JP2020152203A - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
JP2020152203A
JP2020152203A JP2019051669A JP2019051669A JP2020152203A JP 2020152203 A JP2020152203 A JP 2020152203A JP 2019051669 A JP2019051669 A JP 2019051669A JP 2019051669 A JP2019051669 A JP 2019051669A JP 2020152203 A JP2020152203 A JP 2020152203A
Authority
JP
Japan
Prior art keywords
rotating shaft
electric machine
shaft
rotary electric
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019051669A
Other languages
Japanese (ja)
Inventor
大貴 田中
Hirotaka Tanaka
大貴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JATCO Ltd
Original Assignee
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JATCO Ltd filed Critical JATCO Ltd
Priority to JP2019051669A priority Critical patent/JP2020152203A/en
Publication of JP2020152203A publication Critical patent/JP2020152203A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Sealing With Elastic Sealing Lips (AREA)

Abstract

To provide a vehicle drive device capable of cooling an oil seal separating an arrangement space of a liquid-cooled rotating electrical machine from an arrangement space of a dry clutch, with a simple configuration.SOLUTION: For a purpose of supplying to a side of an internal combustion engine E provided with an oil seal 40, a cooling liquid supplied from a side of a transmission T to a cylindrical rotary shaft 14 supporting a rotor Mr, a flow passage 41 is provided to supply the cooling liquid to the rotary shaft 14 of a rotary electric machine M from a side of an input shaft 16 of the transmission T. The rotary shaft 14 is provided with a shaft direction groove 44, a through hole 42 communicating the flow passage 41 with the shaft direction groove 44, and a radial direction groove 46 communicating the shaft direction groove 44 with an arrangement space of the rotary electric machine M.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関に連結された駆動軸と、液冷式の回転電機と、駆動軸と回転電機のロータとを駆動連結可能な乾式クラッチとを備えた車両用駆動装置に関するものである。 The present invention relates to a vehicle drive device including a drive shaft connected to an internal combustion engine, a liquid-cooled rotary electric machine, and a dry clutch capable of driving and connecting the drive shaft and the rotor of the rotary electric machine.

内燃機関に連結された駆動軸と、液冷式の回転電機と、駆動軸と回転電機のロータとを駆動連結可能な湿式クラッチとを備えた車両用駆動装置であって、回転電機のロータ等に冷却液としての油を供給する油路を設けたものが公知である(特許文献1)。
このような構成の車両用駆動装置において、回転電機のロータ等を液冷式としたままでクラッチを乾式に変更しようとすると、回転電機が配設される空間と乾式クラッチが配設される空間とを区画するオイルシールを設ける必要が生じる。
A vehicle drive device including a drive shaft connected to an internal combustion engine, a liquid-cooled rotary electric machine, and a wet clutch capable of driving and connecting the drive shaft and the rotor of the rotary electric machine. Is provided with an oil passage for supplying oil as a coolant (Patent Document 1).
In a vehicle drive device having such a configuration, if the clutch is changed to a dry type while the rotor of the rotary electric machine is liquid-cooled, the space where the rotary electric machine is arranged and the space where the dry clutch is arranged are arranged. It will be necessary to provide an oil seal that separates and.

特開2015−140044号公報Japanese Unexamined Patent Publication No. 2015-140044

上記のような構成の車両用駆動装置では、通常、クラッチ(クラッチプレート)が内燃機関側に配置されるので、上記オイルシールも内燃機関側に配設されることとなる。一方、回転電機用冷却液は変速機側から供給されるので、冷却液がオイルシールまで十分に供給されず、その結果、オイルシールが過熱してしまう虞がある。 In a vehicle drive device having the above configuration, the clutch (clutch plate) is usually arranged on the internal combustion engine side, so that the oil seal is also arranged on the internal combustion engine side. On the other hand, since the coolant for the rotary electric machine is supplied from the transmission side, the coolant may not be sufficiently supplied to the oil seal, and as a result, the oil seal may overheat.

本発明は、上記のような課題に鑑み創案されたものであり、液冷式の回転電機の配置空間と乾式クラッチの配置空間とを区画するオイルシールを簡単な構成で冷却可能とする車両用駆動装置を提供することを目的としている。 The present invention has been devised in view of the above problems, and is for vehicles that can cool the oil seal that separates the space for arranging the liquid-cooled rotary electric machine and the space for arranging the dry clutch with a simple configuration. It is intended to provide a drive unit.

