porous structure is removed, the porous film according to the first embodiment. The contents described above can be applied.
(水処理膜)
 本発明の一実施形態に係る水処理膜は、上述の多孔質膜を備えたものである。具体的には例えば、UF膜においては、機能膜として上述の多孔質膜を用いたものであり、NF膜、RO膜、及び、FO膜においては、機能膜を載せる支持材として上述の多孔質膜を用いたものである。これらの水処理膜に限定されず、上述の多孔質膜の機能を適用できる水処理膜において用いることができる。
(Water treatment membrane)
The water treatment film | membrane which concerns on one Embodiment of this invention is equipped with the above-mentioned porous membrane. Specifically, for example, in the UF membrane, the above-described porous membrane is used as the functional membrane, and in the NF membrane, the RO membrane, and the FO membrane, the above-mentioned porous membrane is used as a support material on which the functional membrane is placed. A film is used. It is not limited to these water treatment membranes, but can be used in water treatment membranes to which the functions of the porous membrane described above can be applied.
(多孔質膜の製造方法)
 本発明の一実施形態に係る多孔質膜の製造方法は、ポリイミド系樹脂又はその前駆体を溶媒に溶解して、ポリイミド系樹脂又はその前駆体を含むキャスト液を得る工程と、前記キャスト液を基材上に塗布する工程と、前記キャスト液を、非溶媒に接触させることにより、前記基材の反対側の表面にスキン層を有する多孔質構造体を形成する工程と、前記多孔質構造体を乾燥後、エッチング処理によって前記スキン層を除去する工程と、を有する。
(Method for producing porous membrane)
The method for producing a porous membrane according to an embodiment of the present invention includes a step of dissolving a polyimide resin or a precursor thereof in a solvent to obtain a cast solution containing the polyimide resin or a precursor thereof, A step of coating on a base material, a step of forming a porous structure having a skin layer on the surface on the opposite side of the base material by bringing the casting solution into contact with a non-solvent, and the porous structure body And drying the skin layer by an etching process.
 図4に、多孔質膜の製造方法の工程の一例を模式図で示したフロー図を示す。図4に示したフロー図に沿って多孔質膜の製造方法を説明する。 FIG. 4 is a flow diagram schematically showing an example of the steps of the method for producing the porous membrane. A method for producing a porous membrane will be described with reference to the flowchart shown in FIG.
まず、ポリイミド系樹脂又はその前駆体を溶媒に溶解して、ポリイミド系樹脂又はその前駆体を含む多孔質膜用溶液(キャスト液)を作製する(図4の(a))。多孔質膜用溶液には、後述の添加物も溶解させることが好ましい。 First, a polyimide resin or a precursor thereof is dissolved in a solvent to produce a porous membrane solution (cast solution) containing the polyimide resin or a precursor thereof ((a) in FIG. 4). It is preferable to dissolve the additives described later in the porous membrane solution.
次に、得られた多孔質膜用溶液を基材上に塗布する(図4の(b))。図4に示す模式図は、ドクターブレードによって塗布する様子を示すものである。 Next, the obtained porous membrane solution is applied onto a substrate ((b) of FIG. 4). The schematic diagram shown in FIG. 4 shows a state of application by a doctor blade.
次に、多孔質膜用溶液が塗布された基材を、非溶媒を含む凝固浴に浸漬して、非溶媒誘起相分離法によって基材と接触していない面にスキン層を有する多孔質構造体を形成する(図4の(c))。多孔質膜用溶液が塗布された基材から凝固浴に浸漬するまでの時間を10秒以下とすることが好ましい。10秒以下であれば、塗布された多孔質膜用溶液の溶媒の蒸発量が少なく、膜構造を制御しやすいためである。 Next, a porous structure having a skin layer on a surface not in contact with the substrate by a non-solvent induced phase separation method by immersing the substrate coated with the solution for the porous membrane in a coagulation bath containing a non-solvent A body is formed ((c) of FIG. 4). It is preferable that the time from the substrate coated with the porous membrane solution to the immersion in the coagulation bath is 10 seconds or less. If it is 10 seconds or less, the solvent evaporation amount of the applied porous membrane solution is small, and the membrane structure can be easily controlled.
 次に、得られた多孔質構造体を50~90℃の温度で乾燥して溶媒を除去する(図4の(d))。次に必須ではないが、この例では、乾燥した多孔質構造体を200~300℃の温度で硬化する(図4の(e))。次に、硬化した多孔質構造体からプラズマエッチングによってスキン層を除去する(図4(f))。図4の(e)の硬化工程は、図4の(f)のスキン層除去工程を行った後に行うこともできる。 Next, the obtained porous structure is dried at a temperature of 50 to 90 ° C. to remove the solvent ((d) in FIG. 4). Next, although not essential, in this example, the dried porous structure is cured at a temperature of 200 to 300 ° C. ((e) of FIG. 4). Next, the skin layer is removed from the cured porous structure by plasma etching (FIG. 4F). The curing process in FIG. 4E can also be performed after the skin layer removing process in FIG.
 (d)乾燥工程、(e)硬化工程、(f)スキン層除去後の各工程ごとに、SEM観察などにより、多孔質構造体、あるいは、多孔質構造体からスキン層を除去した多孔質膜の孔構造を調べ、所望の多孔質構造体及び多孔質膜が得られるように各工程の条件を最適化することができる。 (D) Drying step, (e) Curing step, (f) Porous structure or porous membrane from which skin layer has been removed from porous structure by SEM observation or the like after each removal of skin layer The conditions of each step can be optimized so as to obtain a desired porous structure and porous membrane.
<ポリイミド系樹脂、前駆体>
 多孔質膜を構成する材料である樹脂としては、耐熱性があり、機械的強度、耐薬品性に優れているポリイミド系樹脂が用いられる。上述の通り、ポリイミド系樹脂としては、繰り返し単位にイミド結合を含む高分子化合物であるポリイミド以外に、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド等のイミド結合を含む高分子化合物を広く含む。ポリアミドイミド樹脂は、通常、無水トリメリット酸とジイソシアネートとの反応、または無水トリメリット酸クロライドとジアミンとの反応により重合した後、イミド化することによって製造できる。また、ポリイミド樹脂は、例えば、テトラカルボン酸成分とジアミン成分との反応によりポリアミック酸(ポリイミド系樹脂前駆体)を得て、それをさらにイミド化することにより製造できる。多孔質層をポリイミド樹脂で構成する場合には、イミド化すると溶解性が悪くなるため、まずポリアミック酸の段階で多孔質構造を形成してからイミド化(熱イミド化、化学イミド化等)することが好ましい。
<Polyimide resin, precursor>
As the resin which is a material constituting the porous film, a polyimide resin having heat resistance and excellent mechanical strength and chemical resistance is used. As described above, the polyimide resin includes a wide range of polymer compounds containing imide bonds such as polyamideimide, polyesterimide, and polyetherimide, in addition to polyimide, which is a polymer compound containing imide bonds in the repeating unit. Polyamideimide resin can be usually produced by polymerizing by reaction of trimellitic anhydride and diisocyanate, or by reaction of trimellitic anhydride chloride and diamine, and then imidizing. Moreover, a polyimide resin can be manufactured by obtaining a polyamic acid (polyimide-type resin precursor) by reaction with a tetracarboxylic-acid component and a diamine component, and imidating it further, for example. When the porous layer is composed of a polyimide resin, the solubility becomes worse when imidized. Therefore, first, a porous structure is formed at the polyamic acid stage and then imidized (thermal imidization, chemical imidization, etc.). It is preferable.
