JP2020153001A - Manufacturing method of aluminum alloy member - Google Patents
Manufacturing method of aluminum alloy member Download PDFInfo
- Publication number
- JP2020153001A JP2020153001A JP2019055651A JP2019055651A JP2020153001A JP 2020153001 A JP2020153001 A JP 2020153001A JP 2019055651 A JP2019055651 A JP 2019055651A JP 2019055651 A JP2019055651 A JP 2019055651A JP 2020153001 A JP2020153001 A JP 2020153001A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- aluminum alloy
- metal
- base material
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
本発明は、局部的に改質されたアルミニウム合金部材の製造方法等に関する。 The present invention relates to a method for manufacturing a locally modified aluminum alloy member and the like.
部位により要求される特性(機械的性質)が異なることは多い。例えば、高強度部材でも、局部的に高延性が求められることがある。具体例を挙げると、穿孔作業が不要(つまり自己穿孔式)なセルフピアシングリベット(Self Piercing Rivet/単に「SPR」という。)を用いて接合する部位は、割れ等を防止するため、高延性であることが望まれる。このような高延性化に関連した記載が下記の特許文献にある。 The required characteristics (mechanical properties) often differ depending on the part. For example, even a high-strength member may be required to have high ductility locally. To give a specific example, the part to be joined using a self-piercing rivet (Self Piercing Rivet / simply referred to as "SPR") that does not require drilling work (that is, self-piercing type) is highly ductile in order to prevent cracking and the like. It is hoped that there will be. A description related to such high ductility is found in the following patent documents.
特許文献1は、組成を調整したAl―Si系合金からなるダイカスト部材に熱処理(溶体化処理、時効処理)を施して延性を高めることにより、SPRの打鋲時に生じる割れを抑止することを提案している。 Patent Document 1 proposes that a die-cast member made of an Al—Si alloy having an adjusted composition is heat-treated (solution heat treatment, aging treatment) to improve ductility, thereby suppressing cracking that occurs when the SPR is struck. are doing.
しかし、特許文献1では、接合部以外は熱処理しなくても十分な特性を有する。にも拘わらず、SPRを打鋲したときの局所変形に伴う割れを防止するためだけに、鋳物全体の熱処理を行っている。また、熱処理時に生じるブリスタ(高圧ガス巣の膨張)を防止するため、特殊な高真空ダイカストを行っている。従って、特許文献1のような方法では、ダイカスト部材全体に対する実体強度の低下、熱歪みの発生、製造コストの増加等を招く。 However, in Patent Document 1, it has sufficient characteristics without heat treatment except for the joint portion. Nevertheless, the entire casting is heat-treated only to prevent cracking due to local deformation when the SPR is struck. Further, in order to prevent blister (expansion of high-pressure gas nest) that occurs during heat treatment, a special high-vacuum die casting is performed. Therefore, the method as in Patent Document 1 causes a decrease in the physical strength of the entire die casting member, an occurrence of thermal strain, an increase in manufacturing cost, and the like.
特許文献2は、SPRが打鋲等される接合部のみを、選択的に高延性化したアルミニウム合金部材の製造方法を提案している。具体的にいうと、ダイカスト鋳造中の局部加圧により、接合部の初晶Alの体積率(初晶率)を高め、局部の高延性化を実現している。部位により肉厚や湯温低下が異なるため、鋳造工程中の加圧制御や金型構造が複雑化し易い。 Patent Document 2 proposes a method for manufacturing an aluminum alloy member in which only a joint portion where SPR is studded or the like is selectively made highly ductile. Specifically, the volume fraction (volume fraction) of primary crystal Al at the joint portion is increased by local pressurization during die casting, and local high ductility is realized. Since the wall thickness and the decrease in hot water temperature differ depending on the part, the pressure control and the mold structure during the casting process tend to be complicated.
特許文献3は、冷延板のプレス成形性の向上を目的としており、塑性変形の大きい部分に加熱した金属ブロックを接触させることを提案している。これによりアルミニウム合金の表面付近が軟化される。しかし、金属ブロックからの放熱量やアルミニウム合金側への拡散熱量が多く、金属ブロックの温度低下も著しいため、その方法では、局部だけを内部まで十分に加熱することはできない。 Patent Document 3 aims at improving the press formability of a cold-rolled sheet, and proposes that a heated metal block is brought into contact with a portion having a large plastic deformation. As a result, the vicinity of the surface of the aluminum alloy is softened. However, since the amount of heat dissipated from the metal block and the amount of heat diffused to the aluminum alloy side are large and the temperature of the metal block drops significantly, it is not possible to sufficiently heat only the local part to the inside by that method.
特許文献4は、アルミニウム合金からなるシリンダーヘッドの弁間部を、通電加熱により再溶融させた後、急冷凝固させて補強することを提案している。弁間部の加熱は、高抵抗なカーボン電極の自己抵抗発熱と接触界面の抵抗発熱とによる。従って、特許文献4は、弁間部を構成するアルミニウム合金自体のジュール発熱を利用したものではない。 Patent Document 4 proposes that the valve-to-valve portion of a cylinder head made of an aluminum alloy is remelted by energization heating and then rapidly cooled and solidified to reinforce it. The heating of the valve-to-valve portion is due to the self-resistance heat generation of the high-resistance carbon electrode and the resistance heat generation at the contact interface. Therefore, Patent Document 4 does not utilize Joule heat generation of the aluminum alloy itself constituting the valve-to-valve portion.
本発明はこのような事情に鑑みて為されたものであり、従来とは異なる手法により、局部的に特性を変化させたアルミニウム合金部材の製造方法等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing an aluminum alloy member whose characteristics are locally changed by a method different from the conventional method.
本発明者はこの課題を解決すべく鋭意研究した結果、アルミニウム合金からなる基材の局部をジュール発熱させて改質することを着想し、これを実際に具現化した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor came up with the idea of modifying a local part of a base material made of an aluminum alloy by generating Joule heat, and actually realized this. By developing this result, the present invention described below has been completed.
《アルミニウム合金部材の製造方法》
(1)本発明は、アルミニウム合金からなる基材中に特性が周辺部と異なる改質部を有するアルミニウム合金部材の製造方法であって、第1金属からなる第1電極と第2金属からなる第2電極とを該基材の局部に圧接させつつ該第1電極と該第2電極の間で通電することにより、該局部をジュール加熱して該局部に該改質部を形成する改質工程を備え、該第1金属および該第2金属は、該アルミニウム合金よりも電気伝導率が大きいアルミニウム合金部材の製造方法である。
<< Manufacturing method of aluminum alloy parts >>
(1) The present invention is a method for manufacturing an aluminum alloy member having a modified portion whose characteristics are different from those of the peripheral portion in a base material made of an aluminum alloy, which comprises a first electrode made of a first metal and a second metal. By energizing between the first electrode and the second electrode while pressing the second electrode against the local part of the base material, the local part is Joule-heated to form the modified part in the local part. The first metal and the second metal are a method for producing an aluminum alloy member having a higher electrical conductivity than the aluminum alloy.
(2)本発明の製造方法の場合、各電極を構成する金属は、加熱対象である基材を構成するアルミニウム合金(単に「Al合金」という。)よりも電気伝導率が大きい。このため、通電時、電極よりも基材の局部が優先的にジュール発熱する。この結果、局部は、効率的に急速加熱され、特性(金属組織)変化に必要となる温度まで極短時間で昇温する。こうして本発明の製造方法によれば、全体的な特性(強度等)の低下や熱歪みの発生等を回避しつつ、局部の特性だけが変化した改質部を有するアルミニウム合金部材(単に「Al合金部材」という。)が効率的に得られる。 (2) In the case of the production method of the present invention, the metal constituting each electrode has a higher electrical conductivity than the aluminum alloy (simply referred to as "Al alloy") constituting the base material to be heated. Therefore, when energized, the local part of the base material preferentially generates Joule heat over the electrode. As a result, the local area is efficiently and rapidly heated, and the temperature is raised to the temperature required for the change in characteristics (metal structure) in an extremely short time. In this way, according to the manufacturing method of the present invention, an aluminum alloy member having a modified portion in which only local characteristics are changed while avoiding deterioration of overall characteristics (strength, etc.) and occurrence of thermal strain (simply "Al"). "Alloy member") can be obtained efficiently.
(3)さらに、両電極間の形態(形状、大きさ等)や材質(電気伝導率、熱伝導率等)を相対的に変更すれば、改質部における特性レベルや特性分布の制御も可能となる。例えば、改質部の厚さ方向全体にわたる硬さや、その厚さ方向の硬さ分布の調整が可能である。 (3) Furthermore, by relatively changing the form (shape, size, etc.) and material (electrical conductivity, thermal conductivity, etc.) between both electrodes, it is possible to control the characteristic level and characteristic distribution in the modified part. It becomes. For example, it is possible to adjust the hardness of the modified portion over the entire thickness direction and the hardness distribution in the thickness direction.