上記の目的を達成するために、本発明の車両用駆動装置は、内燃機関に連結された駆動軸と、前記駆動軸の外周側に配設された液冷式の回転電機と、径方向において前記駆動軸と前記回転電機との間に配設され前記駆動軸と前記回転電機のロータとを駆動連結可能な乾式クラッチと、前記ロータと連結された円筒状の回転軸(モータ軸)と、前記回転軸と連結された変速機の入力軸と、前記回転軸の前記内燃機関側である一端側の端部に径方向外方へ突出形成され、前記ロータを当接させて位置決めするためのフランジ状の止部(フランジ)と、前記止部よりも前記一端側の前記回転軸の外周面に液密に摺接して前記回転電機の配置空間と前記乾式クラッチの配置空間とを区画するオイルシールと、前記入力軸側から前記回転軸の前記内燃機関とは逆側である他端側の端部の内周側へ冷却液を供給する流路と、前記回転軸の外周面に、軸方向の前記他端側の端部から前記一端側の端部に延設された冷却液流通用の軸方向溝と、前記回転軸を内外に貫通し、前記流路と前記軸方向溝とを連通する貫通孔と、前記止部の前記他端側の面に形成され、前記軸方向溝と前記止部の外周側の前記回転電機の配置空間とを連通する径方向溝と、を備えていることを特徴としている。 In order to achieve the above object, the vehicle drive device of the present invention includes a drive shaft connected to an internal combustion engine and a liquid-cooled rotary electric machine arranged on the outer peripheral side of the drive shaft in the radial direction. A dry clutch arranged between the drive shaft and the rotary electric machine and capable of driving and connecting the drive shaft and the rotor of the rotary electric machine, and a cylindrical rotary shaft (motor shaft) connected to the rotor. The input shaft of the transmission connected to the rotary shaft and the end of the rotary shaft on one end side on the internal combustion engine side are formed so as to project outward in the radial direction, and the rotor is brought into contact with the rotor for positioning. Oil that liquidally slides into a flange-shaped stop portion (flange) and the outer peripheral surface of the rotating shaft on one end side of the stop portion to partition the arrangement space of the rotary electric machine and the arrangement space of the dry clutch. A shaft is provided on the seal, a flow path for supplying cooling liquid from the input shaft side to the inner peripheral side of the other end side of the rotating shaft opposite to the internal combustion engine, and the outer peripheral surface of the rotating shaft. An axial groove for flowing a coolant extending from the other end in the direction to the end on the one end side, and the flow path and the axial groove penetrating the rotating shaft in and out. A through hole for communicating and a radial groove formed on the other end side surface of the stop portion and communicating the axial groove and the arrangement space of the rotary electric machine on the outer peripheral side of the stop portion are provided. It is characterized by being.

前記流路は、前記回転電機の前記他端側に配置されたカバー部材の壁部と、前記カバー部材と前記乾式クラッチとの間に配置された仕切り壁部との間の隙間により形成され、前記入力軸の内部流路に通じる供給口と前記貫通孔との間を連通し、前記回転軸の前記他端側の端部の内周側に、前記流路内の冷却液を前記貫通孔に案内する環状壁部が備えられていることが好ましい。 The flow path is formed by a gap between a wall portion of a cover member arranged on the other end side of the rotary electric machine and a partition wall portion arranged between the cover member and the dry clutch. Communicate between the supply port leading to the internal flow path of the input shaft and the through hole, and apply the cooling liquid in the flow path to the through hole on the inner peripheral side of the other end side of the rotating shaft. It is preferable that an annular wall portion for guiding the vehicle is provided.

前記回転軸の外周面には、前記回転軸と前記ロータとを連結するためのキー溝が軸方向の前記他端側の端部から前記一端側の端部に延設され、前記軸方向溝は、前記キー溝と並行して複数設けられていることが好ましい。
前記軸方向溝及び前記キー溝は、円周方向に等間隔に配置されていることが好ましい。
前記軸方向溝の前記止部側の端部は、前記キー溝に接近するように周方向へ屈曲形成されると共に、前記径方向溝が前記キー溝に接近した位置に配置されていることが好ましい。
前記軸方向溝は、螺旋状に形成されていることも好ましい。
On the outer peripheral surface of the rotating shaft, a key groove for connecting the rotating shaft and the rotor extends from the end on the other end side in the axial direction to the end on the one end side, and the axial groove extends. Is preferably provided in parallel with the keyway.
It is preferable that the axial groove and the key groove are arranged at equal intervals in the circumferential direction.
The end portion of the axial groove on the stop side is formed to be bent in the circumferential direction so as to approach the key groove, and the radial groove is arranged at a position close to the key groove. preferable.
It is also preferable that the axial groove is formed in a spiral shape.

本発明によれば、流路を通じて、入力軸側からロータの回転軸における内燃機関とは逆側である他端側の端部の内周側へ供給された冷却液が、貫通孔から回転軸の外周面に流入し、さらに軸方向溝及び径方向溝を経て回転電機の配置空間に流入するので、回転電機の配置空間に流入した冷却液が回転電機の発熱部を冷却するとともに、回転電機の配置空間を区画するオイルシールの発熱部(オイルシールと摺接する回転軸の摺接部分)をも冷却する。また、冷却液は軸方向溝を流通する際に回転軸を冷却する。これらにより、オイルシールの過熱や回転電機の各部の過熱が防止される。 According to the present invention, the coolant supplied from the input shaft side to the inner peripheral side of the other end side of the rotor rotation shaft opposite to the internal combustion engine through the flow path is supplied from the through hole to the rotation shaft. Since it flows into the outer peripheral surface of the rotary electric machine and further flows into the arrangement space of the rotary electric machine through the axial groove and the radial groove, the coolant flowing into the arrangement space of the rotary electric machine cools the heat generating part of the rotary electric machine and the rotary electric machine. It also cools the heat generating part of the oil seal (the sliding contact part of the rotating shaft that slides in contact with the oil seal) that divides the arrangement space. In addition, the coolant cools the rotating shaft as it flows through the axial groove. As a result, overheating of the oil seal and overheating of each part of the rotary electric machine are prevented.

一実施形態にかかる車両用駆動装置の部分断面図である。It is a partial sectional view of the drive device for a vehicle which concerns on one Embodiment. 前記車両用駆動装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the drive device for a vehicle. 前記車両用駆動装置の回転軸(モータ軸)の横断面である。It is a cross section of the rotation shaft (motor shaft) of the vehicle drive device. 前記回転軸(モータ軸)の側面面である。It is a side surface of the rotating shaft (motor shaft). 前記回転軸(モータ軸)の第1変形例を示す側面面である。It is a side surface which shows the 1st modification of the rotary shaft (motor shaft). 前記回転軸(モータ軸)の第2変形例を示す側面面である。It is a side surface which shows the 2nd modification of the rotating shaft (motor shaft). 一実施形態にかかる車両用駆動装置の第一壁部及び第二壁部の第1変形例を示す部分断面図である。It is a partial cross-sectional view which shows the 1st modification of the 1st wall part and the 2nd wall part of the vehicle drive device which concerns on one Embodiment. 一実施形態にかかる車両用駆動装置の第一壁部及び第二壁部の第2変形例を示す部分断面図である。It is a partial cross-sectional view which shows the 2nd modification of the 1st wall part and the 2nd wall part of the vehicle drive device which concerns on one Embodiment.

