JP2020153471A - Seal structure of rotary shaft of magnetic viscous fluid device - Google Patents

Seal structure of rotary shaft of magnetic viscous fluid device Download PDF

Info

Publication number
JP2020153471A
JP2020153471A JP2019054228A JP2019054228A JP2020153471A JP 2020153471 A JP2020153471 A JP 2020153471A JP 2019054228 A JP2019054228 A JP 2019054228A JP 2019054228 A JP2019054228 A JP 2019054228A JP 2020153471 A JP2020153471 A JP 2020153471A
Authority
JP
Japan
Prior art keywords
rotating shaft
ferrofluid
intermediate member
seal structure
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019054228A
Other languages
Japanese (ja)
Other versions
JP7269048B2 (en
Inventor
修一 赤岩
Shuichi Akaiwa
修一 赤岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2019054228A priority Critical patent/JP7269048B2/en
Publication of JP2020153471A publication Critical patent/JP2020153471A/en
Application granted granted Critical
Publication of JP7269048B2 publication Critical patent/JP7269048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing Of Bearings (AREA)
  • Sealing Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

To provide a seal structure of a rotary shaft of a magnetic viscous fluid device which can keep rotational resistance of a rotary shaft in a low state constantly and reduces a possibility that a magnetic viscous fluid leaks from a gap between the rotary shaft and a shaft hole without being affected by volumetric change and change of atmospheric pressure of the magnetic viscous fluid.SOLUTION: A seal structure of a rotary shaft of a magnetic viscous fluid device includes: a rotary shaft 2; a shaft hole 12 into which the rotary shaft 2 is inserted; an intermediate member 7 which is inserted into a space between the rotary shaft 2 and the shaft hole 12 so as to be movable in an axial direction of the rotary shaft 2; an inner seal member 16 which seals a gap between the rotary shaft 2 and the intermediate member 7; and an outer seal member 17 which seals a gap between the intermediate member 7 and the shaft hole 12.SELECTED DRAWING: Figure 1

Description

本発明は、互いに回転可能に設けられた部材間に磁気粘性流体を介在させ、当該磁気粘性流体に付与する磁場の強さを変えることにより、部材間で伝達されるトルクを変えることができる磁気粘性流体装置の回転軸のシール構造に関する。 According to the present invention, magnetism capable of changing the torque transmitted between members by interposing a ferrofluid between members rotatably provided and changing the strength of the magnetic field applied to the ferrofluid. Regarding the seal structure of the rotating shaft of the viscous fluid device.

例えば、特許文献1の図4や特許文献2の図1に磁気粘性流体装置が開示されている。これらの磁気粘性流体装置の回転軸のシール構造では、内部に封入された磁気粘性流体が回転軸と軸穴との隙間から外部に漏出しないように、環状のシール部材を用いて当該隙間をシールしている。 For example, FIG. 4 of Patent Document 1 and FIG. 1 of Patent Document 2 disclose a ferrofluid fluid apparatus. In the seal structure of the rotating shaft of these magnetic viscous fluid devices, the gap is sealed by using an annular sealing member so that the magnetic viscous fluid sealed inside does not leak to the outside from the gap between the rotating shaft and the shaft hole. are doing.

特開2017−076209号公報Japanese Unexamined Patent Publication No. 2017-076209 特開2019−011788号公報Japanese Unexamined Patent Publication No. 2019-011788

ところで、特許文献1、2に開示された磁気粘性流体装置では、気温の上昇等によって磁気粘性流体の温度が上昇すると、磁気粘性流体の体積が膨張し、シール部材が回転軸と軸穴に強く押し付けられ、回転軸の回転抵抗が大きくなってしまう。特に、コイルに電流を印加していないときの回転軸の回転抵抗(以下「基底トルク」ともいう。)が大きくなってしまうことは好ましくない。 By the way, in the ferrofluid apparatus disclosed in Patent Documents 1 and 2, when the temperature of the ferrofluid rises due to an increase in temperature or the like, the volume of the ferrofluid expands and the seal member is strongly resistant to the rotating shaft and the shaft hole. It is pressed and the rotational resistance of the rotating shaft increases. In particular, it is not preferable that the rotational resistance of the rotating shaft (hereinafter, also referred to as “base torque”) increases when no current is applied to the coil.

また、上記のように、回転軸の基底トルクが大きくなってしまうことは、磁気粘性流体装置を気圧の高いところや気圧の低い所で使用する場合にも起こり得る。 Further, as described above, the increase in the base torque of the rotating shaft may occur when the ferrofluid fluid device is used in a place where the atmospheric pressure is high or low.

また、磁気粘性流体の体積が大きく膨張したり、気圧が大きく低下するような場合においては、シール部から磁気粘性流体が漏出する可能性も高まる。ここで、気圧が大きく低下する場合としては、磁気粘性流体装置が飛行機等によって輸送される場合や、磁気粘性流体が飛行機等の装置の一部として組み込まれている場合が挙げられる。 In addition, when the volume of the ferrofluid expands significantly or the atmospheric pressure drops significantly, the possibility of the ferrofluid leaking from the seal portion increases. Here, examples of a case where the atmospheric pressure drops significantly include a case where the ferrofluid fluid device is transported by an airplane or the like, or a case where the ferrofluid fluid is incorporated as a part of the device such as an airplane.