《アルミニウム合金部材》
本発明は、上述した製造方法により得られたAl合金部材としても把握できる。その一例は、厚さ方向における硬さが最小または極小となる位置が厚さ中央よりも表面側に偏った硬さ分布を有する改質部を備えたAl合金部材である。また、その一形態例は、高延性化した改質部(高延性部)に、他部材を機械的に接合(例えばSPR接合)した複合部材である。高延性化した改質部を接合部とすると、全体的な強度等を維持しつつ、接合部における割れ等を抑止できる。
《Aluminum alloy member》
The present invention can also be grasped as an Al alloy member obtained by the above-mentioned manufacturing method. An example of this is an Al alloy member having a modified portion having a hardness distribution in which the position where the hardness is the minimum or the minimum in the thickness direction is biased toward the surface side from the center of the thickness. Further, an example thereof is a composite member in which another member is mechanically joined (for example, SPR joining) to a modified portion (high ductility portion) having high ductility. When the modified portion having high ductility is used as the joint portion, cracks and the like at the joint portion can be suppressed while maintaining the overall strength and the like.
《金属部材の製造方法》
本発明は、上述した内容を踏まえて、さらに金属部材の製造方法としても把握できる。すなわち、本発明は、金属基材中に特性が周辺部と異なる改質部を有する金属部材の製造方法であって、該基材の局部を電極で加圧しつつ該電極へ通電することにより、該局部をジュール加熱して該局部に該改質部を形成する改質工程を備えた金属部材の製造方法、またはその製造方法により得られた金属部材としても把握できる。金属部材は、Al合金部材(鋳物、塑性加工品、切削加工品等)に限らず、Mg合金部材、Ti合金部材、Fe系(鋳鉄、鉄鋼)部材等でもよい。
<< Manufacturing method of metal parts >>
The present invention can be further grasped as a method for manufacturing a metal member based on the above-mentioned contents. That is, the present invention is a method for manufacturing a metal member having a modified portion in a metal base material having a characteristic different from that of a peripheral portion, and by energizing the electrode while pressurizing a local portion of the base material with the electrode. It can also be grasped as a method for manufacturing a metal member having a reforming step of heating the local part with Joule to form the reformed part in the local part, or a metal member obtained by the manufacturing method. The metal member is not limited to an Al alloy member (casting, plastically worked product, machined product, etc.), but may be an Mg alloy member, a Ti alloy member, an Fe-based (cast iron, steel) member, or the like.
《その他》
(1)本明細書でいう「基材」は、圧接された電極からの通電が可能であれば、その形態を問わない。「周辺部」は、改質部の周辺域にあり、通電加熱による影響が及んでいない部分である。周辺部は、基材本来の特性を有する部分であるため、基部と換言してもよい。局部は、電極が圧接される基材の一部であれば、その形態(形状、大きさ等)を問わない。「改質部」は局部と略一致していてもよいし、局部の一部でもよい。
<< Other >>
(1) The "base material" referred to in the present specification may be in any form as long as it can be energized from the pressure-welded electrodes. The "peripheral part" is a part that is in the peripheral area of the modified part and is not affected by energization and heating. Since the peripheral portion has the original characteristics of the base material, it may be paraphrased as the base portion. The local portion may be in any form (shape, size, etc.) as long as the electrode is a part of the base material to be pressure-contacted. The "modification part" may be substantially the same as the local part, or may be a part of the local part.
「特性」は、要求仕様により選択され得るが、主に機械的性質(延性、靱性、強度、硬さ等)である。特性は、金属組織の変化(改質)が反映されたものであるとよい。但し、改質工程の前後で金属組織の変化が明確に観察されなくても、改質工程の前後で局部の特性が変化していれば十分である。 "Characteristics" can be selected according to the required specifications, but are mainly mechanical properties (ductility, toughness, strength, hardness, etc.). The characteristics should reflect changes (modification) in the metallographic structure. However, even if the change in the metal structure is not clearly observed before and after the reforming step, it is sufficient if the local characteristics change before and after the reforming step.
本明細書でいう「第1」、「第2」等は説明の便宜上の呼称である。但し、特に改質を意図している表面側(処理側)があるときは、適宜、その表面側を第1電極側とすればよい。 The "first", "second" and the like referred to in the present specification are names for convenience of explanation. However, when there is a surface side (treatment side) that is intended to be modified, the surface side may be appropriately set as the first electrode side.
(2)特に断らない限り、本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。また、本明細書でいう「x〜ymsec」はxmsec〜ymsecを意味する。他の単位系(A/mm2、W/m・K、%IACS、μm等)についても同様である。 (2) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "ab" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value. Further, "x to ymsec" in the present specification means xmsec to ymsec. The same applies to other unit systems (A / mm 2 , W / m · K,% IACS, μm, etc.).
上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の製造方法のみならず、Al合金部材等にも適宜該当する。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in the present specification appropriately apply not only to the production method of the present invention but also to Al alloy members and the like. Whether or not which embodiment is the best depends on the target, required performance, and the like.
《電極》
(1)形態
電極は、改質対象である基材(局部)に圧接される第1電極と第2電極との電極対からなる。各電極は、形態や材質(電気伝導率、熱伝導率等)が同じでも異なっていてもよい。また、基材の形態に応じて、電極も種々の形態をとり得る。例えば、各電極は、通電が可能なら、必ずしも同軸上に配設された対向する一対でなくてもよい。また、基材との接触面(先端面という)は、平面でも曲面でもよく、一方が平面で他方が曲面でもよい。
"electrode"
(1) Form The electrode is composed of a pair of electrodes of a first electrode and a second electrode that are pressure-contacted with a base material (local part) to be modified. Each electrode may have the same or different form and material (electrical conductivity, thermal conductivity, etc.). Further, the electrode may also take various forms depending on the form of the base material. For example, each electrode does not necessarily have to be a pair of opposing electrodes arranged coaxially if energization is possible. Further, the contact surface (referred to as the tip surface) with the base material may be a flat surface or a curved surface, and one may be a flat surface and the other may be a curved surface.
電極は、専用品でもよいが、スポット溶接用電極等の汎用品を用いると、電極コストを低減できる。電極の基本形状は、JIS C9304(1999)に多数規定されている。例えば、平面形(F形)、ラジアス形(R形)、ドーム形(D形)、ドームラジアス形(DR形)、円錐台形(CF形)、円錐台ラジアス形(CR形)等がある。基材の局部が平坦なら、先端面が平面状であるF形の電極を用いてもよい。スポット溶接用電極は、通常、円柱状または内部が空洞な円筒状である。先端面側に窪んだ凹部を有する電極を用いてもよい。局部との接触面は、加圧力にも依るが、例えば、略円状、略球面状または略円環状である。勿論、電極は角柱状等でもよく、このとき、接触面は略多角形状または略角錐面状錐状となる。 The electrode may be a dedicated product, but if a general-purpose product such as a spot welding electrode is used, the electrode cost can be reduced. Many basic shapes of electrodes are specified in JIS C9304 (1999). For example, there are a flat type (F type), a radius type (R type), a dome type (D type), a dome radius type (DR type), a truncated cone type (CF type), a truncated cone radius type (CR type), and the like. If the local part of the base material is flat, an F-shaped electrode having a flat tip surface may be used. Spot welding electrodes are usually cylindrical or cylindrical with a hollow interior. An electrode having a recessed recess on the tip surface side may be used. The contact surface with the local part is, for example, substantially circular, substantially spherical, or substantially annular, depending on the pressing force. Of course, the electrode may be a prismatic shape or the like, and at this time, the contact surface has a substantially polygonal shape or a substantially pyramidal pyramidal shape.
電極は、シャンクに着脱できるもの(キャップチップ型)でも、シャンクと一体化したもの(一体型)でもよい。キャップチップ型の電極(「電極チップ」ともいう。)を用いると、改質工程の低コスト化を図れる。 The electrode may be detachable from the shank (cap tip type) or integrated with the shank (integrated type). By using a cap tip type electrode (also referred to as “electrode tip”), the cost of the reforming process can be reduced.
(2)接触面積
電極と基材の接触面積は、一対の電極間で同じでもよいし、異なっていてもよい。接触面積を意図的に変えることにより、通電時、局部内の電流密度分布を変化させ得る。これにより、ジュール加熱される改質部内の温度分布ひいては金属組織分布も変化し、所望の特性分布(例えば硬さ分布)を有する改質部の形成が可能となり得る。
(2) Contact area The contact area between the electrodes and the base material may be the same or different between the pair of electrodes. By intentionally changing the contact area, the current density distribution in the local area can be changed when energized. As a result, the temperature distribution in the modified portion to be Joule-heated and thus the metal structure distribution also changes, and it is possible to form a modified portion having a desired characteristic distribution (for example, hardness distribution).
