WO2014050314A1 - Seal structure for torque converter using magneto-rheological fluid - Google Patents

Seal structure for torque converter using magneto-rheological fluid Download PDF

Info

Publication number
WO2014050314A1
WO2014050314A1 PCT/JP2013/071152 JP2013071152W WO2014050314A1 WO 2014050314 A1 WO2014050314 A1 WO 2014050314A1 JP 2013071152 W JP2013071152 W JP 2013071152W WO 2014050314 A1 WO2014050314 A1 WO 2014050314A1
Authority
WO
WIPO (PCT)
Prior art keywords
lip
magnet
magnetic
rotating shaft
seal
Prior art date
Application number
PCT/JP2013/071152
Other languages
French (fr)
Japanese (ja)
Inventor
一訓 川島
渡邊 聡
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2014538258A priority Critical patent/JP5839752B2/en
Publication of WO2014050314A1 publication Critical patent/WO2014050314A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type

Definitions

  • the present invention relates to a seal structure in a torque converter using a magnetorheological fluid.
  • a torque converter using a magnetorheological fluid has a basic configuration in which a stator is provided between a pump impeller and a turbine runner that are coaxially rotatable relative to each other in a main body case, and the rotation of the engine.
  • the rotational driving force is transmitted to the turbine runner side via the magnetorheological fluid filled in the main body case.
  • the rotation shafts of the pump impeller and the turbine runner are rotatably supported by the main body case, and the magnetic viscous fluid in the main body case is prevented from leaking to the outside at the support portion of the rotation shaft in the main body case.
  • a seal member oil seal
  • This seal member is provided with the lip portion on the inner diameter side pressed against the outer periphery of the rotating shaft so that when the rotating shaft rotates relative to the main body case, the lip portion slides on the outer periphery of the rotating shaft. It has become.
  • the magnetorheological fluid is obtained by suspending (dispersing) iron (Fe), which is a magnetic substance, in oil, and includes fine Fe particles. Therefore, if fine Fe particles contained in the magnetorheological fluid enter between the lip portion of the seal member and the rotation shaft, the seal member wears due to the entered Fe particles when the rotation shaft rotates, and the seal There is a possibility that problems such as deterioration of the sealing performance of the member and shortening of the life of the sealing member may occur.
  • Patent Document 1 in order to prevent the iron powder contained in the lubricating oil from being sandwiched between the rotating shaft and the lip portion of the seal member, a metal ring with magnetism is attached to the seal member, It is disclosed that iron powder contained in lubricating oil is attached to a metal ring.
  • Patent Document 1 the inventor of the present application is configured to adsorb the iron powder contained in the lubricating oil to the metal ring having magnetism. Therefore, the iron powder contained in the lubricating oil like a magnetorheological fluid ( If the amount of magnetic material) is increased, there is a limit to the amount of iron powder that can be attached to the metal ring, which may prevent the iron powder from being sandwiched between the lip portion of the seal member and the rotating shaft. I discovered that there is.
  • the magnetic substance contained in the magnetorheological fluid is sandwiched between the lip portion of the seal member and the rotating shaft, that is, the contact point with the rotating shaft of the seal member.
  • the purpose of the present invention is to prevent the deterioration of the sealing performance and the life of the member.
  • the inventor of the present application supports the rotation shafts of the pump impeller and the turbine runner so as to be rotatable in a main body case, and transmits power from the pump impeller to the turbine runner by using a magnetorheological fluid filled in the main body case.
  • a torque converter using a magnetorheological fluid performed via While providing a seal member in pressure contact with the outer periphery of the rotating shaft inside the main body case from the support portion of the rotating shaft, A first magnet and a second magnet having a magnetic pole opposite to the first magnet are arranged in a radial direction of the rotation shaft inside the main body case from a contact point between the seal member and the rotation shaft.
  • a seal structure in a torque converter using a magnetorheological fluid having a configuration in which the first magnet is provided on the rotating shaft is used. If comprised in this way, since the line of magnetic force which ties the 1st magnet and the 2nd magnet inside the main part case rather than the contact point with the rotating shaft of a seal member is formed along the radial direction of the rotating shaft, The magnetorheological fluid in the main body case cannot reach the contact point unless it crosses a plurality of magnetic lines of force.
  • the magnetic body contained in the magnetorheological fluid forms a cluster along the magnetic field lines, it cannot enter the contact point side across the magnetic field lines.
  • the magnetic material contained in the magnetorheological fluid is preferably prevented from being sandwiched between the contact points of the seal member and the rotating shaft, thereby reducing the sealing performance of the seal member and shortening the service life.
  • FIG. 1 is a cross-sectional view of a main part of a torque converter 1 according to an embodiment.
  • the torque converter 1 is configured by disposing a torus 10 that forms a circulation path A and a clutch mechanism 30 in a unit housing 6 on a fixed side coupled to the transmission case 2 and the like.
  • the torus 10 includes a pump impeller 11, a turbine runner 15, and a stator 20, and a circulating flow of a working fluid (magnetic viscous fluid) is formed in the torus 10 by these.
  • the pump impeller 11 includes an impeller blade holding portion 13 on an outer peripheral portion of an input shell 12 connected to an input shaft 3 to which a rotational driving force of an engine (not shown) is input.
  • the impeller blade holding portion 13 includes an impeller blade holding portion 13.
  • a blade 14 is provided.
  • the turbine runner 15 includes a turbine blade holding portion 17 on the outer peripheral portion of the output shell 16 connected to the main shaft 4 extending in series on the rotation axis Z common to the input shaft 3, and the turbine blade holding portion 17 includes a turbine blade. 18 is provided.
  • the impeller blade holding portion 13 and the turbine blade holding portion 17 are provided to face each other in the radial direction of the main shaft 4, and the impeller blade 14 is located on the radially outer side and the turbine blade 18 is located on the radially inner side. .
  • the stator 20 is disposed between the impeller blades 14 and the turbine blades 18 in the radial direction of the main shaft 4.
  • the stator 20 is supported by a stator base 21 that can be rotated in only one direction by a one-way clutch 22, and is provided facing the working fluid circulation path A from a direction parallel to the main shaft 4. .
  • the one-way clutch 22 is attached to a one-way clutch support portion 7 fixed to the unit housing 6.
  • the input shell 12 of the pump impeller 11 and the output shell 16 of the turbine runner 15 are provided with an interval in the axial direction of the main shaft 4 (rotation axis Z), and a predetermined interval is provided between the turbine blade holder 17 and the main shaft 4.
  • the space S is formed.
  • a clutch plate which will be described later, is arranged to form the clutch mechanism 30.
  • the input shaft 3 and the main shaft 4 are supported by the unit housing 6 via radial bearings 8a and 8b, respectively.
  • the unit housing 6 (internal space S1) is filled with a magnetorheological fluid as a working fluid. Yes.
  • Lip seals 50, 50 are provided between the unit housing 6 and the input shaft 3 and between the unit housing 6 and the main shaft 4 adjacent to the radial bearings 8a, 8b.
  • the outer peripheral wall 6 a of the unit housing 6 faces the outside air as an extension of the transmission case 2.
  • the clutch mechanism 30 will be described.
  • the drum portion 31 extending from the input shell 12 on the left side in the drawing to the output shell 16 side on the right side in the drawing is located.
  • the drum portion 31 extends in parallel to the rotation axis Z, and the tip portion 31 a is located in the vicinity of the output shell 16.
  • a plurality of disk-shaped first clutch plates 32 extending radially inward are provided in the drum portion 31 at equal intervals in the axial direction of the rotation axis Z, and the tip on the inner diameter side of the first clutch plate 32 is the main shaft. 4 is located in the vicinity.
  • the drum portion 31 is made of a nonmagnetic material such as aluminum
  • the first clutch plate 32 is made of a magnetic material having a high magnetic permeability such as iron.
  • the main shaft 4 is provided with a plurality of disk-like second clutch plates 35 extending outward in the radial direction at equal intervals in the axial direction of the rotation axis Z, and the tip of the second clutch plate 35 on the outer diameter side is a drum. It is located in the vicinity of the part 31.
  • the second clutch plate 35 is made of a magnetic material having a high magnetic permeability like the first clutch plate 32, and a small-diameter non-magnetic body portion 34 is provided between the second clutch plate 35 and the main shaft 4. Is sandwiched.
  • the second clutch plates 35 and the first clutch plates 32 are alternately arranged between the input shell 12 and the output shell 16 in the axial direction of the rotation axis Z, and these first clutch plates 32.
  • the surfaces of the second clutch plate 35 facing each other are smooth planes.
  • a region of the input shell 12 facing the second clutch plate 35 in the axial direction is a smooth flat plate portion 37, and a gap between the second clutch plate 35 adjacent to the flat plate portion 37 is the first adjacent to each other. It is set to be approximately equal to the gap between the clutch plate 32 and the second clutch plate 35.
  • the flat plate portion 37 is made of a magnetic material having a high magnetic permeability, and when the input shell 12 is made of a magnetic material, a non-magnetic material having a predetermined width on the radially inner side and the outer side of the flat plate portion 37. A part is provided.
  • FIG. 1 shows a state in which the input shell 12 is made of a non-magnetic aluminum alloy, and the both sides in the radial direction of the flat plate portion 37 remain as materials.
  • the region of the output shell 16 that faces the first clutch plate 32 in the axial direction is also a smooth flat plate portion 39, and the gap between the first clutch plate 32 adjacent to the flat plate portion 39 is adjacent to each other. It is set to be approximately equal to the gap between the first clutch plate 32 and the second clutch plate 35.
  • the flat plate portion 39 is made of a magnetic material having a high magnetic permeability, and when the output shell 16 is made of a magnetic material, a non-magnetic material having a predetermined diameter width on the radially inner side and the outer side of the flat plate portion 39. A part is provided.
  • FIG. 1 shows a state in which the output shell 16 is made of a non-magnetic aluminum alloy and the both sides in the radial direction of the flat plate portion 39 remain as materials.
  • a yoke portion 40 made of a magnetic material having a high permeability such as iron is provided on the inner diameter side of the one-way clutch support portion 7.
  • the yoke portion 40 has a ring shape having a radial width substantially corresponding to the overlapping width of the first clutch plate 32 and the second clutch plate 35 when viewed from the axial direction, and faces the flat plate portion 39 of the output shell 16. Is provided.
  • the surface of the yoke portion 40 facing the flat plate portion 39 is smooth, and the gap with the output shell 16 is set substantially equal to the gap between the first clutch plate 32 and the second clutch plate 35 adjacent to each other.
  • a ring-shaped coil storage groove 41 centering on the main shaft 4 is formed at the radial center of the surface of the yoke portion 40 facing the output shell 16, and is wound around the coil storage groove 41 in a ring shape.
  • a coil 42 is attached.
  • the lead wire of the coil 42 passes through the yoke portion 40 from the coil housing groove 41 in the axial direction, and is finally led to the outside from the side wall 6 c of the unit housing 6. ing.
  • the yoke portion 40 that holds the coil 42 is fixed to the unit housing 6 side, it is not necessary to provide a slip ring or a brush in the middle of the lead wire of the coil 42. . Therefore, there is no generation of sliding resistance, and high stability and durability of energization can be obtained.
  • the first clutch plate 32, the second clutch plate 35, the flat plate portions 37 and 39 of the input shell 12 and the output shell 16, and the yoke portion 40 constitute a so-called multi-plate clutch. That is, by energizing the coil 42, as indicated by broken lines in FIG. 1, the yoke portion 40 made of a high magnetic material, the flat plate portion 39 of the output shell 16, the first clutch plates 32 arranged alternately, and Since an effective magnetic circuit is formed via the second clutch plate 35 and the flat plate portion 37 of the input shell 12, the appearance of the magnetorheological fluid that fills between the multi-plate clutch constituent members by controlling energization. The upper viscosity (yield stress) can be controlled, whereby the slip between the pump impeller 11 and the turbine runner 15 can be controlled.
  • the clutch mechanism 30 is configured in a space S between the turbine blade holding portion 17 and the main shaft 4 in the unit housing 6, and is isolated by the drum portion 31 from the circulation path A of the working fluid (magnetic viscous fluid) formed by the torus 10.
  • the magnetic flux generated by the clutch mechanism 30 is generated between the yoke portion 40 and the first clutch plate 32 and the second clutch plate 35 (and the flat plate portions 37 and 39 of the input shell 12 and the output shell 16) facing the yoke portion 40.
  • a magnetic circuit closed between them is formed so as not to leak to the outside, so that the magnetic viscous fluid in the circulation path A is not affected.
  • the support portions 61 and 62 of the radial bearings 8a and 8b described above are provided on the inner diameter side of the side wall 6b and the side wall 6c in the unit housing 6, and these support portions 61 and 62 are in the axial direction of the rotation axis Z. Projecting away from each other.
  • FIG. 2A and 2B are enlarged views of the main part of the unit housing 6.
  • FIG. 2A is an enlarged view of the lip seal 50 on the support portion 61 side and the vicinity thereof
  • FIG. 2B is a lip seal 50 on the support portion 62 side.
  • an opening 610 through which the input shaft 3 is inserted is provided in the support portion 61 so as to penetrate in the axial direction of the rotation axis Z.
  • the opening 610 is formed in the radial bearing 8a.
  • the bearing support portion 611 for supporting the lip seal 50, the seal support portion 612 for supporting the lip seal 50, and the communication portion 613 for communicating the seal support portion 612 and the internal space S1 of the unit housing 6 are provided.
  • a bearing support portion 611, a seal support portion 612, and a communication portion 613 are positioned in order from the left side in the drawing, and the input shaft 3 is moved toward the internal space S 1 side (right side in the drawing). The gap between the outer periphery of the two is narrow.
  • the seal support part 612 has a smaller diameter than the bearing support part 611 and a larger diameter than the communication part 613.
  • a lip seal 50 is fitted and attached to the seal support portion 612 from the bearing support portion 611 side. The lip seal 50 is sandwiched between the communication portion 613 and the radial bearing 8a. Is retained.
  • an opening 620 through which the main shaft 4 is inserted is provided so as to penetrate in the axial direction of the rotation axis Z. .