本発明は、上記課題に鑑みて創案されたものであり、磁気粘性流体の体積変化や気圧の変化に影響されることなく、回転軸の回転抵抗を常に低い状態に維持することができ、磁気粘性流体がシール部から漏出する可能性も低くすることができる、磁気粘性流体装置の回転軸のシール構造を提供することを目的とする。 The present invention has been devised in view of the above problems, and can always maintain the rotational resistance of the rotating shaft in a low state without being affected by changes in the volume and atmospheric pressure of the ferrofluid, and is magnetic. It is an object of the present invention to provide a sealing structure for a rotating shaft of a ferrofluid fluid device, which can reduce the possibility of viscous fluid leaking from the sealing portion.

本発明に係る磁気粘性流体装置の回転軸のシール構造は、回転軸と、前記回転軸が挿入された軸穴と、前記回転軸の軸線方向に移動可能に、前記回転軸と前記軸穴との間に挿入された中間部材と、前記回転軸と前記中間部材との隙間をシールする内側シール部材と、
前記中間部材と前記軸穴との隙間をシールする外側シール部材と、を備える。
The seal structure of the rotating shaft of the magnetic viscous fluid device according to the present invention includes the rotating shaft, the shaft hole into which the rotating shaft is inserted, and the rotating shaft and the shaft hole so as to be movable in the axial direction of the rotating shaft. An intermediate member inserted between the two, and an inner sealing member that seals a gap between the rotating shaft and the intermediate member.
An outer sealing member for sealing a gap between the intermediate member and the shaft hole is provided.

かかる構成を備える磁気粘性流体装置の回転軸のシール構造によれば、磁気粘性流体の封入空間と、装置外部との圧力差を縮小するように中間部材が移動するので、磁気粘性流体の体積変化や気圧の変化に影響されることなく、回転軸の回転抵抗を常に低い状態に維持することができ、磁気粘性流体がシール部から漏出する可能性も低くすることができる。 According to the seal structure of the rotating shaft of the ferrofluid fluid device having such a configuration, the intermediate member moves so as to reduce the pressure difference between the enclosed space of the ferrofluid fluid and the outside of the device, so that the volume of the ferrofluid fluid changes. The rotational resistance of the rotating shaft can be kept low at all times without being affected by changes in pressure and pressure, and the possibility of the ferrofluid leaking from the seal portion can be reduced.

上記構成を備える磁気粘性流体装置の回転軸のシール構造において、前記中間部材を磁気粘性流体が封入されている側に付勢する付勢部材を更に備えることが望ましい。 In the seal structure of the rotating shaft of the ferrofluid apparatus having the above configuration, it is desirable to further include an urging member that urges the intermediate member to the side where the ferrofluid is sealed.

上記構成を備える磁気粘性流体装置の回転軸のシール構造において、前記回転軸は、前記中間部材の磁気粘性流体と反対側に設けられた軸受を介して前記軸穴に支持されており、前記付勢部材は、前記中間部材と前記軸受との間に設けられ、前記中間部材を前記軸受から離反させる方向に付勢する、ようにしてもよい。 In the seal structure of the rotating shaft of the magnetic viscous fluid device having the above configuration, the rotating shaft is supported by the shaft hole via a bearing provided on the side opposite to the magnetic viscous fluid of the intermediate member. The urging member may be provided between the intermediate member and the bearing and urge the intermediate member in a direction away from the bearing.

上記構成を備える磁気粘性流体装置の回転軸のシール構造において、前記中間部材は、前記回転軸および前記軸穴の双方に対して回転可能に、前記回転軸と前記軸穴との間に挿入されている、ものとしてもよい。 In the seal structure of the rotating shaft of the magnetic viscous fluid device having the above configuration, the intermediate member is rotatably inserted between the rotating shaft and the shaft hole with respect to both the rotating shaft and the shaft hole. It may be.

上記構成を備える磁気粘性流体装置の回転軸のシール構造において、前記内側シール部材は、前記回転軸の外周部又は前記中間部材の内周部に形成された環状溝に嵌め込まれており、外側シール部材は、前記中間部材の外周部又は前記軸穴の内周部に形成された環状溝に嵌め込まれている、ものとしてもよい。 In the sealing structure of the rotating shaft of the ferrofluid apparatus having the above configuration, the inner sealing member is fitted into an annular groove formed in the outer peripheral portion of the rotating shaft or the inner peripheral portion of the intermediate member, and the outer sealing member is provided. The member may be fitted in an annular groove formed in the outer peripheral portion of the intermediate member or the inner peripheral portion of the shaft hole.

上記構成を備える磁気粘性流体装置の回転軸のシール構造において、前記軸受には、前記中間部材側の空間と装置外部とを連通する連通孔が形成されていてもよい。 In the seal structure of the rotating shaft of the ferrofluid fluid device having the above configuration, the bearing may be formed with a communication hole for communicating the space on the intermediate member side and the outside of the device.

