JP2020151654A - Charging device, and air cleaner provided with the charging device - Google Patents

Charging device, and air cleaner provided with the charging device Download PDF

Info

Publication number
JP2020151654A
JP2020151654A JP2019051765A JP2019051765A JP2020151654A JP 2020151654 A JP2020151654 A JP 2020151654A JP 2019051765 A JP2019051765 A JP 2019051765A JP 2019051765 A JP2019051765 A JP 2019051765A JP 2020151654 A JP2020151654 A JP 2020151654A
Authority
JP
Japan
Prior art keywords
discharge electrode
humidity
charging device
ozone
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019051765A
Other languages
Japanese (ja)
Other versions
JP7342391B2 (en
Inventor
加奈絵 栗田
Kanae Kurita
加奈絵 栗田
健太郎 永吉
Kentaro Nagayoshi
健太郎 永吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2019051765A priority Critical patent/JP7342391B2/en
Publication of JP2020151654A publication Critical patent/JP2020151654A/en
Application granted granted Critical
Publication of JP7342391B2 publication Critical patent/JP7342391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Electrostatic Separation (AREA)

Abstract

To provide a charging device which suppresses an increase in the size of the device while simultaneously achieving both a charging function and an ozone generating function, and can increase a concentration of generated ozone.SOLUTION: A charging device includes: a discharge electrode having a passive-state film formed thereon; a charging part having a counter electrode arranged so as to face the discharge electrode; a control part which controls energization to the discharge electrode; and a humidity detection part which detects the humidity. The control part performs such a control that when the humidity detected by the humidity detection part is equal to or lower than a predetermined humidity, a temperature of the discharge electrode is set to be equal to or higher than a predetermined temperature by energization to the discharge electrode.SELECTED DRAWING: Figure 5

Description

本発明は、荷電装置および荷電装置を備える空気清浄機に関する。 The present invention relates to a charging device and an air purifier including the charging device.

従来、放電電極からの放電によって、塵埃などの微粒子を帯電させる荷電機能と、オゾンを発生させるオゾン発生機能とを兼用できるようにした電気集塵機が知られている(例えば、特許文献1を参照)。また、1台の装置で高い荷電効率と高いオゾン発生効率とを得られるように、荷電する際は放電電極にプラスの高電圧を印加する一方、オゾンを発生させる際は放電電極にマイナスの高電圧を印加するようにしたものがある(例えば、特許文献2を参照)。また、マイナスの電圧を印加してオゾンを発生させるオゾン発生部と、プラスの高電圧を印加して荷電する荷電部とを、一つのユニット内に配置したものがある(たとえば、特許文献3を参照)。 Conventionally, there is known an electrostatic precipitator capable of having both a charging function of charging fine particles such as dust by discharging from a discharge electrode and an ozone generating function of generating ozone (see, for example, Patent Document 1). .. In addition, in order to obtain high charge efficiency and high ozone generation efficiency with one device, a positive high voltage is applied to the discharge electrode when charging, while a negative high voltage is applied to the discharge electrode when generating ozone. Some are designed to apply a voltage (see, for example, Patent Document 2). Further, there is a case in which an ozone generating part that generates ozone by applying a negative voltage and a charged part that is charged by applying a positive high voltage are arranged in one unit (for example, Patent Document 3). reference).

特開2002−286240号公報JP-A-2002-286240 特開平4−78456号公報Japanese Unexamined Patent Publication No. 4-78456 特開2008−284412号公報Japanese Unexamined Patent Publication No. 2008-284412

しかしながら、特許文献1は、塵埃を帯電させるための放電の副産物としてオゾンが発生するものであり、発生するオゾン濃度が低くなってしまう。また、特許文献2の装置は、一度にどちらか一方の極性の高電圧しか印加できないので、荷電効率およびオゾン発生効率を同時に高めることができない。また、特許文献3では、荷電効率とオゾン発生効率の両方を同時に高められるものの、オゾン発生部や荷電部、プラスの電圧供給部とマイナスの電圧供給部がそれぞれ必要になる上に、装置の大型化を招いてしまう。 However, in Patent Document 1, ozone is generated as a by-product of electric discharge for charging dust, and the generated ozone concentration is lowered. Further, since the apparatus of Patent Document 2 can apply only a high voltage of one of the polarities at a time, the charging efficiency and the ozone generation efficiency cannot be increased at the same time. Further, in Patent Document 3, although both the charging efficiency and the ozone generation efficiency can be increased at the same time, an ozone generating part, a charging part, a positive voltage supply part and a negative voltage supply part are required, and the device is large. It invites the change.

開示の技術は、上記に鑑みてなされたものであって、荷電効率とオゾン発生効率を同時に高めつつ、装置の大型化を抑制することができる荷電装置および荷電装置を備える空気清浄機を提供することを目的とする。 The disclosed technique has been made in view of the above, and provides an air purifier including a charging device and a charging device capable of suppressing an increase in size of the device while simultaneously increasing the charging efficiency and the ozone generation efficiency. The purpose is.

本願の開示する荷電装置の一態様は、表面に不動態被膜が形成される放電電極と、当該放電電極に対向配置される対向電極とを有する荷電部と、放電電極への通電を制御する制御部と、湿度を検出する湿度検出部とを備える。制御部は、湿度検出部で検出される湿度が所定湿度以下のとき、放電電極への通電によって当該放電電極の温度を所定温度以上まで高めるように制御する。 One aspect of the charging device disclosed in the present application is a control that controls energization of a discharge electrode having a static coating formed on its surface, a charged portion having a counter electrode arranged to face the discharge electrode, and energization of the discharge electrode. A unit and a humidity detection unit for detecting humidity are provided. When the humidity detected by the humidity detection unit is equal to or lower than the predetermined humidity, the control unit controls the discharge electrode so as to raise the temperature of the discharge electrode to the predetermined temperature or higher by energizing the discharge electrode.

本願の開示する荷電装置および荷電装置を備える空気清浄機の一態様によれば、荷電効率とオゾン発生効率を同時に高めつつ、装置の大型化を抑制することができる。 According to the charging device and one aspect of the air purifier including the charging device disclosed in the present application, it is possible to suppress the increase in size of the device while simultaneously increasing the charging efficiency and the ozone generation efficiency.