  • the opening 620 of the support portion 62 is formed with an inner diameter that matches the outer shape of the radial bearing 8b.
  • a one-way clutch support portion 7 and a yoke portion 40 are located adjacent to the support portion 62.
  • the main shaft is located on the inner diameter side of the one-way clutch support portion 7 and the yoke portion 40. Openings 700 and 400 through which 4 is inserted are provided penetrating in the axial direction of the rotation axis Z.
  • the opening 700 of the one-way clutch support portion 7 includes a bearing support portion 701 that supports one end side of the radial bearing 8 b and a seal support portion 702 that supports the lip seal 50.
  • a bearing support portion 701 that supports one end side of the radial bearing 8 b
  • a seal support portion 702 that supports the lip seal 50.
  • an opening 620 of the support portion 62, a bearing support portion 701 and a seal support portion 702 of the one-way clutch support portion 7, and an opening 400 of the yoke portion 40 are sequentially formed from the right side in the drawing.
  • the gap between the outer periphery of the main shaft 4 is narrowed toward the inner space S1 side (left side in the figure).
  • the seal support portion 702 has a smaller diameter than the bearing support portion 701 and a larger diameter than the opening 400.
  • a lip seal 50 is fitted and attached to the seal support portion 702, and the lip seal 50 is held in a state of being sandwiched between the radial bearing 8b and the yoke portion 40.
  • the lip seal 50 on the support portion 61 side (see FIG. 2A) and the lip seal 50 on the support portion 62 side (see FIG. 2B) have the same configuration.
  • the configuration of the lip seal 50 on the support portion 61 side will be described, and the lip seal 50 on the support portion 62 side will be described as necessary.
  • the lip seal 50 includes a cylindrical base portion 51 fitted to the inner peripheral surface of the seal support portion 612 in the support portion 61, and one end 51b of the base portion 51 in the rotation axis Z direction.
  • a lip holding portion 52 having a flange shape (disk shape) extending radially inward from the side, and a main lip 53 and a sub lip 54 are provided at an inner diameter side end portion 52a of the lip holding portion 52. It has been.
  • the main lip 53 extends from the end 52a on the inner diameter side of the lip holding portion 52 in the same direction as the base 51 (on the inner space S1 side), and has a pointed contact on the surface facing the input shaft 3 on the inner diameter side.
  • a contact portion 53a is provided.
  • a spring 60 made of a nonmagnetic material is fitted and attached at a position opposite to the abutting portion 53a.
  • the main lip 53 is attached by the urging force of the spring 60.
  • the contact portion 53a is pressed against the outer periphery of the input shaft 3.
  • the main lip 53 slides on the outer peripheral surface in a state in which the main lip 53 is pressed against the outer periphery of the input shaft 3.
  • the magnetorheological fluid filled on the inner space S1 side (right side in the figure) from the lip 53 is prevented from leaking to the outside (left side in the figure) of the inner space S1.
  • the secondary lip 54 extends to the inner diameter side opposite to the main lip 53, and a contact portion 54 a on the tip side is in contact with the outer periphery of the input shaft 3.
  • the sub lip 54 is made of an elastic material such as rubber, and the sub lip 54 brings the contact portion 54a into contact with the outer periphery of the input shaft 3 by its elastic force, thereby causing foreign matter such as dust. Is prevented from entering the internal space S1.
  • a reinforcing member 55 is embedded in a range from the base portion 51 to the lip holding portion 52 in the lip seal 50.
  • the reinforcing member 55 includes a cylindrical portion 551 provided in the base portion 51 and a flange portion 552 extending from the base end 551b of the cylindrical portion 551 to the inner diameter side, and has a substantially L shape in a cross-sectional view. is doing.
  • the cylindrical portion 551 extends in the base portion 51 substantially in parallel with the rotation axis Z, and the tip 551a thereof is closer to the inner space S1 than the contact point P of the main lip 53 with the input shaft 3 (right side in the figure). ).
  • the flange portion 552 extends from the base end 551b of the tubular portion 551 inward in the radial direction, substantially perpendicular to the tubular portion 551.
  • the flange portion 552 is in the main lip 53 in the axial direction of the rotation axis Z.
  • the auxiliary lip 54 is provided to the base portion 51 substantially in parallel with the rotation axis Z, and the tip 551a thereof is closer to the inner space S1 than the contact point P of the main lip 53 with the input shaft 3 (right side in the figure).
  • the flange portion 552 extends from the base end 551b of the tubular portion 551 inward in the radial direction, substantially perpendicular to the tubular portion 551.
  • the flange portion 552 is
  • the reinforcing member 55 is obtained by replacing a reinforcing metal ring provided in a conventionally known lip seal with a metal ring made of a magnetic material.
  • the cylindrical portion 551 has an S pole and the flange portion 552 has an N pole. It is magnetized to become.
  • the lip seal 50 is obtained by covering a reinforcing member 55 with a rubber-like elastic body.
  • the rubber-like elastic body allows the reinforcing member 55, the base 51, the lip holding portion 52, and the main lip. 53 and the sub lip 54 are integrally formed.
  • the lip seal 50 on the support portion 62 side is provided by fitting a cylindrical base portion 51 to the inner peripheral surface of the seal support portion 702 in the one-way clutch support portion 7.
  • the contact portion 53 a of the main lip 53 on the inner diameter side is pressed against the outer periphery of the main shaft 4 by the biasing force of the spring 60.
  • the lip seal 50 on the support portion 62 side is also provided with a reinforcing member 55 made of a magnetic material, and is magnetized so that the cylindrical portion 551 is an S pole and the flange portion 552 is an N pole.
  • a magnet 70 is provided on the outer peripheral surface of the input shaft 3 on the inner space S1 side (right side in FIG. 2A) from the contact point P with the main lip 53 of the lip seal 50.
  • a magnet 70 is also provided on the outer peripheral surface of the main shaft 4 on the inner space S1 side (left side in FIG. 2B) from the contact point P of the lip seal 50 with the main lip 53.
  • the magnet 70 is provided over the entire circumference of the outer peripheral surface of the rotating shaft (the input shaft 3 and the main shaft 4), and has a ring shape when viewed from the axial direction.
  • the magnet 70 is magnetized so that one side (lip seal 50 side) in the rotation axis Z is an N pole and the other side is an S pole, and attracts the magnetic pole (S pole) of the base 51 of the lip seal 50 (S pole). N pole) is located on the lip seal 50 side.
  • FIG. 3 is a diagram schematically showing magnetic lines of force L around the lip seal 50
  • (a) is a diagram showing magnetic lines of force L around the lip seal 50 on the support portion 61 side
  • (b) is a diagram showing support. It is a figure which shows the magnetic force line L around the lip seal 50 by the side of the part 62.
  • the S pole (base 51 of the lip seal 50) and the N pole (magnet 70) are provided at an interval in the radial direction of the input shaft 3 and the main shaft 4.
  • the position of the S pole and the N pole is such that the line segment connecting the N pole and the S pole (see the imaginary line IM1 in the figure) crosses the space S2 on the inner diameter side of the seal support portions 612 and 702 in the radial direction. Is set.
  • a plurality of lines of magnetic force L from the N pole of the magnet 70 to the S pole of the cylindrical portion 511 are formed so as to cross the space S2 on the inner diameter side of the seal support portions 612 and 702 in the radial direction.
  • the lip seal 50 (the rotation axis of the main lip 53) is required if the magnetic viscous fluid flow F does not cross a plurality of magnetic field lines L.
  • the contact point P) with the (input shaft 3, main shaft 4) cannot be reached.
  • the magnetic substance (for example, Fe particles) contained in the magnetorheological fluid forms a cluster in which the magnets are connected along the magnetic field lines L
  • Magnetic bodies (Fe particles) contained in the magnetorheological fluid are supplemented by the lines of magnetic force L. Therefore, every time the magnetorheological fluid crosses the magnetic force line L, the magnetic material is supplemented by the magnetic force line L, so that the contact point P of the lip seal 50 with the rotation axis (input shaft 3, main shaft 4) of the main lip 53 is reached. It is suitably prevented that the magnetic body reaches and the magnetic body is sandwiched between the main lip 53 and the rotation shaft (input shaft 3, main shaft 4).
  • the flange portion 552 embedded in the lip holding portion 52 of the lip seal 50 is magnetized to a magnetic pole (N pole) opposite to the cylindrical portion 551. Therefore, the contact point P of the main lip 53 with the rotation axis (input shaft 3, main shaft 4) is arranged with an N pole (flange portion 552) and an N pole (magnet 70) arranged at intervals in the axial direction of the rotation axis Z. ).
  • the input shaft 3 of the pump impeller 11 and the main shaft 4 of the turbine runner 15 are supported by the unit housing 6 having the sealed internal space S1 so as to be rotatable around the rotation axis Z.
  • the support portion 61 of the input shaft 3 in the unit housing 6 and the one-way clutch support portion 7 serving as the support portion of the main shaft 4 the outer periphery of the input shaft 3 and the main shaft 4 is press-contacted on the inner space S 1 side from the radial bearings 8 a and 8 b.
  • the cylindrical portion 551 (second magnet) magnetized by the opposite magnetic pole is provided in the radial direction of the rotating shaft (input shaft 3 and main shaft 4), and the magnet 70 is arranged on the outer periphery of the input shaft 3 and main shaft 4.
  • the magnet 70 (1st magnet) and the cylindrical part 551 (2nd) will be located inside the unit housing 6 rather than the contact point P of the lip seal 50 and the rotating shaft (input shaft 3, main shaft 4).
  • the magnetic lines of force L connecting the magnets) are formed along the radial direction of the rotation axis Z. Therefore, the magnetorheological fluid in the unit housing 6 cannot reach the contact point P unless it crosses the plurality of magnetic lines of force L.
  • the magnetic body (Fe particles) contained in the magnetorheological fluid forms a cluster in which the magnetic bodies are connected along the magnetic field line L, the magnetic body crosses the magnetic field line L and contacts the contact point P (unit). It becomes impossible to enter the outside of the housing 6.
  • the magnetic material (Fe particles) contained in the magnetorheological fluid is sandwiched between the contact points of the lip seal 50 and the rotation shaft (the input shaft 3 and the main shaft 4), and the sealing performance of the lip seal 50 is improved. It is suitably prevented that the lip seal 50 is lowered or the life of the lip seal 50 is shortened.
  • the lip seal 50 is A main lip 53 in pressure contact with the outer periphery of the rotating shaft (input shaft 3, main shaft 4); A disc-shaped lip holding portion 52 extending from the main lip 53 to the outside in the radial direction of the rotation shaft (input shaft 3, main shaft 4); A cylindrical base 51 provided so as to extend from the outer edge of the lip holding portion 52 toward the inner space S1, and for fitting the lip seal to the support portion 61 or the one-way clutch support portion 7; Prepared, A cylindrical portion 551 of a reinforcing member 55 is embedded in the base portion 51 along the rotation axis Z direction. The cylindrical portion 551 is made of a magnetic material and is magnetized to a magnetic pole opposite to the first magnet. Thus, the second magnet was obtained.
  • the 2nd magnet can be easily prepared only by comprising the reinforcement member 55 with a magnetic body and magnetizing the cylindrical part 551 of this reinforcement member 55 to a desired magnetic pole. Further, since it is not necessary to separately provide the second magnet in the unit housing 6, there is no need to process the unit housing 6 in order to provide the second magnet, and the number of parts can be increased only by the first magnet. Therefore, an increase in manufacturing cost can be suppressed.
  • the magnet 70 (first magnet) and the cylindrical portion 551 (second magnet) have a predetermined length in the axial direction of the rotating shaft (input shaft 3 and main shaft 4).
  • a plurality of magnetic lines of force L connecting 70 and the cylindrical portion 551 (second magnet) are reliably formed in the axial direction of the rotating shaft (input shaft 3 and main shaft 4). If it does so, the magnetorheological fluid containing a magnetic body (Fe particle
  • the magnetic substance (Fe particles) contained in the magnetorheological fluid can be reliably captured, so that the magnetism contained in the magnetorheological fluid is brought into contact with the contact point. Entering the P side (the outside of the unit housing 6) can be prevented more suitably.
  • the main lip 53 is in pressure contact with the outer periphery of the rotary shaft (input shaft 3, main shaft 4) inside the unit housing 6 than the lip holding portion 52.
  • the reinforcing member 55 includes a flange portion 552 that extends toward the inner diameter side in the lip holding portion 52, and this flange portion 552 is a magnetic pole (N pole) opposite to the magnetic pole (S pole) of the tubular portion 551 of the reinforcing member 55.
  • the lines of magnetic force L extending from the flange portion (N pole) and the magnet 70 (first magnet: N pole) repel each other to the cylindrical portion 551 (second magnet: S pole) positioned on the radially outer side. Therefore, a plurality of magnetic force lines L extending in the radial direction of the rotation axis Z across the space S2 on the inner diameter side of the seal support portions 612 and 702 can be surely formed in the axial direction of the rotation axis Z. it can.
  • the contact point with the rotating shaft (the input shaft 3 and the main shaft 4) of the lip seal 50 will be described.
  • the magnetic particles contained in the magnetorheological fluid can be prevented from reaching the contact point P of the lip seal 50 (main lip 53) with the rotating shaft (input shaft 3, main shaft 4). Is done.
  • the main lip 53 of the lip seal 50 slides on the outer periphery of the rotation shaft (input shaft 3, main shaft 4) due to the relative rotation of the rotation shaft (input shaft 3, main shaft 4) with respect to the unit housing 6. It is possible to suitably prevent the lip 53 from being worn and the sealing performance of the lip seal 50 from being lowered and the life of the lip seal 50 from being shortened.
  • the reinforcing member 55 embedded in the lip seal 50 is made of a magnetic material
  • the cylindrical portion 551 of the reinforcing member 55 is magnetized to the S pole
  • the flange portion 552 is magnetized to the N pole.
  • the case where the magnetic pole on the lip seal 50 side of the magnet 70 provided on the rotating shaft (input shaft 3 and main shaft 4) is an N pole has been described as an example.
  • the magnetic poles of the cylindrical portion 551 and the flange portion 552 in the reinforcing member 55 are not limited to this mode.
  • the cylindrical portion 551 is magnetized to the N pole and the flange portion 552 is magnetized to the S pole. Also good.
  • the magnetic pole on the lip seal 50 side of the magnet 70 provided on the rotating shaft (the input shaft 3 and the main shaft 4) to be the S pole
  • the distal end 551a side of the cylindrical portion 551 of the reinforcing member 55 may be magnetized to the north pole and the proximal end 551b side to the south pole, and the flange portion 552 may not be magnetized.
  • the magnetic pole on the lip seal 50 side of the magnet 70 provided on the rotating shaft (the input shaft 3 and the main shaft 4) to be the S pole, the same effect as in the case of the above-described embodiment is achieved. Become.