本発明によれば、磁気粘性流体の体積変化や気圧の変化に影響されることなく、回転軸の回転抵抗を常に低い状態に維持することができ、磁気粘性流体がシール部から漏出する可能性も低くすることができる。 According to the present invention, the rotational resistance of the rotating shaft can always be maintained at a low state without being affected by changes in the volume or atmospheric pressure of the ferrofluid, and the ferrofluid may leak from the seal portion. Can also be lowered.

本発明の実施形態における磁気粘性流体装置を示す断面図である。It is sectional drawing which shows the magnetic viscous fluid apparatus in embodiment of this invention.

以下、本発明の実施の形態に係る磁気粘性流体装置の回転軸のシール構造について、図面を参照しつつ説明する。 Hereinafter, the seal structure of the rotating shaft of the ferrofluid fluid device according to the embodiment of the present invention will be described with reference to the drawings.

磁気粘性流体装置は、互いに回転可能に設けられた部材間に磁気粘性流体を介在させ、当該磁気粘性流体に付与する磁場の強さを変えることにより、部材間で伝達されるトルクを変えるものであればよい。 The ferrofluid device changes the torque transmitted between the members by interposing the ferrofluid between the members rotatably provided with each other and changing the strength of the magnetic field applied to the ferrofluid. All you need is.

本実施形態に係る磁気粘性流体装置1は、図1に示すように、回転軸2、円板3、第1ヨーク4、第2ヨーク5、コイル6、中間部材7、ケーシング8、付勢部材9、磁気粘性流体10等で構成されている。 As shown in FIG. 1, the ferrofluid apparatus 1 according to the present embodiment includes a rotating shaft 2, a disk 3, a first yoke 4, a second yoke 5, a coil 6, an intermediate member 7, a casing 8, and an urging member. 9. It is composed of a ferrofluid 10 and the like.

回転軸2は、その端部が円板3の中心部に垂直に接続されている。回転軸2は、中間部材7の磁気粘性流体10と反対側に設けられた軸受11を介して第2ヨーク5に設けられた軸穴12に対して回転自在に支持されている。なお、回転軸2には非磁性体が用いられることが望ましい。 The end of the rotating shaft 2 is vertically connected to the center of the disk 3. The rotating shaft 2 is rotatably supported by a shaft hole 12 provided in the second yoke 5 via a bearing 11 provided on the opposite side of the ferrofluid 10 of the intermediate member 7. It is desirable that a non-magnetic material is used for the rotating shaft 2.

軸受11は、中間部材7側の空間15と装置1の外部との間で空気を通気可能な構造のものであることが望ましい。本実施形態では、空間15と装置1の外部とを連通する連通孔11aが形成された滑り軸受が使用されている。 It is desirable that the bearing 11 has a structure capable of ventilating air between the space 15 on the intermediate member 7 side and the outside of the device 1. In the present embodiment, a slide bearing in which a communication hole 11a for communicating the space 15 and the outside of the device 1 is formed is used.

円板3は、ケーシング8、第1ヨーク4、第2ヨーク5等に対して回転する。円板3は、回転軸2と一体に設けられている。円板3は、例えば、磁性体を用いて構成される。 The disk 3 rotates with respect to the casing 8, the first yoke 4, the second yoke 5, and the like. The disk 3 is provided integrally with the rotating shaft 2. The disk 3 is constructed using, for example, a magnetic material.

第1ヨーク4は、磁性体で構成され、円板3の表面3bに対して微小隙間を介して対向する対向面4aを有する円板状のものに形成されている。この第1ヨーク4は、円筒状のケーシング8に嵌め込まれて固定されている。 The first yoke 4 is made of a magnetic material, and is formed in a disk shape having a facing surface 4a facing the surface 3b of the disk 3 via a minute gap. The first yoke 4 is fitted and fixed in a cylindrical casing 8.

第2ヨーク5は、磁性体で構成され、円板3の裏面3aに対して微小隙間を介して対向する対向面5aを有する。この第2ヨーク5は、中央に軸穴12を有している。軸穴12には、後述する筒状の中間部材7が挿入されている。更に中間部材7の内側には、回転軸2が挿通されている。また、第2ヨーク5には、コイル6を配設するための環状の溝13が形成されている。第2ヨーク5は、円筒状のケーシング8の内側に嵌め込まれて固定されている。 The second yoke 5 is made of a magnetic material and has an opposing surface 5a that faces the back surface 3a of the disk 3 via a minute gap. The second yoke 5 has a shaft hole 12 in the center. A tubular intermediate member 7, which will be described later, is inserted into the shaft hole 12. Further, a rotating shaft 2 is inserted inside the intermediate member 7. Further, the second yoke 5 is formed with an annular groove 13 for arranging the coil 6. The second yoke 5 is fitted and fixed to the inside of the cylindrical casing 8.

符号14は、非磁性体からなる球体であり、第1ヨーク4の中心に形成された凹部と、回転軸2の端面の中心に形成された凹部とで形成されるスペースに収容されている。この球体14は、第1ヨーク4と円板3との隙間の設定を容易にするためのものであり、球体14の直径によって、当該隙間が定まる。 Reference numeral 14 is a sphere made of a non-magnetic material, which is accommodated in a space formed by a recess formed at the center of the first yoke 4 and a recess formed at the center of the end face of the rotating shaft 2. The sphere 14 is for facilitating the setting of a gap between the first yoke 4 and the disk 3, and the gap is determined by the diameter of the sphere 14.