図1は、実施形態に係る荷電装置を備える電気集塵機が設けられた空気清浄機の概略構成図である。FIG. 1 is a schematic configuration diagram of an air purifier provided with an electrostatic precipitator including the charging device according to the embodiment. 図2は、同上の電気集塵機の構成図である。FIG. 2 is a block diagram of the same electrostatic precipitator. 図3Aは、同上の電気集塵機が備える実施形態に係る荷電装置の放電電極板の正面図である。FIG. 3A is a front view of a discharge electrode plate of a charging device according to an embodiment of the same electrostatic precipitator. 図3Bは、同上の荷電部の放電電極板の平面図である。FIG. 3B is a plan view of the discharge electrode plate of the charged portion of the same. 図3Cは、同上の放電電極板の側面図である。FIG. 3C is a side view of the same discharge electrode plate. 図3Dは、同上の放電電極板の放電電極の先端部を断面視で示す説明図である。FIG. 3D is an explanatory view showing the tip end portion of the discharge electrode of the same discharge electrode plate in a cross-sectional view. 図4は、同上の電気集塵機が備える制御部を主とするブロック図である。FIG. 4 is a block diagram mainly composed of a control unit included in the same electrostatic precipitator. 図5は、同上の電気集塵機の制御手順を示すフローチャートである。FIG. 5 is a flowchart showing the control procedure of the electrostatic precipitator as described above. 図6は、実施形態に係る電気集塵機が備える荷電部における放電電極の形状とオゾン濃度との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the shape of the discharge electrode and the ozone concentration in the charged portion of the electrostatic precipitator according to the embodiment. 図7は、同上の放電電極の形状および相対湿度とオゾン生成量との関係を示すグラフである。FIG. 7 is a graph showing the shape of the discharge electrode and the relationship between the relative humidity and the amount of ozone produced. 図8は、相対湿度とオゾン濃度との関係を時間変化で示すグラフである。FIG. 8 is a graph showing the relationship between relative humidity and ozone concentration over time. 図9は、放電電極の針数を117とした場合におけるオゾン濃度の時間変化を示すグラフである。FIG. 9 is a graph showing the time change of the ozone concentration when the number of needles of the discharge electrode is 117. 図10は、放電電極の針数を58とした場合におけるオゾン濃度の時間変化を示すグラフである。FIG. 10 is a graph showing the time change of the ozone concentration when the number of needles of the discharge electrode is 58. 図11は、参考例に係る放電電極におけるオゾン濃度湿度特性を示すグラフである。FIG. 11 is a graph showing the ozone concentration and humidity characteristics of the discharge electrode according to the reference example. 図12は、放電電極に印加する高電圧の極性とオゾン生成量との関係を時間変化で示すグラフである。FIG. 12 is a graph showing the relationship between the polarity of the high voltage applied to the discharge electrode and the amount of ozone generated over time.

以下に、本願の開示する荷電装置および空気清浄機の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態によって、本願の開示する荷電装置および空気清浄機の構造および制御方法が限定されるものではない。また、以下の説明による構成要素には、当業者が置換可能かつ容易なもの、或いは実質的同一のもの、いわゆる均等の範囲のものが含まれる。なお、実施形態の説明の全体を通じて同じ要素には同じ符号を付して説明する。以下の実施形態では、開示の技術にかかる荷電装置を、空気清浄機が備える電気集塵機に適用した場合を示した。しかし、これに限られず、開示の技術にかかる荷電装置は、例えば、放電によりオゾンを発生させることのできる各種装置に適用することができる。 Hereinafter, embodiments of the charging device and the air purifier disclosed in the present application will be described in detail with reference to the drawings. It should be noted that the following embodiments do not limit the structure and control method of the charging device and the air purifier disclosed in the present application. In addition, the components according to the following description include those that can be easily replaced by those skilled in the art, or those that are substantially the same, that is, those having a so-called equal range. The same elements will be described with the same reference numerals throughout the description of the embodiment. In the following embodiment, the case where the charging device according to the disclosed technique is applied to the electrostatic precipitator provided in the air purifier is shown. However, the present invention is not limited to this, and the charging device according to the disclosed technology can be applied to, for example, various devices capable of generating ozone by electric discharge.

図1は、実施形態に係る荷電装置を備える電気集塵機が設けられた空気清浄機の概略構成図、図2は、同電気集塵機の構成図である。図1に示すように、空気清浄機1は、空気を清浄化するための装置類を収納する筐体10を備えている。筐体10は、合成樹脂材で略直方体状に形成されており、室内の空気を吸引する吸込口11と、清浄化された空気を室内に吹き出す吹出口12とが形成される。 FIG. 1 is a schematic configuration diagram of an air purifier provided with an electrostatic precipitator including the charging device according to the embodiment, and FIG. 2 is a configuration diagram of the electrostatic precipitator. As shown in FIG. 1, the air purifier 1 includes a housing 10 for accommodating devices for purifying air. The housing 10 is made of a synthetic resin material and is formed in a substantially rectangular parallelepiped shape, and a suction port 11 for sucking indoor air and an air outlet 12 for blowing clean air into the room are formed.

図1および図2に示すように、筐体10内には、吸引された空気から大きな塵埃を除去するプレフィルタ14と、プレフィルタ14を通過した空気中の塵埃を静電気力によって集塵する複数の電気集塵機2と、電気集塵機2を通過した空気を脱臭処理する脱臭フィルタ5とが設けられる。 As shown in FIGS. 1 and 2, a prefilter 14 that removes large dust from the sucked air and a plurality of prefilters 14 that collect dust in the air that has passed through the prefilter 14 by electrostatic force are contained in the housing 10. The electrostatic precipitator 2 and the deodorizing filter 5 for deodorizing the air that has passed through the electrostatic precipitator 2 are provided.

電気集塵機2は、それぞれ荷電部3と集塵部4とを備える。本実施形態では、荷電部3が荷電装置として機能する。なお、本実施形態においては、3つの電気集塵機2が筐体10内に配置されているが、配置される数は何ら限定されない。 The electrostatic precipitator 2 includes a charged unit 3 and a dust collecting unit 4, respectively. In this embodiment, the charging unit 3 functions as a charging device. In the present embodiment, the three electrostatic precipitators 2 are arranged in the housing 10, but the number of the three electrostatic precipitators 2 is not limited in any way.

プレフィルタ14は、例えば糸状のPET材を編みこんだ網目構造を有し、図示しない樹脂枠で保持される。プレフィルタ14は、筐体10の内部に吸い込まれた空気に含まれている比較的大きな塵埃を捕集する。脱臭フィルタ5は、プレフィルタ14および電気集塵機2で塵埃が除かれた空気から、触媒フィルタによって、例えばアンモニアやメチルメルカプタン等の臭気成分やホルムアルデヒド等の有害成分を取り除く脱臭処理を行う。 The pre-filter 14 has, for example, a mesh structure in which a thread-like PET material is woven, and is held by a resin frame (not shown). The pre-filter 14 collects relatively large dust contained in the air sucked into the housing 10. The deodorizing filter 5 performs a deodorizing treatment for removing odorous components such as ammonia and methyl mercaptan and harmful components such as formaldehyde from the air from which the dust has been removed by the pre-filter 14 and the electrostatic precipitator 2.