例えば、第1電極と基材との第1接触面積を第2電極と基材との第2接触面積よりも小さくする。この場合、通電時の局部内の電流密度は第1電極側で大きくなり、第2電極側よりも第1電極側に高温域が形成され易くなる。これにより、例えば、硬さが最小または極小となる位置が、第1電極側寄りになった改質部の形成が可能となる。 For example, the first contact area between the first electrode and the base material is made smaller than the second contact area between the second electrode and the base material. In this case, the current density in the local area when energized becomes large on the first electrode side, and a high temperature region is more likely to be formed on the first electrode side than on the second electrode side. As a result, for example, it is possible to form a modified portion in which the position where the hardness is the minimum or the minimum is closer to the first electrode side.
第2接触面積(S2)に対する第1接触面積(S1)の割合である接触面積比(S1/S2)は0.2以上、0.25以上さらには0.35以上とするとよい。接触面積比が過小になると、電流集中により、局部的な過熱、溶融等が生じ得る。敢えていうと、接触面積比は0.7以下さらには0.5以下とするとよい。接触面積比が過大である(1に近い)と、第1接触面積と第2接触面積が略同じとき(接触面積比が1のとき)との大差がない。 The contact area ratio (S1 / S2), which is the ratio of the first contact area (S1) to the second contact area (S2), is preferably 0.2 or more, 0.25 or more, and further 0.35 or more. If the contact area ratio is too small, local overheating, melting, etc. may occur due to current concentration. If you dare to say, the contact area ratio should be 0.7 or less and even 0.5 or less. When the contact area ratio is excessive (close to 1), there is no big difference between when the first contact area and the second contact area are substantially the same (when the contact area ratio is 1).
ちなみに、本明細書でいう「接触面積」は、電極の先端面と基材(局部)の表面とが実際に接触していると考えられる面積である。接触する両面が平坦面であれば、電極の先端面の面積を接触面積とすればよい。電極の先端面と基材の表面との少なくとも一方が曲面の場合、電極と基材との接触部に現れる打痕の水平投影面積を、接触面積として代用する。 Incidentally, the "contact area" referred to in the present specification is an area where the tip surface of the electrode and the surface of the base material (local part) are considered to be in actual contact. If both sides in contact are flat surfaces, the area of the tip surface of the electrode may be the contact area. When at least one of the tip surface of the electrode and the surface of the base material is a curved surface, the horizontally projected area of the dent appearing at the contact portion between the electrode and the base material is substituted as the contact area.
(3)電気伝導率
電極を構成する金属(「電極材」ともいう。)の電気伝導率は、一対の電極間で同じでもよいし、異なっていてもよい。電気伝導率を意図的に変えることにより、局部内の電流密度分布を変化させ得る。これにより、ジュール加熱される改質部内の温度分布ひいては金属組織分布も変化し、所望の特性分布(例えば硬さ分布)を有する改質部の形成が可能となり得る。
(3) Electrical Conductivity The electrical conductivity of the metal (also referred to as “electrode material”) constituting the electrode may be the same or different between the pair of electrodes. By intentionally changing the electrical conductivity, the current density distribution in the local area can be changed. As a result, the temperature distribution in the modified portion to be Joule-heated and thus the metal structure distribution also changes, and it is possible to form a modified portion having a desired characteristic distribution (for example, hardness distribution).
例えば、第1金属の電気伝導率を第2金属の電気伝導率よりも小さくする。この場合、通電時の局部内の電流密度は第1電極側で大きくなり、第2電極側よりも第1電極側に高温域が形成され易くなる。これにより、例えば、硬さが最小または極小となる位置が第1電極側寄りになった改質部の形成が可能となる。 For example, the electric conductivity of the first metal is made smaller than the electric conductivity of the second metal. In this case, the current density in the local area when energized becomes large on the first electrode side, and a high temperature region is more likely to be formed on the first electrode side than on the second electrode side. As a result, for example, it is possible to form a modified portion in which the position where the hardness is the minimum or the minimum is closer to the first electrode side.
第2金属の電気伝導率(σ2)に対する第1金属の電気伝導率(σ1)の割合である電気伝導比(σ1/σ2)は0.2以上、0.35以上さらには0.45以上とするとよい。電気伝導比が過小になると、第1電極自体の発熱量が増加して効率的でない。敢えていうと、電気伝導比は0.8以下さらには0.6以下とするとよい。電気伝導比が過大である(1に近い)と、電気伝導比が1のときとの大差がない。 The electric conductivity ratio (σ1 / σ2), which is the ratio of the electric conductivity (σ1) of the first metal to the electric conductivity (σ2) of the second metal, is 0.2 or more, 0.35 or more, and further 0.45 or more. It is good to do. If the electrical conduction ratio is too small, the amount of heat generated by the first electrode itself increases, which is inefficient. If you dare to say it, the electrical conduction ratio should be 0.8 or less and even 0.6 or less. When the electric conduction ratio is excessive (close to 1), there is no big difference from when the electric conduction ratio is 1.
ちなみに、電気伝導率(導電率)は、抵抗率(比抵抗)の逆数であり、国際単位系(SI)では「S/m」が用いられる。但し、本明細書では、適宜、日本粉末冶金工業規格JPMA−5に準拠して、国際的に採択された焼鈍標準軟銅(IACS:international annealed copper standard)の比抵抗(1.7241×10-2μΩm)に相当する電気伝導率(100%IACS)に対する割合である「%IACS」により、電気伝導率を指標する。 Incidentally, the electric conductivity (conductivity) is the reciprocal of the resistivity (specific resistance), and "S / m" is used in the International System of Units (SI). However, in this specification, as appropriate, in conformity with Japan Powder Metallurgy Industry Standard JPMA-5, internationally adopted have been annealed standard soft copper (IACS: international annealed copper standard) of the specific resistance (1.7241 × 10 -2 The electrical conductivity is indexed by "% IACS", which is a ratio to the electrical conductivity (100% IACS) corresponding to μΩm).
電極材の電気伝導率により、局部の発熱分布が変化する理由は次のように考えられる。図6に示すように、金属材料は、電気伝導率と熱伝導率がほぼ比例関係となる。このため、電気伝導率の小さい電極材は熱伝導率も小さく、逆に、電気伝導率の大きい電極材は熱伝導率も大きくなる。例えば、電気伝導率の小さい第1金属は熱伝導率も小さく、第1電極からの放熱量も少ない。その結果、第1電極側には、第2電極側よりも高温域が形成され易くなる。なお、図6に示した電気伝導率と熱伝導率は、日本アルミニウム協会 アルミニウム材料データベースから抜粋したデータに基づいてプロットした。 The reason why the local heat generation distribution changes depending on the electrical conductivity of the electrode material is considered as follows. As shown in FIG. 6, in the metal material, the electric conductivity and the thermal conductivity have a substantially proportional relationship. Therefore, the electrode material having a small electric conductivity also has a small thermal conductivity, and conversely, the electrode material having a large electric conductivity also has a large thermal conductivity. For example, the first metal having a small electric conductivity has a small thermal conductivity, and the amount of heat radiated from the first electrode is also small. As a result, a high temperature region is more likely to be formed on the first electrode side than on the second electrode side. The electric conductivity and thermal conductivity shown in FIG. 6 are plotted based on the data extracted from the aluminum material database of the Japan Aluminum Association.
電極材は、大電流の通電と加圧力の印加に適した金属であるとよい。例えば、純銅(無酸素銅、タフピッチ銅、リン脱酸銅等)の他、クロム銅、ジルコニウム銅、クロム・ジルコニウム銅、アルミナ分散銅、ベリリウム銅等が電極材に用いられる。このような電極材は、例えば、JIS Z3234(2種)、またはRWMA(Resistance Welder Manufacturer’s Association/米国抵抗溶接機製造者協会)のGroupA(Class2)に準拠して選択される。電極材の代表例は、電気伝導率と強度に優れるクロム銅(Cr:0.5〜1.4質量%、Cu:残部)である。このような銅系の電極材の電気伝導率は、例えば、55〜95%IACS、60〜90%IACSさらには65〜85%IACSである。 The electrode material is preferably a metal suitable for energizing a large current and applying a pressing force. For example, in addition to pure copper (oxygen-free copper, tough pitch copper, phosphorus deoxidized copper, etc.), chromium copper, zirconium copper, chromium / zirconium copper, alumina-dispersed copper, beryllium copper, etc. are used as electrode materials. Such an electrode material is selected in accordance with, for example, JIS Z3234 (2 types) or Group A (Class 2) of RWMA (Resistance Welder Manufacturer's Association). A typical example of the electrode material is chromium copper (Cr: 0.5 to 1.4% by mass, Cu: balance) having excellent electrical conductivity and strength. The electrical conductivity of such a copper-based electrode material is, for example, 55-95% IACS, 60-90% IACS, and even 65-85% IACS.
