JP2020155497A - Joined body - Google Patents

Joined body Download PDF

Info

Publication number
JP2020155497A
JP2020155497A JP2019050477A JP2019050477A JP2020155497A JP 2020155497 A JP2020155497 A JP 2020155497A JP 2019050477 A JP2019050477 A JP 2019050477A JP 2019050477 A JP2019050477 A JP 2019050477A JP 2020155497 A JP2020155497 A JP 2020155497A
Authority
JP
Japan
Prior art keywords
plate
groove
joint
shaped member
shaped members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019050477A
Other languages
Japanese (ja)
Inventor
裕典 今村
Hironori Imamura
裕典 今村
一高 政井
Kazutaka Masai
一高 政井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019050477A priority Critical patent/JP2020155497A/en
Publication of JP2020155497A publication Critical patent/JP2020155497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)

Abstract

To provide a joined body capable of effectively suppressing the occurrence of cavities into a junction layer.SOLUTION: A joined body 1 includes a plurality of plate-like members 2, 3 disposed to be superposed over each other and a junction layer 4 interposed between the plate-like members 2, 3 and including a sintered body to mutually join the plate-like members 2, 3. At least one plate-like member 2 has an internal gas passage 5 which passes a joint surface Sb facing a junction layer 4 side of the plate-like member 2 and opens to the outer surface of the plate-like member 2.SELECTED DRAWING: Figure 1

Description

この明細書は、接合体に関する技術を開示するものである。 This specification discloses a technique relating to a conjugate.

各種の半導体素子と基板等の二個の板状部材に相互に接合するに当り、近年は、銀や銅等の導電性金属からなる金属粉を溶剤やバインダー等に分散させた金属粉ペーストが用いられることがある。 In recent years, metal powder pastes in which metal powders made of conductive metals such as silver and copper are dispersed in solvents, binders, etc. have been used to bond various semiconductor elements to two plate-shaped members such as substrates. May be used.

かかる金属粉ペーストは、接合対象である二個の板状部材の間への介在下で、そこに含まれる金属粉が、加熱によって焼結するとともに拡散することにより接合層になる。この接合層により二個の板状部材が相互に接合されて、接合体が得られる。
なお、これに関連する技術としては、特許文献1〜4に記載されたもの等がある。
In such a metal powder paste, the metal powder contained therein is sintered and diffused by heating to form a bonding layer under the interposition between the two plate-shaped members to be bonded. Two plate-shaped members are joined to each other by this joining layer to obtain a joined body.
In addition, as a technique related to this, there are those described in Patent Documents 1 to 4.

特開2013−232527号公報Japanese Unexamined Patent Publication No. 2013-232527 特開2014−167145号公報Japanese Unexamined Patent Publication No. 2014-167145 特開2018−152176号公報JP-A-2018-152176 特開2013−206765号公報Japanese Unexamined Patent Publication No. 2013-206765

ところで、金属粉ペーストを、板状部材の相互間に挟み込んで加熱する場合は、加熱時に、金属粉ペースト中の溶剤の揮発やバインダーの分解等によるガスが発生する。このガスは、加熱後に得られる接合体の接合層内への大きな空隙ないし空洞の発生原因になる。そして、このような大きな空隙の発生により、板状部材どうしの接合強度の低下を招くという問題がある。 By the way, when the metal powder paste is sandwiched between the plate-shaped members and heated, gas is generated due to volatilization of the solvent in the metal powder paste, decomposition of the binder, and the like during heating. This gas causes the generation of large voids or cavities in the bonding layer of the bonded body obtained after heating. Then, there is a problem that the generation of such a large void causes a decrease in the joint strength between the plate-shaped members.

この明細書では、接合層内への空洞の発生を有効に抑制することができる接合体を開示する。 This specification discloses a bonded body capable of effectively suppressing the generation of cavities in the bonded layer.

この明細書で開示する接合体は、互いに重ね合わせて配置された複数個の板状部材と、それらの板状部材の間に介在して該板状部材どうしを接合する焼結体を含む接合層とを備えるものであって、少なくとも一個の前記板状部材が、当該板状部材の接合層側を向く接合面を通って、該板状部材の外面に開口する内部ガス通路を有するものである。 The bonded body disclosed in this specification includes a plurality of plate-shaped members arranged so as to be superposed on each other, and a sintered body that is interposed between the plate-shaped members to join the plate-shaped members to each other. It is provided with a layer, and at least one of the plate-shaped members has an internal gas passage that opens to the outer surface of the plate-shaped member through a joint surface facing the joint layer side of the plate-shaped member. is there.

上記の接合体によれば、接合層内への空洞の発生を有効に抑制することができる。 According to the above-mentioned bonded body, the generation of cavities in the bonded layer can be effectively suppressed.

一の実施形態の接合体を示す斜視図である。It is a perspective view which shows the junction of one Embodiment. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the line II-II of FIG. 図1の接合体が備える一方の板状部材の接合面側を示す、該板状部材の斜視図である。It is a perspective view of the plate-shaped member which shows the joint surface side of one plate-shaped member provided in the joint body of FIG. 図2の一方の板状部材のみを示す拡大断面図である。It is an enlarged cross-sectional view which shows only one plate-shaped member of FIG. 他の実施形態の接合体が備える一方の板状部材を示す斜視図である。It is a perspective view which shows one plate-like member provided in the joint body of another embodiment. 図5のVI−VI線に沿う断面図である。It is sectional drawing which follows the VI-VI line of FIG. 板状部材に設ける貫通孔の変形例を示す断面図である。It is sectional drawing which shows the modification of the through hole provided in a plate-shaped member. さらに他の実施形態の接合体を示す斜視図である。It is a perspective view which shows the joint of still another embodiment. 実施例1〜18の溝形状を模式的に示す平面図である。It is a top view which shows typically the groove shape of Examples 1-18.