Abstract

A torque converter is configured in such a manner that the rotating shafts (input shaft (3) and main shaft (4)) of a pump impeller (11) and a turbine runner (15) are rotatably supported by a unit housing (6), and in such a manner that the transmission of power from the pump impeller (11) to the turbine runner (15) is performed through a magneto-rheological fluid which is filled into the unit housing (6). A seal structure for the torque converter using the magneto-rheological fluid is configured in such a manner that lip seals (50, 50) are provided at the support section (61) of the unit housing (6), the support section (61) supporting the input shaft (3), and at a one-way clutch support section (7) which serves as a support section for the main shaft (4), the lip seals (50, 50) being made to be in pressure contact with the outer periphery of the rotating shafts. The seal structure is also configured in such a manner that a first magnet and a second magnet, which has a magnetic pole opposite to that of the first magnet and which is provided separated from the first magnet in the radial direction of a rotating shaft, are provided further toward the inside of the unit housing (6) than the point (P) of contact between each lip seal (50) and the corresponding rotating shaft.

Description

磁気粘性流体を用いたトルクコンバータにおけるシール構造Seal structure in torque converter using magnetorheological fluid
 本発明は、磁気粘性流体を用いたトルクコンバータにおけるシール構造に関する。 The present invention relates to a seal structure in a torque converter using a magnetorheological fluid.
 トルク伝達に用いられるトルクコンバータは、作動流体としてオイルを用いるものが一般的に知られている。
 近年、小型化と伝達効率向上のために、オイルよりも比重の大きい磁気粘性流体を用いたトルクコンバータが検討されており、このようなトルクコンバータを車両用変速機等に使用する場合には、磁力制御による精度の高いロックアップ制御が可能となることが期待されている。
As a torque converter used for torque transmission, one that uses oil as a working fluid is generally known.
In recent years, torque converters using a magnetorheological fluid having a specific gravity greater than that of oil have been studied in order to reduce the size and improve transmission efficiency. When using such a torque converter in a vehicle transmission or the like, It is expected that lockup control with high accuracy by magnetic force control will be possible.
 磁気粘性流体を用いたトルクコンバータは、本体ケース内で、同軸上に互いに相対回転可能に設けられたポンプインペラとタービンランナの間に、ステータを設けた基本構成を有しており、エンジンの回転駆動力が入力されてポンプインペラが回転すると、本体ケース内に充填された磁気粘性流体を介して、タービンランナ側に回転駆動力が伝達されるようになっている。 A torque converter using a magnetorheological fluid has a basic configuration in which a stator is provided between a pump impeller and a turbine runner that are coaxially rotatable relative to each other in a main body case, and the rotation of the engine. When the driving force is input and the pump impeller rotates, the rotational driving force is transmitted to the turbine runner side via the magnetorheological fluid filled in the main body case.
 ここで、ポンプインペラとタービンランナの回転軸は、本体ケースで回転可能に支持されており、本体ケースにおける回転軸の支持部には、本体ケース内の磁気粘性流体が外部に漏出することを防止するために、シール部材(オイルシール)が設けられている。
 このシール部材は、内径側のリップ部を、回転軸の外周に圧接させて設けられており、回転軸が本体ケースに対して相対回転すると、リップ部が回転軸の外周を摺動するようになっている。
Here, the rotation shafts of the pump impeller and the turbine runner are rotatably supported by the main body case, and the magnetic viscous fluid in the main body case is prevented from leaking to the outside at the support portion of the rotation shaft in the main body case. For this purpose, a seal member (oil seal) is provided.
This seal member is provided with the lip portion on the inner diameter side pressed against the outer periphery of the rotating shaft so that when the rotating shaft rotates relative to the main body case, the lip portion slides on the outer periphery of the rotating shaft. It has become.
 磁気粘性流体は、磁性体である鉄(Fe)をオイルに懸濁(分散)させたものであり、微細なFe粒子を含んでいる。
 そのため、磁気粘性流体に含まれる微細なFe粒子が、シール部材のリップ部と回転軸との間に入り込むと、回転軸が回転する際に、入り込んだFe粒子によりシール部材が摩耗して、シール部材のシール性が低下することや、シール部材の寿命が短くなるなどの問題が発生する虞がある。
The magnetorheological fluid is obtained by suspending (dispersing) iron (Fe), which is a magnetic substance, in oil, and includes fine Fe particles.
Therefore, if fine Fe particles contained in the magnetorheological fluid enter between the lip portion of the seal member and the rotation shaft, the seal member wears due to the entered Fe particles when the rotation shaft rotates, and the seal There is a possibility that problems such as deterioration of the sealing performance of the member and shortening of the life of the sealing member may occur.
 特許文献1には、潤滑油に含まれる鉄粉が、回転軸とシール部材のリップ部との間に挟み込まれることを防止するために、シール部材に磁気を帯びた金属環を装着して、潤滑油に含まれる鉄粉を金属環に付着させることが開示されている。 In Patent Document 1, in order to prevent the iron powder contained in the lubricating oil from being sandwiched between the rotating shaft and the lip portion of the seal member, a metal ring with magnetism is attached to the seal member, It is disclosed that iron powder contained in lubricating oil is attached to a metal ring.
実開昭62-100374号公報Japanese Utility Model Publication No. 62-100374
 本願発明者は、特許文献1の場合、磁気を帯びた金属環に、潤滑油に含まれる鉄粉を吸着させる構成となっているため、磁気粘性流体のように潤滑油に含まる鉄粉(磁性体)の量が多くなると、金属環に付着させることができる鉄粉の量に限りがあるため、シール部材のリップ部と回転軸の間に鉄粉が挟み込まれることを防止できなくなる虞があることを発見した。 In the case of Patent Document 1, the inventor of the present application is configured to adsorb the iron powder contained in the lubricating oil to the metal ring having magnetism. Therefore, the iron powder contained in the lubricating oil like a magnetorheological fluid ( If the amount of magnetic material) is increased, there is a limit to the amount of iron powder that can be attached to the metal ring, which may prevent the iron powder from being sandwiched between the lip portion of the seal member and the rotating shaft. I discovered that there is.
 そして、磁気粘性流体を用いたトルクコンバータにおいて、磁気粘性流体に含まれる磁性体が、シール部材のリップ部と回転軸との間、すなわちシール部材の回転軸との当接点に挟み込まれて、シール部材のシール性の低下や寿命の低下が起こらないようにすることを目的とした。 In the torque converter using the magnetorheological fluid, the magnetic substance contained in the magnetorheological fluid is sandwiched between the lip portion of the seal member and the rotating shaft, that is, the contact point with the rotating shaft of the seal member. The purpose of the present invention is to prevent the deterioration of the sealing performance and the life of the member.
 本願発明者は、ポンプインペラとタービンランナの回転軸が本体ケースで回転可能に支持されており、前記ポンプインペラから前記タービンランナへの動力伝達が、前記本体ケース内に充填された磁気粘性流体を介して行われる磁気粘性流体を用いたトルクコンバータにおいて、
 前記回転軸の支持部よりも前記本体ケースの内側に、前記回転軸の外周に圧接させてシール部材を設けると共に、
 前記シール部材と前記回転軸との当接点よりも前記本体ケースの内側に、第1の磁石と、当該第1の磁石とは反対の磁極の第2の磁石を、前記回転軸の径方向に離間させて設け、
 前記第1の磁石を前記回転軸に設けた構成の磁気粘性流体を用いたトルクコンバータにおけるシール構造とした。
 このように構成すると、シール部材の回転軸との当接点よりも本体ケースの内側に、第1の磁石と第2の磁石とを結ぶ磁力線が回転軸の径方向に沿って形成されるので、本体ケース内の磁気粘性流体は、複数の磁力線を横切らないと当接点まで到達できないようになる。
 ここで、磁気粘性流体に含まれる磁性体は、磁力線に沿ってクラスタを形成するため、磁力線を横切って当接点側に進入できなくなる。
The inventor of the present application supports the rotation shafts of the pump impeller and the turbine runner so as to be rotatable in a main body case, and transmits power from the pump impeller to the turbine runner by using a magnetorheological fluid filled in the main body case. In a torque converter using a magnetorheological fluid performed via
While providing a seal member in pressure contact with the outer periphery of the rotating shaft inside the main body case from the support portion of the rotating shaft,
A first magnet and a second magnet having a magnetic pole opposite to the first magnet are arranged in a radial direction of the rotation shaft inside the main body case from a contact point between the seal member and the rotation shaft. Set apart,
A seal structure in a torque converter using a magnetorheological fluid having a configuration in which the first magnet is provided on the rotating shaft is used.
If comprised in this way, since the line of magnetic force which ties the 1st magnet and the 2nd magnet inside the main part case rather than the contact point with the rotating shaft of a seal member is formed along the radial direction of the rotating shaft, The magnetorheological fluid in the main body case cannot reach the contact point unless it crosses a plurality of magnetic lines of force.
Here, since the magnetic body contained in the magnetorheological fluid forms a cluster along the magnetic field lines, it cannot enter the contact point side across the magnetic field lines.
 よって、磁気粘性流体に含まれる磁性体が、シール部材の回転軸との当接点に挟み込まれて、シール部材のシール性が低下することや寿命が短くなることが好適に防止される。 Therefore, the magnetic material contained in the magnetorheological fluid is preferably prevented from being sandwiched between the contact points of the seal member and the rotating shaft, thereby reducing the sealing performance of the seal member and shortening the service life.
実施の形態にかかるトルクコンバータの断面図である。It is sectional drawing of the torque converter concerning embodiment. 実施の形態にかかるトルクコンバータのリップシール周りの拡大図である。It is an enlarged view around the lip seal of the torque converter according to the embodiment. 実施の形態にかかるトルクコンバータのリップシール周りの磁力線を説明する図である。It is a figure explaining the magnetic force line around the lip seal of the torque converter concerning an embodiment.
 以下、本発明の実施の形態を説明する。
 図1は、実施の形態にかかるトルクコンバータ1の要部の断面図である。
 トルクコンバータ1は、変速機ケース2などに結合される固定側のユニットハウジング6内に、循環路Aを形成するトーラス10と、クラッチ機構30とを配置して構成される。
 トーラス10は、ポンプインペラ11と、タービンランナ15と、ステータ20とを備えており、トーラス10内には、これらにより作動流体(磁気粘性流体)の循環流が形成されるようになっている。
 ポンプインペラ11は、図示しないエンジンの回転駆動力が入力される入力軸3に接続された入力シェル12の外周部にインペラ羽根保持部13を備えており、このインペラ羽根保持部13には、インペラ羽根14が設けられている。
 タービンランナ15は、入力軸3と共通の回転軸線Z上を直列に延びる主軸4に接続した出力シェル16の外周部にタービン羽根保持部17を備えており、このタービン羽根保持部17にタービン羽根18が設けられている。
Embodiments of the present invention will be described below.
FIG. 1 is a cross-sectional view of a main part of a torque converter 1 according to an embodiment.
The torque converter 1 is configured by disposing a torus 10 that forms a circulation path A and a clutch mechanism 30 in a unit housing 6 on a fixed side coupled to the transmission case 2 and the like.
The torus 10 includes a pump impeller 11, a turbine runner 15, and a stator 20, and a circulating flow of a working fluid (magnetic viscous fluid) is formed in the torus 10 by these.
The pump impeller 11 includes an impeller blade holding portion 13 on an outer peripheral portion of an input shell 12 connected to an input shaft 3 to which a rotational driving force of an engine (not shown) is input. The impeller blade holding portion 13 includes an impeller blade holding portion 13. A blade 14 is provided.
The turbine runner 15 includes a turbine blade holding portion 17 on the outer peripheral portion of the output shell 16 connected to the main shaft 4 extending in series on the rotation axis Z common to the input shaft 3, and the turbine blade holding portion 17 includes a turbine blade. 18 is provided.
 インペラ羽根保持部13とタービン羽根保持部17は、主軸4の径方向で対向して設けられており、インペラ羽根14が径方向外側に、タービン羽根18が径方向内側に、それぞれ位置している。
 ステータ20は、主軸4の径方向で、インペラ羽根14とタービン羽根18との間に配置されている。このステータ20は、ワンウエイクラッチ22により1方向にのみ回転可能とされたステータベース21に支持されており、主軸4に対して平行となる方向から作動流体の循環路Aに臨んで設けられている。
The impeller blade holding portion 13 and the turbine blade holding portion 17 are provided to face each other in the radial direction of the main shaft 4, and the impeller blade 14 is located on the radially outer side and the turbine blade 18 is located on the radially inner side. .
The stator 20 is disposed between the impeller blades 14 and the turbine blades 18 in the radial direction of the main shaft 4. The stator 20 is supported by a stator base 21 that can be rotated in only one direction by a one-way clutch 22, and is provided facing the working fluid circulation path A from a direction parallel to the main shaft 4. .
 ワンウエイクラッチ22は、ユニットハウジング6に固定されたワンウエイクラッチ支持部7に取付けられている。 The one-way clutch 22 is attached to a one-way clutch support portion 7 fixed to the unit housing 6.
 ポンプインペラ11の入力シェル12と、タービンランナ15の出力シェル16は、主軸4(回転軸線Z)の軸方向で間隔を空けて設けられており、タービン羽根保持部17と主軸4の間に所定のスペースSが形成されている。このスペースSには、後記するクラッチ板が、クラッチ機構30を形成するために配置されている。 The input shell 12 of the pump impeller 11 and the output shell 16 of the turbine runner 15 are provided with an interval in the axial direction of the main shaft 4 (rotation axis Z), and a predetermined interval is provided between the turbine blade holder 17 and the main shaft 4. The space S is formed. In this space S, a clutch plate, which will be described later, is arranged to form the clutch mechanism 30.
 入力軸3と主軸4は、それぞれラジアルベアリング8a、8bを介してユニットハウジング6に支持されており、このユニットハウジング6(内部空間S1)内には、作動流体としての磁気粘性流体が満たされている。
 ユニットハウジング6と入力軸3との間、そしてユニットハウジング6と主軸4との間には、ラジアルベアリング8a、8bに隣接してリップシール50、50が設けられており、これらリップシール50、50により、ユニットハウジング6内に満たされた磁気粘性流体の外部への漏出が阻止されている。
 そして、ユニットハウジング6の外周壁6aは、変速機ケース2の延長部として外気に面している。
The input shaft 3 and the main shaft 4 are supported by the unit housing 6 via radial bearings 8a and 8b, respectively. The unit housing 6 (internal space S1) is filled with a magnetorheological fluid as a working fluid. Yes.