以下、図面を参照して本発明の実施形態を説明する。
なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
It should be noted that the embodiments shown below are merely examples, and there is no intention of excluding the application of various modifications and techniques not specified in the following embodiments.

〔装置構成〕
図2に示すように、本実施形態に係る車両用駆動装置10は、内燃機関Eと、液冷式の回転電機Mと、変速機Tとを備え、回転電機Mはモータ或いはモータジェネレータであり、ロータMrとステータMsとを備えている。そして、内燃機関Eに連結された駆動軸12が乾式クラッチCを介して回転電機MのロータMrを支持する支持部材としての中空の回転軸(モータ軸)14に係脱可能に駆動連結され、回転軸14は変速機Tの入力軸16に連結されている。また、変速機Tの出力軸18は駆動輪20に連結されており、入力軸16と出力軸18との間には、図示しないベルト式無段変速機構や遊星ギヤ式有段変速機構等の周知の変速機構が設けられている。ベルト式無段変速機構の場合には、前後進クラッチの締結・解放の制御で回転電機Mとの接続状態を制御し、遊星ギヤ式有段変速機構の場合には、機構内の締結・解放の制御で回転電機Mとの接続状態を制御する。
〔Device configuration〕
As shown in FIG. 2, the vehicle drive device 10 according to the present embodiment includes an internal combustion engine E, a liquid-cooled rotary electric machine M, and a transmission T, and the rotary electric machine M is a motor or a motor generator. , The rotor Mr and the stator Ms are provided. Then, the drive shaft 12 connected to the internal combustion engine E is driven and connected to the hollow rotary shaft (motor shaft) 14 as a support member for supporting the rotor Mr of the rotary electric machine M via the dry clutch C so as to be decoupable. The rotating shaft 14 is connected to the input shaft 16 of the transmission T. Further, the output shaft 18 of the transmission T is connected to the drive wheels 20, and between the input shaft 16 and the output shaft 18, a belt-type continuously variable transmission mechanism (not shown), a planetary gear-type stepped transmission mechanism, or the like is used. A well-known transmission mechanism is provided. In the case of the belt type continuously variable transmission mechanism, the connection state with the rotary electric machine M is controlled by controlling the engagement / release of the forward / backward clutch, and in the case of the planetary gear type stepped transmission mechanism, the engagement / release in the mechanism. The connection state with the rotary electric machine M is controlled by the control of.

図1に示すように、回転電機Mは、駆動軸12の外周側(径方向外方)に配設されており、乾式クラッチCが、径方向において駆動軸12と回転電機Mとの間に配設されている。なお、図1中、駆動軸12及び入力軸16の軸心線CLを一点鎖線で示しており、矢印Eは軸方向(軸心線CLの方向)に関し内燃機関E側(一端側)を示し、矢印Tは軸方向に関し変速機T側(他端側)を示す。
乾式クラッチCの構造は周知のものであり詳細は図示しないが、乾式クラッチCは、内燃機関E側(一端側)に配設された複数枚のクラッチプレート22と、変速機T側(他端側)に配設され、クラッチプレート22を押圧可能な油圧作動のピストン24とを備えている。ピストン24には周方向に間隔を存して複数のプッシュロッド24aが設けられており、プッシュロッド24aが後述する径方向連結部32に設けられた孔32aを貫通してクラッチプレート22を押圧する構成となっている。なお、ピストン24には、クラッチプレート22を押圧する油圧を与える図示しない油室と、クラッチプレート22を油圧と逆方向に付勢するリターンスプリング23とが付設されている。
As shown in FIG. 1, the rotary electric machine M is arranged on the outer peripheral side (diameterally outward) of the drive shaft 12, and a dry clutch C is provided between the drive shaft 12 and the rotary electric machine M in the radial direction. It is arranged. In FIG. 1, the axis CL of the drive shaft 12 and the input shaft 16 is indicated by a single point chain line, and the arrow E indicates the internal combustion engine E side (one end side) with respect to the axial direction (direction of the axis CL). , Arrow T indicates the transmission T side (the other end side) in the axial direction.
The structure of the dry clutch C is well known and details are not shown, but the dry clutch C has a plurality of clutch plates 22 arranged on the internal combustion engine E side (one end side) and a transmission T side (the other end). It is provided on the side) with a hydraulically actuated piston 24 capable of pressing the clutch plate 22. The piston 24 is provided with a plurality of push rods 24a at intervals in the circumferential direction, and the push rods 24a penetrate the holes 32a provided in the radial connecting portion 32 described later and press the clutch plate 22. It is composed. The piston 24 is provided with an oil chamber (not shown) that applies hydraulic pressure to press the clutch plate 22, and a return spring 23 that urges the clutch plate 22 in the direction opposite to the hydraulic pressure.