その他の電極材として、タングステン(W)、モリブデン(Mo)、銅タングステン(Cu−W)、銀タングステン(Ag−W)、ヘビーアロイ(W−Ni−Cu系材)、W−TiN系材等もある。これらの電極材は、比較的電気伝導率が小さいため、電気伝導比を1未満(σ1/σ2<1)とするときの第1金属(電極材)となる。このような電極材の電気伝導率は、例えば、5〜55%IACS、10〜50%IACSさらには15〜45%IACSである。 Other electrode materials include tungsten (W), molybdenum (Mo), copper tungsten (Cu-W), silver tungsten (Ag-W), heavy alloy (W-Ni-Cu-based material), W-TiN-based material, etc. is there. Since these electrode materials have a relatively small electric conductivity, they become the first metal (electrode material) when the electric conductivity ratio is less than 1 (σ1 / σ2 <1). The electrical conductivity of such an electrode material is, for example, 5 to 55% IACS, 10 to 50% IACS, and even 15 to 45% IACS.
(4)その他
第1接触面積と第2接触面積が異なるとき、第1金属と第2金属は、電気伝導率が同じでも異なっていてもよい。同様に、第1金属の電気伝導率と第2金属の電気伝導率が異なるとき、第1接触面積と第2接触面積は同じでも異なっていてもよい。各電極の接触面積と電気伝導率は、所望する局部の特性分布に応じて、自在に組み合わせるとよい。
(4) Others When the first contact area and the second contact area are different, the first metal and the second metal may have the same or different electric conductivity. Similarly, when the electric conductivity of the first metal and the electric conductivity of the second metal are different, the first contact area and the second contact area may be the same or different. The contact area and electrical conductivity of each electrode may be freely combined according to the desired local characteristic distribution.
ちなみに、一対の電極間の電気伝導率または接触面積が略同じとき、電極間の中央域(局部の中心部)で高温となり易い。ジュール熱自体は電極間の最短経路(通電路)に沿って生じるが、中央域は電極からの冷却や局部表面からの放熱の影響が小さいためである。なお、本明細書でいう「略同じ」とは、敢えていうと、一方が他方の90%〜110%にあるときである。 By the way, when the electric conductivity or the contact area between the pair of electrodes is substantially the same, the temperature tends to be high in the central region (local central portion) between the electrodes. Joule heat itself is generated along the shortest path (energization path) between the electrodes, but the influence of cooling from the electrodes and heat dissipation from the local surface is small in the central region. The term "substantially the same" as used herein means that one is 90% to 110% of the other.
各電極材は基材(Al合金)よりも電気伝導率が大きいため、通電時、各電極の自己発熱は基材の自己発熱よりも小さい。但し、電極も、自己発熱や基材からの熱伝達により相応に高温になり得る。そこで、電極自体の強度や電極による局部の冷却性等を確保するため、電極は強制冷却(水冷等)されてもよい。 Since each electrode material has a higher electrical conductivity than the base material (Al alloy), the self-heating of each electrode is smaller than the self-heating of the base material when energized. However, the electrode can also be heated to a correspondingly high temperature due to self-heating or heat transfer from the base material. Therefore, in order to secure the strength of the electrode itself, the local cooling property of the electrode, and the like, the electrode may be forcibly cooled (water-cooled or the like).
《改質工程》
改質工程は、基材の局部に圧接(加圧されつつ当接)された各電極へ通電することによりなされる。ここでは、電極の基材への加圧と電極間の通電について説明する。
《Reforming process》
The reforming step is performed by energizing each electrode that is pressure-welded (contacted while being pressurized) to the local part of the base material. Here, pressurization of the electrodes on the base material and energization between the electrodes will be described.
(1)加圧
電極から局部への加圧力(圧接力)は、局部の表面状況、Al合金の組成や種類等に応じて調整され得る。加圧力は、例えば、5〜70N/mm2、15〜50N/mm2または25〜45N/mm2である。加圧力が過小であると、接触抵抗が増加する。また、基材が鋳物である場合、局部にブリスタが生じ易くなる。加圧力が過大になると、基材の変形(陥没等)や電極の変形(摩耗、座屈等)が生じ易くなる。
(1) Pressurization The pressing force (pressure contact force) from the electrode to the local area can be adjusted according to the local surface condition, the composition and type of the Al alloy, and the like. The pressing force is, for example, 5 to 70 N / mm 2 , 15 to 50 N / mm 2 or 25 to 45 N / mm 2 . If the pressing force is too small, the contact resistance increases. Further, when the base material is a casting, blister is likely to occur locally. When the pressing force becomes excessive, deformation of the base material (depression, etc.) and deformation of the electrodes (wear, buckling, etc.) are likely to occur.
(2)通電
電極から局部への通電も、局部の形態、Al合金の組成や種類、所望特性等に応じて調整され得る。電流密度は、例えば、50〜600A/mm2、100〜500A/mm2または200〜450A/mm2である。通電時間は、例えば、100〜4000msec、400〜3000msecまたは500〜2000msecである。電流密度や通電時間が過小では、加熱が不十分となる。電流密度や通電時間が過大になると、変形の増大や液相の出現を招く。
(2) Energization The energization from the electrode to the local part can also be adjusted according to the local form, the composition and type of the Al alloy, the desired characteristics, and the like. The current densities are, for example, 50-600 A / mm 2 , 100-500 A / mm 2 or 200-450 A / mm 2 . The energizing time is, for example, 100 to 4000 msec, 400 to 3000 msec, or 500 to 2000 msec. If the current density or energization time is too small, heating will be insufficient. If the current density or energization time becomes excessive, the deformation will increase and the liquid phase will appear.
改質工程は、局部に液相が生じさせない範囲でなされるとよい。つまり、局部の温度が液相線温度未満となる範囲で通電されるとよい。局部に液相が生じると、組織の粗大化等を生じて、局部における特性制御が難しくなる。通電は、局部の表面温度が、例えば、350〜650℃、400〜600℃さらには450〜550℃となる範囲でなされるとよい。 The reforming step should be performed within a range that does not cause a liquid phase locally. That is, it is preferable to energize in a range where the local temperature is lower than the liquidus temperature. When a liquid phase is generated locally, the structure becomes coarse and it becomes difficult to control the characteristics locally. The energization may be performed in a range where the local surface temperature is, for example, 350 to 650 ° C, 400 to 600 ° C, and further 450 to 550 ° C.
なお、液相線温度未満は、Al合金の液相が0.2質量%出現する温度未満としてもよい。「Al合金の液相が0.2質量%出現する温度」は、各Al合金(組成)毎に、統合型熱力学計算ソフトウェアー "Thermo-Calc" を用いた凝固計算を行って得られた液相率と温度との関係から求まる。 The temperature below the liquidus line temperature may be lower than the temperature at which 0.2% by mass of the liquid phase of the Al alloy appears. The "temperature at which the liquid phase of the Al alloy appears in an amount of 0.2% by mass" was obtained by performing a solidification calculation using the integrated thermodynamic calculation software "Thermo-Calc" for each Al alloy (composition). It is obtained from the relationship between the liquid phase ratio and the temperature.
なお、本明細書でいう「局部の表面温度」は、電極が接触する部分(電極接触部)またはその極近傍における表面温度を、その周辺に設置した熱電対(例えば、K熱電対)で測温して求まる。その最高温度が上述した範囲内にあるとよい。 The "local surface temperature" referred to in the present specification is a measurement of the surface temperature in the portion where the electrodes are in contact (electrode contact portion) or in the immediate vicinity thereof with a thermocouple installed in the vicinity thereof (for example, a K thermocouple). Warm and seek. The maximum temperature should be within the above range.
(3)処理パターン
改質工程の開始から終了までの間で、加圧力が変化する形態(「加圧パターン」という。)や電流密度が変化する形態(「通電パターン」という。)は、種々あり得る。例えば、開始直後または終了間際を除いて、加圧力や電流密度が一定値に保持される方形パターンまたは台形パターン(「基本パターン」という。)がある。
(3) Treatment pattern There are various forms in which the pressing force changes (referred to as "pressurization pattern") and the current density changes (referred to as "energization pattern") from the start to the end of the reforming process. possible. For example, there is a square pattern or a trapezoidal pattern (referred to as "basic pattern") in which the pressing force and the current density are maintained at a constant value except immediately after the start or just before the end.