Lip seals 50, 50 are provided between the unit housing 6 and the input shaft 3 and between the unit housing 6 and the main shaft 4 adjacent to the radial bearings 8a, 8b. Thus, leakage of the magnetorheological fluid filled in the unit housing 6 to the outside is prevented.
The outer peripheral wall 6 a of the unit housing 6 faces the outside air as an extension of the transmission case 2.
 次に、クラッチ機構30について説明する。
 前記したタービン羽根保持部17と主軸4の間のスペースSには、図中左側の入力シェル12から、図中右側の出力シェル16側に延びるドラム部31が位置している。
 ドラム部31は、回転軸線Zに対して平行に延びており、その先端部31aが、出力シェル16の近傍に位置している。
Next, the clutch mechanism 30 will be described.
In the space S between the turbine blade holding portion 17 and the main shaft 4 described above, the drum portion 31 extending from the input shell 12 on the left side in the drawing to the output shell 16 side on the right side in the drawing is located.
The drum portion 31 extends in parallel to the rotation axis Z, and the tip portion 31 a is located in the vicinity of the output shell 16.
 ドラム部31には、径方向内側に延びる円盤状の第1クラッチ板32が、回転軸線Zの軸方向に等間隔で複数設けられており、第1クラッチ板32の内径側の先端は、主軸4の近傍に位置している。
 ドラム部31は、アルミニウムなどの非磁性体で構成されており、第1クラッチ板32は、鉄など透磁率の高い磁性体で構成されている。
A plurality of disk-shaped first clutch plates 32 extending radially inward are provided in the drum portion 31 at equal intervals in the axial direction of the rotation axis Z, and the tip on the inner diameter side of the first clutch plate 32 is the main shaft. 4 is located in the vicinity.
The drum portion 31 is made of a nonmagnetic material such as aluminum, and the first clutch plate 32 is made of a magnetic material having a high magnetic permeability such as iron.
 主軸4には、径方向外側に延びる円盤状の第2クラッチ板35が、回転軸線Zの軸方向に等間隔で複数設けられており、第2クラッチ板35の外径側の先端は、ドラム部31の近傍に位置している。
 第2クラッチ板35は、第1クラッチ板32と同様に透磁率の高い磁性体で構成されており、この第2クラッチ板35と主軸4との間には、小径幅の非磁性体部34が挟まれている。
The main shaft 4 is provided with a plurality of disk-like second clutch plates 35 extending outward in the radial direction at equal intervals in the axial direction of the rotation axis Z, and the tip of the second clutch plate 35 on the outer diameter side is a drum. It is located in the vicinity of the part 31.
The second clutch plate 35 is made of a magnetic material having a high magnetic permeability like the first clutch plate 32, and a small-diameter non-magnetic body portion 34 is provided between the second clutch plate 35 and the main shaft 4. Is sandwiched.
 クラッチ機構30では、回転軸線Zの軸方向における入力シェル12から出力シェル16までの間に、第2クラッチ板35と第1クラッチ板32とが交互に配置されており、これら第1クラッチ板32と第2クラッチ板35の互いに対向する面は、平滑な平面となっている。 In the clutch mechanism 30, the second clutch plates 35 and the first clutch plates 32 are alternately arranged between the input shell 12 and the output shell 16 in the axial direction of the rotation axis Z, and these first clutch plates 32. The surfaces of the second clutch plate 35 facing each other are smooth planes.
 入力シェル12における第2クラッチ板35と軸方向に対向する領域は、平滑な平板部37とされており、この平板部37に隣接する第2クラッチ板35との間隙は、互いに隣接する第1クラッチ板32と第2クラッチ板35間の間隙と略同等に設定されている。
 そして、平板部37は、透磁率の高い磁性体で構成されており、入力シェル12が磁性体で構成されているときには、平板部37の径方向内側および外側に所定の径幅の非磁性体部が設けられるようになっている。
 図1においては、入力シェル12が非磁性体のアルミニウム合金製として、平板部37の径方向両側が素材のまま残っている状態を示している。
A region of the input shell 12 facing the second clutch plate 35 in the axial direction is a smooth flat plate portion 37, and a gap between the second clutch plate 35 adjacent to the flat plate portion 37 is the first adjacent to each other. It is set to be approximately equal to the gap between the clutch plate 32 and the second clutch plate 35.
The flat plate portion 37 is made of a magnetic material having a high magnetic permeability, and when the input shell 12 is made of a magnetic material, a non-magnetic material having a predetermined width on the radially inner side and the outer side of the flat plate portion 37. A part is provided.
FIG. 1 shows a state in which the input shell 12 is made of a non-magnetic aluminum alloy, and the both sides in the radial direction of the flat plate portion 37 remain as materials.
 また、出力シェル16における第1クラッチ板32と軸方向に対向する領域も、平滑な平板部39とされており、この平板部39に隣接する第1クラッチ板32との間隙は、互いに隣接する第1クラッチ板32と第2クラッチ板35間の間隙と略同等に設定されている。
 そして、平板部39は、透磁率の高い磁性体で構成されており、出力シェル16が磁性体で構成されているときには、平板部39の径方向内側および外側に所定の径幅の非磁性体部が設けられるようになっている。
 図1においては、出力シェル16が非磁性体のアルミニウム合金製として、平板部39の径方向両側が素材のまま残っている状態を示している。
The region of the output shell 16 that faces the first clutch plate 32 in the axial direction is also a smooth flat plate portion 39, and the gap between the first clutch plate 32 adjacent to the flat plate portion 39 is adjacent to each other. It is set to be approximately equal to the gap between the first clutch plate 32 and the second clutch plate 35.
The flat plate portion 39 is made of a magnetic material having a high magnetic permeability, and when the output shell 16 is made of a magnetic material, a non-magnetic material having a predetermined diameter width on the radially inner side and the outer side of the flat plate portion 39. A part is provided.
FIG. 1 shows a state in which the output shell 16 is made of a non-magnetic aluminum alloy and the both sides in the radial direction of the flat plate portion 39 remain as materials.
 ユニットハウジング6では、ワンウエイクラッチ支持部7よりも内径側に、鉄など透磁率の高い磁性体からなるヨーク部40が設けられている。
 ヨーク部40は、軸方向から見たときの第1クラッチ板32と第2クラッチ板35の重なり幅に略対応する径方向幅を有するリング状であり、出力シェル16の平板部39に対向して設けられている。
 ヨーク部40の平板部39との対向面は平滑であり、出力シェル16との間隙は互いに隣接する第1クラッチ板32と第2クラッチ板35間の間隙と略同等に設定されている。
In the unit housing 6, a yoke portion 40 made of a magnetic material having a high permeability such as iron is provided on the inner diameter side of the one-way clutch support portion 7.
The yoke portion 40 has a ring shape having a radial width substantially corresponding to the overlapping width of the first clutch plate 32 and the second clutch plate 35 when viewed from the axial direction, and faces the flat plate portion 39 of the output shell 16. Is provided.
The surface of the yoke portion 40 facing the flat plate portion 39 is smooth, and the gap with the output shell 16 is set substantially equal to the gap between the first clutch plate 32 and the second clutch plate 35 adjacent to each other.
 ヨーク部40の出力シェル16との対向面の径方向中央部には、主軸4を中心とするリング状のコイル収納溝41が形成されており、このコイル収納溝41に、リング状に巻かれたコイル42が取付けられている。
 ここで、図1において特に図示しないが、コイル42の引き出し線は、コイル収納溝41からヨーク部40を軸方向へ貫通しており、最終的にユニットハウジング6の側壁6cなどから外部へ導かれている。
 実施の形態では、コイル42を保持するヨーク部40が、ユニットハウジング6側に固定されているので、コイル42の引き出し線の途中に、スリップリングやブラシを設けなくても良いようになっている。そのため、摺動抵抗の発生もなく、通電の高い安定性と耐久性が得られるようになっている。
A ring-shaped coil storage groove 41 centering on the main shaft 4 is formed at the radial center of the surface of the yoke portion 40 facing the output shell 16, and is wound around the coil storage groove 41 in a ring shape. A coil 42 is attached.
Here, although not particularly shown in FIG. 1, the lead wire of the coil 42 passes through the yoke portion 40 from the coil housing groove 41 in the axial direction, and is finally led to the outside from the side wall 6 c of the unit housing 6. ing.
In the embodiment, since the yoke portion 40 that holds the coil 42 is fixed to the unit housing 6 side, it is not necessary to provide a slip ring or a brush in the middle of the lead wire of the coil 42. . Therefore, there is no generation of sliding resistance, and high stability and durability of energization can be obtained.
 実施の形態では、第1クラッチ板32と、第2クラッチ板35と、入力シェル12と出力シェル16の各平板部37、39と、ヨーク部40とにより、いわゆる多板クラッチが構成される。すなわち、コイル42に通電することにより、図1に破線で示すように、それぞれ高磁性体で形成されたヨーク部40から出力シェル16の平板部39、交互に配置された第1クラッチ板32および第2クラッチ板35、そして入力シェル12の平板部37を経由する実効的な磁気回路が形成されるので、通電を制御することにより各多板クラッチ構成部材間を満たしている磁気粘性流体の見掛け上の粘度(降伏応力)を制御することができ、これにより、ポンプインペラ11とタービンランナ15間の滑りが制御可能となっている。 In the embodiment, the first clutch plate 32, the second clutch plate 35, the flat plate portions 37 and 39 of the input shell 12 and the output shell 16, and the yoke portion 40 constitute a so-called multi-plate clutch. That is, by energizing the coil 42, as indicated by broken lines in FIG. 1, the yoke portion 40 made of a high magnetic material, the flat plate portion 39 of the output shell 16, the first clutch plates 32 arranged alternately, and Since an effective magnetic circuit is formed via the second clutch plate 35 and the flat plate portion 37 of the input shell 12, the appearance of the magnetorheological fluid that fills between the multi-plate clutch constituent members by controlling energization. The upper viscosity (yield stress) can be controlled, whereby the slip between the pump impeller 11 and the turbine runner 15 can be controlled.
 クラッチ機構30は、ユニットハウジング6内におけるタービン羽根保持部17と主軸4の間のスペースSに構成され、トーラス10で形成される作動流体(磁気粘性流体)の循環路Aからドラム部31によって隔絶されている。
 そして、クラッチ機構30で生起される磁束は、ヨーク部40とこれに対向する第1クラッチ板32、第2クラッチ板35(および入力シェル12と出力シェル16の各平板部37、39)との間に閉じた磁気回路を形成してほとんど外部へ漏れないようになっており、循環路A内の磁気粘性流体に影響が及ばないようにされている。
The clutch mechanism 30 is configured in a space S between the turbine blade holding portion 17 and the main shaft 4 in the unit housing 6, and is isolated by the drum portion 31 from the circulation path A of the working fluid (magnetic viscous fluid) formed by the torus 10. Has been.
The magnetic flux generated by the clutch mechanism 30 is generated between the yoke portion 40 and the first clutch plate 32 and the second clutch plate 35 (and the flat plate portions 37 and 39 of the input shell 12 and the output shell 16) facing the yoke portion 40. A magnetic circuit closed between them is formed so as not to leak to the outside, so that the magnetic viscous fluid in the circulation path A is not affected.
 ユニットハウジング6における側壁6bと側壁6cの内径側には、前記したラジアルベアリング8a、8bの支持部61、62が設けられており、これら支持部61、62は、回転軸線Zの軸方向で、互いに離れる方向に突出している。 The support portions 61 and 62 of the radial bearings 8a and 8b described above are provided on the inner diameter side of the side wall 6b and the side wall 6c in the unit housing 6, and these support portions 61 and 62 are in the axial direction of the rotation axis Z. Projecting away from each other.
 図2は、ユニットハウジング6の要部拡大図であり、(a)は、支持部61側のリップシール50とその近傍の拡大図であり、(b)は、支持部62側のリップシール50とその近傍の拡大図である。 2A and 2B are enlarged views of the main part of the unit housing 6. FIG. 2A is an enlarged view of the lip seal 50 on the support portion 61 side and the vicinity thereof, and FIG. 2B is a lip seal 50 on the support portion 62 side. FIG.
 図2の(a)に示すように、支持部61には、入力軸3を挿通させる開口610が、回転軸線Zの軸方向に貫通して設けられており、この開口610は、ラジアルベアリング8aを支持するベアリング支持部611と、リップシール50を支持するシール支持部612と、シール支持部612とユニットハウジング6の内部空間S1とを連通させる連通部613と、を備えて構成される。
 支持部61では、図中左側から順番に、ベアリング支持部611と、シール支持部612と、連通部613とが位置しており、内部空間S1側(図中右側)に向かうにつれて、入力軸3の外周との間の隙間が狭くなっている。
As shown in FIG. 2A, an opening 610 through which the input shaft 3 is inserted is provided in the support portion 61 so as to penetrate in the axial direction of the rotation axis Z. The opening 610 is formed in the radial bearing 8a. The bearing support portion 611 for supporting the lip seal 50, the seal support portion 612 for supporting the lip seal 50, and the communication portion 613 for communicating the seal support portion 612 and the internal space S1 of the unit housing 6 are provided.
In the support portion 61, a bearing support portion 611, a seal support portion 612, and a communication portion 613 are positioned in order from the left side in the drawing, and the input shaft 3 is moved toward the internal space S 1 side (right side in the drawing). The gap between the outer periphery of the two is narrow.
 シール支持部612は、ベアリング支持部611よりも小径で、かつ連通部613よりも大径に形成されている。このシール支持部612には、リップシール50が、ベアリング支持部611側から内嵌して取付けられており、このリップシール50は、連通部613とラジアルベアリング8aとの間に挟み込まれた状態で保持されている。 The seal support part 612 has a smaller diameter than the bearing support part 611 and a larger diameter than the communication part 613. A lip seal 50 is fitted and attached to the seal support portion 612 from the bearing support portion 611 side. The lip seal 50 is sandwiched between the communication portion 613 and the radial bearing 8a. Is retained.
 図2の(b)に示すように、ユニットハウジング6を挟んで反対側に位置する支持部62では、主軸4を挿通させる開口620が、回転軸線Zの軸方向に貫通して設けられている。支持部62では、ラジアルベアリング8bのみが支持されるようになっており、この支持部62の開口620は、ラジアルベアリング8bの外形に整合する内径に形成されている。
 ユニットハウジング6の内部空間S1には、支持部62に隣接してワンウエイクラッチ支持部7とヨーク部40とが位置しており、これらワンウエイクラッチ支持部7とヨーク部40の内径側には、主軸4を挿通させる開口700、400が、回転軸線Zの軸方向に貫通して設けられている。
As shown in FIG. 2B, in the support portion 62 located on the opposite side across the unit housing 6, an opening 620 through which the main shaft 4 is inserted is provided so as to penetrate in the axial direction of the rotation axis Z. . In the support portion 62, only the radial bearing 8b is supported, and the opening 620 of the support portion 62 is formed with an inner diameter that matches the outer shape of the radial bearing 8b.
In the internal space S1 of the unit housing 6, a one-way clutch support portion 7 and a yoke portion 40 are located adjacent to the support portion 62. The main shaft is located on the inner diameter side of the one-way clutch support portion 7 and the yoke portion 40. Openings 700 and 400 through which 4 is inserted are provided penetrating in the axial direction of the rotation axis Z.