回転軸14は、円筒形状に形成され、その外周面でロータMrを支持すると共に、内燃機関E側(一端側)に径方向外方に向かって突出形成されたフランジ状の止部26が設けられ、止部26の変速機T側の端面28にロータMrの内燃機関E側のエンドプレート30が当接することによりロータMrの軸方向位置が位置決めされる。
また、回転軸14の内周側には、回転軸14を入力軸16に連結するためのフランジ状の径方向連結部32が一体形成されている。
The rotating shaft 14 is formed in a cylindrical shape, and the rotor Mr is supported on the outer peripheral surface thereof, and a flange-shaped stopping portion 26 is provided on the internal combustion engine E side (one end side) so as to project outward in the radial direction. Then, the end plate 30 on the internal combustion engine E side of the rotor Mr comes into contact with the end surface 28 on the transmission T side of the stop portion 26, so that the axial position of the rotor Mr is positioned.
Further, on the inner peripheral side of the rotating shaft 14, a flange-shaped radial connecting portion 32 for connecting the rotating shaft 14 to the input shaft 16 is integrally formed.

回転電機M及び乾式クラッチCは、内燃機関E側(一端側)を第1カバー部材50で覆われ、変速機T側(他端側)及び外周側を第2カバー部材51で覆われている。また、径方向連結部32は、第1カバー部材50と第2カバー部材51とで囲繞され且つ回転軸14よりも軸心側の空間を、内燃機関E側(一端側)の空間S1と変速機T側(他端側)の空間S2とを仕切る仕切り壁部としても機能する。乾式クラッチCは、仕切り壁部としての径方向連結部32で仕切られた内燃機関E側の空間S1内に設けられている。 In the rotary electric machine M and the dry clutch C, the internal combustion engine E side (one end side) is covered with the first cover member 50, and the transmission T side (the other end side) and the outer peripheral side are covered with the second cover member 51. .. Further, the radial connecting portion 32 is surrounded by the first cover member 50 and the second cover member 51, and the space on the axis side of the rotating shaft 14 is changed to the space S1 on the internal combustion engine E side (one end side). It also functions as a partition wall portion that separates the space S2 on the machine T side (the other end side). The dry clutch C is provided in the space S1 on the internal combustion engine E side partitioned by the radial connecting portion 32 as the partition wall portion.

なお、ピストン24のプッシュロッド24aは、径方向連結部32に設けられた孔32aを貫通してクラッチプレート22を押圧するが、孔32aの一端側の周囲にはダイアフラム60が配設され、プッシュロッド24aの先端部はダイアフラム60を介してクラッチプレート22を押圧する。したがって、径方向連結部32の内燃機関E側(一端側)の空間S1と変速機T側(他端側)の空間S2とは、径方向連結部32及びダイアフラム60によって液密に仕切られている。 The push rod 24a of the piston 24 penetrates the hole 32a provided in the radial connecting portion 32 and presses the clutch plate 22, but a diaphragm 60 is arranged around one end side of the hole 32a and pushes. The tip of the rod 24a presses the clutch plate 22 via the diaphragm 60. Therefore, the space S1 on the internal combustion engine E side (one end side) and the space S2 on the transmission T side (the other end side) of the radial connection portion 32 are liquid-tightly partitioned by the radial connection portion 32 and the diaphragm 60. There is.

液冷式の回転電機Mには、入力軸16に設けられた供給口34から、一点鎖線の矢印Aで示すように、ピストン24と径方向連結部32及び回転軸14の内周面との間を介して、変速機T側から冷却液(変速機Tの作動油)が供給される構成となっている。 In the liquid-cooled rotary electric machine M, from the supply port 34 provided on the input shaft 16, as shown by the arrow A of the one-point chain line, the piston 24, the radial connecting portion 32, and the inner peripheral surface of the rotating shaft 14 are connected. The coolant (hydraulic oil of the transmission T) is supplied from the transmission T side through the space.

つまり、入力軸16には、その軸心部分に軸内流路33が形成され、軸内流路33と入力軸16の外周とを連通するように開口する供給口34が形成される。変速機T側から冷却液としての作動油が軸内流路33に供給され、供給口34から、径方向連結部32の内燃機関E側(一端側)の空間S2内に供給される。
空間S2内には、第2カバー部材51の壁部51aと径方向連結部(仕切り壁部)32との間の隙間によって流路41が形成されている。
That is, the input shaft 16 is formed with an in-axis flow path 33 at the axial center portion thereof, and a supply port 34 is formed so as to communicate with the in-axis flow path 33 and the outer circumference of the input shaft 16. The hydraulic oil as the coolant is supplied from the transmission T side to the in-shaft flow path 33, and is supplied from the supply port 34 into the space S2 on the internal combustion engine E side (one end side) of the radial connection portion 32.
In the space S2, a flow path 41 is formed by a gap between the wall portion 51a of the second cover member 51 and the radial connecting portion (partition wall portion) 32.

一方、止部26の内燃機関E側には、回転軸14の外周面に液密に摺接して乾式クラッチC(クラッチプレート22)の配置空間36(空間S1)と回転電機Mの配置空間38とを区画するオイルシール40が設けられている。 On the other hand, on the internal combustion engine E side of the stop portion 26, the arrangement space 36 (space S1) of the dry clutch C (clutch plate 22) and the arrangement space 38 of the rotary electric machine M are in close sliding contact with the outer peripheral surface of the rotary shaft 14. An oil seal 40 for partitioning and is provided.

そして、回転軸14の外周面には、軸方向の他端側の端部から一端側の端部に向けて冷却液流通用の軸方向溝44が延設されている。さらに、回転軸14を内外に貫通し、流路41と軸方向溝44とを連通する貫通孔42が形成されている。
さらに、フランジ状の止部26の変速機T側の端面28には、軸方向溝44と止部26の外周側の回転電機の配置空間38とを連通する径方向溝46が形成されている。
An axial groove 44 for flowing a coolant extends from the end on the other end side in the axial direction to the end on the one end side on the outer peripheral surface of the rotating shaft 14. Further, a through hole 42 is formed which penetrates the rotating shaft 14 in and out and communicates the flow path 41 and the axial groove 44.
Further, a radial groove 46 is formed on the end surface 28 of the flange-shaped stop portion 26 on the transmission T side to communicate the axial groove 44 and the arrangement space 38 of the rotary electric machine on the outer peripheral side of the stop portion 26. ..