<溶媒>
 多孔質膜用溶液(キャスト液)の溶媒としては、溶解する樹脂成分の化学骨格に応じて溶解性を有するもの(樹脂成分の良溶媒)であれば特に制限はない。例えば、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、2-ピロリドン、γ-ブチロラクトン、及びこれらの混合物などを使用することができる。
<Solvent>
The solvent for the porous membrane solution (cast solution) is not particularly limited as long as it has solubility (good solvent for the resin component) according to the chemical skeleton of the resin component to be dissolved. For example, using dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), 2-pyrrolidone, γ-butyrolactone, and mixtures thereof Can do.
<添加物>
 多孔質膜用溶液への水溶性添加物(水溶性有機化合物や水溶性ポリマー)や水の添加は、多孔質構造体をスポンジ状に多孔化するために効果的である。
 水溶性添加物としては、例えば、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリN-ビニルピロリドン、ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリル酸、多糖類等やその誘導体、及びこれらの混合物などが挙げられる。なかでもジエチレングリコール、トリエチレングリコール、ポリエチレングリコールとポリN-ビニルピロリドンは、多孔質構造体内部における粗大孔の形成を抑制し、多孔質膜の機械的強度を向上しうる点で好ましい。これらの水溶性添加物は単独で又は2種以上を組み合わせて使用できる。また、多孔質膜用溶液への水の添加により孔径を調整できる。
<Additives>
Addition of a water-soluble additive (water-soluble organic compound or water-soluble polymer) or water to the porous membrane solution is effective for making the porous structure porous.
Examples of the water-soluble additive include diethylene glycol, triethylene glycol, polyethylene glycol, poly N-vinyl pyrrolidone, polyethylene oxide, polyvinyl alcohol, polyacrylic acid, polysaccharides and derivatives thereof, and mixtures thereof. Of these, diethylene glycol, triethylene glycol, polyethylene glycol and poly N-vinyl pyrrolidone are preferable in that they can suppress the formation of coarse pores in the porous structure and improve the mechanical strength of the porous membrane. These water-soluble additives can be used alone or in combination of two or more. In addition, the pore diameter can be adjusted by adding water to the porous membrane solution.
 水溶性添加物は、多孔質構造体を均質なスポンジ状多孔構造にするのに非常に有効であり、水溶性添加物の種類と量を変更することにより多様な構造を得ることが可能である。
このため、水溶性添加物は、所望の空孔特性を付与する目的で、多孔質膜を形成する際の添加剤として極めて好適に用いられる。
The water-soluble additive is very effective for making the porous structure into a uniform sponge-like porous structure, and various structures can be obtained by changing the type and amount of the water-soluble additive. .
For this reason, a water-soluble additive is very suitably used as an additive for forming a porous film for the purpose of imparting desired pore characteristics.
 一方、水溶性添加物は、最終的には多孔質膜を構成しない、除去すべき不要な成分である。これら不要な成分は凝固液に浸漬して相転換する工程において洗浄除去される。さらに、後述する硬化のための熱処理工程において、不要な成分は加熱により除去される。 On the other hand, the water-soluble additive is an unnecessary component that should not be removed and does not ultimately constitute a porous membrane. These unnecessary components are removed by washing in the step of phase conversion by immersion in the coagulation liquid. Furthermore, unnecessary components are removed by heating in a heat treatment step for curing, which will be described later.
 ただし、水溶性添加物の量を増やしていくと、孔の連通性が高くなる傾向がある。よって、連通性が低い方が好ましい場合、水溶性添加物の量は最小量とすることが好ましい。
連通性が高くなると強度が低下する傾向が見られる。そのため、水溶性添加物を溶解する樹脂の10倍以上過剰に添加することは好ましくない。また、溶解する樹脂の10倍以上の過剰の添加は洗浄時間を長くする必要が生じるので好ましくない。水溶性添加物は必須ではなく、使用しなくてもよい。
However, when the amount of the water-soluble additive is increased, the pore connectivity tends to increase. Therefore, when it is preferable that the connectivity is low, the amount of the water-soluble additive is preferably the minimum amount.
There is a tendency for the strength to decrease as the connectivity increases. Therefore, it is not preferable to add the water-soluble additive in excess of 10 times or more the resin that dissolves the water-soluble additive. Further, an excessive addition of 10 times or more of the resin to be dissolved is not preferable because it requires a longer washing time. The water-soluble additive is not essential and may not be used.
<多孔質膜用溶液(キャスト液)>
 多孔質膜用溶液における各成分の配合量を例示すると、樹脂成分100質量部に対し、水溶性添加物は0質量部以上、500質量部以下、水は0質量部以上、50質量部以下、及び、樹脂成分の溶媒は200質量部以上、900質量部以下である。
 水溶性添加物は、樹脂成分100質量部に対し、0質量部以上、400質量部以下であることが好ましく、50質量部以上、300質量部以下であることがより好ましい。上述の通り、水溶性添加物の量を増やしていくと孔の連通性が高くなる。一方、水溶性添加物の量をかかる値以下にすると、樹脂成分が溶媒から析出してしまう可能性が小さくなる。
 水は、樹脂成分100質量部に対し、0質量部以上、10質量部以下であることが好ましく、0質量部以上、5質量部以下であることがより好ましい。水の量をかかる値以下にすることで樹脂成分が溶媒から析出してしまう可能性が小さくなる。 
 樹脂成分の溶媒は、樹脂成分100質量部に対し、250質量部以上、700質量部以下であることが好ましく、300質量部以上、500質量部以下であるより好ましい。樹脂成分の溶媒の量を250質量部以上、あるいは、300質量部以上とし、樹脂成分の溶媒の量を700質量部以下、あるいは、500質量部以下とすることにより、キャスト液の粘度が低くなって塗布しづらくなる(具体的には、無孔基材の場合ははじかれることで塗布しづらくなる、多孔基材の場合は浸透し過ぎてしまうことで塗布しづらくなる)のを抑制できると共に、形成した多孔質構造の空孔率が高すぎて、もろくなることを抑制できる。
<Porous membrane solution (cast liquid)>
When the compounding quantity of each component in the solution for porous membranes is illustrated, the water-soluble additive is 0 parts by mass or more and 500 parts by mass or less, the water is 0 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the resin component. And the solvent of a resin component is 200 mass parts or more and 900 mass parts or less.