また、筐体10内には、脱臭フィルタ5の下流側に配置されるファン6と、ファン6を回転させるファンモータ61と、空気清浄機1を制御する制御基板7とが設けられる。 Further, in the housing 10, a fan 6 arranged on the downstream side of the deodorizing filter 5, a fan motor 61 for rotating the fan 6, and a control board 7 for controlling the air purifier 1 are provided.

さらに、筐体10内には、吸込口11から吸引された空気の塵埃濃度を検出する埃センサ13と、運転開始操作、運転停止操作などを行う操作表示基板15とが設けられる。 Further, inside the housing 10, a dust sensor 13 for detecting the dust concentration of the air sucked from the suction port 11 and an operation display board 15 for performing an operation start operation, an operation stop operation, and the like are provided.

また、筐体10には、各電気集塵機2の各集塵部4に電力を供給する単一の集塵部用の定電圧高圧電源部(以下「集塵部用高圧電源40」とする)が配置される。他方、荷電部3に電力を供給する荷電部用の定電流高圧電源部(以下「荷電部用高圧電源30」とする)は、3つの荷電部3にそれぞれ配置される。 Further, the housing 10 has a constant voltage high-voltage power supply unit for a single dust collector that supplies power to each dust collector 4 of each electric dust collector 2 (hereinafter referred to as “high-voltage power supply 40 for dust collector”). Is placed. On the other hand, the constant current high-voltage power supply unit (hereinafter referred to as "high-voltage power supply 30 for the charged unit") for the charged unit that supplies power to the charged unit 3 is arranged in each of the three charged units 3.

かかる構成により、空気清浄機1は、ファンモータ61により駆動されるファン6の回転により、矢印fで示すように、吸込口11から室内空気を吸引し、プレフィルタ14、電気集塵機2、脱臭フィルタ5を通過させながら空気を清浄し、清浄された空気を吹出口12より室内に吹き出す。 With this configuration, the air purifier 1 sucks indoor air from the suction port 11 by the rotation of the fan 6 driven by the fan motor 61, as shown by the arrow f, and the pre-filter 14, the electrostatic precipitator 2, and the deodorizing filter. The air is purified while passing through 5, and the purified air is blown into the room from the outlet 12.

なお、空気清浄機1の風量設定は、操作表示基板15の操作に基づいて手動で風量を切換えることができるが、例えば、埃センサ13の検出信号に基づいて、適切な風量に自動で切換わる自動風量モード設定を設けることもできる。 The air volume setting of the air purifier 1 can be manually switched based on the operation of the operation display board 15, but for example, it is automatically switched to an appropriate air volume based on the detection signal of the dust sensor 13. An automatic air volume mode setting can also be provided.

ここで、実施形態に係る荷電装置を備える電気集塵機2について、図2を参照しながら説明する。図2に示すように、電気集塵機2は、荷電部3と集塵部4とを備える。荷電部3は、通過する空気中に含まれる塵埃などの微粒子を帯電させる。集塵部4は、荷電部3で帯電された微粒子を静電気力により捕集する。荷電装置として機能する荷電部3は、先端が鋭利な鋸歯形状をした荷電部放電電極(以下「放電電極310」とする)と、放電電極310と異なる極性をもった荷電部対向電極(以下「対向電極320」とする)とが、所定の間隔をあけて交互に配置されている。また、対向電極320は、平板電極で構成されている。 Here, the electrostatic precipitator 2 including the charging device according to the embodiment will be described with reference to FIG. As shown in FIG. 2, the electrostatic precipitator 2 includes a charged unit 3 and a dust collecting unit 4. The charging unit 3 charges fine particles such as dust contained in the passing air. The dust collecting unit 4 collects the fine particles charged by the charged unit 3 by electrostatic force. The charged portion 3 that functions as a charging device includes a charged portion discharge electrode having a sawtooth shape with a sharp tip (hereinafter referred to as “discharge electrode 310”) and a charged portion facing electrode having a polarity different from that of the discharge electrode 310 (hereinafter “discharge electrode 310”). Opposite electrodes 320 ”) are alternately arranged at predetermined intervals. Further, the counter electrode 320 is composed of a flat plate electrode.

集塵部4は、平板電極を多数枚平行に配列し、交互に異なる極性の電圧が印加されるよう電気的に接続した構造であり、本実施形態においては、放電電極310と同極性のものを集塵部高圧電極(以下「高圧電極410」とする)、対向電極320と同極性のものを集塵部捕集電極(以下「捕集電極420」とする)と呼ぶ。 The dust collecting unit 4 has a structure in which a large number of flat plate electrodes are arranged in parallel and electrically connected so that voltages of different polarities are alternately applied. In the present embodiment, the dust collecting unit 4 has the same polarity as the discharge electrode 310. Is referred to as a dust collecting portion high-voltage electrode (hereinafter referred to as “high-voltage electrode 410”), and an electrode having the same polarity as the counter electrode 320 is referred to as a dust collecting portion collecting electrode (hereinafter referred to as “collecting electrode 420”).

荷電部3の放電電極310と対向電極320との間には、電源50から電源部55を介して、荷電部用高圧電源30により高電圧が印加される。荷電部用高圧電源30は、制御基板7に搭載された制御部70により荷電部スイッチ301,302,303を介して駆動、制御される。 A high voltage is applied between the discharge electrode 310 and the counter electrode 320 of the charged portion 3 from the power supply 50 via the power supply portion 55 by the high voltage power supply 30 for the charged portion. The high-voltage power supply 30 for the charged unit is driven and controlled by the control unit 70 mounted on the control board 7 via the charged unit switches 301, 302, and 303.

集塵部4の捕集電極420と高圧電極410との間には、電源50から電源部55を介して、集塵部用高圧電源40により高電圧が印加される。集塵部用高圧電源40は、制御基板7に搭載された制御部70により集塵部スイッチ401を介して駆動、制御される。 A high voltage is applied between the dust collecting electrode 420 and the high voltage electrode 410 of the dust collecting section 4 from the power source 50 via the power supply section 55 by the high voltage power source 40 for the dust collecting section. The high-voltage power supply 40 for the dust collecting unit is driven and controlled by the control unit 70 mounted on the control board 7 via the dust collecting unit switch 401.