また、回転軸14の他端側の端部の内周側には、流路内41の冷却液が回転軸14の内周空間から回転軸14の更なる他端側に流出するのを抑制して、流路内41の冷却液を貫通孔42に案内する環状壁部(塞ぎ止めリング)43が備えられている。 Further, on the inner peripheral side of the other end side of the rotating shaft 14, the coolant in the flow path 41 is suppressed from flowing out from the inner peripheral space of the rotating shaft 14 to the further other end side of the rotating shaft 14. An annular wall portion (blocking ring) 43 for guiding the coolant in the flow path 41 to the through hole 42 is provided.

したがって、供給口34から、径方向連結部32の内燃機関E側(一端側)の空間S2内に供給される冷却液は、矢印Aで示すように、流路41、貫通孔42、軸方向溝44及び径方向溝46を経て、止部26の外周側の回転電機の配置空間38に供給される。 Therefore, the coolant supplied from the supply port 34 into the space S2 on the internal combustion engine E side (one end side) of the radial connecting portion 32 is the flow path 41, the through hole 42, and the axial direction as shown by the arrow A. It is supplied to the arrangement space 38 of the rotary electric machine on the outer peripheral side of the stop portion 26 via the groove 44 and the radial groove 46.

本実施形態では、図3,図4に示すように、回転軸14の外周面に、回転軸14とロータMrとを連結するためのキー溝62が軸方向の他端側の端部から一端側の端部に延設されている。このキー溝62は、軸方向溝44とほぼ同様の幅及び深さで形成されるが、キー溝62の端部には貫通孔42や径方向溝46は形成されていない。
また、キー溝62は、回転軸14の外周面において円周方向に等間隔(180°間隔)で2本形成されている。
In the present embodiment, as shown in FIGS. 3 and 4, a key groove 62 for connecting the rotating shaft 14 and the rotor Mr is formed on the outer peripheral surface of the rotating shaft 14 from one end on the other end side in the axial direction. It extends to the end on the side. The key groove 62 is formed with substantially the same width and depth as the axial groove 44, but the through hole 42 and the radial groove 46 are not formed at the end of the key groove 62.
Further, two key grooves 62 are formed on the outer peripheral surface of the rotating shaft 14 at equal intervals (180 ° intervals) in the circumferential direction.

一方、軸方向溝44は、回転軸14の外周面における2本のキー溝62の相互間において円周方向に等間隔(45°間隔)でそれぞれ複数(ここでは3本)形成されている。
また、本実施形態では、各軸方向溝44は、キー溝62と同様に、回転軸14の外周面において軸心方向と平行な直線上に配向されて形成されている。
On the other hand, a plurality of axial grooves 44 (three in this case) are formed at equal intervals (45 ° intervals) in the circumferential direction between the two key grooves 62 on the outer peripheral surface of the rotating shaft 14.
Further, in the present embodiment, each axial groove 44 is formed so as to be oriented on a straight line parallel to the axial direction on the outer peripheral surface of the rotating shaft 14, similarly to the key groove 62.

さらに、エンドプレート30には、その内周面が径方向溝46の外周側の開口46aに対向するように、円環状の第一壁部48が軸方向に突出形成され、回転電機M及び乾式クラッチCの内燃機関E側を覆うカバー部材50の内面側には第一壁部48に対応する円環状の第二壁部52がロータMr側へ軸方向に突出形成されている。そして、第一壁部48の先端面54と第二壁部52の先端面56とは、互いに対向することで両先端面54,56間に形成される間隙58の幅を狭くして流通面積を少なくし、両壁部48,52の内周側から外周側への冷却液の流通量を低減するように構成されている。
また、第二壁部52の内周面にはオイルシール40の基部40bが固定されている。
Further, the end plate 30 is formed with an annular first wall portion 48 projecting in the axial direction so that its inner peripheral surface faces the opening 46a on the outer peripheral side of the radial groove 46, and the rotary electric machine M and the dry type On the inner surface side of the cover member 50 that covers the internal combustion engine E side of the clutch C, an annular second wall portion 52 corresponding to the first wall portion 48 is formed so as to project axially toward the rotor Mr side. Then, the tip surface 54 of the first wall portion 48 and the tip surface 56 of the second wall portion 52 face each other to narrow the width of the gap 58 formed between the two tip surfaces 54 and 56, and the distribution area is reduced. The amount of coolant flowing from the inner peripheral side to the outer peripheral side of both wall portions 48 and 52 is reduced.
Further, the base portion 40b of the oil seal 40 is fixed to the inner peripheral surface of the second wall portion 52.

〔作用及び効果〕
上記構成の本車両用駆動装置によれば、変速機T側へ供給される回転電機Mのための冷却液が、入力軸16の軸内流路33,供給口34を経て、流路41,貫通孔42,軸方向溝44及び径方向溝46を介して、内燃機関E側へ供給されて、回転軸14の止部26近傍が冷却されるので、それに伴いオイルシール40による発熱部(オイルシール40と摺接する回転軸14の摺接部分)も冷却される。
[Action and effect]
According to the drive device for the present vehicle having the above configuration, the coolant for the rotary electric machine M supplied to the transmission T side passes through the in-shaft flow path 33 and the supply port 34 of the input shaft 16, and the flow path 41, It is supplied to the internal combustion engine E side through the through hole 42, the axial groove 44, and the radial groove 46, and the vicinity of the stop portion 26 of the rotating shaft 14 is cooled. Therefore, the heat generating portion (oil) by the oil seal 40 is provided accordingly. The sliding contact portion of the rotating shaft 14 that is in sliding contact with the seal 40) is also cooled.