 ワンウエイクラッチ支持部7の開口700は、ラジアルベアリング8bの一端側を支持するベアリング支持部701と、リップシール50を支持するシール支持部702と、を備えて構成される。ユニットハウジング6における支持部62側では、図中右側から順番に、支持部62の開口620と、ワンウエイクラッチ支持部7のベアリング支持部701およびシール支持部702と、ヨーク部40の開口400とが位置しており、内部空間S1側(図中左側)に向かうにつれて、主軸4の外周との間の隙間が狭くなっている。 The opening 700 of the one-way clutch support portion 7 includes a bearing support portion 701 that supports one end side of the radial bearing 8 b and a seal support portion 702 that supports the lip seal 50. On the support portion 62 side in the unit housing 6, an opening 620 of the support portion 62, a bearing support portion 701 and a seal support portion 702 of the one-way clutch support portion 7, and an opening 400 of the yoke portion 40 are sequentially formed from the right side in the drawing. The gap between the outer periphery of the main shaft 4 is narrowed toward the inner space S1 side (left side in the figure).
 シール支持部702は、ベアリング支持部701よりも小径で、かつ開口400よりも大径に形成されている。このシール支持部702には、リップシール50が内嵌して取付けられており、このリップシール50は、ラジアルベアリング8bとヨーク部40との間に挟み込まれた状態で保持されている。 The seal support portion 702 has a smaller diameter than the bearing support portion 701 and a larger diameter than the opening 400. A lip seal 50 is fitted and attached to the seal support portion 702, and the lip seal 50 is held in a state of being sandwiched between the radial bearing 8b and the yoke portion 40.
 以下、リップシール50の構成を説明する。
 なお、支持部61側のリップシール50(図2の(a)参照)と、支持部62側のリップシール50(図2の(b)参照)は、その構成が同じであるので、以下の説明においては、支持部61側のリップシール50の構成について説明をし、必要に応じて支持部62側のリップシール50を説明する。
Hereinafter, the configuration of the lip seal 50 will be described.
The lip seal 50 on the support portion 61 side (see FIG. 2A) and the lip seal 50 on the support portion 62 side (see FIG. 2B) have the same configuration. In the description, the configuration of the lip seal 50 on the support portion 61 side will be described, and the lip seal 50 on the support portion 62 side will be described as necessary.
 図2の(a)に示すように、リップシール50は、支持部61におけるシール支持部612の内周面に嵌着される筒状の基部51と、回転軸線Z方向における基部51の一端51b側から径方向内側に延びるフランジ状(円板状)のリップ保持部52と、を備えており、リップ保持部52の内径側の端部52aには、主リップ53と副リップ54とが設けられている。 As shown in FIG. 2A, the lip seal 50 includes a cylindrical base portion 51 fitted to the inner peripheral surface of the seal support portion 612 in the support portion 61, and one end 51b of the base portion 51 in the rotation axis Z direction. A lip holding portion 52 having a flange shape (disk shape) extending radially inward from the side, and a main lip 53 and a sub lip 54 are provided at an inner diameter side end portion 52a of the lip holding portion 52. It has been.
 主リップ53は、リップ保持部52の内径側の端部52aから基部51と同方向(内部空間S1側)に延びており、内径側の入力軸3との対向面には、尖状の当接部53aが設けられている。主リップ53の外径側では、当接部53aの反対側となる位置に、非磁性材料からなるバネ60が嵌合して取付けられており、主リップ53は、バネ60の付勢力により、当接部53aを入力軸3の外周に圧接させている。 The main lip 53 extends from the end 52a on the inner diameter side of the lip holding portion 52 in the same direction as the base 51 (on the inner space S1 side), and has a pointed contact on the surface facing the input shaft 3 on the inner diameter side. A contact portion 53a is provided. On the outer diameter side of the main lip 53, a spring 60 made of a nonmagnetic material is fitted and attached at a position opposite to the abutting portion 53a. The main lip 53 is attached by the urging force of the spring 60. The contact portion 53a is pressed against the outer periphery of the input shaft 3.
 実施の形態では、入力軸3が回転軸線Z周りに回転すると、主リップ53が入力軸3の外周に圧接された状態で、その外周面を摺動するようになっており、これにより、主リップ53よりも内部空間S1側(図中右側)に充填された磁気粘性流体が、内部空間S1の外部(図中左側)に漏出しないようにされている。 In the embodiment, when the input shaft 3 rotates around the rotation axis Z, the main lip 53 slides on the outer peripheral surface in a state in which the main lip 53 is pressed against the outer periphery of the input shaft 3. The magnetorheological fluid filled on the inner space S1 side (right side in the figure) from the lip 53 is prevented from leaking to the outside (left side in the figure) of the inner space S1.
 副リップ54は、主リップ53とは反対側の内径側に延びており、その先端側の当接部54aを入力軸3の外周に接触させている。実施の形態では、副リップ54は、ゴムなどの弾性材料から構成されており、副リップ54は、その弾性力により、当接部54aを入力軸3の外周に接触させて、ゴミなどの異物が内部空間S1内に進入することを阻止している。 The secondary lip 54 extends to the inner diameter side opposite to the main lip 53, and a contact portion 54 a on the tip side is in contact with the outer periphery of the input shaft 3. In the embodiment, the sub lip 54 is made of an elastic material such as rubber, and the sub lip 54 brings the contact portion 54a into contact with the outer periphery of the input shaft 3 by its elastic force, thereby causing foreign matter such as dust. Is prevented from entering the internal space S1.
 リップシール50における基部51からリップ保持部52までの範囲には、補強部材55が埋め込まれている。
 補強部材55は、基部51内に設けられた筒状部551と、筒状部551の基端551bから内径側に延びるフランジ部552とを備えており、断面視において、略L字形状を成している。
A reinforcing member 55 is embedded in a range from the base portion 51 to the lip holding portion 52 in the lip seal 50.
The reinforcing member 55 includes a cylindrical portion 551 provided in the base portion 51 and a flange portion 552 extending from the base end 551b of the cylindrical portion 551 to the inner diameter side, and has a substantially L shape in a cross-sectional view. is doing.
 筒状部551は、基部51内を回転軸線Zに対して略並行に延びており、その先端551aは、主リップ53の入力軸3との当接点Pよりも内部空間S1側(図中右側)に位置している。
 フランジ部552は、筒状部551の基端551bから径方向内側に向けて、筒状部551の略直交に延びており、このフランジ部552は、回転軸線Zの軸方向において、主リップ53と副リップ54との間に位置している。
The cylindrical portion 551 extends in the base portion 51 substantially in parallel with the rotation axis Z, and the tip 551a thereof is closer to the inner space S1 than the contact point P of the main lip 53 with the input shaft 3 (right side in the figure). ).
The flange portion 552 extends from the base end 551b of the tubular portion 551 inward in the radial direction, substantially perpendicular to the tubular portion 551. The flange portion 552 is in the main lip 53 in the axial direction of the rotation axis Z. And the auxiliary lip 54.
 補強部材55は、従来公知のリップシールに設けられている補強用の金属環を、磁性体からなる金属環に置き換えたものであり、筒状部551がS極、フランジ部552がN極となるように磁化されている。 The reinforcing member 55 is obtained by replacing a reinforcing metal ring provided in a conventionally known lip seal with a metal ring made of a magnetic material. The cylindrical portion 551 has an S pole and the flange portion 552 has an N pole. It is magnetized to become.
 ここで、リップシール50は、補強部材55に、ゴム状の弾性体を被覆したものであって、このゴム状の弾性体により、補強部材55と、基部51とリップ保持部52と、主リップ53と、副リップ54とが一体に形成されている。 Here, the lip seal 50 is obtained by covering a reinforcing member 55 with a rubber-like elastic body. The rubber-like elastic body allows the reinforcing member 55, the base 51, the lip holding portion 52, and the main lip. 53 and the sub lip 54 are integrally formed.
 なお、図2の(b)に示すように、支持部62側のリップシール50は、筒状の基部51を、ワンウエイクラッチ支持部7におけるシール支持部702の内周面に嵌着させて設けられており、このリップシール50は、内径側の主リップ53の当接部53aを、バネ60の付勢力により、主軸4の外周に圧接させている。 As shown in FIG. 2B, the lip seal 50 on the support portion 62 side is provided by fitting a cylindrical base portion 51 to the inner peripheral surface of the seal support portion 702 in the one-way clutch support portion 7. In this lip seal 50, the contact portion 53 a of the main lip 53 on the inner diameter side is pressed against the outer periphery of the main shaft 4 by the biasing force of the spring 60.
 この支持部62側のリップシール50もまた、磁性体からなる補強部材55を備えており、筒状部551がS極、フランジ部552がN極となるように磁化されている。 The lip seal 50 on the support portion 62 side is also provided with a reinforcing member 55 made of a magnetic material, and is magnetized so that the cylindrical portion 551 is an S pole and the flange portion 552 is an N pole.
 入力軸3における、リップシール50の主リップ53との当接点Pよりも内部空間S1側(図2の(a)における右側)には、その外周面に磁石70が設けられている。
 主軸4における、リップシール50の主リップ53との当接点Pよりも内部空間S1側(図2の(b)における左側)にも、その外周面に磁石70が設けられている。
A magnet 70 is provided on the outer peripheral surface of the input shaft 3 on the inner space S1 side (right side in FIG. 2A) from the contact point P with the main lip 53 of the lip seal 50.
A magnet 70 is also provided on the outer peripheral surface of the main shaft 4 on the inner space S1 side (left side in FIG. 2B) from the contact point P of the lip seal 50 with the main lip 53.
 磁石70は、回転軸(入力軸3、主軸4)の外周面の全周に亘って設けられており、軸方向から見てリング状を成している。
 この磁石70は、回転軸線Zにおける一方側(リップシール50側)がN極、他方側がS極となるように磁化されており、リップシール50の基部51の磁極(S極)と引き合う磁極(N極)がリップシール50側に位置している。
The magnet 70 is provided over the entire circumference of the outer peripheral surface of the rotating shaft (the input shaft 3 and the main shaft 4), and has a ring shape when viewed from the axial direction.
The magnet 70 is magnetized so that one side (lip seal 50 side) in the rotation axis Z is an N pole and the other side is an S pole, and attracts the magnetic pole (S pole) of the base 51 of the lip seal 50 (S pole). N pole) is located on the lip seal 50 side.
 図3は、リップシール50周りの磁力線Lを模式的に示した図であり、(a)は、支持部61側のリップシール50周りの磁力線Lを示す図であり、(b)は、支持部62側のリップシール50周りの磁力線Lを示す図である。
 なお、この図においては、リップシール50の内部空間S1側(図3の(a)の場合は図中右側、(b)の場合は図中左側)に形成される主要な磁力線Lを示し、他の部分に形成される磁力線については図示を省略している。
FIG. 3 is a diagram schematically showing magnetic lines of force L around the lip seal 50, (a) is a diagram showing magnetic lines of force L around the lip seal 50 on the support portion 61 side, and (b) is a diagram showing support. It is a figure which shows the magnetic force line L around the lip seal 50 by the side of the part 62. FIG.
In this figure, the main magnetic field lines L formed on the inner space S1 side of the lip seal 50 (the right side in the figure in the case of (a) in FIG. 3 and the left side in the figure in the case of (b)) are shown. Illustration of magnetic field lines formed in other portions is omitted.
 図3に示すように、実施の形態では、入力軸3と主軸4の径方向で、S極(リップシール50の基部51)と、N極(磁石70)とが間隔を空けて設けられており、これらN極とS極とを結ぶ線分(図中仮想線IM1参照)が、シール支持部612、702の内径側の空間S2を径方向に横切るように、S極とN極の位置が設定されている。 As shown in FIG. 3, in the embodiment, the S pole (base 51 of the lip seal 50) and the N pole (magnet 70) are provided at an interval in the radial direction of the input shaft 3 and the main shaft 4. The position of the S pole and the N pole is such that the line segment connecting the N pole and the S pole (see the imaginary line IM1 in the figure) crosses the space S2 on the inner diameter side of the seal support portions 612 and 702 in the radial direction. Is set.
 そのため、リップシール50の近傍では、磁石70のN極から筒状部511のS極に向かう磁力線Lが、シール支持部612、702の内径側の空間S2を径方向に横切るように複数形成されて、内部空間S1からリップシール50に向かう磁気粘性流体の流れFが生じた場合に、磁気粘性流体の流れFが、複数の磁力線Lを横切らないと、リップシール50(主リップ53の回転軸(入力軸3、主軸4)との当接点P)に到達できないようになっている。 Therefore, in the vicinity of the lip seal 50, a plurality of lines of magnetic force L from the N pole of the magnet 70 to the S pole of the cylindrical portion 511 are formed so as to cross the space S2 on the inner diameter side of the seal support portions 612 and 702 in the radial direction. When the magnetic viscous fluid flow F from the internal space S1 toward the lip seal 50 is generated, the lip seal 50 (the rotation axis of the main lip 53) is required if the magnetic viscous fluid flow F does not cross a plurality of magnetic field lines L. The contact point P) with the (input shaft 3, main shaft 4) cannot be reached.
 ここで、磁気粘性流体に含まれる磁性体(例えば、Fe粒子)は、磁性体同士が繋がったクラスタを磁力線Lに沿って形成するので、磁気粘性流体の流れFが磁力線Lを横切る際に、磁気粘性流体に含まれる磁性体(Fe粒子)が、磁力線Lに補足されることになる。
 そのため、磁気粘性流体が磁力線Lを横切る毎に磁性体が磁力線Lに補足されることになるので、リップシール50の主リップ53の回転軸(入力軸3、主軸4)との当接点Pまで磁性体が到達して、主リップ53と回転軸(入力軸3,主軸4)との間に、磁性体が挟み込まれることが好適に防止されるようになっている。
Here, since the magnetic substance (for example, Fe particles) contained in the magnetorheological fluid forms a cluster in which the magnets are connected along the magnetic field lines L, when the flow F of the magnetorheological fluid crosses the magnetic field lines L, Magnetic bodies (Fe particles) contained in the magnetorheological fluid are supplemented by the lines of magnetic force L.
Therefore, every time the magnetorheological fluid crosses the magnetic force line L, the magnetic material is supplemented by the magnetic force line L, so that the contact point P of the lip seal 50 with the rotation axis (input shaft 3, main shaft 4) of the main lip 53 is reached. It is suitably prevented that the magnetic body reaches and the magnetic body is sandwiched between the main lip 53 and the rotation shaft (input shaft 3, main shaft 4).
 また、実施の形態では、リップシール50のリップ保持部52に埋め込まれたフランジ部552が、筒状部551とは反対の磁極(N極)に磁化されている。そのため、主リップ53の回転軸(入力軸3、主軸4)との当接点Pが、回転軸線Zの軸方向で間隔を空けて配置されたN極(フランジ部552)、N極(磁石70)の間に位置するようになっている。 In the embodiment, the flange portion 552 embedded in the lip holding portion 52 of the lip seal 50 is magnetized to a magnetic pole (N pole) opposite to the cylindrical portion 551. Therefore, the contact point P of the main lip 53 with the rotation axis (input shaft 3, main shaft 4) is arranged with an N pole (flange portion 552) and an N pole (magnet 70) arranged at intervals in the axial direction of the rotation axis Z. ).