コイル6は、第2ヨーク5に形成された溝13に沿って配設されている。このコイル6には、図外の給電装置から電流が供給される。 The coil 6 is arranged along the groove 13 formed in the second yoke 5. A current is supplied to the coil 6 from a power feeding device (not shown).

中間部材7は、筒状の部材であり、回転軸2と軸穴12との間に挿入されている。中間部材7と回転軸2との間には僅かな隙間が確保されており、中間部材7と軸穴12との間にも僅かな隙間が確保されている。中間部材7は、回転軸2の軸線方向に移動可能に設けられ、回転軸2および軸穴12の双方に対して回転可能に設けられている。 The intermediate member 7 is a tubular member and is inserted between the rotating shaft 2 and the shaft hole 12. A small gap is secured between the intermediate member 7 and the rotating shaft 2, and a small gap is also secured between the intermediate member 7 and the shaft hole 12. The intermediate member 7 is provided so as to be movable in the axial direction of the rotating shaft 2, and is provided so as to be rotatable with respect to both the rotating shaft 2 and the shaft hole 12.

中間部材7と回転軸2との間には、中間部材7と回転軸2との隙間をシールするシール部材16(以下「内側シール部材16」ともいう。)が設けられている。また、中間部材7と軸穴12との間には、中間部材7と軸穴12との隙間をシールするシール部材17(以下「外側シール部材17」ともいう。)が設けられている。内側シール部材16は、中間部材7の内周部に形成された内側環状溝18に嵌め込まれており、外側シール部材17は、中間部材7の外周部に形成された外側環状溝19に嵌め込まれている。本実施形態では、内側シール部材16および外側シール部材17としてOリングが用いられているが、Oリングに代えて他のシール部材、例えば、各種断面形状の環状パッキン、オイルシールなどを用いてもよい。また、本実施形態では、内側シール部材16および外側シール部材17は、それぞれ2本ずつ設けられているが、本数はこれに限定されず、1本又は3本以上であってもよい。また、内側シール部材16と外側シール部材17の本数が互いに異なっていてもよい。 A seal member 16 (hereinafter, also referred to as “inner seal member 16”) for sealing the gap between the intermediate member 7 and the rotary shaft 2 is provided between the intermediate member 7 and the rotary shaft 2. Further, a seal member 17 (hereinafter, also referred to as “outer seal member 17”) for sealing the gap between the intermediate member 7 and the shaft hole 12 is provided between the intermediate member 7 and the shaft hole 12. The inner sealing member 16 is fitted into the inner annular groove 18 formed in the inner peripheral portion of the intermediate member 7, and the outer sealing member 17 is fitted into the outer annular groove 19 formed in the outer peripheral portion of the intermediate member 7. ing. In the present embodiment, an O-ring is used as the inner seal member 16 and the outer seal member 17, but other seal members such as annular packings having various cross-sectional shapes and oil seals may be used instead of the O-ring. Good. Further, in the present embodiment, two inner seal members 16 and two outer seal members 17 are provided, but the number is not limited to this, and may be one or three or more. Further, the number of the inner seal member 16 and the outer seal member 17 may be different from each other.

また、本実施形態では、中間部材7の内周部および外周部にグリスを充填した環状のグリス溝20,21が設けられている。但し、グリス溝20,21が設けられる場所は上記に限定されない。例えば、グリス溝を片方にしたり、グリス溝を複数個所ずつ設けることも可能である。また、グリス溝を軸穴12の内周部や、回転軸2の外周部に設けることも可能である。 Further, in the present embodiment, the inner peripheral portion and the outer peripheral portion of the intermediate member 7 are provided with annular grease grooves 20 and 21 filled with grease. However, the place where the grease grooves 20 and 21 are provided is not limited to the above. For example, it is possible to use one grease groove or to provide a plurality of grease grooves at each location. It is also possible to provide a grease groove on the inner peripheral portion of the shaft hole 12 or the outer peripheral portion of the rotating shaft 2.

付勢部材9は、中間部材7と軸受11との間に設けられており、中間部材7を軸受11から離反させる方向(磁気粘性流体10が封入されている側)に付勢している。付勢部材9としては、例えば弾性体を使用することができる。弾性体としては、バネ、ゴム等を例示することができる。なお、図1に例示する磁気粘性流体装置1では、付勢部材9によって付勢された中間部材7は、回転軸2の形成された大径部2aによって所定位置に形成される。ここで、大径部2aは、回転軸2において、中間部材7の内径よりも大きな外径を有する部分である。 The urging member 9 is provided between the intermediate member 7 and the bearing 11 and urges the intermediate member 7 in the direction away from the bearing 11 (the side in which the ferrofluid 10 is sealed). As the urging member 9, for example, an elastic body can be used. Examples of the elastic body include a spring and rubber. In the magnetic viscous fluid device 1 illustrated in FIG. 1, the intermediate member 7 urged by the urging member 9 is formed at a predetermined position by the large diameter portion 2a formed by the rotating shaft 2. Here, the large diameter portion 2a is a portion of the rotating shaft 2 having an outer diameter larger than the inner diameter of the intermediate member 7.