以下に図面を参照しながら、この明細書で開示する実施の形態について詳細に説明する。
一の実施形態の接合体1は、図1及び2に例示するように、互いに重ね合わせて配置された複数個、たとえば二個の板状部材2、3と、それらの板状部材2、3の間に介在して板状部材2、3の相互を接合する焼結体を含む接合層4とを備えるものである。
The embodiments disclosed in this specification will be described in detail with reference to the drawings below.
As illustrated in FIGS. 1 and 2, the bonded body 1 of one embodiment includes a plurality of plate-shaped members 2, 3 arranged so as to overlap each other, for example, two plate-shaped members 2, 3 and the plate-shaped members 2, 3 thereof. It is provided with a bonding layer 4 including a sintered body that joins the plate-shaped members 2 and 3 to each other with an interposition between the two.

ここで、複数個の板状部材2、3の少なくとも一個は、たとえば、銅、アルミニウムもしくはニッケル又は、その合金等の金属材料及び、それらにめっき等の表面処理をした材料からなるものとすることができる。また、少なくとも一個の板状部材2、3は、銅及び銅合金などの金属材料、Si、SiC等の半導体チップ又はDCB基板等のセラミックス材料からなるものとすることができる。板状部材2、3の厚みは、たとえば0.1mm〜8.0mm、典型的には0.3mm〜4.0mmとすることができる。なお図示は省略するが、さらに他の板状部材を積層させて、三個以上の板状部材を備えるものとすることもできる。また、板状部材を平行に接合するだけでなく、図8に示す接合体31のように、片方の板状部材32を直角に立てて、その側方側で、もう片方の板状部材32上に接合する構造とすることも可能である。 Here, at least one of the plurality of plate-shaped members 2, 3 shall be made of, for example, a metal material such as copper, aluminum or nickel, or an alloy thereof, and a material having a surface treatment such as plating on them. Can be done. Further, at least one plate-shaped member 2 or 3 can be made of a metal material such as copper and a copper alloy, a semiconductor chip such as Si or SiC, or a ceramic material such as a DCB substrate. The thickness of the plate-shaped members 2 and 3 can be, for example, 0.1 mm to 8.0 mm, typically 0.3 mm to 4.0 mm. Although not shown, it is also possible to further stack other plate-shaped members to provide three or more plate-shaped members. Further, not only the plate-shaped members are joined in parallel, but also one plate-shaped member 32 is erected at a right angle as shown in the joined body 31 shown in FIG. 8, and the other plate-shaped member 32 is erected on the side thereof. It is also possible to have a structure to be joined on top.

またここでは、接合層4は、主として金属粉の焼結体からなるものである。金属粉としては、銅粉又は銀粉等を挙げることができる。この接合層4は、詳細については後述するが、金属粉ペーストを所定の温度で加熱したことにより、金属粉ペースト中の溶剤やバインダー等が除去され、また、金属粉ペースト中の金属粉が焼結して形成されたものである。
なお、接合層4、34の平均厚みは、たとえば3μm〜400μm、典型的には5μm〜100μmである。接合層4、34の平均厚みは、接合体1の全体の厚みから板状部材2、3の各厚みを差し引いて算出される、板状部材2、3の相互間の隙間とする。この際に、接合体1の全体の厚み及び板状部材2、3の各厚みは、5点で測定した測定値の平均値とする。
Further, here, the bonding layer 4 is mainly made of a sintered body of metal powder. Examples of the metal powder include copper powder and silver powder. The details of the bonding layer 4 will be described later, but by heating the metal powder paste at a predetermined temperature, the solvent, binder, etc. in the metal powder paste are removed, and the metal powder in the metal powder paste is baked. It was formed by connecting.
The average thickness of the bonding layers 4 and 34 is, for example, 3 μm to 400 μm, typically 5 μm to 100 μm. The average thickness of the joint layers 4 and 34 is a gap between the plate-shaped members 2 and 3 calculated by subtracting the thicknesses of the plate-shaped members 2 and 3 from the total thickness of the joint body 1. At this time, the total thickness of the bonded body 1 and the thicknesses of the plate-shaped members 2 and 3 are average values of the measured values measured at five points.

これまでは、このような接合層を有する接合体を製造するべく、二個の板状部材の間に金属粉ペーストを挟み込んだ状態で加熱すると、次に述べるような問題があった。すなわち、加熱時には、二個の板状部材の間に介在する金属粉ペースト中の溶剤が揮発したり、またバインダーが分解したりすること等に起因して、二個の板状部材の間でガスが発生する。このガスは、加熱後の接合体の接合層中に大きな空洞を形成する。そして、接合層中に大きな空洞が形成されると、二個の板状部材間の接合強度が低下する。 Until now, in order to produce a bonded body having such a bonded layer, heating with a metal powder paste sandwiched between two plate-shaped members has the following problems. That is, at the time of heating, the solvent in the metal powder paste interposed between the two plate-shaped members volatilizes, the binder decomposes, and the like, so that the two plate-shaped members are separated from each other. Gas is generated. This gas forms large cavities in the bonding layer of the bonded body after heating. Then, when a large cavity is formed in the bonding layer, the bonding strength between the two plate-shaped members decreases.