The water-soluble additive is preferably 0 to 400 parts by mass, more preferably 50 to 300 parts by mass, with respect to 100 parts by mass of the resin component. As described above, the pore connectivity increases as the amount of the water-soluble additive is increased. On the other hand, when the amount of the water-soluble additive is less than this value, the possibility that the resin component is precipitated from the solvent is reduced.
Water is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, relative to 100 parts by mass of the resin component. By making the amount of water below this value, the possibility that the resin component will precipitate from the solvent is reduced.
The solvent of the resin component is preferably 250 parts by mass or more and 700 parts by mass or less, and more preferably 300 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the resin component. By setting the amount of the solvent of the resin component to 250 parts by mass or more, or 300 parts by mass or more and the amount of the solvent of the resin component to 700 parts by mass or less, or 500 parts by mass or less, the viscosity of the casting liquid is lowered. (Specifically, it is difficult to apply by repelling a non-porous substrate, and it is difficult to apply by permeating too much in the case of a porous substrate). It can suppress that the porosity of the made porous structure is too high, and becomes brittle.
 樹脂成分の濃度が低すぎると多孔質構造体の厚みが不十分となったり、所望の空孔(孔)特性が得られにくくなったりする。一方、樹脂成分の濃度が高すぎると空孔率が小さくなる傾向にある。水溶性添加物の濃度が高すぎると多孔質膜用溶液中への樹脂成分の溶解性が悪くなる、多孔質膜の強度が低下するなどの不具合が生じやすい。これらのことから、多孔質膜溶液中の樹脂成分の濃度は、10~30質量%が好ましい。水の添加量は孔径の調整に用いることができる。 If the concentration of the resin component is too low, the thickness of the porous structure becomes insufficient, or desired pore (hole) characteristics are difficult to obtain. On the other hand, if the concentration of the resin component is too high, the porosity tends to decrease. If the concentration of the water-soluble additive is too high, problems such as poor solubility of the resin component in the solution for the porous membrane and a decrease in the strength of the porous membrane are likely to occur. For these reasons, the concentration of the resin component in the porous membrane solution is preferably 10 to 30% by mass. The amount of water added can be used to adjust the pore size.
<基材>
 多孔質膜用溶液(キャスト液)を塗布する基材としては例えば、無孔基材、多孔性基材等の基材を使用できる。
 基材の表面素材の種類や粗度は、多孔質膜のはがれやすさや、多孔質膜の孔径、開孔率、平滑性に影響を与えるので、目的に応じて適宜選択するのが好ましい。
<Base material>
As the substrate on which the porous membrane solution (cast solution) is applied, for example, a nonporous substrate, a porous substrate, or the like can be used.
The type and roughness of the surface material of the base material affect the ease of peeling of the porous film, the pore diameter, the open area ratio, and the smoothness of the porous film, and therefore it is preferable to select appropriately according to the purpose.
 無孔基材を使用する場合、例えば、無孔基材上に多孔質膜用溶液をフィルム状に塗布する。その後、これを凝固液(非溶媒を含む液)中に浸潰し、フィルム状多孔質構造体を基材から剥離する。そして得られたフィルム状多孔質構造体を乾燥に付す。無孔基材としては、例えば、ガラス板;ポリエチレン、ポリプロピレン等のポリオレフイン樹脂、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、ポリカーボネート樹脂、スチレン樹脂、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ピニリデン(PVDF)等のフッ素系樹脂、塩化ビニル樹脂、その他の樹脂からなるプラスチックシート;ステンレス、アルミニウム等の金属板などが挙げられる。表面素材と内部素材とを違うもので組合せた複合板を用いてもよい。 When using a non-porous substrate, for example, a porous membrane solution is applied in a film form on the non-porous substrate. Then, this is immersed in a coagulation liquid (liquid containing a non-solvent), and the film-like porous structure is peeled from the substrate. Then, the obtained film-like porous structure is subjected to drying. Examples of non-porous substrates include glass plates; polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate (PET); polycarbonate resins, styrene resins, polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF). Examples include plastic sheets made of fluororesin, vinyl chloride resin, and other resins; metal plates such as stainless steel and aluminum. You may use the composite board which combined the surface material and the internal material with what is different.
 多孔性基材を使用する場合、この多孔性基材をそのまま水処理膜の構成部材として用いるので、多孔性基材も耐熱性が高いことが好ましい。例えば、天然繊維、合成繊維、無機質繊維等耐熱性物質からなる織布および不織布がある。
 耐熱性を有する多孔性基材としては、芳香族ポリアミド系樹脂(アラミド系樹脂)、ポリフェニレンサルファイド系樹脂、液晶性ポリエステル系樹脂、ポリイミド系樹脂、ポリエーテルエーテルケトン系樹脂(PEEK系樹脂)、ポリベンゾオキサゾール樹脂(PBO樹脂)、セルロース系繊維、ガラス繊維、セラミックス繊維、およびステンレス繊維を含む金属繊維等からなるものが挙げられる。
When using a porous base material, since this porous base material is used as a constituent member of the water treatment film as it is, it is preferable that the porous base material also has high heat resistance. For example, there are woven fabrics and nonwoven fabrics made of heat-resistant substances such as natural fibers, synthetic fibers, and inorganic fibers.
Examples of porous substrates having heat resistance include aromatic polyamide resins (aramid resins), polyphenylene sulfide resins, liquid crystalline polyester resins, polyimide resins, polyether ether ketone resins (PEEK resins), poly Examples thereof include those made of benzoxazole resin (PBO resin), cellulosic fibers, glass fibers, ceramic fibers, and metal fibers including stainless steel fibers.
<塗布>
 多孔質膜用溶液(キャスト液)を基材上に塗布する手段としては例えば、ドクタープレード、アプリケーター等を利用することができる。目的に応じて、スピンコーティング、ディップコーティング等の手法を用いることもできる。
<Application>
As means for applying the porous membrane solution (cast solution) onto the substrate, for example, a doctor blade, an applicator, or the like can be used. Depending on the purpose, methods such as spin coating and dip coating can also be used.