加圧力および/または電流密度が、途中で変化する変則パターンを採用してもよい。変則パターンは、一つの局部を加熱する際に(つまり1回の改質工程中に)、電流密度等が一定周期で変化し、それを複数サイクル行うサイクルパターンでもよい。変則パターンは、通常、制御の容易な電流密度だけを変化させれば足る。 An irregular pattern in which the pressing force and / or the current density changes in the middle may be adopted. The anomalous pattern may be a cycle pattern in which the current density or the like changes at regular intervals when one local area is heated (that is, during one reforming step), and this is performed in a plurality of cycles. Anomalous patterns usually only need to change the current density, which is easy to control.
《改質部》
改質部は、改質前の局部(基材)の特性が変化したものであればよい。その特性と程度は、適宜、調整される。特性は、例えば、延性、靱性、伸び、強度等の機械的性質であり、それらの代表的な指標として硬さがある。
《Modified part》
The modified portion may be one in which the characteristics of the local part (base material) before modification have changed. Its characteristics and degree are adjusted as appropriate. The characteristics are mechanical properties such as ductility, toughness, elongation, and strength, and hardness is a typical index thereof.
改質部は、例えば、周辺部よりも高延性とした延性部でもよい。延性部は、周辺部よりも、例えば、表面硬さや厚さ方向の平均硬さが小さい。また改質部は、厚さ方向における硬さが最小または極小となる位置が厚さ中央よりも表面側に偏った硬さ分布を有するものでもよい。このような延性部は、SPR、ボルト等の機械的な方法により、他部材をAl合金部材に接合する部位(接合部)として好ましい。 The modified portion may be, for example, a ductile portion having a higher ductility than the peripheral portion. The ductile portion has, for example, a smaller surface hardness and an average hardness in the thickness direction than the peripheral portion. Further, the modified portion may have a hardness distribution in which the position where the hardness is the minimum or the minimum in the thickness direction is biased toward the surface side from the center of the thickness. Such a ductile portion is preferable as a portion (joining portion) for joining another member to the Al alloy member by a mechanical method such as SPR or a bolt.
本明細書でいう硬さは、対象部位を含む断面を、マイクロビッカース硬度計(例えば、株式会社明石製作所製 MVK−E)を用いて測定される。測定は、鏡面まで研磨した観察片を用いて、荷重:100g、負荷時間:15秒間として行う。こうして測定されたビッカース硬さを「HV0.1」で示す。なお、硬さは、表面から200μm以上深い位置から測定を開始する。改質部の硬さは、電極の先端面が接していた局部の最表面の中央付近から延びる法線方向に沿って測定する。 The hardness referred to in the present specification is measured by using a micro Vickers hardness tester (for example, MVK-E manufactured by Akashi Seisakusho Co., Ltd.) for a cross section including a target portion. The measurement is performed using an observation piece polished to a mirror surface, with a load of 100 g and a load time of 15 seconds. The Vickers hardness measured in this way is indicated by "HV0.1". The hardness is measured from a position deeper than 200 μm from the surface. The hardness of the modified portion is measured along the normal direction extending from the vicinity of the center of the outermost surface of the local portion where the tip surface of the electrode is in contact.
硬さ分布は、特に断らない限り、200μmピッチ間隔で測定したビッカース硬さで示す。平均硬さは、表面から、その法線方向に延びる厚さ中央(肉厚中心)までの間で、200μmピッチ間隔で測定した各硬さの算術(相加)平均値とする。表面硬さは、表面から200μmの深さ位置において測定した硬さとする。 Unless otherwise specified, the hardness distribution is indicated by Vickers hardness measured at intervals of 200 μm pitch. The average hardness is the arithmetic (additional) average value of each hardness measured at intervals of 200 μm pitch from the surface to the center of thickness (center of wall thickness) extending in the normal direction. The surface hardness shall be the hardness measured at a depth of 200 μm from the surface.
基準となる周辺部(基部:非加熱部な基材部分)の硬さは、局部加熱の影響が及んでいない領域の硬さとする。熱影響部の幅は高々1〜2mm程度であるので、電極接触部の外周縁(または内周縁)から外側(または内側)に2mm以上離間した領域(位置)を周辺部とすればよい。 The hardness of the reference peripheral portion (base: non-heated base material portion) shall be the hardness of the region not affected by local heating. Since the width of the heat-affected zone is at most about 1 to 2 mm, a region (position) separated from the outer peripheral edge (or inner peripheral edge) of the electrode contact portion by 2 mm or more to the outside (or inside) may be set as the peripheral portion.
局部を高延性化する場合、改質部の表面硬さは、周辺部の表面硬さに対して、例えば、90%以下、85%以下さらには80%以下であるとよい。また、改質部における最小または極小の硬さは、改質部の表面硬さに対して、例えば、85%以下、75%以下さらには65%以下であるとよい。 When the local area is made highly ductile, the surface hardness of the modified portion is preferably 90% or less, 85% or less, and further 80% or less with respect to the surface hardness of the peripheral portion. Further, the minimum or minimum hardness of the modified portion is preferably 85% or less, 75% or less, and further 65% or less with respect to the surface hardness of the modified portion.
《Al合金部材》
(1)基材
基材は、Al合金からなる鋳物でも展伸材でもよい。いずれの場合でも、基材の局部がジュール加熱されると、金属組織の変化、製造時に導入された各種の歪みの緩和・解放等が生じて、特性(主に機械的性質)が改善される。
<< Al alloy member >>
(1) Base material The base material may be a casting made of an Al alloy or a wrought material. In any case, when the local part of the base material is Joule-heated, the characteristics (mainly mechanical properties) are improved by changing the metal structure and relaxing / releasing various strains introduced during manufacturing. ..
基材が鋳物の場合であれば、Al合金組成にも依るが、改質工程により局部の延性または靱性が向上し得る。この理由は次のように考えられる。鋳物は所定温度以上に昇温されると、金属組織(基地)中にあった析出相(Si、Mg2Si、CuAl2等)が、α−Al内に再固溶される。また、鋳造時に晶出した角張った結晶(共晶相等)も、丸みをおびた形状へ変化(つまり球状化)する。さらに、鋳造時に蓄積された内部歪も、緩和または解消される。これらのことが相加的または相乗的に作用して軟化(高延性化、高靱性化)する。 If the substrate is a cast, local ductility or toughness can be improved by the reforming step, depending on the Al alloy composition. The reason for this can be considered as follows. When the temperature of the casting is raised to a predetermined temperature or higher, the precipitated phase (Si, Mg 2 Si, CuAl 2, etc.) in the metal structure (base) is re-solidified into α-Al. In addition, angular crystals (eutectic phase, etc.) crystallized during casting also change to a rounded shape (that is, spheroidized). Further, the internal strain accumulated during casting is also relaxed or eliminated. These things act additively or synergistically to soften (high ductility, high toughness).
改質工程では、極短時間内に局部だけが所望温度まで急速に昇温した後、その局部は通電終了後に電極を通じて急冷される。このため、特性変化を生じる範囲は、電極(先端面)の接触部分かその極近傍域(つまり局部)に限られる。この結果、局部を軟化させつつも、Al合金鋳物全体としての実体強度の低下や熱歪みの発生等を回避できる。さらに、局部は加圧されつつ昇温するため、鋳造時に導入された内在ガスが局部内にあっても、それに起因したブリスタが発生することも抑止される。 In the reforming step, only the local temperature is rapidly raised to a desired temperature within a very short time, and then the local temperature is rapidly cooled through the electrode after the energization is completed. Therefore, the range in which the characteristic change occurs is limited to the contact portion of the electrode (tip surface) or the region extremely close to the contact portion (that is, the local region). As a result, it is possible to avoid a decrease in the physical strength of the Al alloy casting as a whole and the occurrence of thermal strain while softening the local part. Further, since the temperature rises while the local area is pressurized, even if the internal gas introduced at the time of casting is locally present, the generation of blister due to the internal gas is suppressed.
鋳物は、ダイカスト鋳造されたものでも、低圧鋳造されたものでも、重力鋳造されたものでもよい。また、金型鋳造されたものに限らず、砂型鋳造されたものでもよい。鋳造用Al合金は、例えば、Al−Si系合金、Al−Si−Cu系合金、Al−Mg−Si系合金等である。Al−Si系合金は、例えば、AC2B、AC4C、AC8A(JIS)等である。Al−Si−Cu系合金は、例えば、ADC10、ADC12(JIS)等である。Al−Mg−Si系合金は、例えば、欧州で開発されたMagsimal−59等である。 The casting may be die-cast, low-pressure cast, or gravity-cast. Further, the product is not limited to the mold-cast one, and may be a sand-cast one. The Al alloy for casting is, for example, an Al—Si based alloy, an Al—Si—Cu based alloy, an Al—Mg—Si based alloy, or the like. The Al—Si alloy is, for example, AC2B, AC4C, AC8A (JIS) or the like. The Al—Si—Cu based alloy is, for example, ADC10, ADC12 (JIS) and the like. The Al-Mg-Si based alloy is, for example, Magsimal-59 developed in Europe.