この問題に対し、図示の実施形態では、板状部材2が、その板状部材2の、接合層4側を向く接合面Sbを通って、板状部材2の外面に開口する内部ガス通路5を有するものとする。これにより、加熱時に金属粉ペーストから発生するガスは、企図した内部ガス通路5を通って、板状部材2の外面にある内部ガス通路5の開口部5aから円滑に排出される。その結果として、接合層4中への、意図しない大きな空洞の発生を抑制することができて、所要の接合強度が確保されやすくなる。 In response to this problem, in the illustrated embodiment, the plate-shaped member 2 passes through the joint surface Sb of the plate-shaped member 2 facing the joint layer 4 side, and the internal gas passage 5 opens to the outer surface of the plate-shaped member 2. Shall have. As a result, the gas generated from the metal powder paste during heating is smoothly discharged from the opening 5a of the internal gas passage 5 on the outer surface of the plate-shaped member 2 through the intended internal gas passage 5. As a result, it is possible to suppress the generation of unintended large cavities in the bonding layer 4, and it becomes easy to secure the required bonding strength.

図1に示すところでは、内部ガス通路5が、板状部材2の外面のうちの側面Ssに開口し、側面Ss上に内部ガス通路5の開口部5aが存在する。板状部材2の側面Ssに、内部ガス通路5を開口させることにより、開口部がない場合や貫通穴を開ける場合と比べて溝形成の加工が容易であり、また、強度低下を抑制しながら材料を軽量化できるという利点がある。 As shown in FIG. 1, the internal gas passage 5 opens to the side surface Ss of the outer surface of the plate-shaped member 2, and the opening 5a of the internal gas passage 5 exists on the side surface Ss. By opening the internal gas passage 5 in the side surface Ss of the plate-shaped member 2, it is easier to process the groove formation than in the case where there is no opening or when a through hole is formed, and while suppressing the decrease in strength. It has the advantage that the material can be made lighter.

また、図1及び2に示す実施形態では、図3に一方の板状部材2のみを上下反転させて示すところから解かるように、接合面Sbから窪んで接合面Sb上で所定の形態で延びる一本以上の溝部6を有し、内部ガス通路5の少なくとも一部が、当該溝部6で構成されるものとしている。このような溝部6を含む内部ガス通路5は、加工が容易なことや、製品として板状部材2に貫通させることが出来ない場合にも対応できる点で好ましい。また、板を直角に立てる場合には貫通穴の加工は極端に難しくなるため、溝部6の形状が好ましい。 Further, in the embodiment shown in FIGS. 1 and 2, as can be seen from the fact that only one plate-shaped member 2 is turned upside down and shown in FIG. 3, it is recessed from the joint surface Sb and has a predetermined shape on the joint surface Sb. It is assumed that it has one or more extending groove portions 6, and at least a part of the internal gas passage 5 is composed of the groove portions 6. The internal gas passage 5 including such a groove 6 is preferable because it is easy to process and can be used even when the product cannot be penetrated through the plate-shaped member 2. Further, when the plate is erected at a right angle, it is extremely difficult to process the through hole, so the shape of the groove portion 6 is preferable.

板状部材2の接合面Sbの正面視にて、接合面Sb上での溝部6の延びる形態は特に問わないが、この実施形態では、図3に示すように、一方の側面Ss側から他方の側面Ss側に向けて直線状に延びる四本の溝部6を、互いに間隔をおいて平行に並べて配置している。この板状部材2を備える接合体1では、内部ガス通路5が、一方の側面Ssと他方の側面Ssの両方に開口部5aを有することになる。但し、内部ガス通路がいずれか一方の側面のみに開口するように溝部を設けることができる。また、溝部の本数は一本〜三本又は五本以上としてもよい。 In the front view of the joint surface Sb of the plate-shaped member 2, the form in which the groove 6 extends on the joint surface Sb is not particularly limited, but in this embodiment, as shown in FIG. 3, one side surface Ss side to the other. The four groove portions 6 extending linearly toward the side surface Ss side of the above surface are arranged side by side in parallel with a distance from each other. In the joint body 1 including the plate-shaped member 2, the internal gas passage 5 has openings 5a on both one side surface Ss and the other side surface Ss. However, a groove can be provided so that the internal gas passage opens only on either side surface. Further, the number of grooves may be one to three or five or more.

加熱時に発生するガスをより円滑に排出するとの観点からは、接合面Sbの中央部から周縁部に向けて直線状に延びる溝部が好ましい。図示は省略するが、接合面Sbの正面視で、格子状または放射状等の溝部を設けることも可能である。なお、曲線状の溝部や、途中で屈曲し又は分岐する溝部等も考えられる。 From the viewpoint of more smoothly discharging the gas generated during heating, a groove portion extending linearly from the central portion to the peripheral portion of the joint surface Sb is preferable. Although not shown, it is also possible to provide grid-like or radial grooves in the front view of the joint surface Sb. It should be noted that a curved groove portion, a groove portion that bends or branches in the middle, and the like are also conceivable.