<凝固液(非溶媒を含む)>
 非溶媒誘起相分離法に用いる凝固裕の液としては、溶解したポリイミド系樹脂またはその前駆体成分を凝固させる溶剤(樹脂成分の非溶媒)を含むものであり、かつ、ポリイミド系樹脂成分の溶媒と混和する溶剤であれば、特に制限はない。例えば、ポリアミドイミド系樹脂又はポリアミック酸等を凝固させる溶剤であればよく、例えば、水-メタノール、エタノール等の1価アルコール、グリセリン等の多価アルコールなど、のアルコール;ポリエチレングリコール等の水溶性高分子;これらの混合物などの水溶性凝固液などが使用できる。
<Coagulation liquid (including non-solvent)>
The coagulation-rich liquid used in the non-solvent-induced phase separation method contains a solvent (non-solvent of the resin component) that coagulates the dissolved polyimide resin or its precursor component, and the solvent of the polyimide resin component If it is a solvent miscible with, there will be no restriction | limiting in particular. For example, any solvent that coagulates polyamideimide resin or polyamic acid may be used. For example, water-alcohol such as monohydric alcohol such as methanol and ethanol, polyhydric alcohol such as glycerin; Molecules; water-soluble coagulation liquids such as a mixture thereof can be used.
<乾燥>
 多孔質構造体を形成する工程後、その多孔質構造体からスキン層を除去する前に、加熱して多孔質構造体を乾燥する。
 加熱温度及び加熱時間は溶媒を除去することができればよい。例えば、50~90℃で、2~10時間とすることができる。乾燥は例えば、大気中で行うことができる。減圧、または、窒素、アルゴン等の不活性ガスの雰囲気で行ってもよい。
<Dry>
After the step of forming the porous structure, before removing the skin layer from the porous structure, the porous structure is dried by heating.
The heating temperature and the heating time only have to be able to remove the solvent. For example, it can be 2 to 10 hours at 50 to 90 ° C. Drying can be performed in air | atmosphere, for example. You may carry out in pressure reduction or the atmosphere of inert gas, such as nitrogen and argon.
<硬化>
 多孔質構造体を乾燥する工程とスキン層を除去する工程との間に硬化処理を行ってもよい。
 乾燥した多孔質構造体は自立できるが、スキン層除去のためのエッチング処理の前に硬化処理を行うと、ハンドリングが安定するという利点がある。
<Curing>
A curing treatment may be performed between the step of drying the porous structure and the step of removing the skin layer.
Although the dried porous structure can be self-supporting, if the curing process is performed before the etching process for removing the skin layer, there is an advantage that the handling becomes stable.
 硬化処理は、熱処理によって行ってもよい。
 硬化のための加熱温度及び加熱時間は。例えば、200~300℃で、1~24時間とすることができる。
 硬化のための熱処理は例えば、アルゴン雰囲気で行うことができる。減圧または、窒素ガス、大気雰囲気で行ってもよい。
The curing process may be performed by heat treatment.
What is the heating temperature and heating time for curing? For example, it can be performed at 200 to 300 ° C. for 1 to 24 hours.
The heat treatment for curing can be performed in an argon atmosphere, for example. You may carry out under reduced pressure or nitrogen gas and an atmospheric condition.
<エッチング>
 多孔質構造体からスキン層を除去することができれば、エッチング方法は特に制限はない。例えば、プラズマエッチング、アルカリ溶液等の薬剤によるエッチングを用いることができる。プラズマエッチングは、多孔質構造体から削り取る量を制御しやすい。
 上述の通り、非溶媒誘起相分離法で作製された多孔質構造において、孔径はスキン層から多孔層内部(第1層)へ連続的に変化していく。そのため、削り取る量を制御することにより、削り取られた表面に露出する平均孔径を制御できる。例えば、削り取る量を制御することにより、所望の透水量の多孔質膜を得ることができる。
<Etching>
The etching method is not particularly limited as long as the skin layer can be removed from the porous structure. For example, plasma etching or etching with a chemical such as an alkaline solution can be used. Plasma etching is easy to control the amount of scraping from the porous structure.
As described above, in the porous structure produced by the non-solvent induced phase separation method, the pore diameter continuously changes from the skin layer to the inside of the porous layer (first layer). Therefore, by controlling the scraping amount, the average hole diameter exposed on the scraped surface can be controlled. For example, a porous film having a desired water permeability can be obtained by controlling the amount to be scraped off.
 プラズマエッチングは、平行平板電極を用いて行うことができる。平行平板電極を用いたプラズマエッチングによれば、多孔質構造体の表面に対して平行なスキン層の除去を行うことができる。 Plasma etching can be performed using parallel plate electrodes. According to the plasma etching using parallel plate electrodes, the skin layer parallel to the surface of the porous structure can be removed.
 プラズマエッチングとしては、酸素プラズマエッチング、アルゴン、窒素でのプラズマエッチングを用いることができる。
 酸素プラズマエッチングを用いた場合には、多孔質膜の表面を親水化することができ、透水性をより向上させることが可能となる。
As plasma etching, oxygen plasma etching, plasma etching with argon or nitrogen can be used.
When oxygen plasma etching is used, the surface of the porous film can be hydrophilized and the water permeability can be further improved.
 上述の多孔質膜の製造方法によれば、多孔質構造体表面から削り取る量を制御することにより、表面における孔の孔径が制御された多孔質膜を製造することができる。すなわち、多孔質構造体はその表面から多孔膜内部に向かって徐々に平均孔径の大きな孔を含むから、削り取る量を大きくしていくことで表面における孔の孔径を大きなものとすることができる。 According to the method for producing a porous membrane described above, a porous membrane in which the pore diameter of the pores on the surface is controlled can be produced by controlling the amount scraped from the surface of the porous structure. That is, since the porous structure includes pores having a large average pore diameter gradually from the surface toward the inside of the porous film, the pore diameter on the surface can be increased by increasing the amount of scraping.
 以下、実施例によりこの発明を具体的に説明するが、この発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited only to these examples.
(実施例1)
 ポリアミドイミド樹脂(ソルベイアドバンストポリマーズ社製、トーロン4000T-LV(商品名))を、170℃の減圧乾燥器で12時間、乾燥を行った。乾燥後のポリアミドイミド樹脂100質量部を、NMP(和光純薬工業株式会社製、和光特級)350質量部に入れ、ガラスボトル中で、50℃のロータリーミキサーで5日間混合し、溶解させ、ポリアミドイミド樹脂溶液を調製した。
Example 1
Polyamideimide resin (Toluon 4000T-LV (trade name) manufactured by Solvay Advanced Polymers) was dried in a vacuum dryer at 170 ° C. for 12 hours. 100 parts by weight of polyamideimide resin after drying is put into 350 parts by weight of NMP (Wako Pure Chemical Industries, Ltd., Wako Special Grade), mixed in a glass bottle for 5 days with a rotary mixer at 50 ° C., dissolved, and polyamide An imide resin solution was prepared.