磁気粘性流体10は、円板3と、第1ヨーク4および第2ヨーク5との隙間に封入されている。この磁気粘性流体10は、磁性粒子を分散媒に分散させてなる液体であり、例えば、その磁性粒子がナノサイズの金属粒子(金属ナノ粒子)からなるものが使用できる。磁性粒子は磁化可能な金属材料からなり、金属材料に特に制限はないが軟磁性材料が好ましい。軟磁性材料としては、例えば鉄、コバルト、ニッケルおよびパーマロイ等の合金が挙げられる。分散媒は、特に限定されるものではないが、一例として疎水性のシリコーンオイルを挙げることができる。磁気粘性流体における磁性粒子の配合量は、例えば3〜40vol%とすればよい。磁気粘性流体にはまた、所望の各種特性を得るために、各種の添加剤を添加することも可能である。 The ferrofluid 10 is sealed in the gap between the disk 3 and the first yoke 4 and the second yoke 5. The magnetic viscous fluid 10 is a liquid in which magnetic particles are dispersed in a dispersion medium. For example, a liquid in which the magnetic particles are composed of nano-sized metal particles (metal nanoparticles) can be used. The magnetic particles are made of a magnetizable metal material, and the metal material is not particularly limited, but a soft magnetic material is preferable. Examples of the soft magnetic material include alloys such as iron, cobalt, nickel and permalloy. The dispersion medium is not particularly limited, and examples thereof include hydrophobic silicone oil. The blending amount of the magnetic particles in the magnetically viscous fluid may be, for example, 3 to 40 vol%. It is also possible to add various additives to the ferrofluid in order to obtain various desired properties.

上記構成を備える磁気粘性流体装置1において、コイル6に電流が印加されると、例えば矢印Pに示す方向に沿って円板3、第1ヨーク4、第2ヨーク5内に磁路が形成される。この磁路は、円板3の表面3bと第1ヨーク4の対向面4aとの隙間や、円板3の裏面3aと第2ヨーク5の対向面5aとの隙間に介在する磁気粘性流体10を貫通する。これにより、当該磁気粘性流体10には、磁場の強さに応じた粘度(ずり応力)が発現し、円板3とヨーク4,5との間での伝達トルクが磁場の強さに応じて大きくなる。その結果、回転軸2の制動力もコイル6に印加される電流の強さに応じて大きくなる。 In the magnetic viscous fluid device 1 having the above configuration, when a current is applied to the coil 6, magnetic paths are formed in the disc 3, the first yoke 4, and the second yoke 5 along the direction indicated by, for example, the arrow P. Ru. This magnetic path is a magnetic viscous fluid 10 interposed in the gap between the front surface 3b of the disk 3 and the facing surface 4a of the first yoke 4, and the gap between the back surface 3a of the disk 3 and the facing surface 5a of the second yoke 5. Penetrate. As a result, the ferrofluid 10 develops a viscosity (shear stress) according to the strength of the magnetic field, and the transmission torque between the disk 3 and the yokes 4 and 5 depends on the strength of the magnetic field. growing. As a result, the braking force of the rotating shaft 2 also increases according to the strength of the current applied to the coil 6.

本実施形態における磁気粘性流体装置1の回転軸2のシール構造は、既述した回転軸2、中間部材7、付勢部材9、軸穴12、内側シール部材16、外側シール部材17等で構成されている。例えば、気温の上昇等によって装置1内に封入された磁気粘性流体10の体積が膨張する場合や、何らかの事情によって気圧が低下する場合、中間部材7は、付勢部材9の付勢力に抗して図中右側から左側へ移動し、磁気粘性流体10が封入されている領域の容積を拡大する。その結果、磁気粘性流体10が封入されている領域と気圧との圧力差が小さく抑えられる。その後、気温の低下等によって装置1内に封入された磁気粘性流体10の体積が元の体積に戻る場合や、気圧が上昇して元に戻る場合に、中間部材7が付勢部材9の付勢力によって図中左側から右側に移動し元の状態に復帰する。もちろん、このときも、磁気粘性流体10が封入されている領域と気圧との圧力差は、小さく抑えられている。 The seal structure of the rotary shaft 2 of the ferrofluid device 1 in the present embodiment includes the rotary shaft 2, the intermediate member 7, the urging member 9, the shaft hole 12, the inner seal member 16, the outer seal member 17, and the like described above. Has been done. For example, when the volume of the ferrofluid 10 enclosed in the apparatus 1 expands due to an increase in temperature or the like, or when the atmospheric pressure drops for some reason, the intermediate member 7 resists the urging force of the urging member 9. The volume of the region in which the ferrofluid 10 is enclosed is expanded by moving from the right side to the left side in the figure. As a result, the pressure difference between the region where the ferrofluid 10 is enclosed and the atmospheric pressure can be suppressed to a small size. After that, when the volume of the ferrofluid 10 sealed in the apparatus 1 returns to the original volume due to a decrease in temperature or the like, or when the atmospheric pressure rises and returns to the original volume, the intermediate member 7 attaches the urging member 9. It moves from the left side to the right side in the figure depending on the force and returns to the original state. Of course, also at this time, the pressure difference between the region where the ferrofluid 10 is enclosed and the atmospheric pressure is kept small.