内部ガス通路5は、加熱時に発生し得るガスが通過できて外部に排出される寸法形状であればよい。
具体的には、板状部材2に内部ガス通路5用の溝部6を設ける場合、図4に拡大断面図で示すように、溝部6の溝幅Wpは、0.1mm〜1.5mm、さらに0.15mm〜1.2であることが好ましい。溝幅Wpが狭すぎると、金属粉ペーストの金属粉が溝部6に詰まりやすくなり、これがガスの排出を阻害することが懸念される。一方、溝幅Wpが広すぎると、他方の板状部材3との接合面積の減少によって、接合強度が低下するおそれがある。この溝幅Wpは、溝部6の底部Bpから最も離れた位置(図4では最も下方側の位置)で、溝部6の延びる方向に直交する向きに測定する。溝部の位置で溝幅が異なる場合は、5点以上の平均を溝幅Wpとする。
The internal gas passage 5 may have a size and shape that allows gas that can be generated during heating to pass through and is discharged to the outside.
Specifically, when the plate-shaped member 2 is provided with the groove portion 6 for the internal gas passage 5, the groove width Wp of the groove portion 6 is 0.1 mm to 1.5 mm, and further, as shown in the enlarged cross-sectional view in FIG. It is preferably 0.15 mm to 1.2. If the groove width Wp is too narrow, the metal powder of the metal powder paste is likely to be clogged in the groove portion 6, which may hinder gas discharge. On the other hand, if the groove width Wp is too wide, the bonding strength may decrease due to the decrease in the bonding area with the other plate-shaped member 3. The groove width Wp is measured at a position farthest from the bottom Bp of the groove 6 (the lowest position in FIG. 4) in a direction orthogonal to the extending direction of the groove 6. If the groove width differs depending on the position of the groove, the average of 5 points or more is defined as the groove width Wp.

また、溝部6の溝深さDpは、底部Bpの最も深い点から板厚方向に沿って測って、0.01mm〜1.5mm、さらに0.02mm〜1.0であることが好適である。溝深さDpが浅い場合は、溝部6が金属粉で埋まってしまう可能性があり、ガスの排出が効果的に行われない懸念がある。溝深さDpが深い場合は、板材の剛性が低下し得る。 Further, the groove depth Dp of the groove portion 6 is preferably 0.01 mm to 1.5 mm and further 0.02 mm to 1.0 as measured along the plate thickness direction from the deepest point of the bottom portion Bp. .. When the groove depth Dp is shallow, the groove portion 6 may be filled with metal powder, and there is a concern that gas may not be discharged effectively. When the groove depth Dp is deep, the rigidity of the plate material may decrease.

また、隣接する溝部6の間隔は、0.3mm〜6mmであることが好ましい。溝部6の間隔が広い場合は、ガスの排出が効果的に行われない懸念がある。一方、溝部6の間隔が狭い場合は、接合強度が低下し得る。溝部6の間隔は、隣接する溝部6のいずれか一方の延びる方向に直交する向きに沿って測定する。溝部の位置で間隔が異なる場合は、5点以上の平均値とする。
なお、図3に示される例では、板状部材2に形成された溝部6が平行に並べて配置されているが、溝部が格子状に配置される実施形態において、略平行に隣接して配置される溝部の間隔は溝幅の3倍以上6倍未満が好ましい。
Further, the distance between the adjacent groove portions 6 is preferably 0.3 mm to 6 mm. If the intervals between the grooves 6 are wide, there is a concern that gas may not be discharged effectively. On the other hand, if the intervals between the groove portions 6 are narrow, the joint strength may decrease. The distance between the groove portions 6 is measured along a direction orthogonal to the extending direction of any one of the adjacent groove portions 6. If the spacing differs depending on the position of the groove, the average value of 5 points or more shall be used.
In the example shown in FIG. 3, the groove portions 6 formed in the plate-shaped member 2 are arranged side by side in parallel, but in the embodiment in which the groove portions are arranged in a grid pattern, they are arranged adjacent to each other substantially in parallel. The spacing between the groove portions is preferably 3 times or more and less than 6 times the groove width.

そしてまた、接合面Sbの正面視で、溝部6を除く接合面Sb(接合面Sbの溝部6が無い部分)の面積に対する溝部6の面積の比率(溝部6の面積率)は、好ましくは3%〜70%、より好ましくは5%〜50%、さらに好ましくは10%〜30%である。溝部6の面積率が大きすぎると、接合面積が減少して接合強度が低下する可能性がある。また溝部6の面積率が小さすぎると、加熱時に、内部ガス通路5からのガスの排出が不十分となって、接合層4へのある程度大きな空洞の発生が懸念される。 Further, in the front view of the joint surface Sb, the ratio of the area of the groove 6 to the area of the joint surface Sb (the portion of the joint surface Sb without the groove 6) excluding the groove 6 (area ratio of the groove 6) is preferably 3. % To 70%, more preferably 5% to 50%, still more preferably 10% to 30%. If the area ratio of the groove portion 6 is too large, the joint area may decrease and the joint strength may decrease. Further, if the area ratio of the groove portion 6 is too small, the gas is insufficiently discharged from the internal gas passage 5 at the time of heating, and there is a concern that a somewhat large cavity may be generated in the joint layer 4.

接合面Sbにこのような溝部6を設けた板状部材2を、金属粉ペーストを用いて、他方の板状部材3に接合しようとした場合、金属粉ペーストの一部が、板状部材2の溝部6に入り込んだ状態で、そこで金属粉が焼結されることがある。しかるに、この場合でも、板状部材2の溝部6が金属粉で完全に埋まってしまうことがないように、溝部6の寸法形状を調整することにより、加熱時の内部ガス通路5からのガスの排出を良好に行わせることができる。 When a plate-shaped member 2 having such a groove 6 provided on the joint surface Sb is to be joined to the other plate-shaped member 3 by using a metal powder paste, a part of the metal powder paste is a plate-shaped member 2. The metal powder may be sintered there in the state where it has entered the groove portion 6. However, even in this case, by adjusting the dimensional shape of the groove 6 so that the groove 6 of the plate-shaped member 2 is not completely filled with the metal powder, the gas from the internal gas passage 5 at the time of heating can be collected. It is possible to make the discharge good.