なお、鋳物は、非熱処合金からなる他、熱処理合金(Al−Cu系合金等)からなってもよい。熱処理合金からなる鋳物は、所望の熱処理後に改質工程がなされるとよい(この点は、後述する展伸材についても同様である)。鋳造用合金の一例として、例えば、Si:6〜12%と、任意に、Mg:0.1〜1%、Mn:0.2〜1.2%、Fe:0.05〜1%、Cu:1〜5%、微量元素(Sr、Na、Sb等の合計):0.003〜0.05%の一種以上とを含み、残部がAlおよび不純物であるAl合金がある。 The casting may be made of a non-heat-treated alloy or a heat-treated alloy (Al—Cu alloy or the like). The cast made of the heat-treated alloy may be reformed after the desired heat treatment (this point also applies to the wrought material described later). As an example of an alloy for casting, for example, Si: 6 to 12%, optionally Mg: 0.1 to 1%, Mn: 0.2 to 1.2%, Fe: 0.05 to 1%, Cu : 1 to 5%, trace elements (total of Sr, Na, Sb, etc.): 0.003 to 0.05%, and there is an Al alloy in which the balance is Al and impurities.
展伸材は、プレス成形、鍛造等の塑性加工されたものでも、切削加工されたものでもよい。展伸材は、いずれの系統のAl合金でもよい。純Al(JIS 1000系)でもよいが、改質工程の基材として合金成分を相応に含むAl合金系(JIS 2000系〜7000系)が好ましい。展伸材は、例えば、Al−Cu系合金(JIS 2000系)、Al−Mg系合金(JIS 5000系)、Al−Mg−Si系合金(JIS 6000系)等の展伸用Al合金であるとよい。 The wrought material may be plastically processed such as press molding or forging, or may be machined. The wrought material may be an Al alloy of any type. Pure Al (JIS 1000 series) may be used, but an Al alloy system (JIS 2000 series to 7000 series) containing an alloy component as a base material for the reforming step is preferable. The wrought material is, for example, an Al alloy for wrought such as an Al—Cu based alloy (JIS 2000 series), an Al—Mg based alloy (JIS 5000 series), and an Al—Mg—Si based alloy (JIS 6000 series). It is good.
基材が展伸材の場合でも、Al合金組成、改質工程の条件(電流密度、通電時間等)を調整すれば、溶質元素の固溶(溶体化)や析出(時効)等により、延性、靱性または強度等が向上した改質部が形成され得る。塑性加工(特に冷間塑性加工)された展伸材(基材)からなる局部に改質工程を行う場合なら、加工歪みや残留応力の解放等により、延性や靱性が向上した改質部が得られる。 Even if the base material is a wrought material, if the Al alloy composition and the conditions of the reforming process (current density, energization time, etc.) are adjusted, ductility due to solid solution (solution hardening) and precipitation (aging) of solute elements A modified portion having improved toughness or strength can be formed. When a modification process is performed on a locally formed wrought material (base material) that has been plastically worked (especially cold plastic working), the modified part with improved ductility and toughness due to processing strain and release of residual stress, etc. can get.
ちなみに、図6に示すように、展伸材(展伸用Al合金)は鋳造材(鋳造用Al合金)よりも、電気伝導率が高い。このため、展伸材は鋳造材よりも自己発熱し難い(ジュール加熱され難い)ともいえる。但し、上述したように、一方の電極の接触面積や電気伝導率を調整して電流密度を高めれば、展伸材(基材)からなる局部でも、所望の改質が可能となる。ちなみに、展伸材の電気伝導率が高い理由は、その金属組織が鋳造組織(図5参照)と異なり、微細で均質的なためと考えられる。 Incidentally, as shown in FIG. 6, the wrought material (alloy for wrought) has a higher electric conductivity than the cast material (Al alloy for casting). Therefore, it can be said that the wrought material is less likely to generate heat by itself (it is less likely to be Joule heated) than the cast material. However, as described above, if the contact area and the electric conductivity of one of the electrodes are adjusted to increase the current density, the desired modification can be performed even in a local area made of a wrought material (base material). By the way, it is considered that the reason why the electric conductivity of the wrought material is high is that the metal structure is fine and homogeneous unlike the cast structure (see FIG. 5).
(2)形態・用途
Al合金部材の形態や用途は様々である。形態や用途に応じて、改質部の形状、大きさ、数等も適宜調整されるとよい。各改質部の表面形状は、円形、角形、方形等のいずれでもよく、通常、電極の先端面の形状に略依存する。その大きさは、例えば、10〜1cm2さらには5〜2cm2程度である。改質部が複数あるとき、各改質部は、離散的に配設したものでもよいし、隣接間で部分的に重畳させて連続的に配設したものでもよい。
(2) Form and application There are various forms and applications of Al alloy members. The shape, size, number, etc. of the modified portion may be appropriately adjusted according to the form and application. The surface shape of each modified portion may be circular, square, square, or the like, and usually depends substantially on the shape of the tip surface of the electrode. Its size is, for example, about 10 to 1 cm 2 and further to about 5 to 2 cm 2 . When there are a plurality of modified portions, each modified portion may be arranged discretely or may be arranged continuously by partially superimposing them between adjacent portions.
改質部は、例えば、他部材が機械的に接合される接合部(接合予定部を含む)となる。軟化または高延性化された改質部を接合部に利用すると、部材全体の強度等を維持しつつ、接合時や接合後の割れ等を抑制できる。 The modified portion is, for example, a joint portion (including a planned joint portion) to which other members are mechanically joined. By using the softened or highly ductile modified portion for the joint portion, it is possible to suppress cracks during and after joining while maintaining the strength of the entire member.
なお、本明細書でいう機械的な接合は、例えば、ネジ(ボルト・ナット等)やリベットによりなされる。リベットは、予め形成した孔へ挿入された後にかしめられるものでも、自己穿孔式のもの(SPR:Self Piercing Rivet/セルフピアシングリベット)でもよい。局所的に大きな塑性変形を伴うSPRの打鋲が軟化または高延性化された改質部でなされると、割れが防止される。 The mechanical joining referred to in the present specification is performed by, for example, screws (bolts, nuts, etc.) or rivets. The rivet may be one that is crimped after being inserted into a preformed hole, or one that is self-perforated (SPR: Self Piercing Rivet). Cracking is prevented when the studs of the SPR with locally large plastic deformation are made in the softened or highly ductile modified portion.
SPR接合する場合、改質部の大きさは、SPRの頭部の大きさに対して、例えば、2〜3倍とすればよい。具体的にいうと、例えば、改質部の直径または一辺を15〜25mmの円形状または方形状とするとよい。このような改質部は、電極の先端面の形状や大きさにより調整される。 In the case of SPR joining, the size of the modified portion may be, for example, 2 to 3 times the size of the head of the SPR. Specifically, for example, the diameter or one side of the modified portion may be a circular shape or a square shape of 15 to 25 mm. Such a modified portion is adjusted by the shape and size of the tip surface of the electrode.
機械的に接合される他部材(被接合部材)は、Al合金部材と同種材でもよいが、通常、金属や樹脂等の異種材である。SPR接合する場合、被接合部材はリベットが貫通可能な(薄)板状であるとよい。 The other member (member to be joined) to be mechanically joined may be the same material as the Al alloy member, but is usually a different material such as metal or resin. In the case of SPR joining, the member to be joined is preferably in the shape of a (thin) plate through which rivets can penetrate.
様々な試料(Al合金部材)を製作し、それらの硬さ分布や金属組織等を評価した。このような具体例を挙げつつ、本発明をさらに詳しく説明する。 Various samples (Al alloy members) were produced, and their hardness distribution and metallographic structure were evaluated. The present invention will be described in more detail with reference to such specific examples.