 ここで、N極からS極に向かう磁力線は互いに反発する性質があるので、フランジ部552(N極)からS極に向かう磁力線と、磁石70のN極からS極に向かう磁力線は、フランジ部552と磁石70との間で、回転軸(入力軸3,主軸4)の径方向に向かう磁力線を形成する。
 実施の形態では、フランジ部552(N極)と磁石70(N極)との間の径方向外側に、筒状部551(S極)が位置しているので、シール支持部612、702の内径側の空間S2を径方向に横切る磁力線Lが確実に形成されるようになっている。
Here, since the magnetic lines of force from the N pole to the S pole repel each other, the magnetic lines of force from the flange 552 (N pole) to the S pole and the magnetic lines of force from the N pole to the S pole of the magnet 70 Between 552 and the magnet 70, a magnetic line of force is formed in the radial direction of the rotating shaft (input shaft 3, main shaft 4).
In the embodiment, since the cylindrical portion 551 (S pole) is located on the radially outer side between the flange portion 552 (N pole) and the magnet 70 (N pole), the seal support portions 612 and 702 are provided. The magnetic field lines L that cross the radial space S2 in the radial direction are surely formed.
 以上の通り、実施の形態では、ポンプインペラ11の入力軸3とタービンランナ15の主軸4が、密閉された内部空間S1を有するユニットハウジング6で回転軸線Z周りに回転可能に支持されており、ポンプインペラ11からタービンランナ15への動力伝達が、ユニットハウジング6内に充填された磁気粘性流体を介して行われる磁気粘性流体を用いたトルクコンバータにおいて、
 ユニットハウジング6における入力軸3の支持部61と、主軸4の支持部となるワンウエイクラッチ支持部7において、ラジアルベアリング8a、8bよりも内部空間S1側で、入力軸3と主軸4の外周に圧接させてリップシール50、50を設けると共に、
 リップシール50と回転軸(入力軸3、主軸4)との当接点Pよりもユニットハウジング6の内側(内部空間S1側)に、磁石70(第1の磁石)と、当該第1の磁石とは反対の磁極に磁化された筒状部551(第2の磁石)を、回転軸(入力軸3、主軸4)の径方向に離間させて設け、磁石70を入力軸3と主軸4の外周に設けた構成のトルクコンバータにおけるシール構造とした。
As described above, in the embodiment, the input shaft 3 of the pump impeller 11 and the main shaft 4 of the turbine runner 15 are supported by the unit housing 6 having the sealed internal space S1 so as to be rotatable around the rotation axis Z. In the torque converter using magnetorheological fluid in which power transmission from the pump impeller 11 to the turbine runner 15 is performed via the magnetorheological fluid filled in the unit housing 6,
In the support portion 61 of the input shaft 3 in the unit housing 6 and the one-way clutch support portion 7 serving as the support portion of the main shaft 4, the outer periphery of the input shaft 3 and the main shaft 4 is press-contacted on the inner space S 1 side from the radial bearings 8 a and 8 b. And providing lip seals 50, 50,
A magnet 70 (first magnet), the first magnet, and the inner side (inside the internal space S1) of the unit housing 6 with respect to the contact point P between the lip seal 50 and the rotation shaft (input shaft 3, main shaft 4). The cylindrical portion 551 (second magnet) magnetized by the opposite magnetic pole is provided in the radial direction of the rotating shaft (input shaft 3 and main shaft 4), and the magnet 70 is arranged on the outer periphery of the input shaft 3 and main shaft 4. The seal structure in the torque converter having the configuration provided in FIG.
 このように構成すると、リップシール50と回転軸(入力軸3、主軸4)との当接点Pよりもユニットハウジング6の内側に、磁石70(第1の磁石)と筒状部551(第2の磁石)とを結ぶ磁力線Lが、回転軸線Zの径方向に沿って形成される。そのため、ユニットハウジング6内の磁気粘性流体は、複数の磁力線Lを横切らないと当接点Pまで到達できないようになる。
 ここで、磁気粘性流体に含まれる磁性体(Fe粒子)は、磁性体同士が繋がったクラスタを磁力線L線に沿って形成するため、磁性体が、磁力線Lを横切って当接点P側(ユニットハウジング6の外側)に進入できなくなる。
 よって、磁気粘性流体に含まれる磁性体(Fe粒子)が、リップシール50の回転軸(入力軸3、主軸4)との当接点に挟み込まれることに起因して、リップシール50のシール性が低下することや、リップシール50の寿命が短くなることが好適に防止される。
If comprised in this way, the magnet 70 (1st magnet) and the cylindrical part 551 (2nd) will be located inside the unit housing 6 rather than the contact point P of the lip seal 50 and the rotating shaft (input shaft 3, main shaft 4). The magnetic lines of force L connecting the magnets) are formed along the radial direction of the rotation axis Z. Therefore, the magnetorheological fluid in the unit housing 6 cannot reach the contact point P unless it crosses the plurality of magnetic lines of force L.
Here, since the magnetic body (Fe particles) contained in the magnetorheological fluid forms a cluster in which the magnetic bodies are connected along the magnetic field line L, the magnetic body crosses the magnetic field line L and contacts the contact point P (unit). It becomes impossible to enter the outside of the housing 6.
Therefore, the magnetic material (Fe particles) contained in the magnetorheological fluid is sandwiched between the contact points of the lip seal 50 and the rotation shaft (the input shaft 3 and the main shaft 4), and the sealing performance of the lip seal 50 is improved. It is suitably prevented that the lip seal 50 is lowered or the life of the lip seal 50 is shortened.
 リップシール50は、
  回転軸(入力軸3、主軸4)の外周に圧接する主リップ53と、
  主リップ53から回転軸(入力軸3、主軸4)の径方向外側に延設された円板状のリップ保持部52と、
  リップ保持部52の外縁から内部空間S1側に延設して設けられて、リップシールを、支持部61またはワンウエイクラッチ支持部7に内嵌させて装着するための筒状の基部51と、を備え、
 基部51には、補強部材55の筒状部551が回転軸線Z方向に沿って埋め込まれており、筒状部551を磁性体から構成して、第1の磁石とは反対の磁極に磁化することで、前記第2の磁石とした。
The lip seal 50 is
A main lip 53 in pressure contact with the outer periphery of the rotating shaft (input shaft 3, main shaft 4);
A disc-shaped lip holding portion 52 extending from the main lip 53 to the outside in the radial direction of the rotation shaft (input shaft 3, main shaft 4);
A cylindrical base 51 provided so as to extend from the outer edge of the lip holding portion 52 toward the inner space S1, and for fitting the lip seal to the support portion 61 or the one-way clutch support portion 7; Prepared,
A cylindrical portion 551 of a reinforcing member 55 is embedded in the base portion 51 along the rotation axis Z direction. The cylindrical portion 551 is made of a magnetic material and is magnetized to a magnetic pole opposite to the first magnet. Thus, the second magnet was obtained.
 このように構成すると、補強部材55を磁性体で構成して、この補強部材55の筒状部551を所望の磁極に磁化するだけで、第2の磁石を簡単に用意できる。
 また、ユニットハウジング6内に第2の磁石を別途設ける必要がないので、第2の磁石を設けるためにユニットハウジング6を加工する必要が無く、さらに部品点数の増加が、第1の磁石のみで済むので、製造コストの増大を抑えることができる。
If comprised in this way, the 2nd magnet can be easily prepared only by comprising the reinforcement member 55 with a magnetic body and magnetizing the cylindrical part 551 of this reinforcement member 55 to a desired magnetic pole.
Further, since it is not necessary to separately provide the second magnet in the unit housing 6, there is no need to process the unit housing 6 in order to provide the second magnet, and the number of parts can be increased only by the first magnet. Therefore, an increase in manufacturing cost can be suppressed.
 特に、磁石70(第1の磁石)と筒状部551(第2の磁石)とが、回転軸(入力軸3、主軸4)の軸方向に所定の長さを有しているので、磁石70と筒状部551(第2の磁石)とを結ぶ磁力線Lが、回転軸(入力軸3、主軸4)の軸方向で複数、確実に形成されることになる。
 そうすると、磁性体(Fe粒子)を含む磁気粘性流体は、複数の磁力線Lを横切らないと、リップシール50の回転軸(入力軸3、主軸4)との当接点Pまで到達できないようになる。これにより、磁気粘性流体が複数の磁力線Lを横切る際に、磁気粘性流体に含まれる磁性体(Fe粒子)を確実に補足することができるので、磁気粘性流体に含まれる磁性体が、当接点P側(ユニットハウジング6の外側)に進入することを、より好適に防止できるようになる。
In particular, the magnet 70 (first magnet) and the cylindrical portion 551 (second magnet) have a predetermined length in the axial direction of the rotating shaft (input shaft 3 and main shaft 4). A plurality of magnetic lines of force L connecting 70 and the cylindrical portion 551 (second magnet) are reliably formed in the axial direction of the rotating shaft (input shaft 3 and main shaft 4).
If it does so, the magnetorheological fluid containing a magnetic body (Fe particle | grains) will not reach | attain the contact point P with the rotating shaft (the input shaft 3, the main axis | shaft 4) of the lip seal 50, unless the several magnetic force line L is crossed. Accordingly, when the magnetorheological fluid crosses the plurality of magnetic lines of force L, the magnetic substance (Fe particles) contained in the magnetorheological fluid can be reliably captured, so that the magnetism contained in the magnetorheological fluid is brought into contact with the contact point. Entering the P side (the outside of the unit housing 6) can be prevented more suitably.
 主リップ53は、リップ保持部52よりもユニットハウジング6の内側で、回転軸(入力軸3、主軸4)の外周に圧接しており、
 補強部材55は、リップ保持部52内を内径側に延びるフランジ部552を備え、このフランジ部552は、補強部材55の筒状部551の磁極(S極)とは反対の磁極(N極)にされている構成とした。
The main lip 53 is in pressure contact with the outer periphery of the rotary shaft (input shaft 3, main shaft 4) inside the unit housing 6 than the lip holding portion 52.
The reinforcing member 55 includes a flange portion 552 that extends toward the inner diameter side in the lip holding portion 52, and this flange portion 552 is a magnetic pole (N pole) opposite to the magnetic pole (S pole) of the tubular portion 551 of the reinforcing member 55. The configuration is as follows.
 このように構成すると、回転軸線Zの軸方向で、主リップ53と回転軸(入力軸3,主軸4)との当接点Pの両側に、同じ磁極(フランジ部の磁極(N極)、第1の磁石のリップシール50側の磁極(N極))が位置し、これらの径方向外側に、これらとは反対の磁極(S極)に磁化された筒状部551(第2の磁石)が位置することになる。
 そうすると、フランジ部(N極)と磁石70(第1の磁石:N極)から延びる磁力線Lは、互いに反発して径方向外側に位置する筒状部551(第2の磁石:S極)に導かれることになるので、シール支持部612、702の内径側の空間S2を横切って、回転軸線Zの径方向に延びる磁力線Lを、回転軸線Zの軸方向に複数、確実に形成することができる。
With this configuration, the same magnetic pole (the magnetic pole (N pole) of the flange portion, the second magnetic pole, A cylindrical portion 551 (second magnet) magnetized by a magnetic pole (S pole) opposite to the magnetic pole (S pole) on the outside in the radial direction. Will be located.
Then, the lines of magnetic force L extending from the flange portion (N pole) and the magnet 70 (first magnet: N pole) repel each other to the cylindrical portion 551 (second magnet: S pole) positioned on the radially outer side. Therefore, a plurality of magnetic force lines L extending in the radial direction of the rotation axis Z across the space S2 on the inner diameter side of the seal support portions 612 and 702 can be surely formed in the axial direction of the rotation axis Z. it can.
 よって、ユニットハウジング6内に充填された磁性体(Fe粒子)を含む磁気粘性流体は、複数の磁力線Lを横切らないと、リップシール50の回転軸(入力軸3、主軸4)との当接点Pまで到達できないようになり、磁気粘性流体に含まれる磁性粒子が、リップシール50(主リップ53)の回転軸(入力軸3、主軸4)との当接点Pに挟み込まれることが好適に防止される。
 これにより、回転軸(入力軸3、主軸4)のユニットハウジング6に対する相対回転により、リップシール50の主リップ53が回転軸(入力軸3、主軸4)の外周を摺動しても、主リップ53が摩耗して、リップシール50のシール性が低下することや、リップシール50の寿命が短くなることを好適に防止できるようになる。
Therefore, if the magnetorheological fluid containing the magnetic material (Fe particles) filled in the unit housing 6 does not cross the plurality of magnetic field lines L, the contact point with the rotating shaft (the input shaft 3 and the main shaft 4) of the lip seal 50 will be described. The magnetic particles contained in the magnetorheological fluid can be prevented from reaching the contact point P of the lip seal 50 (main lip 53) with the rotating shaft (input shaft 3, main shaft 4). Is done.
Thus, even if the main lip 53 of the lip seal 50 slides on the outer periphery of the rotation shaft (input shaft 3, main shaft 4) due to the relative rotation of the rotation shaft (input shaft 3, main shaft 4) with respect to the unit housing 6. It is possible to suitably prevent the lip 53 from being worn and the sealing performance of the lip seal 50 from being lowered and the life of the lip seal 50 from being shortened.
 前記した実施の形態では、リップシール50に埋め込まれた補強部材55を磁性体から構成し、この補強部材55の筒状部551をS極に、フランジ部552をN極に着磁すると共に、回転軸(入力軸3、主軸4)に設けた磁石70のリップシール50側の磁極をN極とした場合を例に挙げて説明をした。
 この補強部材55における筒状部551とフランジ部552の磁極は、この態様に限定されるものではなく、例えば、筒状部551をN極に、フランジ部552をS極に磁化するようにしても良い。かかる場合、回転軸(入力軸3、主軸4)に設けた磁石70のリップシール50側の磁極をS極とすることで、前記した実施の形態の場合と同様の効果が奏されることになる。
In the embodiment described above, the reinforcing member 55 embedded in the lip seal 50 is made of a magnetic material, the cylindrical portion 551 of the reinforcing member 55 is magnetized to the S pole, and the flange portion 552 is magnetized to the N pole. The case where the magnetic pole on the lip seal 50 side of the magnet 70 provided on the rotating shaft (input shaft 3 and main shaft 4) is an N pole has been described as an example.
The magnetic poles of the cylindrical portion 551 and the flange portion 552 in the reinforcing member 55 are not limited to this mode. For example, the cylindrical portion 551 is magnetized to the N pole and the flange portion 552 is magnetized to the S pole. Also good. In such a case, by setting the magnetic pole on the lip seal 50 side of the magnet 70 provided on the rotating shaft (the input shaft 3 and the main shaft 4) to be the S pole, the same effect as in the case of the above-described embodiment is achieved. Become.
 さらに、補強部材55の筒状部551の先端551a側をN極、基端551b側をS極に磁化し、フランジ部552を磁化しないようにしても良い。かかる場合、回転軸(入力軸3、主軸4)に設けた磁石70のリップシール50側の磁極をS極とすることで、前記した実施の形態の場合と同様の効果が奏されることになる。 Furthermore, the distal end 551a side of the cylindrical portion 551 of the reinforcing member 55 may be magnetized to the north pole and the proximal end 551b side to the south pole, and the flange portion 552 may not be magnetized. In such a case, by setting the magnetic pole on the lip seal 50 side of the magnet 70 provided on the rotating shaft (the input shaft 3 and the main shaft 4) to be the S pole, the same effect as in the case of the above-described embodiment is achieved. Become.