このようにして、溝部6が金属粉で完全に埋まらない状態で加熱して得られた接合体1では、図2に示すところから解かるように、溝部6の少なくとも底部Bp側の一部に、接合層4が入り込んでいない空所Vpが存在することになる。板状部材2の溝部6に空所Vpがある接合体1は、加熱時にガスが内部ガス通路5から効果的に排出された結果として、所要の接合強度が十分に確保されたものであると考えられる。 In the bonded body 1 obtained by heating in a state where the groove portion 6 is not completely filled with the metal powder in this way, as can be seen from FIG. 2, at least a part of the groove portion 6 on the bottom Bp side. , There will be a vacant Vp in which the bonding layer 4 has not entered. The joint body 1 having an empty Vp in the groove 6 of the plate-shaped member 2 is said to have sufficiently secured the required joint strength as a result of the gas being effectively discharged from the internal gas passage 5 during heating. Conceivable.

図5及び6に、他の実施形態の接合体が備える板状部材12を示す。図5の実施形態では、板状部材12に、接合面Sbと表面Sfとの間に延びて、接合面Sb及び表面Sfのそれぞれに開口する一個以上の貫通孔16を形成している。そして、かかる貫通孔16により、接合面Sbを通って外面のうちの表面Sfに開口する内部ガス通路15を構成している。貫通孔16は、接合面Sbから表面Sfに向けて直線状に延びるものとしているが、曲線状または途中で屈曲する形状等の種々の形状とすることができる。また、側面Ssに開口する貫通孔としてもよい。 5 and 6 show a plate-shaped member 12 included in the joint of another embodiment. In the embodiment of FIG. 5, the plate-shaped member 12 is formed with one or more through holes 16 extending between the joint surface Sb and the surface Sf and opening in each of the joint surface Sb and the surface Sf. Then, the through hole 16 constitutes an internal gas passage 15 that opens to the surface Sf of the outer surface through the joint surface Sb. The through hole 16 extends linearly from the joint surface Sb toward the surface Sf, but may have various shapes such as a curved shape or a shape that bends in the middle. Further, it may be a through hole that opens in the side surface Ss.

図5及び6のような貫通孔16による内部ガス通路15では、金属粉ペーストを加熱した際に、それにより発生したガスは、内部ガス通路15を通って、板状部材12の表面Sfに存在する開口部15aから円滑に排出することができる。 In the internal gas passage 15 having the through holes 16 as shown in FIGS. 5 and 6, when the metal powder paste is heated, the gas generated by the internal gas passage 15 passes through the internal gas passage 15 and exists on the surface Sf of the plate-shaped member 12. It can be smoothly discharged from the opening 15a.

また、図7に示すような貫通孔26で構成される内部ガス通路25でも、金属粉ペースト加熱時のガスを有効に排出させることができる。
この内部ガス通路25は、貫通孔26の接合面Sb側の開口部近傍を拡大させ、そこに、接合面Sbから窪む凹部26aを設けたことを除いて、図5及び6に示す内部ガス通路25と実質的に同様の構成を有する。先述したような接合面Sb上で延びる図3の溝部6ではなく、図7のような接合面Sb内で窪む凹部26aを含む内部ガス通路25でも、たとえば貫通孔26で表面Sf等の外面に開口させることにより、当該開口部25aからガスが効果的に流出する。それによって、この内部ガス通路25でも、ガスの発生に起因する大きな空洞の発生を抑制することが可能である。
Further, even in the internal gas passage 25 formed of the through hole 26 as shown in FIG. 7, the gas at the time of heating the metal powder paste can be effectively discharged.
The internal gas passage 25 has the internal gas shown in FIGS. 5 and 6 except that the vicinity of the opening of the through hole 26 on the joint surface Sb side is enlarged and a recess 26a recessed from the joint surface Sb is provided therein. It has substantially the same configuration as the passage 25. In the internal gas passage 25 including the recess 26a recessed in the joint surface Sb as shown in FIG. 7, instead of the groove 6 of FIG. 3 extending on the joint surface Sb as described above, for example, the outer surface such as the surface Sf of the through hole 26 By opening the opening 25a, gas effectively flows out from the opening 25a. Thereby, even in this internal gas passage 25, it is possible to suppress the generation of a large cavity due to the generation of gas.

なお図示しないが、板状部材に設けた溝部と貫通孔とを組み合わせて、内部ガス通路を構成することもできる。
また、内部ガス通路は、他方の板状部材に設けることができる他、一方の板状部材と他方の板状部材の両方に設けてもよい。
Although not shown, an internal gas passage may be formed by combining a groove provided in the plate-shaped member and a through hole.
Further, the internal gas passage can be provided in the other plate-shaped member, or may be provided in both the one plate-shaped member and the other plate-shaped member.

以上に述べたような接合体を製造する方法について、図1に示す接合体1を例として説明する。
はじめに板状部材2、3を準備する。ここでは、切削その他の加工又は、鋳造もしくは成形等により、一方の板状部材2に溝部6を設けておく。
The method for producing the bonded body as described above will be described by taking the bonded body 1 shown in FIG. 1 as an example.
First, the plate-shaped members 2 and 3 are prepared. Here, the groove 6 is provided in one of the plate-shaped members 2 by cutting or other processing, casting, molding, or the like.