《試料の製造》
(1)基材
基材(母材)として、Al合金からなる板状の鋳物(100mm×30mm×3mm)を用意した。この鋳物はダイカスト鋳造により製作した。ダイカスト鋳造は、工具鋼(JIS SKD61)からなる金型のキャビティへ、調製した溶湯を射出して行った。鋳造条件は、湯温:630℃、型温:200℃、鋳造圧力:40MPa、射出速度:2m/sとした。
<< Production of sample >>
(1) Base material As a base material (base material), a plate-shaped casting (100 mm × 30 mm × 3 mm) made of an Al alloy was prepared. This casting was made by die casting. The die casting was performed by injecting the prepared molten metal into the cavity of the mold made of tool steel (JIS SKD61). The casting conditions were hot water temperature: 630 ° C, mold temperature: 200 ° C, casting pressure: 40 MPa, and injection speed: 2 m / s.
溶湯の調製は、下記の組成に秤量した原料(金属、化合物)を大気中で溶解して行った。下記の組成を有するAl合金の場合、液相が0.2質量%出現する温度は572℃である。合金組成は(溶湯)全体(100質量%)に対する質量割合である。
合金組成:Al−9%Si−0.21%Mg−0.38%Mn−0.12%Fe
The molten metal was prepared by dissolving the raw materials (metals, compounds) weighed to the following composition in the air. In the case of an Al alloy having the following composition, the temperature at which 0.2% by mass of the liquid phase appears is 572 ° C. The alloy composition is the mass ratio to the whole (molten metal) (100% by mass).
Alloy composition: Al-9% Si-0.21% Mg-0.38% Mn-0.12% Fe
(2)加圧・通電(改質工程)
図1に示すように、上述した基材wの中央部(局部)を一対の電極1(第1電極)と電極2(第2電極)で挟持して加圧および通電を行った。各電極には、先端面が平坦な円形状であるF形電極チップを用いた。各電極のサイズ(外径)または材質は、後述するように種々変更した。
(2) Pressurization / energization (reforming process)
As shown in FIG. 1, the central portion (local portion) of the above-mentioned base material w was sandwiched between a pair of electrodes 1 (first electrode) and electrode 2 (second electrode) to pressurize and energize. For each electrode, an F-shaped electrode tip having a flat tip surface was used. The size (outer diameter) or material of each electrode was variously changed as described later.
加圧および通電は、スポット溶接機(ART−HIKARI株式会社製)により行った。その際、電極と基材の接触領域の外周縁近傍における表面温度を、K熱電対により適宜測定した。 Pressurization and energization were performed by a spot welder (manufactured by ART-HIKARI Co., Ltd.). At that time, the surface temperature in the vicinity of the outer peripheral edge of the contact region between the electrode and the base material was appropriately measured by a K thermocouple.
加圧および通電のパターンを図2(実線部分)に示した。先ず、電極の先端面を基材の中央部表面に接触させ、電極から基材へ加圧力を印加する(区間I)。次に、その加圧状態のまま、電極から基材へ通電を開始し、一定の電流値を所定時間供給する(区間II)。通電終了後、電極から基材への加圧力を除去して、電極を基材から離脱させる(区間III)。なお、図2中に破線で示すように、通電途中で電流値を変更する変則パターンを採用することもできる。 The pressurization and energization patterns are shown in FIG. 2 (solid line portion). First, the tip surface of the electrode is brought into contact with the central surface of the base material, and a pressing force is applied from the electrode to the base material (section I). Next, in the pressurized state, energization is started from the electrode to the base material, and a constant current value is supplied for a predetermined time (section II). After the energization is completed, the pressing force from the electrode to the base material is removed to separate the electrode from the base material (section III). As shown by the broken line in FIG. 2, an irregular pattern in which the current value is changed during energization can also be adopted.
本実施例でいう通電時間は、通電開始から通電終了までの時間(図2の区間IIの全時間)である。電流値が一定な時間は、その通電時間の約90%である。また、本実施例でいう加圧力と電流密度は、電極から基材へ印加される荷重と電流値を、電極と基材の接触面積で除した値である。 The energization time referred to in this embodiment is the time from the start of energization to the end of energization (the total time of section II in FIG. 2). The time when the current value is constant is about 90% of the energization time. Further, the pressing force and the current density referred to in this embodiment are values obtained by dividing the load and the current value applied from the electrode to the base material by the contact area between the electrode and the base material.
(3)接触面積
先端側の外径(呼び径)が異なるクロム銅製電極チップ(SMK株式会社製/80%IACS)を種々用意した。これらから選択した1対の電極を電極1と電極2として、上述した加圧・通電を行った。各電極の電流密度、接触面積比および通電時間を表1に併せて示した。なお、電極間の加圧力(荷重)は4kNで一定とした。また、各電極の先端面1a、2aの面積を接触面積として、その面積比を接触面積比とした。表1に示した電流密度は、通電時の電流値(一定制御)を、電極と基材の接触面積で除して求めた。
(3) Contact area Various chrome copper electrode tips (manufactured by SMK Corporation / 80% IACS) having different outer diameters (nominal diameters) on the tip side were prepared. The pair of electrodes selected from these was used as the electrode 1 and the electrode 2, and the above-mentioned pressurization and energization were performed. Table 1 also shows the current density, contact area ratio, and energization time of each electrode. The pressing force (load) between the electrodes was constant at 4 kN. Further, the area of the tip surfaces 1a and 2a of each electrode was defined as the contact area, and the area ratio thereof was defined as the contact area ratio. The current density shown in Table 1 was obtained by dividing the current value (constant control) at the time of energization by the contact area between the electrode and the base material.
ちなみに、各試料で用いた電極1と電極2の各外径は次の通りである。
試料11:φ10mm(両電極は同径)、試料12:φ10mmとφ15mm、
試料13:φ8mmとφ15mm、試料C1:φ6mmとφ15mm
Incidentally, the outer diameters of the electrodes 1 and 2 used in each sample are as follows.
Sample 11: φ10 mm (both electrodes have the same diameter), Sample 12: φ10 mm and φ15 mm,
Sample 13: φ8 mm and φ15 mm, Sample C1: φ6 mm and φ15 mm
(4)電気伝導率
材質が異なる電極チップを種々用意した。これらから選択した1対の電極を電極1と電極2として、上述した加圧・通電を行った。各電極の材質(第1金属、第2金属)と電気伝導率の比率(電気伝導比)および通電時間を表2に併せて示した。
(4) Electrical conductivity Various electrode chips made of different materials were prepared. The pair of electrodes selected from these was used as the electrode 1 and the electrode 2, and the above-mentioned pressurization and energization were performed. Table 2 also shows the ratio of the material (first metal, second metal) of each electrode to the electric conductivity (electrical conductivity ratio) and the energization time.
なお、各電極の外径:φ12mm、電極間の加圧力:35.4N/mm2(荷重:4kNとして、いずれも一定とした。表2に示した電流密度も、通電時の電流値(一定制御)を、電極と基材の接触面積で除して求めた。 The outer diameter of each electrode: φ12 mm, the pressing force between the electrodes: 35.4 N / mm 2 (load: 4 kN, both were constant. The current density shown in Table 2 is also the current value (constant) when energized. Control) was determined by dividing by the contact area between the electrode and the base material.
ちなみに、各試料で用いた電極材の電気伝導率は次の通りであった。
Cr銅:80%IACS(株式会社エスエムケイ製 Cr銅電極)
W:31%IACS(日本タングステン株式会社製 W電極)
黒鉛:4%IACS(東京炭素工業株式会社製 グラファイト電極)
By the way, the electric conductivity of the electrode material used in each sample was as follows.
Cr copper: 80% IACS (Cr copper electrode manufactured by SMC Co., Ltd.)
W: 31% IACS (W electrode manufactured by Nippon Tungsten Co., Ltd.)
Graphite: 4% IACS (graphite electrode manufactured by Tokyo Carbon Industry Co., Ltd.)
《測定・観察》
(1)硬さ
既述した方法により、各試料の供試材から製作した観察片を用いて、各位置におけるビッカース硬さ(HV0.1)を測定した。
《Measurement / Observation》
(1) Hardness The Vickers hardness (HV0.1) at each position was measured at each position using an observation piece produced from the test material of each sample by the method described above.
硬さ測定は、各観察片について、最表面(基準:0μm)から約200μm毎の位置で行った。通電加熱した局部(改質部)は、電極が接触していた中央付近において、表面から内部に向けて硬さを測定した。また、通電加熱を行わなかった試料C0の観察片(母材)についても、同様に硬さ測定を行った。 The hardness of each observation piece was measured at a position of about 200 μm from the outermost surface (reference: 0 μm). The hardness of the locally heated part (modified part) was measured from the surface to the inside near the center where the electrodes were in contact. In addition, the hardness of the observation piece (base material) of the sample C0 that was not energized and heated was measured in the same manner.