荷電部用高圧電源30は、電気集塵機2が内蔵する荷電部3の個数と同数(ここでは3個)が設けられており、各電気集塵機2の荷電部3と1対1に対応して接続される。集塵部用高圧電源40は、電気集塵機2が内蔵する集塵部4の個数にかかわらず1つであり、すべての集塵部4が並列に接続される。 The high-voltage power supply 30 for the charged part is provided with the same number (three in this case) as the number of charged parts 3 built in the electrostatic precipitator 2, and is connected to the charged part 3 of each electrostatic precipitator 2 in a one-to-one correspondence. Will be done. The high-voltage power supply 40 for the dust collector is one regardless of the number of the dust collectors 4 built in the electric dust collector 2, and all the dust collectors 4 are connected in parallel.

また、本実施形態に係る電気集塵機2は、図示するように、湿度検出部となる湿度センサ210と、温度センサ220と、除湿部230とを備え、それぞれ制御部70と電気的に接続されている。湿度センサ210は、空気清浄機1または電気集塵機2の周辺の相対湿度を取得するためのセンサであり、これにより荷電部3周辺の相対湿度を検出することができる。温度センサ220は、放電電極310の表面温度を検出することができる。また、除湿部230は、少なくとも荷電部3周辺の相対湿度を低くすることができるものであればよい。除湿部230は、例えば、空気清浄機1を設置する室内の除湿が可能なもの、あるいは空気清浄機1または電気集塵機2の周辺の除湿を行うことができるものであればよい。この場合、空気清浄機1または電気集塵機2に取り込まれる空気が除湿されることで、その内部に配置される荷電部3周辺の相対湿度を低くすることができる。あるいは、空気清浄機1に取り込まれた空気を暖めることで荷電部3の周辺の相対湿度を低くするものであってもよい。 Further, as shown in the figure, the electrostatic precipitator 2 according to the present embodiment includes a humidity sensor 210 as a humidity detection unit, a temperature sensor 220, and a dehumidification unit 230, each of which is electrically connected to the control unit 70. There is. The humidity sensor 210 is a sensor for acquiring the relative humidity around the air purifier 1 or the electrostatic precipitator 2, and thereby can detect the relative humidity around the charged portion 3. The temperature sensor 220 can detect the surface temperature of the discharge electrode 310. Further, the dehumidifying unit 230 may be at least capable of lowering the relative humidity around the charged unit 3. The dehumidifying unit 230 may be, for example, one capable of dehumidifying the room in which the air purifier 1 is installed, or one capable of dehumidifying the periphery of the air purifier 1 or the electrostatic precipitator 2. In this case, by dehumidifying the air taken into the air purifier 1 or the electrostatic precipitator 2, the relative humidity around the charged portion 3 arranged inside the air purifier 1 or the electrostatic precipitator 2 can be lowered. Alternatively, the relative humidity around the charged portion 3 may be lowered by warming the air taken into the air purifier 1.

ここで、図3A〜図3Dを参照しながら、荷電部3が備える放電電極310について説明する。図3Aは、実施形態に係る荷電装置の放電電極板の正面図、図3Bは、同放電電極板の平面図、図3Cは、同放電電極板の側面図、図3Dは、同放電電極の先端部を断面視で示す説明図である。図3Bに示すように、放電電極310は、先端部に複数の突起部315が形成された鋭利な鋸歯形状に形成されている。そして、図3Aおよび図3Cに示すように、複数の放電電極310が、所定間隔をあけて枠部311に連結されている。ここでは、複数の放電電極310が、ステンレス(例えば、SUS304)製の矩形板状の放電電極板31を切り起こすことで形成されている。 Here, the discharge electrode 310 included in the charged unit 3 will be described with reference to FIGS. 3A to 3D. 3A is a front view of the discharge electrode plate of the charging device according to the embodiment, FIG. 3B is a plan view of the discharge electrode plate, FIG. 3C is a side view of the discharge electrode plate, and FIG. 3D is a side view of the discharge electrode plate. It is explanatory drawing which shows the tip part in the cross-sectional view. As shown in FIG. 3B, the discharge electrode 310 is formed in a sharp sawtooth shape in which a plurality of protrusions 315 are formed at the tip. Then, as shown in FIGS. 3A and 3C, a plurality of discharge electrodes 310 are connected to the frame portion 311 at predetermined intervals. Here, the plurality of discharge electrodes 310 are formed by cutting up a rectangular plate-shaped discharge electrode plate 31 made of stainless steel (for example, SUS304).

また、本実施形態においては、放電電極310の各突起部315は、図3Dに示すように、不動態被膜316が形成されている。 Further, in the present embodiment, each protrusion 315 of the discharge electrode 310 is formed with a passivation film 316 as shown in FIG. 3D.

本実施形態における不動態被膜316は、三価クロムであり、例えば酸化クロム(III)(Cr)により形成される。すなわち、図3Dに示すように、放電電極310の先端部に形成された突起部315において、ステンレス製の基体315aに酸化クロム(III)(Cr)からなる不動態被膜316が形成されている。 Passivation film 316 in this embodiment is a trivalent chromium, for example, formed by chromium oxide (III) (Cr 2 0 3 ). That is, as shown in FIG. 3D, the protrusions 315 formed at the tip of the discharge electrode 310, a passivation film 316 is formed of stainless steel substrates 315a to chromium oxide (III) (Cr 2 0 3 ) ing.

次に、電気集塵機2内における塵埃の捕集作用について簡単に説明する。荷電部3の放電電極310に正極の高電圧を印加し、対向電極320を荷電部用高圧電源30の接地極(アース)に接続すると、コロナ放電が起こり、この電極間には、電子と空気分子が正に帯電したイオンが満たされる。このうち電子は、放電電極310に到達し、荷電部用高圧電源30に向かって流れる。このときの荷電部3全体での電流を0.25mAとすると、電極間にはこの電流値に対応してイオンが発生する。 Next, the dust collecting action in the electrostatic precipitator 2 will be briefly described. When a high voltage of the positive electrode is applied to the discharge electrode 310 of the charged portion 3 and the counter electrode 320 is connected to the ground electrode (earth) of the high-voltage power supply 30 for the charged portion, a corona discharge occurs, and electrons and air are between the electrodes. The positively charged ions of the molecule are filled. Of these, the electrons reach the discharge electrode 310 and flow toward the high-voltage power supply 30 for the charged portion. Assuming that the current of the entire charged portion 3 at this time is 0.25 mA, ions are generated between the electrodes corresponding to this current value.

この正イオンで満たされた空間を塵埃が通過する際、その通過時間と放電電極310と対向電極320とで作られる電界の強さに応じて、イオンと塵埃の衝突による電荷の移動が起こり、塵埃に正の電荷が帯電する。 When dust passes through a space filled with positive ions, charge transfer occurs due to collision between ions and dust, depending on the passage time and the strength of the electric field created by the discharge electrode 310 and the counter electrode 320. The dust is positively charged.