要するに、本実施形態に係る磁気粘性流体装置の回転軸のシール構造によれば、磁気粘性流体10の体積変化や気圧の変化に影響されることなく、回転軸2の回転抵抗を常に低い状態に維持することができ、磁気粘性流体10が回転軸2と軸穴12との隙間から漏出する可能性も低く抑えることができる。また、本実施形態に係る磁気粘性流体装置の回転軸のシール構造では、回転軸2と軸穴12との間に中間部材7および付勢部材9を埋め込む構造が採用されているので、殆ど大型化することなく、コンパクトな磁気粘性流体装置1として、上記作用効果を奏することができる。 In short, according to the seal structure of the rotating shaft of the ferrofluid fluid device according to the present embodiment, the rotational resistance of the ferrofluid 2 is always kept low without being affected by the volume change and the pressure change of the ferrofluid 10. It can be maintained, and the possibility that the ferrofluid 10 leaks from the gap between the rotating shaft 2 and the shaft hole 12 can be suppressed to a low level. Further, in the seal structure of the rotating shaft of the ferrofluid fluid device according to the present embodiment, a structure in which the intermediate member 7 and the urging member 9 are embedded between the rotating shaft 2 and the shaft hole 12 is adopted, so that the size is almost large. As a compact ferrofluid fluid device 1, the above-mentioned action and effect can be obtained.

ところで、本実施形態における磁気粘性流体装置1の回転軸2のシール構造では、回転軸2が軸穴12に対して、所定の回転速度又は任意の回転速度で、回転するとき、中間部材7が軸穴12に対して回転軸2よりも低い回転速度で回転するように、内側シール部材16および外側シール部材17の断面変形量(つぶし代)がそれぞれ設定されている。このため、各シール部材16,17がその内径側の部材又は外径側の部材と摺動する速度を低く抑えることができる。例えば、回転軸2が軸穴12に対して、100rpmの回転速度で回転し、中間部材7が軸穴12に対して回転軸2よりも低い回転速度(例えば40rpm)で回転する場合は、内側シール部材16の内径側部材(回転軸2)と外径側部材(中間部材7)との相対回転速度は、40rpmとなる。また、外側シール部材17の内径側部材(中間部材7)と外径側部材(軸穴12)との相対回転速度は、60rpmとなる。従来例に係る磁気粘性流体装置の場合、回転軸が軸穴に対して100rpmの回転速度で回転する場合、シール部材の内径側部材と外径側部材との相対回転速度も100rpmとなる。 By the way, in the seal structure of the rotating shaft 2 of the magnetic viscous fluid device 1 in the present embodiment, when the rotating shaft 2 rotates with respect to the shaft hole 12 at a predetermined rotation speed or an arbitrary rotation speed, the intermediate member 7 The cross-sectional deformation amount (crushing allowance) of the inner seal member 16 and the outer seal member 17 is set so as to rotate with respect to the shaft hole 12 at a rotation speed lower than that of the rotation shaft 2. Therefore, the speed at which the seal members 16 and 17 slide with the inner diameter side member or the outer diameter side member can be suppressed low. For example, when the rotating shaft 2 rotates with respect to the shaft hole 12 at a rotation speed of 100 rpm and the intermediate member 7 rotates with respect to the shaft hole 12 at a rotation speed lower than that of the rotating shaft 2 (for example, 40 rpm), it is inside. The relative rotation speed between the inner diameter side member (rotation shaft 2) and the outer diameter side member (intermediate member 7) of the seal member 16 is 40 rpm. Further, the relative rotation speed between the inner diameter side member (intermediate member 7) and the outer diameter side member (shaft hole 12) of the outer seal member 17 is 60 rpm. In the case of the ferrofluid device according to the conventional example, when the rotation shaft rotates at a rotation speed of 100 rpm with respect to the shaft hole, the relative rotation speed between the inner diameter side member and the outer diameter side member of the seal member is also 100 rpm.

一般的に、シール部材の内径側部材と外径側部材との相対回転速度が高くなるにつれて、シール機能が低下し、磁気粘性流体の漏れが生じ易くなる。本実施形態に係る回転軸のシール構造によれば、当該相対回転速度を低く抑えることができるため、各シール部材16,17の断面変形量(つぶし代)を大きくすることなく、磁気粘性流体10の漏れを抑制することができる。また、各シール部材16,17の断面変形量を大きくせずに済むことから、回転軸2の基底トルクを抑えることもできる。 Generally, as the relative rotation speed between the inner diameter side member and the outer diameter side member of the seal member increases, the seal function deteriorates and leakage of the ferrofluid tends to occur. According to the seal structure of the rotating shaft according to the present embodiment, the relative rotation speed can be suppressed low, so that the ferrofluid 10 does not increase the amount of cross-sectional deformation (crushing allowance) of each of the sealing members 16 and 17. Leakage can be suppressed. Further, since it is not necessary to increase the amount of cross-sectional deformation of each of the seal members 16 and 17, the base torque of the rotating shaft 2 can be suppressed.