 次に、PP(ポリプロピレン)容器に、ポリアミドイミド樹脂溶液およびPEG200((ポリエチレングリコール200)(和光純薬工業株式会社製、和光一級))100質量部について所定量を量りとり、遊星撹拌装置(株式会社シンキー製、商品名「あわとり練太郎(登録商標)シンキーARE-310」)を用いて、混合、脱泡し、多孔質膜用溶液(キャスト液)を調製した。 Next, a predetermined amount of 100 parts by mass of a polyamideimide resin solution and PEG200 ((polyethylene glycol 200) (manufactured by Wako Pure Chemical Industries, Ltd., Wako First Grade)) is weighed into a PP (polypropylene) container, and a planetary agitator (stock) A porous membrane solution (casting solution) was prepared by mixing and defoaming using a product name “Awatori Nertaro (registered trademark) Shinky ARE-310” manufactured by Shinky Co., Ltd.
 次に、ガラス板(基材)にPTFE(ポリテトラフルオロエチレン)テープ(厚み180μm、幅5mm)をギャップスペーサとして、調製した多孔質膜用溶液を70mm×100mmの範囲にドクターブレードを用いて塗布した。塗布後、直ちに純水を張った槽にガラス板を投入し、非溶媒誘起相分離法(NIPS)により、塗布膜をゲル化させた。塗布膜はゲル化により、ガラス板から自然に剥離した。 Next, using a PTFE (polytetrafluoroethylene) tape (thickness 180 μm, width 5 mm) as a gap spacer on a glass plate (base material), the prepared porous membrane solution was applied in a range of 70 mm × 100 mm using a doctor blade. did. Immediately after coating, a glass plate was put into a tank filled with pure water, and the coating film was gelled by non-solvent induced phase separation (NIPS). The coating film naturally separated from the glass plate by gelation.
 次に、剥離した塗布膜をセルロース5Cろ紙にはさみ、その上下からガラス板ではさんだ状態で乾燥器内に投入し、大気雰囲気で80℃で4時間乾燥した。この後、ろ紙から取り出して、グラフォイルGTA(商品名)ではさみ、ガスパージ炉内に移し、アルゴン流通雰囲気下、280℃、1時間保持して硬化させた。 Next, the peeled coating film was sandwiched between cellulose 5C filter papers, put into a dryer with glass plates sandwiched from above and below, and dried at 80 ° C. for 4 hours in an air atmosphere. Thereafter, the sheet was taken out from the filter paper, sandwiched between grapho foils GTA (trade name), transferred to a gas purge furnace, and cured by being kept at 280 ° C. for 1 hour in an argon atmosphere.
 以上の工程によって、スキン層を有するポリアミドイミド多孔質構造体(孔は連通している)を得た。
 このスキン層を有するポリアミドイミド多孔質構造体を、平行平板高周波プラズマ処理装置(サムコ株式会社製、RFプラズマエッチングシステムFA-1(製品名))を用いて、酸素雰囲気下、高周波プラズマ処理を50Wで60秒を行った。結果を表1に示す。
Through the above-described steps, a polyamideimide porous structure having a skin layer (pores communicated) was obtained.
The polyamideimide porous structure having this skin layer was subjected to 50 W of high frequency plasma treatment in an oxygen atmosphere using a parallel plate high frequency plasma processing apparatus (manufactured by Samco, RF plasma etching system FA-1 (product name)). For 60 seconds. The results are shown in Table 1.
(比較例1)
 作製条件としては、酸素プラズマエッチングを行わなかった点以外は、実施例1の作製条件と同じであった。
(Comparative Example 1)
The production conditions were the same as those of Example 1 except that oxygen plasma etching was not performed.
 表1に示す通り、酸素プラズマエッチングを行わなかった多孔質膜(多孔質構造そのまま)では、透水できず、また、溶質も通らなかった。 As shown in Table 1, the porous film that was not subjected to oxygen plasma etching (the porous structure as it was) could not permeate water and did not pass solute.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1において、略称で記載したものは以下の通りである。
(A)溶媒
 A-1:NMP(N-メチル-2-ピロリドン)
(B)ポリイミド系樹脂
 B-1:LVは、ソルベイスペシャルティポリマーズ社製のポリアミドイミドである(トーロン4000T-LV(商品名))。
 B-2:AI-002は、日立化成工業株式会社製のポリアミドイミドである。
(C)添加物
 C-1:DEGは、和光純薬工業株式会社製、和光特級のジエチレングリコールである。
 C-2:PEG200(商品名)は、和光純薬工業株式会社製、和光一級の平均分子量180~220のポリエチレングリコールである。
 C-3:PVPK30は、株式会社日本触媒製のポリN-ビニルピロリドンである。
 C-4:PVPK85は、株式会社日本触媒製のポリN-ビニルピロリドンである。
[基材]
 SUSは、日本精線株式会社製のステンレス繊維フィルターである(ナスロンフィルター(商品名))。
[溶質]
 BDは、GEヘルスケア・ジャパン社製の分子量2,000,000のBlue Dextran 2000(商品名)である。流体力学直径(hydrodynamic diameter)は、50~60nmである。
 チトクロームCは、和光純薬工業株式会社製、生化学用のCytochrome cである。ウマ心臓由来のものであり、TCA処理がなされている。流体力学直径は、3~5nmである。
 DR80は、東京化成工業株式会社製のDirect Red 80である。流体力学直径は1~2nmである。
In Table 1, the abbreviations are as follows.
(A) Solvent A-1: NMP (N-methyl-2-pyrrolidone)
(B) Polyimide resin B-1: LV is a polyamideimide manufactured by Solvay Specialty Polymers (Torlon 4000T-LV (trade name)).
B-2: AI-002 is a polyamideimide manufactured by Hitachi Chemical Co., Ltd.
(C) Additive C-1: DEG is a Wako special grade diethylene glycol manufactured by Wako Pure Chemical Industries, Ltd.
C-2: PEG200 (trade name) is a polyethylene glycol having a mean molecular weight of 180 to 220, manufactured by Wako Pure Chemical Industries, Ltd.
C-3: PVPK30 is poly N-vinylpyrrolidone manufactured by Nippon Shokubai Co., Ltd.
C-4: PVPK85 is poly N-vinylpyrrolidone manufactured by Nippon Shokubai Co., Ltd.
[Base material]
SUS is a stainless steel fiber filter manufactured by Nippon Seisen Co., Ltd. (Naslon filter (trade name)).
[Solute]
BD is Blue Dextran 2000 (trade name) having a molecular weight of 2,000,000 manufactured by GE Healthcare Japan. The hydrodynamic diameter is 50-60 nm.
Cytochrome C is Cytochrome c manufactured by Wako Pure Chemical Industries, Ltd. for biochemistry. It is derived from the equine heart and is TCA treated. The hydrodynamic diameter is 3-5 nm.
DR80 is Direct Red 80 manufactured by Tokyo Chemical Industry Co., Ltd. The hydrodynamic diameter is 1-2 nm.