なお、流路41内の冷却液が貫通孔42の付近に接近すると、回転軸14の内周空間から回転軸14の更なる他端側に流出しようとするが、回転軸14の内周に備えられた環状壁部43が、回転軸14の他端側への流出を抑制して流路内41の冷却液を貫通孔42に案内するので、止部26近傍へ冷却液が効率よく供給される。
もちろん、一部の冷却液は、環状壁部43を乗り越えて回転軸14の更なる他端側に流出して回転電機Mの配置空間38に進入して、回転電機MのロータMrやステータMsを他端側から冷却する。
When the coolant in the flow path 41 approaches the vicinity of the through hole 42, it tries to flow out from the inner peripheral space of the rotating shaft 14 to the other end side of the rotating shaft 14, but on the inner circumference of the rotating shaft 14. Since the provided annular wall portion 43 suppresses the outflow of the rotating shaft 14 to the other end side and guides the coolant in the flow path 41 to the through hole 42, the coolant is efficiently supplied to the vicinity of the stop portion 26. Will be done.
Of course, a part of the coolant flows over the annular wall portion 43 and flows out to the other end side of the rotary shaft 14 and enters the arrangement space 38 of the rotary electric machine M, and the rotor Mr and the stator Ms of the rotary electric machine M Is cooled from the other end side.

また、径方向溝46の開口46aから流出した冷却液が、第一壁部48の内周面によりその流通方向をオイルシール40方向へ変更される上、間隙58の流通面積を少なくして両壁部48,52外方への冷却液の流出を低減したので、オイルシール40への冷却液の供給量を増大することができ、オイルシール40を効率的に冷却することができる。
さらに、第二壁部52をオイルシール40の固定構造に兼用したので、構造の複雑化も防止できる。
もちろん、間隙58から一部の冷却液が回転電機Mの配置空間38に進入して、回転電機MのロータMrやステータMsを一端側から冷却する。
Further, the cooling liquid flowing out from the opening 46a of the radial groove 46 is changed in the flow direction toward the oil seal 40 by the inner peripheral surface of the first wall portion 48, and the flow area of the gap 58 is reduced. Since the outflow of the coolant to the outside of the walls 48 and 52 is reduced, the amount of the coolant supplied to the oil seal 40 can be increased, and the oil seal 40 can be cooled efficiently.
Further, since the second wall portion 52 is also used as the fixing structure of the oil seal 40, it is possible to prevent the structure from becoming complicated.
Of course, a part of the coolant enters the arrangement space 38 of the rotary electric machine M from the gap 58 and cools the rotor Mr and the stator Ms of the rotary electric machine M from one end side.

このようにして、オイルシール40の過熱や回転電機Mの各部の過熱が防止される。
本実施形態では、軸方向溝44及び径方向溝46を複数設けているので、回転軸14を効率よく冷却することができる。
さらに、軸方向溝44及びキー溝62は円周方向に等間隔に形成されているので、溝加工による回転軸14の強度低下も抑制される。
In this way, overheating of the oil seal 40 and overheating of each part of the rotary electric machine M are prevented.
In the present embodiment, since a plurality of axial grooves 44 and radial grooves 46 are provided, the rotating shaft 14 can be efficiently cooled.
Further, since the axial grooves 44 and the key grooves 62 are formed at equal intervals in the circumferential direction, a decrease in strength of the rotating shaft 14 due to grooving is suppressed.

〔軸方向溝の変形例1〕
上記実施形態では、軸方向溝44が、回転軸14の外周面において軸心方向と平行な直線上に配向されて形成されているが、図5に示すように、軸方向溝44Aは、回転軸14の外周面において軸心周りに旋回する螺旋状に形成されてもよい。キー溝62がある場合、軸心方向移動量に対する螺旋の旋回角度の大きさは規制され、わずかな旋回角度の螺旋状に制限されるが、回転軸14を周方向に均等に冷却することができる。
[Modification example 1 of axial groove]
In the above embodiment, the axial groove 44 is formed so as to be oriented on a straight line parallel to the axial direction on the outer peripheral surface of the rotating shaft 14, but as shown in FIG. 5, the axial groove 44A rotates. It may be formed in a spiral shape that swirls around the axis on the outer peripheral surface of the shaft 14. When there is a keyway 62, the magnitude of the spiral turning angle with respect to the amount of movement in the axial direction is restricted and limited to a spiral with a slight turning angle, but the rotating shaft 14 can be cooled evenly in the circumferential direction. it can.

〔軸方向溝の変形例2〕
また、図6に示すように、軸方向溝44Bの止部26側の端部に、キー溝62に接近するように周方向へ屈曲形成した屈曲部44Cを設けると共に、径方向溝46をキー溝62に接近した位置に配置することも好ましい。
このような構成により、過熱しやすいキー溝62をより積極的に冷却し、過熱を抑制することができる。
[Modification example 2 of axial groove]
Further, as shown in FIG. 6, a bent portion 44C formed by bending in the circumferential direction so as to approach the key groove 62 is provided at the end of the axial groove 44B on the stop portion 26 side, and the radial groove 46 is keyed. It is also preferable to arrange it at a position close to the groove 62.
With such a configuration, the key groove 62, which tends to overheat, can be cooled more positively and overheating can be suppressed.