また、本実施形態に係る回転軸のシール構造によれば、シール部材の内径側部材と外径側部材との相対回転速度を低く抑えることができるので、各シール部材16,17の劣化を遅らせることができる。換言すれば、各シール部材16,17の耐久性が向上する。 Further, according to the sealing structure of the rotating shaft according to the present embodiment, the relative rotation speed between the inner diameter side member and the outer diameter side member of the sealing member can be suppressed to be low, so that the deterioration of the sealing members 16 and 17 is delayed. be able to. In other words, the durability of the sealing members 16 and 17 is improved.

<変形例>
既述した実施形態において、磁気粘性流体10の封入領域の密封性が高い場合は、付勢部材9を省略することも可能である。
<Modification example>
In the above-described embodiment, when the sealing region of the ferrofluid 10 is highly sealed, the urging member 9 can be omitted.

本発明は、例えば、互いに回転可能に設けられた部材間に磁気粘性流体を介在させ、当該磁気粘性流体に付与する磁場の強さを変えることにより、部材間で伝達されるトルクを変えることができる磁気粘性流体装置に適用することが可能である。 In the present invention, for example, the torque transmitted between the members can be changed by interposing a ferrofluid between members rotatably provided to each other and changing the strength of the magnetic field applied to the ferrofluid. It can be applied to ferrofluid devices that can.

1 磁気粘性流体装置
2 回転軸
3 円板
7 中間部材
9 付勢部材
10 磁気粘性流体
11 軸受
11a 連通孔
12 軸穴
15 空間
16 内側シール部材
17 外側シール部材
18 内側環状溝
19 外側環状溝
1 Ferrofluid fluid device 2 Rotating shaft 3 Disk 7 Intermediate member 9 Biasing member 10 Ferrofluid 11 Bearing 11a Communication hole 12 Shaft hole 15 Space 16 Inner sealing member 17 Outer sealing member 18 Inner annular groove 19 Outer annular groove

Claims (6)

回転軸と、
前記回転軸が挿入された軸穴と、
前記回転軸の軸線方向に移動可能に、前記回転軸と前記軸穴との間に挿入された中間部材と、
前記回転軸と前記中間部材との隙間をシールする内側シール部材と、
前記中間部材と前記軸穴との隙間をシールする外側シール部材と、
を備えることを特徴とする磁気粘性流体装置の回転軸のシール構造。
The axis of rotation and
The shaft hole into which the rotating shaft is inserted and
An intermediate member inserted between the rotating shaft and the shaft hole so as to be movable in the axial direction of the rotating shaft,
An inner sealing member that seals the gap between the rotating shaft and the intermediate member,
An outer sealing member that seals the gap between the intermediate member and the shaft hole,
A seal structure for a rotating shaft of a ferrofluid fluid device, which comprises.
請求項1に記載の磁気粘性流体装置の回転軸のシール構造において、
前記中間部材を磁気粘性流体が封入されている側に付勢する付勢部材を更に備えることを特徴とする磁気粘性流体装置の回転軸のシール構造。
In the seal structure of the rotating shaft of the ferrofluid fluid device according to claim 1.
A seal structure for a rotating shaft of a magnetic viscous fluid device, further comprising an urging member that urges the intermediate member on the side where the magnetic viscous fluid is sealed.
請求項2に記載の磁気粘性流体装置の回転軸のシール構造において、
前記回転軸は、前記中間部材の磁気粘性流体と反対側に設けられた軸受を介して前記軸穴に支持されており、
前記付勢部材は、前記中間部材と前記軸受との間に設けられ、前記中間部材を前記軸受から離反させる方向に付勢する、
ことを特徴とする磁気粘性流体装置の回転軸のシール構造。
In the seal structure of the rotating shaft of the ferrofluid fluid device according to claim 2.
The rotating shaft is supported by the shaft hole via a bearing provided on the opposite side of the ferrofluid of the intermediate member.
The urging member is provided between the intermediate member and the bearing, and urges the intermediate member in a direction away from the bearing.
The seal structure of the rotating shaft of the ferrofluid fluid system.
請求項1〜3の何れか1項に記載の磁気粘性流体装置の回転軸のシール構造において、
前記中間部材は、前記回転軸および前記軸穴の双方に対して回転可能に、前記回転軸と前記軸穴との間に挿入されている、
ことを特徴とする磁気粘性流体装置の回転軸のシール構造。
In the seal structure of the rotating shaft of the ferrofluid fluid device according to any one of claims 1 to 3.
The intermediate member is rotatably inserted between the rotating shaft and the shaft hole so as to be rotatable with respect to both the rotating shaft and the shaft hole.
The seal structure of the rotating shaft of the ferrofluid fluid system.
請求項1〜4の何れか1項に記載の磁気粘性流体装置の回転軸のシール構造において、
前記内側シール部材は、前記回転軸の外周部又は前記中間部材の内周部に形成された環状溝に嵌め込まれており、外側シール部材は、前記中間部材の外周部又は前記軸穴の内周部に形成された環状溝に嵌め込まれている、
ことを特徴とする磁気粘性流体装置の回転軸のシール構造。
In the seal structure of the rotating shaft of the ferrofluid fluid device according to any one of claims 1 to 4.
The inner sealing member is fitted into an annular groove formed in the outer peripheral portion of the rotating shaft or the inner peripheral portion of the intermediate member, and the outer sealing member is the outer peripheral portion of the intermediate member or the inner circumference of the shaft hole. It is fitted in the annular groove formed in the part,
The seal structure of the rotating shaft of the ferrofluid fluid system.
請求項2〜5の何れか1項に記載の磁気粘性流体装置の回転軸のシール構造において、
前記軸受には、前記中間部材側の空間と装置外部とを連通する連通孔が形成されている、
ことを特徴とする磁気粘性流体装置の回転軸のシール構造。
In the seal structure of the rotating shaft of the ferrofluid fluid device according to any one of claims 2 to 5.
The bearing is formed with a communication hole that communicates the space on the intermediate member side with the outside of the device.
The seal structure of the rotating shaft of the ferrofluid fluid system.
JP2019054228A 2019-03-22 2019-03-22 Seal structure of rotating shaft of magneto-rheological fluid device Active JP7269048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019054228A JP7269048B2 (en) 2019-03-22 2019-03-22 Seal structure of rotating shaft of magneto-rheological fluid device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054228A JP7269048B2 (en) 2019-03-22 2019-03-22 Seal structure of rotating shaft of magneto-rheological fluid device