 図5(a)に、実施例1で製造された多孔質膜の表面側(基材と接触していない側)から撮ったSEM像を示す。
 図5(b)は、酸素プラズマエッチング処理なしで、単にアルゴン雰囲気中で実施例1と同じ時間加熱処理を行った多孔質膜の表面側から撮った比較例1のSEM像である。
 図5(a)及び(b)のいずれも、下のSEM像は、上のSEM像の10倍に拡大したものである。上のSEM像は目盛り1つが1μmであり、下のSEM像は目盛り1つが0.1μmである。
 図5(a)のSEM像から、実施例1で製造された多孔質膜の表面の孔は、その孔径の最大径は200nm程度で、平均の孔径は50nm程度のものが露出していることがわかる。
 これに対して、図5(b)の比較例1のSEM像から、酸素プラズマエッチング処理なしで、単にアルゴン雰囲気中で実施例1と同じ時間加熱処理を行っただけでは、水処理膜用の多孔質膜に必要な孔径の表面が得られないことが分かった。
FIG. 5A shows an SEM image taken from the surface side (the side not in contact with the substrate) of the porous membrane produced in Example 1. FIG.
FIG. 5B is an SEM image of Comparative Example 1 taken from the surface side of a porous film that was simply subjected to heat treatment in an argon atmosphere for the same time as Example 1 without an oxygen plasma etching process.
In both FIGS. 5A and 5B, the lower SEM image is enlarged 10 times the upper SEM image. The upper SEM image has a scale of 1 μm, and the lower SEM image has a scale of 0.1 μm.
From the SEM image of FIG. 5 (a), the pores on the surface of the porous membrane produced in Example 1 have an exposed maximum pore size of about 200 nm and an average pore size of about 50 nm. I understand.
On the other hand, from the SEM image of Comparative Example 1 in FIG. 5 (b), without performing the oxygen plasma etching process, simply performing the heat treatment in the argon atmosphere for the same time as Example 1, It turned out that the surface of the hole diameter required for a porous membrane is not obtained.
 実施例1で製造された多孔質膜では、透水性は40[m/(m・day・MPa)]であった。また、BDは分離できたが、チトクロームC及びDR80は分離できなかった。 In the porous membrane produced in Example 1, the water permeability was 40 [m 3 / (m 2 · day · MPa)]. In addition, BD could be separated, but cytochrome C and DR80 could not be separated.
 図6(a)に、酸素プラズマエッチング処理前の表面(比較例1)についてXPS測定を行った結果、図6(b)に酸素プラズマエッチング処理後(スキン層除去後;実施例1)の表面についてXPS測定を行った結果を示す。図6(a)及び図(b)のグラフにおいて、横軸は結合エネルギー(eV)であり、縦軸は強度(cps:counts per second)である。XPSの測定結果に基づき、表面のC、N、及びOの濃度を算出した結果を表2に示す。 FIG. 6A shows the result of XPS measurement on the surface before the oxygen plasma etching process (Comparative Example 1). FIG. 6B shows the surface after the oxygen plasma etching process (after removing the skin layer; Example 1). The result of having performed XPS measurement about is shown. In the graphs of FIG. 6A and FIG. 6B, the horizontal axis is the binding energy (eV), and the vertical axis is the intensity (cps: counts per second). Table 2 shows the results of calculating the concentrations of C, N, and O on the surface based on the XPS measurement results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 酸素プラズマエッチング処理前後で、表面のO/Cは、0.17から0.30と70%以上大きくなっていた。
 スキン層の除去のために行った酸素プラズマエッチングによって、表面が酸化されたことがわかった。
Before and after the oxygen plasma etching treatment, the O / C on the surface was 70% or more, from 0.17 to 0.30.
It was found that the surface was oxidized by the oxygen plasma etching performed for removing the skin layer.
(実施例2)
 作製条件としては、添加物がDEGであった点、酸素プラズマエッチング時間が30秒であった点以外は、実施例1の作製条件と同じであった。
(Example 2)
The production conditions were the same as those of Example 1 except that the additive was DEG and the oxygen plasma etching time was 30 seconds.
 実施例2で製造された多孔質膜では、透水性は2.5[m/(m・day・MPa)]であった。
 また、BD、チトクロームC及びDR80のいずれも分離できた。
 このように、添加物及びプラズマエッチング時間を変えても、本発明の多孔質膜を製造することができた。
In the porous membrane produced in Example 2, the water permeability was 2.5 [m 3 / (m 2 · day · MPa)].
Moreover, all of BD, cytochrome C, and DR80 were separable.
Thus, the porous film of the present invention could be produced even when the additive and plasma etching time were changed.
 図7(a)に、実施例2で製造された多孔質膜の表面側から撮ったSEM像を示す。
 図7(b)は、酸素プラズマエッチング時間が60秒であった点以外は、実施例2と同じ条件で製造された多孔質膜の表面側から撮ったSEM像である。
 図7(a)及び(b)のいずれも、下のSEM像は、上のSEM像の10倍に拡大したものである。上のSEM像は目盛り1つが1μmであり、下のSEM像は目盛り1つが0.1μmである。
 図7(a)のSEM像から、実施例2で製造された多孔質膜の表面の孔は、その孔径の最大径は70nm程度で、平均の孔径は20nm程度のものが露出していることがわかる。
 これに対して、図7(b)のSEM像から、酸素プラズマエッチング時間を実施例2の2倍にすることによって、露出された表面の孔の径は実施例2の場合には比べてかなり大きくなっていることがわかる。このように、プラズマエッチング時間によって、削り取る深さを変えて、表面の孔の径、表面の凹凸を制御できることがわかる。
FIG. 7A shows an SEM image taken from the surface side of the porous membrane produced in Example 2. FIG.
FIG. 7B is an SEM image taken from the surface side of the porous membrane manufactured under the same conditions as in Example 2 except that the oxygen plasma etching time was 60 seconds.
In both FIGS. 7A and 7B, the lower SEM image is 10 times larger than the upper SEM image. The upper SEM image has a scale of 1 μm, and the lower SEM image has a scale of 0.1 μm.
From the SEM image of FIG. 7 (a), the pores on the surface of the porous membrane produced in Example 2 are exposed with a maximum pore size of about 70 nm and an average pore size of about 20 nm. I understand.
On the other hand, from the SEM image of FIG. 7B, by making the oxygen plasma etching time twice that of Example 2, the diameter of the holes on the exposed surface is considerably larger than that of Example 2. You can see that it is getting bigger. Thus, it can be seen that the diameter of the surface holes and the surface irregularities can be controlled by changing the depth to be scraped depending on the plasma etching time.
(実施例3)
 作製条件としては、ポリイミド系樹脂がAI002であった点以外は、実施例1の作製条件と同じであった。
(Example 3)
The production conditions were the same as those of Example 1 except that the polyimide resin was AI002.