〔第一壁部,第二壁部の変形例〕
図7,図8は、対応する第一壁部48と第二壁部52の別の構成(第1変形例,第2変形例)を示すもので、図7に示す第1変形例は、第一壁部48を第二壁部52の外周側へ延長して両壁部48,52が径方向で重なるようにし、第一壁部48の内周面と第二壁部52の外周面で間隙58を形成している。
この構成によれば、両壁部48,52外方へ流出する冷却液の流通方向が径方向から軸方向へ変更されることとなるので、流通抵抗が増大し、冷却液の流出をより低減できる。
[Modification of the first wall and the second wall]
7 and 8 show different configurations (first modification, second modification) of the corresponding first wall portion 48 and second wall portion 52, and the first modification shown in FIG. 7 is The first wall portion 48 is extended to the outer peripheral side of the second wall portion 52 so that both wall portions 48 and 52 overlap in the radial direction, and the inner peripheral surface of the first wall portion 48 and the outer peripheral surface of the second wall portion 52 A gap 58 is formed at.
According to this configuration, the flow direction of the coolant flowing out of both walls 48 and 52 is changed from the radial direction to the axial direction, so that the flow resistance is increased and the outflow of the coolant is further reduced. it can.

図8に示す第2変形例は、第一壁部48の先端部に第一段部48sを形成し、前記第二壁部52の先端部に第二段部52sを形成し、両段部48s,52sが互いに間隙58’を存して重なるように構成した。この構成により、間隙58’が所謂ラビリンス形状となり、流通抵抗がさらに増大し、冷却液の流出をさらに低減できるものである。 In the second modification shown in FIG. 8, the first step portion 48s is formed at the tip end portion of the first wall portion 48, the second step portion 52s is formed at the tip end portion of the second wall portion 52, and both step portions are formed. The 48s and 52s were configured to overlap each other with a gap 58'. With this configuration, the gap 58'becomes a so-called labyrinth shape, the flow resistance is further increased, and the outflow of the coolant can be further reduced.

〔その他〕
以上、本発明の実施形態を説明したが、本発明はかかる実施形態を適宜変形して実施することができることは言うまでもない。
例えば、上記の実施形態では、回転軸14の外周面にキー溝62を2本,キー溝62間にそれぞれ軸方向溝44を3本ずつ設けているが、各溝の数はこれに限定されず、これよりも多くてもよく少なくてもよい。
また、キー溝62及び軸方向溝44は、円周方向に等間隔で配置することが強度上好ましいが、これらの円周方向間隔は適宜設定しうるものである。
空間S2の内壁形状等によって流路41内の冷却液が貫通孔42の内部に円滑に進入しうる場合には、環状壁部(部塞ぎ止めリング)43を省略することもできる。
[Other]
Although the embodiments of the present invention have been described above, it goes without saying that the present invention can be appropriately modified and implemented.
For example, in the above embodiment, two key grooves 62 are provided on the outer peripheral surface of the rotating shaft 14, and three axial grooves 44 are provided between the key grooves 62, but the number of each groove is limited to this. It may be more or less than this.
Further, it is preferable that the key grooves 62 and the axial grooves 44 are arranged at equal intervals in the circumferential direction in terms of strength, but the intervals in the circumferential direction can be appropriately set.
When the cooling liquid in the flow path 41 can smoothly enter the inside of the through hole 42 due to the shape of the inner wall of the space S2 or the like, the annular wall portion (part blocking ring) 43 can be omitted.

10 車両用駆動装置
12 駆動軸
14 回転軸(支持部材)
16 入力軸
26 止部
30 エンドプレート
32 径方向連結部(仕切り壁部)
36 乾式クラッチCの配置空間
38 回転電機Mの配置空間
40 オイルシール
41 流路
42 貫通孔
43 環状壁部(部塞ぎ止めリング)
44,44A,44B 軸方向溝
44C 屈曲部
46 径方向溝
46a 開口
48 第一壁部
52 第二壁部
58,58’ 間隙
62 キー溝
10 Vehicle drive device 12 Drive shaft 14 Rotating shaft (support member)
16 Input shaft 26 Stop 30 End plate 32 Radial connection (partition wall)
36 Arrangement space for dry clutch C 38 Arrangement space for rotary electric machine M 40 Oil seal 41 Flow path 42 Through hole 43 Circular wall part (part blocking ring)
44, 44A, 44B Axial groove 44C Bending part 46 Radial groove 46a Opening 48 First wall part 52 Second wall part 58, 58'Gap 62 Key groove

Claims (6)