一方、集塵部4の高圧電極410に例えば5kVを印加し、捕集電極420を集塵部用高圧電源40の接地極(アース)に接続すると、両電極の間隔が2mmであれば、25kV/cmの静電界が形成される。荷電部3で正に帯電した塵埃は、集塵部4に移動すると、静電界により塵埃と反対極性の捕集電極420に吸引される方向に力を受ける。 On the other hand, when, for example, 5 kV is applied to the high-pressure electrode 410 of the dust collecting portion 4 and the collecting electrode 420 is connected to the ground electrode (earth) of the high-pressure power supply 40 for the dust collecting portion, 25 kV if the distance between the two electrodes is 2 mm. An electrostatic field of / cm is formed. When the dust positively charged by the charged unit 3 moves to the dust collecting unit 4, it receives a force in the direction of being attracted to the collecting electrode 420 having the opposite polarity to the dust by the electrostatic field.

空気中を浮遊する塵埃は、空気抵抗により直ちに終端速度に到達し、流れ方向と捕集電極420方向の速度成分を持った等速運動となる。捕集電極420方向の速度成分は、塵埃の電荷量、および、高圧電極410と捕集電極420の間の静電界の強さ(電界強度)に比例し、流れ方向の速度と集塵部4の奥行で定まる集塵部4の通過時間内に、捕集電極420に到達した塵埃が捕集される。 Dust floating in the air immediately reaches the terminal velocity due to air resistance, and becomes a constant velocity motion having velocity components in the flow direction and the collection electrode 420 direction. The velocity component in the direction of the collection electrode 420 is proportional to the amount of electric charge of the dust and the strength of the electrostatic field (electric field strength) between the high-voltage electrode 410 and the collection electrode 420, and the velocity in the flow direction and the dust collection unit 4 The dust that has reached the collection electrode 420 is collected within the passage time of the dust collection unit 4 determined by the depth of the above.

空気中を浮遊する塵埃は十分に小さく、中には捕集電極420から遠ざかる方向に動くものもあり、集塵部4を通過している間にすべての塵埃が捕集されるわけではない。しかし、空気清浄機1の運転中、捕集されなかった塵埃は繰り返し空気清浄機1内に取り込まれて電気集塵機2を通過することになるので、捕集されずに集塵部4を通過する塵埃の量は、空気清浄機1の運転開始からの時間の経過にともない次第に減少していく。 The dust floating in the air is sufficiently small, and some of them move in a direction away from the collection electrode 420, and not all dust is collected while passing through the dust collection unit 4. However, during the operation of the air purifier 1, the dust that has not been collected is repeatedly taken into the air purifier 1 and passes through the electrostatic precipitator 2, so that the dust passes through the dust collecting unit 4 without being collected. The amount of dust gradually decreases with the lapse of time from the start of operation of the air purifier 1.

本実施形態に係る空気清浄機1は、上述した塵埃の捕集作用を実行しながら、電気集塵機2の荷電部3で生成するオゾンを利用して、例えば空気清浄機1の内部の除菌や、室内の空気の除菌まで果たすことができる。 The air purifier 1 according to the present embodiment uses ozone generated by the charged portion 3 of the electrostatic precipitator 2 while executing the above-mentioned dust collecting action to disinfect the inside of the air purifier 1, for example. It can even sterilize indoor air.

すなわち、電気集塵機2に荷電装置として設けられた荷電部3において、所定の条件が揃うと、放電電極310からのコロナ放電により生成されるオゾン濃度が急激に上昇する現象が起きることが分かった。かかる現象を利用することにより、本実施形態に係る空気清浄機1は、コンパクトな装置でありながらも十分な集塵機能とオゾン発生機能(および除菌機能)とを果たすことができる。 That is, it has been found that in the charging unit 3 provided as a charging device in the electrostatic precipitator 2, a phenomenon occurs in which the ozone concentration generated by the corona discharge from the discharge electrode 310 rapidly increases when predetermined conditions are met. By utilizing such a phenomenon, the air purifier 1 according to the present embodiment can fulfill a sufficient dust collecting function and an ozone generating function (and a sterilizing function) even though it is a compact device.

十分なオゾン濃度を得るための条件、すなわちオゾン濃度が急増する条件(所定の条件)を以下に示す。放電電極310の材質としては、クロムを含有するステンレス(例えばSUS304)を用い、その形状は、針先(突起部315)に電流が集中し電力密度が高くなる形状(例えば鋸歯状)とする。そして、例えば相対湿度(RH:Relative Humidity)がRH35%以下とした低湿度雰囲気下において、連続通電により放電電極310の先端部となる針先(突起部315)を高温にした場合としている。ここで、針先の温度としては、470K以上であることが望ましい。この470Kは、放電電極310の突起部315に形成された不動態被膜316である酸化クロム(III)(Cr)の一部がオゾンと反応して酸化クロム(VI)(Cr0)に変化することで、酸素分子と反応してオゾンを生成する触媒として作用するようになる温度である。 The conditions for obtaining a sufficient ozone concentration, that is, the conditions under which the ozone concentration rapidly increases (predetermined conditions) are shown below. As the material of the discharge electrode 310, stainless steel containing chromium (for example, SUS304) is used, and the shape thereof is a shape (for example, serrated) in which the current is concentrated on the needle tip (projection 315) and the power density is high. Then, for example, in a low humidity atmosphere where the relative humidity (RH: Relative Humidity) is RH 35% or less, the needle tip (projection portion 315), which is the tip end portion of the discharge electrode 310, is heated to a high temperature by continuous energization. Here, the temperature of the needle tip is preferably 470 K or higher. The 470K, the projection portion 315 formed passive film 316 in which chromium oxide of the discharge electrodes 310 (III) (Cr 2 0 3) Some react with ozone chromium oxide (VI) (Cr0 3) It is the temperature at which it reacts with oxygen molecules to act as a catalyst to generate ozone.

確かに、一般的には、相対湿度が低くなるほど発生するオゾンの濃度は高くなる傾向があるものの、上記の所定の条件を満たすようにして荷電部3を連続的に稼働させると、オゾンが急増する現象が確認された。しかも、一般的に低湿度の場合に想定されるオゾン濃度の数倍〜十数倍の濃度が検出されている。 Certainly, in general, the concentration of ozone generated tends to increase as the relative humidity decreases, but when the charged unit 3 is continuously operated so as to satisfy the above-mentioned predetermined conditions, ozone increases rapidly. The phenomenon of Moreover, a concentration several to ten times higher than the ozone concentration generally assumed in the case of low humidity is detected.