 実施例3で製造された多孔質膜では、透水性は5[m/(m・day・MPa)]であった。また、BD及びチトクロームCは分離できたが、DR80は分離できなかった。
 このように、ポリイミド系樹脂を変えても、所定の多孔質膜を製造することができた。
The porous membrane prepared in Example 3, water permeability was 5 [m 3 / (m 2 · day · MPa)]. Further, BD and cytochrome C could be separated, but DR80 could not be separated.
Thus, even if it changed the polyimide-type resin, the predetermined porous film was able to be manufactured.
(実施例4)
 作製条件としては、添加物がPEG200の他にPVPK85であった点、酸素プラズマエッチング時間が180秒であった点以外は、実施例1の作製条件と同じであった。
Example 4
The production conditions were the same as those of Example 1 except that the additive was PVPK85 in addition to PEG200 and the oxygen plasma etching time was 180 seconds.
 実施例4で製造された多孔質膜では、透水性は10[m/(m・day・MPa)]であった。また、BD及びチトクロームCは分離できたが、DR80は分離できなかった。
 このように、添加物及びプラズマエッチング時間を変えても、所定の多孔質膜を製造することができた。
In the porous membrane produced in Example 4, the water permeability was 10 [m 3 / (m 2 · day · MPa)]. Further, BD and cytochrome C could be separated, but DR80 could not be separated.
Thus, even if the additive and the plasma etching time were changed, a predetermined porous film could be produced.
(実施例5)
 作製条件としては、添加物がPEG200の他にPVPK30であった点、酸素プラズマエッチング時間が120秒であった点以外は、実施例1の作製条件と同じであった。
(Example 5)
The production conditions were the same as those of Example 1 except that the additive was PVPK30 in addition to PEG200 and the oxygen plasma etching time was 120 seconds.
 実施例5で製造された多孔質膜では、透水性は1.5[m/(m・day・MPa)]であった。また、BD及びチトクロームCは分離できたが、DR80は分離できなかった。
 このように、添加物及びプラズマエッチング時間を変えても、所定の多孔質膜を製造することができた。
In the porous membrane produced in Example 5, the water permeability was 1.5 [m 3 / (m 2 · day · MPa)]. Further, BD and cytochrome C could be separated, but DR80 could not be separated.
Thus, even if the additive and the plasma etching time were changed, a predetermined porous film could be produced.
(実施例6)
 作製条件としては、塗布基材が多孔質のSUS(ステンレス繊維)であった点以外は、実施例1の作製条件と同じであった。多孔質のSUSの基材はガラス板の基材と異なり、NIPSによって自然に塗布膜が剥離することはない。そのため、乾燥、硬化、エッチング処理は塗布膜が多孔質のSUSの基材についている状態で行った。
(Example 6)
The production conditions were the same as those in Example 1 except that the coated substrate was porous SUS (stainless fiber). Unlike a glass plate substrate, the porous SUS substrate does not naturally peel off the coating film due to NIPS. Therefore, drying, curing, and etching were performed in a state where the coating film was attached to a porous SUS substrate.
 実施例6で製造された多孔質膜では、透水性は30[m/(m・day・MPa)]であった。また、BDは分離できたが、チトクロームC及びDR80は分離できなかった。
 このように、基材の種類を変えても、所定の多孔質膜を製造することができた。
In the porous membrane produced in Example 6, the water permeability was 30 [m 3 / (m 2 · day · MPa)]. In addition, BD could be separated, but cytochrome C and DR80 could not be separated.
Thus, even if the kind of base material was changed, the predetermined porous membrane could be manufactured.

Claims (13)

  1.  ポリイミド系樹脂又はその前駆体を溶媒に溶解して、ポリイミド系樹脂又はその前駆体を含むキャスト液を得る工程と、
     前記キャスト液を基材上に塗布する工程と、
     前記キャスト液を、非溶媒に接触させることにより、前記基材と接触していない側の表面にスキン層を有する多孔質構造体を形成する工程と、
     前記多孔質構造体を乾燥する工程と、
     前記乾燥した多孔質構造から、前記スキン層を除去する工程と、を有する多孔質膜の製造方法。
    Dissolving a polyimide resin or a precursor thereof in a solvent to obtain a casting liquid containing the polyimide resin or a precursor thereof;
    Applying the casting solution onto a substrate;
    Forming a porous structure having a skin layer on the surface not in contact with the substrate by bringing the casting liquid into contact with a non-solvent;
    Drying the porous structure;
    Removing the skin layer from the dried porous structure.
  2.  前記スキン層を除去する工程が、エッチング処理により行われる請求項1に記載の多孔質膜の製造方法。 The method for producing a porous film according to claim 1, wherein the step of removing the skin layer is performed by an etching process.
  3.  前記乾燥する工程と前記スキン層を除去する工程との間に硬化処理を行う請求項1または2に記載の多孔質膜の製造方法。 The method for producing a porous film according to claim 1 or 2, wherein a curing treatment is performed between the drying step and the step of removing the skin layer.
  4.  前記硬化処理が、熱処理である請求項3に記載の多孔質膜の製造方法。 The method for producing a porous membrane according to claim 3, wherein the curing treatment is a heat treatment.
  5.  前記エッチング処理が、プラズマ処理である請求項2~4のいずれか一項に記載の多孔質膜の製造方法。 The method for producing a porous film according to any one of claims 2 to 4, wherein the etching treatment is a plasma treatment.
  6.  前記プラズマが、高周波で発生させた酸素プラズマである請求項5に記載の多孔質膜の製造方法。 The method for producing a porous film according to claim 5, wherein the plasma is oxygen plasma generated at a high frequency.
  7.  前記キャスト液が、水溶性化合物を含む請求項1~6のいずれか一項に記載の多孔質膜の製造方法。 The method for producing a porous membrane according to any one of claims 1 to 6, wherein the casting solution contains a water-soluble compound.
  8.  ポリイミド系樹脂を主成分とし、フィンガーライク孔を有する層と、
    該層を挟む、フィンガーライク孔を有さない2つの層とを有する多孔層からなる多孔質膜。
    A layer mainly composed of a polyimide resin and having finger-like holes;
    The porous membrane which consists of a porous layer which has two layers which do not have a finger-like hole which pinches | interposes this layer.
  9.  ポリイミド系樹脂を主成分とし、フィンガーライク孔を有する層と、該層を挟む、フィンガーライク孔を有さない2つの層とを有する多孔層からなり、前記2つの層のうちの一方の層の表面が酸化されている多孔質膜。 It is composed of a polyimide resin as a main component, a porous layer having a layer having finger-like holes, and two layers having no finger-like holes sandwiching the layer, and one of the two layers. A porous membrane with an oxidized surface.
  10.  透水性が0.5[m/(m・day・MPa)]以上である請求項8または9に記載の多孔質膜。 The porous membrane according to claim 8 or 9, wherein water permeability is 0.5 [m 3 / (m 2 · day · MPa)] or more.