Publications (2)

Publication Number Publication Date
JP2020153471A true JP2020153471A (en) 2020-09-24
JP7269048B2 JP7269048B2 (en) 2023-05-08

Family

ID=72558397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054228A Active JP7269048B2 (en) 2019-03-22 2019-03-22 Seal structure of rotating shaft of magneto-rheological fluid device

Country Status (1)

Country Link
JP (1) JP7269048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11635114B2 (en) 2020-11-26 2023-04-25 National Taipei University Of Technology Controllable rotary brake

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124461U (en) * 1973-02-27 1974-10-24
JPS53106575U (en) * 1977-02-02 1978-08-26
JPH07317821A (en) * 1994-05-20 1995-12-08 Kayaba Ind Co Ltd Rotary damper
JP2009293760A (en) * 2008-06-09 2009-12-17 Oriental Motor Co Ltd Brake device for motor
JP2011236983A (en) * 2010-05-11 2011-11-24 Ntn Corp Ball bearing with both sides sealed
JP2017044215A (en) * 2015-08-24 2017-03-02 株式会社栗本鐵工所 Magnetic viscosity fluid device
US20180036572A1 (en) * 2016-08-05 2018-02-08 Giant Manufacturing Co., Ltd. Magneto-rheological fluid rotary resistance device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124461U (en) * 1973-02-27 1974-10-24
JPS53106575U (en) * 1977-02-02 1978-08-26
JPH07317821A (en) * 1994-05-20 1995-12-08 Kayaba Ind Co Ltd Rotary damper
JP2009293760A (en) * 2008-06-09 2009-12-17 Oriental Motor Co Ltd Brake device for motor
JP2011236983A (en) * 2010-05-11 2011-11-24 Ntn Corp Ball bearing with both sides sealed
JP2017044215A (en) * 2015-08-24 2017-03-02 株式会社栗本鐵工所 Magnetic viscosity fluid device
US20180036572A1 (en) * 2016-08-05 2018-02-08 Giant Manufacturing Co., Ltd. Magneto-rheological fluid rotary resistance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11635114B2 (en) 2020-11-26 2023-04-25 National Taipei University Of Technology Controllable rotary brake

Also Published As

Publication number Publication date
JP7269048B2 (en) 2023-05-08

Similar Documents

Publication Publication Date Title
US20180172162A1 (en) Slide component
JP3448072B2 (en) Magnetic seal structure
KR101527313B1 (en) Rotary Joint
KR100906072B1 (en) Magnetic fluid sealing member and vacuum sealing device including the same
JP6010727B2 (en) Magnetorheological fluid device
WO2018013833A1 (en) Rotary face seal with magnetic puller loading
JP4582013B2 (en) Bearing unit and motor using the bearing unit
JP2020153471A (en) Seal structure of rotary shaft of magnetic viscous fluid device
CN105587761B (en) Pivot assembly bearing and hard disk drive
JPWO2019171771A1 (en) Sealing device and its assembly method
JP2010159776A (en) Magneto-rheological fluid device
JP2010242945A (en) Magnetic viscous fluid device
JP6671074B2 (en) Magneto-rheological fluid device
JP5894045B2 (en) Sealing structure
JP7269047B2 (en) Seal structure of rotating shaft of magneto-rheological fluid device
WO2014050314A1 (en) Seal structure for torque converter using magneto-rheological fluid
JP6963874B2 (en) Ferrofluid fluid device
JP2006118531A (en) Dynamic pressure bearing device, motor using the same and disc driving device
JP5667480B2 (en) Rod seal structure
JP7096019B2 (en) Rotation braking device
JP7387220B2 (en) magnetorheological fluid device
JP6912353B2 (en) Rotational braking device
US20210396280A1 (en) Torque Generation Device
CN114382894B (en) Dynamic pressure type magnetic liquid sealing device
RU2324853C2 (en) Device and method of transmission, as minimum, of two fluids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230421

R150 Certificate of patent or registration of utility model

Ref document number: 7269048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150