本実施形態では、荷電部3の放電電極310として、厚みを0.1mmとするとともに、形状を鋸歯形状(図3B参照)とし、安価で耐久性のあるステンレス材料のSUS304を用いて形成したものを採用した。SUS304は、特別な処理を行わずとも表面に不動態被膜が形成されている。なお、表面に不動態被膜が形成されたステンレス材料としては、SUS304のほか、SUS303、SUS316等のオーステナイト系の材料を用いることができる。また、このときの対向電極320は、厚みを0.5mmとするとともに、形状を平板状とし、材料としては放電電極310と同様にSUS304を用いて形成したものを採用した。 In the present embodiment, the discharge electrode 310 of the charged portion 3 is formed by using SUS304, which is an inexpensive and durable stainless steel material, having a thickness of 0.1 mm and a sawtooth shape (see FIG. 3B). It was adopted. The passivation film is formed on the surface of SUS304 without any special treatment. As the stainless steel material having the passivation film formed on the surface, austenitic materials such as SUS303 and SUS316 can be used in addition to SUS304. Further, the counter electrode 320 at this time had a thickness of 0.5 mm, a flat plate shape, and was formed by using SUS304 as the material like the discharge electrode 310.

また、さらに、鋸歯形状とした放電電極310の突起部315に、三価クロムからなる不動態被膜316を形成した。ここで、三価クロムの一つである酸化クロム(III)(Cr)は、放電電極310からのコロナ放電によって生成されるオゾンと470K前後で反応し、その一部が強力な酸化剤である六価クロムの酸化クロム(VI)(Cr0)に変化することが分かっている。このときの反応は次の化学反応式で表される。 Further, a passivation film 316 made of trivalent chromium was formed on the protrusion 315 of the saw-toothed discharge electrode 310. Here, trivalent is one chromium oxide chromium (III) (Cr 2 0 3 ) is reacted before and after ozone and 470K produced by corona discharge from the discharge electrode 310, a portion of strong oxidizing It has been found to vary in chromium oxide hexavalent chromium (VI) (Cr0 3) is agent. The reaction at this time is represented by the following chemical reaction formula.

Cr+0→ 2Cr0 Cr 2 0 3 +0 32 Cr0 3

かかる酸化クロム(VI)(Cr0)は、高湿度雰囲気下では不安定であり、直ちに酸化クロム(III)に戻り、触媒としては作用しないことが分かっている。そのため、高湿度雰囲気下においてはオゾンの急増現象は発生しない。一方、酸化クロム(VI)(Cr0)は、低湿度雰囲気下では安定しており、触媒として作用することでオゾンの発生量を急増させると推定される。このときの反応は次の化学反応式で表される。 Such chromium oxide (VI) (Cr0 3) is unstable under high humidity atmosphere, immediately returned to the chromium oxide (III), as a catalyst has been found that not act. Therefore, the phenomenon of sudden increase in ozone does not occur in a high humidity atmosphere. On the other hand, chromium oxide (VI) (Cr0 3) is stable at a low humidity atmosphere, is predicted to surge the amount of ozone generated by acting as a catalyst. The reaction at this time is represented by the following chemical reaction formula.

30→ 20 30 2 → 20 3

つまり、低湿度雰囲気下にある放電電極310の温度を、放電電極310の表面に形成された不動態被膜(酸化クロム(III)(Cr))がオゾンと反応し、不動態被膜を構成する金属元素の六価の化合物(酸化クロム(VI)(Cr0))が生成されるようになる温度(470K)以上となるよう、通電を制御することで、高濃度のオゾンを発生させることができる。 That is, the temperature of the discharge electrodes 310 in the low-humidity atmosphere, the passivation film formed on the surface of the discharge electrode 310 (chromium oxide (III) (Cr 2 0 3 )) is reacted with ozone, a passivation film hexavalent compounds of metal elements forming (chromium oxide (VI) (Cr0 3)) to become a made temperature (470K) or as produced, by controlling the energization, to generate a high concentration of ozone be able to.

そして、上述の条件下において、以下に示す通電制御を行うことにより、一つの荷電部3で高濃度のオゾンを発生しつつ高効率で荷電することを可能にした。また、本実施形態では、荷電部3の前段部に除湿部230を設け(図2および図4を参照)、相対湿度を所望する湿度になるように制御可能としている。すなわち、オゾンの発生量を増加させるには、低湿度雰囲気下が望ましいため、本実施形態における空気清浄機1では、荷電部3の前段部に除湿部230を設けることで、除湿の有無によりオゾンの生成量を制御することを可能にしている。 Then, under the above-mentioned conditions, by performing the following energization control, it is possible to charge with high efficiency while generating high-concentration ozone in one charged unit 3. Further, in the present embodiment, a dehumidifying unit 230 is provided in the front stage portion of the charged unit 3 (see FIGS. 2 and 4) so that the relative humidity can be controlled to a desired humidity. That is, in order to increase the amount of ozone generated, it is desirable to have a low humidity atmosphere. Therefore, in the air purifier 1 of the present embodiment, ozone is provided depending on the presence or absence of dehumidification by providing the dehumidifying unit 230 in the front stage of the charged unit 3. It is possible to control the amount of production of.

ここで、図4を参照しながら、制御基板7について、制御部70を主として説明する。図4は、本実施形態の電気集塵機2が備える制御部70を主とするブロック図である。なお、制御基板7には、荷電部用高圧電源30、集塵部用高圧電源40、除湿部230およびファンモータ61へ電力を供給するファンモータ電源(不図示)を制御する制御部も含まれるが、図4では、除湿部230および荷電部用高圧電源30を制御する制御部70以外の図示を省略している。 Here, the control unit 70 will be mainly described with reference to FIG. FIG. 4 is a block diagram mainly composed of a control unit 70 included in the electrostatic precipitator 2 of the present embodiment. The control board 7 also includes a control unit that controls a high-voltage power supply 30 for the charged unit, a high-voltage power supply 40 for the dust collecting unit, a dehumidifying unit 230, and a fan motor power supply (not shown) that supplies electric power to the fan motor 61. However, in FIG. 4, illustrations other than the control unit 70 that controls the dehumidifying unit 230 and the high-voltage power supply 30 for the charged unit are omitted.