次いで、一方の板状部材2の接合面Sbもしくは、他方の板状部材3の接合面、又は、それらの両接合面に、アプリケーター等を用いて金属粉ペーストを塗布する。そして、それらの両接合面が互いに対向する向きで、板状部材2、3を重ね合わせる。これにより、板状部材2、3の間に、金属粉ペーストが挟み込まれて介在することになる。 Next, the metal powder paste is applied to the joint surface Sb of one plate-shaped member 2, the joint surface of the other plate-shaped member 3, or both joint surfaces thereof using an applicator or the like. Then, the plate-shaped members 2 and 3 are overlapped with the two joint surfaces facing each other. As a result, the metal powder paste is sandwiched and intervened between the plate-shaped members 2 and 3.

その後、金属粉ペーストの介在下で互いに重ね合わせた板状部材2、3を加熱する。このとき、金属粉ペーストに含まれる溶剤やバインダー等が、板状部材2、3間にガスを発生させるが、当該ガスは、上述したように板状部材2に設けた内部ガス通路5を通って、該板状部材2の外面の開口部5aから円滑に排出される。その結果として、加熱後に形成される接合層4への大きな空洞の発生が抑えられ、板状部材2、3間の所要の接合強度を有効に確保することができる。 Then, the plate-shaped members 2 and 3 superposed on each other are heated under the intervention of the metal powder paste. At this time, the solvent, binder, etc. contained in the metal powder paste generate gas between the plate-shaped members 2 and 3, and the gas passes through the internal gas passage 5 provided in the plate-shaped member 2 as described above. Therefore, it is smoothly discharged from the opening 5a on the outer surface of the plate-shaped member 2. As a result, the generation of large cavities in the joint layer 4 formed after heating is suppressed, and the required joint strength between the plate-shaped members 2 and 3 can be effectively secured.

また、溝部6等の内部ガス通路5の空間は、金属粉の焼結による体積減少に伴う応力を緩和して、接合層4への割れの発生を防止するべくも機能するので、接合強度の低下をさらに効果的に抑制することができる。 Further, the space of the internal gas passage 5 such as the groove 6 also functions to alleviate the stress caused by the volume reduction due to the sintering of the metal powder and prevent the occurrence of cracks in the bonding layer 4, so that the bonding strength is increased. The decrease can be suppressed more effectively.

なおここでは、加熱は数ステップで行うことが望ましい。たとえば1ステップ目として80℃〜150℃の温度を3分〜60分にわたって維持することができる。この温度での加熱により、ペースト内の溶剤を揮発させる。このときに接合層に大きな空洞が発生しやすい。加熱温度が低いと溶剤が揮発しないため、次の加熱ステップで空洞が発生する。加熱温度が高いと大きな空洞が発生してしまうため、上記の温度と時間が望ましい。2ステップ目以降に焼結するための熱処理を実施する。2ステップ目としては、400〜900℃で5分〜60分の熱処理を実施すると密に焼成した接合層が得られる。温度が低すぎると金属粉自体は軽い焼成しかしないため、金属粉同士がまばらに繋がったポーラス状になり、板状部材2、3間の熱膨張の差が緩和されやすくなるが、接合強度自体を高めることが出来ない。上記の温度範囲のように比較的高温にすることで、緻密な接合層4が得られて、接合強度が大きく高まる。また、高温加熱により発生しやすくなるガスは、上述したように内部ガス通路5から良好に流出するので、空洞の問題は生じない。 Here, it is desirable that heating is performed in several steps. For example, as the first step, the temperature of 80 ° C. to 150 ° C. can be maintained for 3 to 60 minutes. Heating at this temperature volatilizes the solvent in the paste. At this time, large cavities are likely to occur in the joint layer. Since the solvent does not volatilize when the heating temperature is low, cavities are created in the next heating step. The above temperature and time are desirable because large cavities are generated when the heating temperature is high. Heat treatment for sintering is performed in the second and subsequent steps. In the second step, heat treatment at 400 to 900 ° C. for 5 to 60 minutes is carried out to obtain a densely fired bonded layer. If the temperature is too low, the metal powder itself is only lightly fired, so that the metal powder becomes a porous shape in which the metal powders are sparsely connected to each other, and the difference in thermal expansion between the plate-shaped members 2 and 3 is easily alleviated. Cannot be increased. By raising the temperature to a relatively high temperature as in the above temperature range, a dense bonding layer 4 is obtained, and the bonding strength is greatly increased. Further, since the gas that is likely to be generated by high-temperature heating flows out satisfactorily from the internal gas passage 5 as described above, the problem of cavities does not occur.

加熱時には、必要に応じて加圧することも可能であるが、板状部材2、3の間に金属粉ペーストを挟み込んで加熱すれば、加圧なしでも、板状部材2、3を強固に接合可能である。なお、板状部材2、3を重ね合わせる前に、いずれかの板状部材2、3の接合面上の金属粉ペーストに含まれる溶剤を揮発させ、その後に板状部材2、3を重ね合わせて加熱する場合は、接合をするために加圧が必要になることが多い。 At the time of heating, it is possible to pressurize as necessary, but if the metal powder paste is sandwiched between the plate-shaped members 2 and 3 and heated, the plate-shaped members 2 and 3 are firmly joined without pressurization. It is possible. Before stacking the plate-shaped members 2 and 3, the solvent contained in the metal powder paste on the joint surface of any of the plate-shaped members 2 and 3 is volatilized, and then the plate-shaped members 2 and 3 are superposed. In the case of heating, it is often necessary to pressurize for joining.