  11.  透水性が200[m/(m・day・MPa)]以下である請求項8~10のいずれか一項に記載の多孔質膜。 The porous membrane according to any one of claims 8 to 10, which has a water permeability of 200 [m 3 / (m 2 · day · MPa)] or less.
  12.  溶質除去テストにおいて、ブルーデキストラン2000(商品名)を分離できる請求項8~11のいずれか一項に記載の多孔質膜。 12. The porous membrane according to claim 8, wherein Blue Dextran 2000 (trade name) can be separated in a solute removal test.
  13.  請求項8~12のいずれか一項に記載の多孔質膜を備えた水処理膜。 A water treatment membrane comprising the porous membrane according to any one of claims 8 to 12.
PCT/JP2016/070710 2015-07-23 2016-07-13 Porous membrane, water treatment membrane and method for producing porous membrane WO2017014130A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017529574A JP6757072B2 (en) 2015-07-23 2016-07-13 Method for producing porous membrane, water-treated membrane and porous membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-146013 2015-07-23
JP2015146013 2015-07-23

Publications (1)

Publication Number Publication Date
WO2017014130A1 true WO2017014130A1 (en) 2017-01-26

Family

ID=57834997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070710 WO2017014130A1 (en) 2015-07-23 2016-07-13 Porous membrane, water treatment membrane and method for producing porous membrane

Country Status (2)

Country Link
JP (1) JP6757072B2 (en)
WO (1) WO2017014130A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805264A (en) * 2018-10-15 2021-05-14 住友化学株式会社 Porous ceramic laminate and method for producing same
IT202200007241A1 (en) * 2022-04-12 2023-10-12 Saati Spa REINFORCED DIAPHRAGM VENTILATION ELEMENT, PARTICULARLY FOR THE PROTECTION OF MEMS DEVICES, AND SHAPED COMPONENT MADE WITH THIS VENTILATION ELEMENT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388004A (en) * 1978-05-15 1988-04-19 ポール・コーポレーション Polyamide microporous film
JP2005034723A (en) * 2003-07-18 2005-02-10 Mtc:Kk Method for modifying reverse osmosis membrane and regenerated separation membrane
JP2005081226A (en) * 2003-09-08 2005-03-31 Institute Of Physical & Chemical Research Nanofiltration membrane and production method therefor
JP2015058419A (en) * 2013-09-20 2015-03-30 ダイキン工業株式会社 Porous polymer membrane and production method thereof
JP2016155121A (en) * 2015-02-23 2016-09-01 東京応化工業株式会社 Liquid refining method, chemical liquid or cleaning liquid manufacturing method, filter media, and filter device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388004A (en) * 1978-05-15 1988-04-19 ポール・コーポレーション Polyamide microporous film
JP2005034723A (en) * 2003-07-18 2005-02-10 Mtc:Kk Method for modifying reverse osmosis membrane and regenerated separation membrane
JP2005081226A (en) * 2003-09-08 2005-03-31 Institute Of Physical & Chemical Research Nanofiltration membrane and production method therefor
JP2015058419A (en) * 2013-09-20 2015-03-30 ダイキン工業株式会社 Porous polymer membrane and production method thereof
JP2016155121A (en) * 2015-02-23 2016-09-01 東京応化工業株式会社 Liquid refining method, chemical liquid or cleaning liquid manufacturing method, filter media, and filter device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805264A (en) * 2018-10-15 2021-05-14 住友化学株式会社 Porous ceramic laminate and method for producing same
IT202200007241A1 (en) * 2022-04-12 2023-10-12 Saati Spa REINFORCED DIAPHRAGM VENTILATION ELEMENT, PARTICULARLY FOR THE PROTECTION OF MEMS DEVICES, AND SHAPED COMPONENT MADE WITH THIS VENTILATION ELEMENT
WO2023199204A1 (en) 2022-04-12 2023-10-19 Saati S.P.A. Venting reinforced membrane, especially intended for the protection of mems packages, manufacturing method thereof and die cut part made with such venting membrane

Also Published As

Publication number Publication date
JPWO2017014130A1 (en) 2018-05-10
JP6757072B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
Li et al. Nanofibrous hydrogel composite membranes with ultrafast transport performance for molecular separation in organic solvents
Li et al. High solvent-resistant and integrally crosslinked polyimide-based composite membranes for organic solvent nanofiltration
Goh et al. Thin-film composite hollow fibre membrane for low pressure organic solvent nanofiltration
Ehsan Yakavalangi et al. Effect of surface properties of polysulfone support on the performance of thin film composite polyamide reverse osmosis membranes
Cho et al. Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis
Yang et al. Polyimide thin film composite (TFC) membranes via interfacial polymerization on hydrolyzed polyacrylonitrile support for solvent resistant nanofiltration
KR101936924B1 (en) Separation membrane, and water treatment device using said separation membrane
JP5944613B1 (en) Porous polyimide film and method for producing the same
Jiang et al. A facile direct spray-coating of Pebax® 1657: Towards large-scale thin-film composite membranes for efficient CO2/N2 separation
WO2010144057A1 (en) Double selective-layer membranes
Wang et al. Fabrication of cellulose nanofiber‐based ultrafiltration membranes by spray coating approach
Shekarian et al. Polyacrylonitrile (PAN)/IGEPAL blend asymmetric membranes: preparation, morphology, and performance
Francis et al. Robust polyamide-PTFE hollow fibre membranes for harsh organic solvent nanofiltration
Wei et al. Simultaneous phase-inversion and crosslinking in organic coagulation bath to prepare organic solvent forward osmosis membranes
Yang et al. Novel solvent-resistant nanofiltration membranes using MPD co-crosslinked polyimide for efficient desalination
US20060121267A1 (en) Process for producing porous film and porous film
Khulbe et al. Recent progress in polymeric hollow-fibre membrane preparation and applications
JP4530630B2 (en) Method for producing porous film and porous film
KR101305798B1 (en) Porous Separation Membrane and Preparation Method thereof
WO2017014130A1 (en) Porous membrane, water treatment membrane and method for producing porous membrane
Lee et al. Interfacial polymerization on hydrophobic PVDF UF membranes surface: Membrane wetting through pressurization
Jin et al. A novel organic solvent nanofiltration (OSN) membrane fabricated by Poly (m-phenylene isophthalamide)(PMIA) under large-scale and continuous process
Xu et al. Temperature-modulated formation of polyamide layer for enhanced organic solvent reverse osmosis (OSRO) performance
JP6330261B2 (en) Method for producing polymer porous membrane and polymer porous membrane
Zhang et al. A design of composite hollow fiber membranes with tunable performance and reinforced mechanical strength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827690

Country of ref document: EP

Kind code of ref document: A1