制御部70は、湿度管理部710、通電制御部720および判定部730を有する。制御部70は、例えばCPUやメモリなどのマイクロコンピュータを有し、所定のプログラムを読み出して処理することで湿度管理部710、通電制御部720および判定部730としての機能を果たす。湿度管理部710は、除湿部230に接続され、通電制御部720は、荷電部用高圧電源30に接続され、判定部730は、湿度センサ210および温度センサ220に接続されている。 The control unit 70 includes a humidity control unit 710, an energization control unit 720, and a determination unit 730. The control unit 70 has, for example, a microcomputer such as a CPU or a memory, and functions as a humidity control unit 710, an energization control unit 720, and a determination unit 730 by reading and processing a predetermined program. The humidity control unit 710 is connected to the dehumidification unit 230, the energization control unit 720 is connected to the high-voltage power supply 30 for the charging unit, and the determination unit 730 is connected to the humidity sensor 210 and the temperature sensor 220.

こうして、制御部70は、湿度センサ210が検出した相対湿度に基づいて、判定部730により、荷電部3の放電電極310の温度を制御する通電制御を開始するか否かを判定する。すなわち、湿度センサ210が検出した湿度が、オゾンの急増現象が生じるか否かの境界となる所定湿度(例えばRH35%)以下のとき、通電制御を実行して、通電制御部720により荷電部用高圧電源30を制御し、例えば電圧を一定に維持しながら電流を大きくし、放電電極310の温度を、不動態被膜(酸化クロム(III)(Cr))がオゾンと反応することで、不動態被膜を構成する金属元素の六価の化合物(酸化クロム(VI)(Cr0))が生成される所定温度(例えば470K)以上まで高める。 In this way, the control unit 70 determines whether or not the determination unit 730 starts the energization control for controlling the temperature of the discharge electrode 310 of the charge unit 3 based on the relative humidity detected by the humidity sensor 210. That is, when the humidity detected by the humidity sensor 210 is equal to or lower than a predetermined humidity (for example, RH35%) that is a boundary for whether or not a rapid increase of ozone occurs, energization control is executed and the energization control unit 720 is used for the charged unit. controls the high voltage power supply 30, for example by increasing the current while the voltage was maintained constant, the temperature of the discharge electrode 310, a passivation film (chromium oxide (III) (Cr 2 0 3 )) that reacts with ozone , hexavalent compounds of metal elements constituting the passivation film (chromium oxide (VI) (Cr0 3)) is increased to a predetermined temperature to be generated (e.g., 470K) or more.

ここで、所定湿度であるRH35%や所定温度とした470Kなどの値は、制御基板7に設けられた記憶部700に記憶されている。すなわち、記憶部700は、例えば、揮発性半導体記憶装置を一例とする内部記憶装置または半導体を記憶媒体とする不揮発性の外部記憶装置等である。 Here, values such as RH35%, which is a predetermined humidity, and 470K, which is a predetermined temperature, are stored in a storage unit 700 provided on the control board 7. That is, the storage unit 700 is, for example, an internal storage device using a volatile semiconductor storage device as an example, a non-volatile external storage device using a semiconductor as a storage medium, or the like.

記憶部700は、各種の計測値、取得値、算出値、各種閾値などを記憶することができ、各種の計測値、取得値、算出値は、計測タイミング、取得タイミング、算出タイミング毎に、時系列で記憶部700に記憶される。 The storage unit 700 can store various measured values, acquired values, calculated values, various threshold values, and the like, and various measured values, acquired values, and calculated values are stored at each measurement timing, acquisition timing, and calculation timing. It is stored in the storage unit 700 in series.

図5は、実施形態に係る電気集塵機2の制御手順を示すフローチャートである。電気集塵機2の制御手順は、空気清浄機1の運転開始をきっかけとして実行される。 FIG. 5 is a flowchart showing a control procedure of the electrostatic precipitator 2 according to the embodiment. The control procedure of the electrostatic precipitator 2 is executed triggered by the start of operation of the air purifier 1.

図5に示すように、制御部70は、空気清浄機1の運転開始に応じて、電気集塵機2の運転を開始する(ステップS11)。次に、制御部70は、荷電部3周辺の相対湿度が、オゾンの急増現象が生じるか否かの境界となる所定湿度(RH35%)以下であるかを判断する(ステップS12)。すなわち、制御部70は、判定部730により湿度センサ210の検出結果により荷電部3の相対湿度を判断し、荷電部3周辺の相対湿度が、オゾンの急増現象が生じるか否かの境界となる所定湿度(RH35%)を超えていれば、RH35%以下になるまで待機する。 As shown in FIG. 5, the control unit 70 starts the operation of the electrostatic precipitator 2 in response to the start of the operation of the air purifier 1 (step S11). Next, the control unit 70 determines whether the relative humidity around the charged unit 3 is equal to or less than a predetermined humidity (RH35%), which is a boundary for whether or not a rapid increase phenomenon of ozone occurs (step S12). That is, the control unit 70 determines the relative humidity of the charged unit 3 based on the detection result of the humidity sensor 210 by the determination unit 730, and the relative humidity around the charged unit 3 serves as a boundary for whether or not a rapid increase phenomenon of ozone occurs. If it exceeds the predetermined humidity (RH35%), it waits until the RH is 35% or less.

このとき、荷電部3周辺の相対湿度がRH35%を超えている場合(ステップS12:No)、制御部70の湿度管理部710は、除湿部230を駆動して相対湿度を下げる。そして、湿度センサ210の検出結果により荷電部3周辺の相対湿度がRH35%以下になったと判断すると(ステップS12:Yes)、制御部70の通電制御部720は、通電制御を実行して荷電部用高圧電源30を制御する(ステップS13)。 At this time, when the relative humidity around the charged unit 3 exceeds RH35% (step S12: No), the humidity control unit 710 of the control unit 70 drives the dehumidifying unit 230 to lower the relative humidity. Then, when it is determined from the detection result of the humidity sensor 210 that the relative humidity around the charged unit 3 is RH 35% or less (step S12: Yes), the energization control unit 720 of the control unit 70 executes the energization control and the charged unit. High voltage power supply 30 is controlled (step S13).

そして、制御部70は、放電電極310の表面温度が例えば470K(所定温度)になったか否かを判定する(ステップS14)。このとき、放電電極310の表面温度が470K以下であれば(ステップS14:No)、制御部70の通電制御部720は、荷電部用高圧電源30を制御して放電電極310への通電量を増加させ、温度センサ220の検出結果により放電電極310の表面温度が470K以上になったと判断すると(ステップS14:Yes)、この制御手順を終了する。 Then, the control unit 70 determines whether or not the surface temperature of the discharge electrode 310 has reached, for example, 470 K (predetermined temperature) (step S14). At this time, if the surface temperature of the discharge electrode 310 is 470 K or less (step S14: No), the energization control unit 720 of the control unit 70 controls the high-voltage power supply 30 for the charged unit to reduce the amount of energization to the discharge electrode 310. When it is determined that the surface temperature of the discharge electrode 310 has reached 470 K or higher based on the detection result of the temperature sensor 220 (step S14: Yes), this control procedure ends.