Claims (3)

  1.  ポンプインペラとタービンランナの回転軸が本体ケースで回転可能に支持されており、前記ポンプインペラから前記タービンランナへの動力伝達が、前記本体ケース内に充填された磁気粘性流体を介して行われる磁気粘性流体を用いるトルクコンバータにおいて、
     前記回転軸の支持部よりも前記本体ケースの内側に、前記回転軸の外周に圧接させてシール部材を設けると共に、
     前記シール部材と前記回転軸との当接点よりも前記本体ケースの内側に、第1の磁石と、当該第1の磁石とは反対の磁極の第2の磁石を、前記回転軸の径方向に離間させて設け、
     前記第1の磁石を、前記回転軸に設けた磁気粘性流体を用いるトルクコンバータにおけるシール構造。
    A rotating shaft of the pump impeller and the turbine runner is rotatably supported by the main body case, and power transmission from the pump impeller to the turbine runner is performed via a magnetorheological fluid filled in the main body case. In torque converters using viscous fluids,
    While providing a seal member in pressure contact with the outer periphery of the rotating shaft inside the main body case from the support portion of the rotating shaft,
    A first magnet and a second magnet having a magnetic pole opposite to the first magnet are arranged in a radial direction of the rotation shaft inside the main body case from a contact point between the seal member and the rotation shaft. Set apart,
    A seal structure in a torque converter using a magnetorheological fluid in which the first magnet is provided on the rotating shaft.
  2.  前記シール部材は、
      前記回転軸の外周に圧接するリップ部と、
      前記リップ部から前記回転軸の径方向外側に延設された円板状のリップ保持部と、
      前記リップ保持部の外縁から前記本体ケースの内側へ延設され、シール部材を前記本体ケース内に装着するための筒状の基部と、を備え、
     前記基部には、筒状の補強環が前記回転軸の軸方向に沿って埋め込まれており、
     前記補強環を前記第2の磁石とした請求項1に記載の磁気粘性流体を用いるトルクコンバータにおけるシール構造。
    The sealing member is
    A lip portion that presses against the outer periphery of the rotating shaft;
    A disc-shaped lip holding portion extending from the lip portion to the outside in the radial direction of the rotary shaft;
    A cylindrical base portion extending from the outer edge of the lip holding portion to the inside of the main body case, and for mounting a seal member in the main body case,
    A cylindrical reinforcing ring is embedded in the base portion along the axial direction of the rotating shaft,
    The seal structure for a torque converter using a magnetorheological fluid according to claim 1, wherein the reinforcing ring is the second magnet.
  3.  前記リップ部は、前記リップ保持部よりも前記本体ケースの内側で、前記回転軸の外周に圧接しており、
     前記補強環は、前記リップ保持部内を内径側に延びるフランジ部を有しており、前記フランジ部は、前記補強環の磁極とは反対の磁極に着磁された請求項2に記載の磁気粘性流体を用いるトルクコンバータにおけるシール構造。
    The lip portion is in pressure contact with the outer periphery of the rotating shaft inside the main body case from the lip holding portion,
    3. The magnetic viscosity according to claim 2, wherein the reinforcing ring has a flange portion that extends to an inner diameter side in the lip holding portion, and the flange portion is magnetized to a magnetic pole opposite to the magnetic pole of the reinforcing ring. Seal structure in torque converter using fluid.
PCT/JP2013/071152 2012-09-26 2013-08-05 Seal structure for torque converter using magneto-rheological fluid WO2014050314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538258A JP5839752B2 (en) 2012-09-26 2013-08-05 Seal structure in torque converter using magnetorheological fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012212877 2012-09-26
JP2012-212877 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014050314A1 true WO2014050314A1 (en) 2014-04-03