一対の電極間で接触面積比を種々変更した試料11〜13および試料C1に関する測定結果を図3に示した。また、一対の電極間で電気伝導比を種々変更した試料21、22および試料C2に関する測定結果を図4に示した。 The measurement results for Samples 11 to 13 and Sample C1 in which the contact area ratio between the pair of electrodes was variously changed are shown in FIG. Further, FIG. 4 shows the measurement results of the samples 21 and 22 and the sample C2 in which the electric conduction ratio was variously changed between the pair of electrodes.
(2)金属組織
通電加熱した局部の金属組織(試料11)と、非加熱の基材(基部/周辺部)の金属組織(試料C0)を図5に対比して示した。いずれの金属組織も、鏡面研磨後の観察片を光学顕微鏡(×1000倍)で観察した。
(2) Metal structure The local metal structure (sample 11) heated by energization and the metal structure (sample C0) of the unheated base material (base / peripheral part) are shown in comparison with FIG. For each metal structure, the observation pieces after mirror polishing were observed with an optical microscope (× 1000 times).
《評価》
(1)硬さ
図3および図4から明らかなように、通電加熱された局部(改質部)は、その処理前(試料C0)の基材(基部/周辺部)に対して、全体的に硬さが小さくなっており、軟化(高延性化)していた。
<< Evaluation >>
(1) Hardness As is clear from FIGS. 3 and 4, the local (modified portion) heated by energization is overall with respect to the base material (base / peripheral portion) before the treatment (sample C0). The hardness was reduced and it was softened (high ductility).
また、接触面積比や電気伝導比を変更することにより、硬さが最小または極小となる位置が、厚さ中央から表面側へシフトした。さらに、接触面積比または電気伝導比を小さくするほど、硬さが最小または極小となる位置が表面側に近くなると共に、その位置における硬さも小さくなる傾向が確認された。 In addition, by changing the contact area ratio and the electrical conduction ratio, the position where the hardness is the minimum or the minimum is shifted from the center of the thickness to the surface side. Furthermore, it was confirmed that as the contact area ratio or the electrical conduction ratio was reduced, the position where the hardness was the minimum or the minimum became closer to the surface side, and the hardness at that position also tended to decrease.
(2)金属組織
図5から明らかなように、通電加熱した局部の金属組織は、その処理前の金属組織に対して、共晶Si等が丸みをおびていることがわかった。このような金属組織の変化が、上述した硬さの変化として現れていると考えられる。
(3)その他
試料C1のように、接触面積比を過小にすると、接触面積が小さい電極1の近傍で、基材が局部溶融を生じた。
(2) Metal structure As is clear from FIG. 5, it was found that the eutectic Si and the like were rounded in the local metal structure heated by energization with respect to the metal structure before the treatment. It is considered that such a change in the metal structure appears as the above-mentioned change in hardness.
(3) Others When the contact area ratio was made too small as in sample C1, the base material locally melted in the vicinity of the electrode 1 having a small contact area.
試料C2のように、電気伝導比を過小にすると、電気伝導率が小さい電極1自体が過熱されて高温となり、電極1からの熱伝達により局部の表面近傍が軟化した。しかし、基材自体のジュール発熱は小さいため、局部の中央側(内部)はあまり軟化しなかった。 When the electric conductivity ratio was made too small as in sample C2, the electrode 1 itself having a small electric conductivity was overheated and became hot, and the heat transfer from the electrode 1 softened the vicinity of the local surface. However, since the Joule heat generation of the base material itself was small, the central side (inside) of the local part did not soften very much.
以上のことから、改質工程により、局部の特性(例えば硬さ)を変化させられることと、接触面積比や電気伝導比を調整することにより、特性の変化形態(例えば硬さ分布)を制御できるが確認された。 From the above, the local characteristics (for example, hardness) can be changed by the reforming process, and the change form of the characteristics (for example, hardness distribution) can be controlled by adjusting the contact area ratio and the electric conduction ratio. It was confirmed that it could be done.
Claims (14)
第1金属からなる第1電極と第2金属からなる第2電極とを該基材の局部に圧接させつつ該第1電極と該第2電極の間で通電することにより、該局部をジュール加熱して該局部に該改質部を形成する改質工程を備え、
該第1金属および該第2金属は、該アルミニウム合金よりも電気伝導率が大きいアルミニウム合金部材の製造方法。 A method for manufacturing an aluminum alloy member having a modified portion in a base material made of an aluminum alloy having different characteristics from the peripheral portion.
The first electrode made of the first metal and the second electrode made of the second metal are brought into close contact with the local part of the base material, and the local part is heated by Joule by energizing between the first electrode and the second electrode. A reforming step for forming the reforming portion is provided in the local area.
The first metal and the second metal are a method for producing an aluminum alloy member having a higher electric conductivity than the aluminum alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019055651A JP2020153001A (en) | 2019-03-22 | 2019-03-22 | Manufacturing method of aluminum alloy member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019055651A JP2020153001A (en) | 2019-03-22 | 2019-03-22 | Manufacturing method of aluminum alloy member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020153001A true JP2020153001A (en) | 2020-09-24 |
Family
ID=72558026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019055651A Pending JP2020153001A (en) | 2019-03-22 | 2019-03-22 | Manufacturing method of aluminum alloy member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020153001A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06304765A (en) * | 1993-04-20 | 1994-11-01 | Sky Alum Co Ltd | Aluminum allot sheets for resistance spot welding and resistance spot welding method |
JPH1177192A (en) * | 1997-09-10 | 1999-03-23 | Nippon Light Metal Co Ltd | Energizing caulking method for aluminum alloy casting |
JPH11256227A (en) * | 1998-01-12 | 1999-09-21 | Mazda Motor Corp | Electric heating treatment and apparatus thereof and electrode for electric heating treatment |
JP2015535778A (en) * | 2012-10-08 | 2015-12-17 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Heat treatment for vehicle seat structures and components |
-
2019
- 2019-03-22 JP JP2019055651A patent/JP2020153001A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06304765A (en) * | 1993-04-20 | 1994-11-01 | Sky Alum Co Ltd | Aluminum allot sheets for resistance spot welding and resistance spot welding method |
JPH1177192A (en) * | 1997-09-10 | 1999-03-23 | Nippon Light Metal Co Ltd | Energizing caulking method for aluminum alloy casting |
JPH11256227A (en) * | 1998-01-12 | 1999-09-21 | Mazda Motor Corp | Electric heating treatment and apparatus thereof and electrode for electric heating treatment |
JP2015535778A (en) * | 2012-10-08 | 2015-12-17 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Heat treatment for vehicle seat structures and components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Mechanical and microstructural properties evolutions of various alloys welded through cooling assisted friction-stir welding: A review | |
Kianersi et al. | Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations | |
Karthikeyan et al. | On the role of process variables in the friction stir processing of cast aluminum A319 alloy | |
KR101979558B1 (en) | Resistance spot welding method | |
Santella et al. | Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356 | |
Leo et al. | Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties | |
Lotfi et al. | Predictions of the optimized friction stir welding process parameters for joining AA7075-T6 aluminum alloy using preheating system | |
JPWO2017154658A1 (en) | Low temperature bonding method of metal material and bonded structure | |
JP7526404B2 (en) | Method for joining metal materials | |
JPWO2019181360A1 (en) | Solid-phase bonding method and solid-phase bonding device for metal materials | |
Kotadia et al. | Challenges and opportunities in remote laser welding of steel to aluminium | |
Gáspár et al. | Improving the properties of AA7075 resistance spot-welded joints by chemical oxide removal and post weld heat treating | |
Winiczenko et al. | The microstructures, mechanical properties, and temperature distributions in nodular cast iron friction-welded joint | |
JP2010172945A (en) | Resistance spot welding method of high-strength steel sheet | |
Rajesh Jesudoss Hynes et al. | Thermal behavior analysis and mechanical characterization of friction stud welded AISI 304/AA6063 joints | |
Saju et al. | Friction stir forming of dissimilar grade aluminum alloys: Influence of tool rotational speed on the joint evolution, mechanical performance, and failure modes | |
JP2020153001A (en) | Manufacturing method of aluminum alloy member | |
JP7242112B2 (en) | Solid point welding method and solid point welding apparatus | |
Sathyaseelan et al. | Effect of Dwell Time on Fracture Load of Friction Stir Spot Welded Dissimilar Metal Joints | |
JP7152932B2 (en) | Method for manufacturing aluminum alloy member | |
Tajfar et al. | Evaluation of copper brazed joint failure by thermal-fatigue test applicable in heat exchangers | |
JPH11256227A (en) | Electric heating treatment and apparatus thereof and electrode for electric heating treatment | |
Dinaharan et al. | Microstructure evolution and tensile behavior of dissimilar friction stir-welded pure copper and dual-phase brass | |
US10821559B2 (en) | Method for obtaining a welding electrode | |
JP7269191B2 (en) | spot welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220607 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20221206 |