これにより、板状部材2、3の相互が接合層4で強固に接合された接合体1を得ることができる。 As a result, it is possible to obtain a bonded body 1 in which the plate-shaped members 2 and 3 are firmly bonded to each other by the bonding layer 4.

次に、上述したような接合体を試作し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、これに限定されることを意図するものではない。 Next, the above-mentioned joint was prototyped and its effect was confirmed, which will be described below. However, the description here is for the purpose of mere illustration, and is not intended to be limited thereto.

板状部材を模擬した二個の銅製の試験片の間に、金属粉ペーストを挟み込んだ状態で、1ステップ目の加熱として120℃に加熱し、その後、2ステップ目の加熱として800℃に加熱して、二個の板状部材の間で金属粉が焼結して接合層となった接合体を得た。金属粉ペーストとしては、溶剤及びバインダー等に銅粉を分散させたものを用いた。試験片の寸法は10×10×1.5t(mm)とし、金属粉ペーストの塗布厚みは0.1mmとした。 With the metal powder paste sandwiched between two copper test pieces simulating a plate-shaped member, the metal powder paste is heated to 120 ° C. as the first step heating, and then heated to 800 ° C. as the second step heating. Then, a metal powder was sintered between the two plate-shaped members to form a joint layer. As the metal powder paste, a paste in which copper powder was dispersed in a solvent, a binder or the like was used. The size of the test piece was 10 × 10 × 1.5 t (mm), and the coating thickness of the metal powder paste was 0.1 mm.

ここで、上記の方法により、表1に示すように、試験片の接合面に設ける溝ないし貫通孔の形態が異なる実施例1〜23及び比較例1、2の各接合体を作製した。実施例1〜18の溝形状を図9に示す。 Here, as shown in Table 1, the joints of Examples 1 to 23 and Comparative Examples 1 and 2 having different forms of grooves or through holes provided on the joint surface of the test piece were produced by the above method. The groove shapes of Examples 1 to 18 are shown in FIG.

Figure 2020155497
Figure 2020155497

これらの接合体について、接合した銅製試験片を剥離することにより接合強度を測定する試験を行った。それらの結果も表1に示している。表1中には、接合強度の低いものから高いものの順に「×」「△」「○」「◎」の4段階が示されている。「×」は容易に剥離したこと(接合強度が低いこと)を意味し、「◎」は無理に剥離させてようやく剥離したこと(接合強度が高いこと)を意味する。「△」は少し力を加えたときに剥離が可能であったことを意味し、「○」は、「△」よりも強い力であって「◎」よりも弱い力を加えたときに剥離が可能であったことを意味する。 For these bonded bodies, a test was conducted in which the bonded strength was measured by peeling off the bonded copper test pieces. The results are also shown in Table 1. In Table 1, four stages of "x", "Δ", "○", and "◎" are shown in order from the one with the lowest bonding strength to the one with the highest bonding strength. “X” means that the material was easily peeled off (the joint strength is low), and “◎” means that the material was forcibly peeled off and finally peeled off (the joint strength is high). “△” means that peeling was possible when a little force was applied, and “○” means peeling when a force stronger than “△” and weaker than “◎” was applied. Means that was possible.

表1から、実施例1〜23は、空洞の面積率がある程度小さくなり、比較的高い接合強度が得られたことが解かる。これは、加熱時に内部ガス通路によるガスの排出が効果的に行われて、接合層への大きな空洞の発生が有効に抑制されたことによるものと考えられる。一方、比較例1、2は、空洞の面積率が増大し、接合強度が低下した結果となった。 From Table 1, it can be seen that in Examples 1 to 23, the area ratio of the cavities was reduced to some extent, and relatively high bonding strength was obtained. It is considered that this is because the gas was effectively discharged from the internal gas passage during heating, and the generation of large cavities in the joint layer was effectively suppressed. On the other hand, in Comparative Examples 1 and 2, the area ratio of the cavity increased and the joint strength decreased.

1、31 接合体
2、3、12、32 板状部材
4、34 接合層
5、15、25、35 内部ガス通路
5a、15a、25a、35a 開口部
6 溝部
16、26 貫通孔
26a 凹部
Ss 側面
Sb 接合面
Sf 表面
Wp 溝幅
Dp 溝深さ
Vp 空所
1, 31 Joined body 2, 3, 12, 32 Plate-shaped member 4, 34 Joined layer 5, 15, 25, 35 Internal gas passage 5a, 15a, 25a, 35a Opening 6 Groove 16, 26 Through hole 26a Recessed Ss Side surface Sb Joint surface Sf Surface Wp Groove width Dp Groove depth Vp Vacancy

Claims (9)