Family

ID=50387728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071152 WO2014050314A1 (en) 2012-09-26 2013-08-05 Seal structure for torque converter using magneto-rheological fluid

Country Status (2)

Country Link
JP (1) JP5839752B2 (en)
WO (1) WO2014050314A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075619A (en) * 2015-10-13 2017-04-20 Nok株式会社 Sealing device
WO2018012170A1 (en) * 2016-07-15 2018-01-18 株式会社エクセディ Torque converter
CN108454773A (en) * 2018-05-31 2018-08-28 张国平 The moped of coupling fluid-structure torque converter is driven in a kind of band

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532707B (en) * 2021-07-15 2022-03-25 北京交通大学 Magnetic liquid radial sealing torque accurate measurement system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111553U (en) * 1978-01-25 1979-08-06
JP2001241533A (en) * 2000-02-28 2001-09-07 Isuzu Motors Ltd Power transmission
JP2012137109A (en) * 2010-12-24 2012-07-19 Nissan Motor Co Ltd Magnetorheological fluid type torque converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100374U (en) * 1985-12-16 1987-06-26
JPS63201223U (en) * 1987-06-15 1988-12-26

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111553U (en) * 1978-01-25 1979-08-06
JP2001241533A (en) * 2000-02-28 2001-09-07 Isuzu Motors Ltd Power transmission
JP2012137109A (en) * 2010-12-24 2012-07-19 Nissan Motor Co Ltd Magnetorheological fluid type torque converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075619A (en) * 2015-10-13 2017-04-20 Nok株式会社 Sealing device
WO2018012170A1 (en) * 2016-07-15 2018-01-18 株式会社エクセディ Torque converter
JP2018009680A (en) * 2016-07-15 2018-01-18 株式会社エクセディ Torque converter
CN109073057A (en) * 2016-07-15 2018-12-21 株式会社艾科赛迪 Fluid torque-converter
CN108454773A (en) * 2018-05-31 2018-08-28 张国平 The moped of coupling fluid-structure torque converter is driven in a kind of band
CN108454773B (en) * 2018-05-31 2023-12-22 张国平 Booster bicycle with middle-drive hydraulic coupling torque converter

Also Published As

Publication number Publication date
JPWO2014050314A1 (en) 2016-08-22
JP5839752B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5839752B2 (en) Seal structure in torque converter using magnetorheological fluid
EP2587094B1 (en) Torque converter using magnetic viscous fluid as working fluid
CN109642651A (en) Rotor load-bearing part component
CN102537367A (en) Shaft sealing device with magnetic fluids
CN113090760B (en) Magnetic liquid sealing device
US20080100155A1 (en) Spindle motor having radial and axial bearing systems
CN108006230A (en) A kind of hybrid magnetic fluid seal apparatus
JP5686761B2 (en) Torque converter using magnetorheological fluid
WO2011118761A1 (en) Rotation braking device using fluid with magnetic viscosity
WO2011118755A1 (en) Rotation braking device using fluid with magnetic viscosity
US11499594B2 (en) Magnetorheological fluid clutch apparatus with low permeability drums
KR20130079388A (en) Sealed rotational output unit and sealed motor assembly
CN101420151A (en) Shielding pump having axial directional permanent magnetic pulling force disk
JPWO2015186172A1 (en) Rotary actuator
CN209046411U (en) Motor
US10811945B2 (en) Permanent magnet machine including ferromagnetic components for external field weakening and method of constructing
CN207584029U (en) A kind of alternating expression device for sealing magnetic fluid
JP2014109375A (en) Electromagnetic clutch
CN202068246U (en) Novel electric motor with little magnetic flux leakage
JP2014187836A (en) Rotary electric machine
JP2020145833A (en) Magnetic coupling
JP2017227268A (en) Electromagnetic clutch and manufacturing method of electromagnetic clutch
JPH0220497Y2 (en)
JP2024035969A (en) Bearing devices and motors
JP2016031114A (en) Bearing with magnetic fluid seal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538258

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841706

Country of ref document: EP

Kind code of ref document: A1