内燃機関に連結された駆動軸と、
前記駆動軸の外周側に配設された液冷式の回転電機と、
径方向において前記駆動軸と前記回転電機との間に配設され前記駆動軸と前記回転電機のロータとを駆動連結可能な乾式クラッチと、
前記ロータと連結された円筒状の回転軸と、
前記回転軸と連結された変速機の入力軸と、
前記回転軸の前記内燃機関側である一端側の端部に径方向外方へ突出形成され、前記ロータを当接させて位置決めするためのフランジ状の止部と、
前記止部よりも前記一端側の前記回転軸の外周面に液密に摺接して前記回転電機の配置空間と前記乾式クラッチの配置空間とを区画するオイルシールと、
前記入力軸側から前記回転軸の前記内燃機関とは逆側である他端側の端部の内周側へ冷却液を供給する流路と、
前記回転軸の外周面に、軸方向の前記他端側の端部から前記一端側の端部に延設された冷却液流通用の軸方向溝と、
前記回転軸を内外に貫通し、前記流路と前記軸方向溝とを連通する貫通孔と、
前記止部の前記他端側の面に形成され、前記軸方向溝と前記止部の外周側の前記回転電機の配置空間とを連通する径方向溝と、を備えている
ことを特徴とする車両用駆動装置。
The drive shaft connected to the internal combustion engine and
A liquid-cooled rotary electric machine arranged on the outer peripheral side of the drive shaft,
A dry clutch that is arranged between the drive shaft and the rotary electric machine in the radial direction and can drive and connect the drive shaft and the rotor of the rotary electric machine.
A cylindrical rotating shaft connected to the rotor,
The input shaft of the transmission connected to the rotating shaft and
A flange-shaped stop portion formed so as to project outward in the radial direction at one end of the rotating shaft on the internal combustion engine side, and for abutting and positioning the rotor.
An oil seal that is liquid-tightly slidably contacted with the outer peripheral surface of the rotating shaft on one end side of the stop portion to partition the space for arranging the rotary electric machine and the space for arranging the dry clutch.
A flow path for supplying the cooling liquid from the input shaft side to the inner peripheral side of the other end side of the rotating shaft opposite to the internal combustion engine.
On the outer peripheral surface of the rotating shaft, an axial groove for flowing a coolant extending from the end on the other end side in the axial direction to the end on the one end side,
A through hole that penetrates the rotating shaft in and out and communicates the flow path and the axial groove.
It is characterized by having a radial groove formed on the other end side surface of the stop portion and communicating the axial groove and the arrangement space of the rotary electric machine on the outer peripheral side of the stop portion. Vehicle drive device.
前記流路は、前記回転電機の前記他端側に配置されたカバー部材の壁部と、前記カバー部材と前記乾式クラッチとの間に配置された仕切り壁部との間の隙間により形成され、前記入力軸の内部流路に通じる供給口と前記貫通孔との間を連通し、
前記回転軸の前記他端側の端部の内周側に、前記流路内の冷却液を前記貫通孔に案内する環状壁部が備えられている
ことを特徴とする請求項1に記載の車両用駆動装置。
The flow path is formed by a gap between a wall portion of a cover member arranged on the other end side of the rotary electric machine and a partition wall portion arranged between the cover member and the dry clutch. Communicate between the supply port leading to the internal flow path of the input shaft and the through hole,
The first aspect of the present invention, wherein an annular wall portion for guiding the cooling liquid in the flow path to the through hole is provided on the inner peripheral side of the other end side of the rotating shaft. Vehicle drive device.
前記回転軸の外周面には、前記回転軸と前記ロータとを連結するためのキー溝が軸方向の前記他端側の端部から前記一端側の端部に延設され、
前記軸方向溝は、前記キー溝と並行して複数設けられている
ことを特徴とする請求項1又は2に記載の車両用駆動装置。
On the outer peripheral surface of the rotating shaft, a key groove for connecting the rotating shaft and the rotor is extended from the end on the other end side in the axial direction to the end on the one end side.
The vehicle drive device according to claim 1 or 2, wherein a plurality of the axial grooves are provided in parallel with the key grooves.
前記軸方向溝及び前記キー溝は、円周方向に等間隔に配置されている
ことを特徴とする請求項3に記載の車両用駆動装置。
The vehicle drive device according to claim 3, wherein the axial grooves and the key grooves are arranged at equal intervals in the circumferential direction.
前記軸方向溝の前記止部側の端部は、前記キー溝に接近するように周方向へ屈曲形成されると共に、前記径方向溝が前記キー溝に接近した位置に配置されている
ことを特徴とする請求項3又は4に記載の車両用駆動装置。
The end portion of the axial groove on the stop side is formed to be bent in the circumferential direction so as to approach the key groove, and the radial groove is arranged at a position close to the key groove. The vehicle drive device according to claim 3 or 4.
前記軸方向溝は、螺旋状に形成されている
ことを特徴とする請求項1〜5の何れか1項に記載の車両用駆動装置。
The vehicle drive device according to any one of claims 1 to 5, wherein the axial groove is formed in a spiral shape.
JP2019051669A 2019-03-19 2019-03-19 Vehicle drive device Pending JP2020152203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051669A JP2020152203A (en) 2019-03-19 2019-03-19 Vehicle drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051669A JP2020152203A (en) 2019-03-19 2019-03-19 Vehicle drive device

Publications (1)

Publication Number Publication Date
JP2020152203A true JP2020152203A (en) 2020-09-24

Family

ID=72557386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051669A Pending JP2020152203A (en) 2019-03-19 2019-03-19 Vehicle drive device

Country Status (1)

Country Link
JP (1) JP2020152203A (en)

Similar Documents

Publication Publication Date Title
JP6303770B2 (en) Drive device
JP6844690B2 (en) Vehicle drive
US10944310B2 (en) Rotating electric machine
JP2011106629A (en) Driving device for vehicle
JP5968331B2 (en) Driving force transmission device
JP2011188686A (en) Cooling mechanism of motor
JP2014033602A (en) Hybrid drive device
JP7050961B2 (en) A dual clutch unit and a drive unit equipped with the dual clutch unit.
JP2018184136A (en) Hybrid vehicle driving device
JP6548671B2 (en) Module for an automobile having an electric machine and a clutch operating device
WO2017057190A1 (en) Vehicular drive device
CN111828822B (en) Lubricating mechanism for bearing of vehicle motor
US11519490B2 (en) Oil supply unit
JP6065805B2 (en) Electric motor
JP2020152203A (en) Vehicle drive device
JP2011213190A (en) Hybrid drive device
WO2013018201A1 (en) Hybrid drive device
JP4136736B2 (en) Rotating electric machine and manufacturing method thereof
KR101509458B1 (en) Torque converter
JP2021129361A (en) Device
JP2016070432A (en) Friction engagement device and drive transmission device
JP2020173017A (en) Hydraulic clutch
JP7209562B2 (en) Vehicle drive system
JP5682352B2 (en) Power transmission device
WO2014054692A1 (en) Breather structure