互いに重ね合わせて配置された複数個の板状部材と、それらの板状部材の間に介在して該板状部材どうしを接合する焼結体を含む接合層とを備える接合体であって、
少なくとも一個の前記板状部材が、当該板状部材の接合層側を向く接合面を通って、該板状部材の外面に開口する内部ガス通路を有する接合体。
A bonded body including a plurality of plate-shaped members arranged so as to be superposed on each other, and a bonding layer including a sintered body that is interposed between the plate-shaped members and joins the plate-shaped members to each other.
A joint body in which at least one plate-shaped member has an internal gas passage that opens to the outer surface of the plate-shaped member through a joint surface facing the joint layer side of the plate-shaped member.
前記内部ガス通路が、前記板状部材の外面のうちの側面に開口してなる請求項1に記載の接合体。 The joint according to claim 1, wherein the internal gas passage opens on a side surface of the outer surface of the plate-shaped member. 前記板状部材が、前記接合面から窪んで該接合面上で延びる溝部を有し、前記内部ガス通路の少なくとも一部が、前記溝部で構成されてなる請求項1又は2に記載の接合体。 The bonded body according to claim 1 or 2, wherein the plate-shaped member has a groove portion recessed from the joint surface and extends on the joint surface, and at least a part of the internal gas passage is composed of the groove portion. .. 前記溝部の溝幅が0.1mm〜1.5mmである請求項3に記載の接合体。 The bonded body according to claim 3, wherein the groove width of the groove portion is 0.1 mm to 1.5 mm. 前記溝部の溝深さが0.01mm〜1.5mmである請求項3又は4に記載の接合体。 The joint according to claim 3 or 4, wherein the groove depth of the groove is 0.01 mm to 1.5 mm. 溝部を除く前記接合面の面積に対する前記溝部の面積の比率である面積率が、3%〜70%である請求項3〜5のいずれか一項に記載の接合体。 The joint according to any one of claims 3 to 5, wherein the area ratio, which is the ratio of the area of the groove to the area of the joint surface excluding the groove, is 3% to 70%. 前記板状部材が、前記溝部を複数有し、前記複数の溝部の間隔は0.3mm〜6mmである請求項3〜6のいずれか一項に記載の接合体。 The joint according to any one of claims 3 to 6, wherein the plate-shaped member has a plurality of the groove portions, and the distance between the plurality of groove portions is 0.3 mm to 6 mm. 前記溝部の少なくとも底部側の一部に、接合層のない空所が存在してなる請求項3〜7のいずれか一項に記載の接合体。 The joint according to any one of claims 3 to 7, wherein a vacant space without a joint layer exists in at least a part on the bottom side of the groove. 前記接合層により相互に接合された板状部材のうち、少なくとも一方の板状部材が金属材料からなる請求項1〜8のいずれか一項に記載の接合体。 The bonded body according to any one of claims 1 to 8, wherein at least one of the plate-shaped members bonded to each other by the bonding layer is made of a metal material.
JP2019050477A 2019-03-18 2019-03-18 Joined body Pending JP2020155497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019050477A JP2020155497A (en) 2019-03-18 2019-03-18 Joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050477A JP2020155497A (en) 2019-03-18 2019-03-18 Joined body

Publications (1)

Publication Number Publication Date
JP2020155497A true JP2020155497A (en) 2020-09-24

Family

ID=72559664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050477A Pending JP2020155497A (en) 2019-03-18 2019-03-18 Joined body

Country Status (1)

Country Link
JP (1) JP2020155497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181499A1 (en) * 2022-03-23 2023-09-28 株式会社日立パワーデバイス Semiconductor device and electric power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181499A1 (en) * 2022-03-23 2023-09-28 株式会社日立パワーデバイス Semiconductor device and electric power conversion device

Similar Documents

Publication Publication Date Title
JP5012239B2 (en) Joining method and joined body
KR102016201B1 (en) Ceramic package, electronic component device, and method for manufacturing the electronic component device
JPS5969910A (en) Laminated capacitor and method of producing same
JP6443568B2 (en) Bonding material, bonding method and bonding structure using the same
WO2011065457A1 (en) Laminate and manufacturing method for same
JP6853455B2 (en) Manufacturing method of board for power module
JP2007027592A (en) Ceramic package and manufacturing method therefor, ceramic package for taking many pieces, and its manufacture
JP4382154B2 (en) Heat spreader and manufacturing method thereof
JP2020155497A (en) Joined body
JP7024331B2 (en) A method for manufacturing an insulated circuit board, a method for manufacturing an insulated circuit board with a heat sink, and a method for manufacturing a laminated structure of an insulated circuit board.
KR20170048999A (en) Ceramic Board Manufacturing Method and Ceramic Board manufactured by thereof
US11285568B2 (en) Solder preform for establishing a diffusion solder connection and method for producing a solder preform
JP2013049589A (en) Joined body of ceramic body and metal body
JP2020155498A (en) Joined body and method for manufacturing joined body
KR101856106B1 (en) Ceramic Board Manufacturing Method and Ceramic Board manufactured by thereof
JP4999983B2 (en) Heat spreader and manufacturing method thereof
JP5898561B2 (en) Ceramic package
JP2005116938A (en) Multilayer ceramic board having cavity and manufacturing method thereof
JP5356434B2 (en) Manufacturing method of ceramic substrate
JP4291656B2 (en) Manufacturing method of multilayer ceramic substrate with cavity
JP7147232B2 (en) Manufacturing method for ceramic-metal bonded body, manufacturing method for multi-cavity ceramic-metal bonded body, ceramic-metal bonded body and multi-cavity ceramic-metal bonded body
WO2020022352A1 (en) Ceramic laminated substrate, module, and method for manufacturing ceramic laminated substrate
JP2986531B2 (en) Manufacturing method of aluminum nitride substrate bonded with copper
KR101856107B1 (en) Ceramic Board Manufacturing Method and Ceramic Board manufactured by thereof
KR102429043B1 (en) Ceramic Board Manufacturing Method