このように、本実施形態では、制御部70は、湿度センサ210で検出される相対湿度がRH35%以下のとき、荷電部用高圧電源30を制御して、放電電極310の表面温度が470K以上となるように放電電極310への通電量を制御する。 As described above, in the present embodiment, when the relative humidity detected by the humidity sensor 210 is RH 35% or less, the control unit 70 controls the high-voltage power supply 30 for the charged unit, and the surface temperature of the discharge electrode 310 is 470 K or more. The amount of electricity supplied to the discharge electrode 310 is controlled so as to be.

このように、本実施形態に係る荷電部3では、塵埃を荷電するという本来の機能を維持しつつ、放電電極310を、高濃度のオゾンを発生させるオゾナイザとしても機能させることが可能となる。 As described above, in the charging unit 3 according to the present embodiment, the discharge electrode 310 can also function as an ozonizer for generating high-concentration ozone while maintaining the original function of charging dust.

したがって、荷電装置とオゾナイザとを個別に設ける必要がないので、荷電機能とオゾンによる殺菌機能とを併せもつ高機能の電気集塵機2を大型化することなく実現することができる。そして、かかる電気集塵機2を用いることで、やはり大型化を抑制しつつ、集塵と殺菌との両機能を併せ持つ高機能の空気清浄機1を提供することができる。 Therefore, since it is not necessary to separately provide the charging device and the ozonizer, it is possible to realize a high-performance electrostatic precipitator 2 having both a charging function and a sterilization function by ozone without increasing the size. Then, by using the electrostatic precipitator 2, it is possible to provide a high-performance air purifier 1 having both functions of dust collection and sterilization while also suppressing the increase in size.

また、例えば、荷電する際は放電電極に正極(プラス)の高電圧を印加し、オゾンを発生させる際には放電電極に負極(マイナス)の高電圧を印加することも考えられる。しかし、本実施形態に係る荷電部3では、放電電極310にマイナスの高電圧を印加するよりも、放電電極310にプラスの高電圧を印加することで、オゾン濃度をより高濃度とすることができる。 Further, for example, it is conceivable to apply a high voltage of the positive electrode (plus) to the discharge electrode when charging, and to apply a high voltage of the negative electrode (minus) to the discharge electrode when generating ozone. However, in the charged unit 3 according to the present embodiment, the ozone concentration can be made higher by applying a positive high voltage to the discharge electrode 310 than by applying a negative high voltage to the discharge electrode 310. it can.

ところで、かかる電気集塵機2、あるいはこれを備える空気清浄機1を家庭用として用いる場合、荷電部3において発生させた高濃度のオゾンによって臭気成分の分解を行うことができるが、例えば荷電部3の下流側にオゾン分解触媒などを配置するなどして、高濃度のオゾンがそのまま室内に放出されることがないようにすることが望ましい。 By the way, when the electrostatic precipitator 2 or the air purifier 1 equipped with the electrostatic precipitator 2 is used for home use, the odor component can be decomposed by the high concentration ozone generated in the charged unit 3, for example, in the charged unit 3. It is desirable to arrange an ozone decomposition catalyst or the like on the downstream side so that high-concentration ozone is not released into the room as it is.

ここで、上述してきた本実施形態における荷電部3のオゾン急増現象について、図6〜図12を用いて説明する。 Here, the ozone rapid increase phenomenon of the charged portion 3 in the present embodiment described above will be described with reference to FIGS. 6 to 12.

まず、放電電極310の形状が、鋸歯状である場合とワイヤで形成した線状の場合とでオゾン濃度の時間的な変化を比べる。図6は、実施形態に係る電気集塵機2が備える荷電部3における放電電極310の形状とオゾン濃度との関係を示すグラフである。なお、このときの荷電部3における相対湿度は28%であり、風速は1.1m/sである。 First, the temporal change of the ozone concentration is compared between the case where the shape of the discharge electrode 310 is serrated and the case where the shape is linear formed by a wire. FIG. 6 is a graph showing the relationship between the shape of the discharge electrode 310 and the ozone concentration in the charged portion 3 included in the electrostatic precipitator 2 according to the embodiment. The relative humidity in the charged portion 3 at this time is 28%, and the wind speed is 1.1 m / s.

図6のグラフで分かるように、放電電極がワイヤで形成された線状の電極である場合は、放電電極への通電時間が120分を超えてもオゾン濃度に特に変化はないが、放電電極310が鋸歯状の場合は、放電電極310への通電時間が60分を過ぎると、オゾン濃度が急激に高くなることが分かった。すなわち、放電電極310が鋸歯状の場合、オゾン濃度は、40ppb程度の濃度から、通電時間が60分から100分までの40分間程度で110ppbを超えるほどの濃度まで急激に高くなっている。 As can be seen from the graph of FIG. 6, when the discharge electrode is a linear electrode formed of wires, the ozone concentration does not change even if the energization time of the discharge electrode exceeds 120 minutes, but the discharge electrode It was found that when the 310 was serrated, the ozone concentration sharply increased after the energization time of the discharge electrode 310 exceeded 60 minutes. That is, when the discharge electrode 310 is serrated, the ozone concentration rapidly increases from a concentration of about 40 ppb to a concentration exceeding 110 ppb in about 40 minutes from 60 minutes to 100 minutes.

この差異は、放電電極310の表面に形成された不動態被膜316の温度が、オゾン急増現象を生じる温度(470K)に達するか否かが、放電電極310の形状の違いによって変わるためであると考えられる。すなわち、放電電極310が鋸歯状の場合、放電電極310が突起部315を有するため、突起部315に電流が集中しやすく、不動態被膜316の温度が局所的に上昇し、オゾン急増現象を生じる温度(470K)に達したものと考えられる。一方、放電電極310がワイヤで形成された線状の場合、突起部を有しないので全体的に均一に温度が上昇してしまい、不動態被膜の温度が局所的に上昇することがなく、オゾン急増現象を生じる温度(470K)に達しなかったものと考えられる。 This difference is because whether or not the temperature of the passivation coating 316 formed on the surface of the discharge electrode 310 reaches the temperature (470K) at which the ozone rapid increase phenomenon occurs depends on the difference in the shape of the discharge electrode 310. Conceivable. That is, when the discharge electrode 310 has a serrated shape, since the discharge electrode 310 has a protrusion 315, the current tends to concentrate on the protrusion 315, the temperature of the passivation coating 316 rises locally, and an ozone rapid increase phenomenon occurs. It is probable that the temperature (470K) has been reached. On the other hand, when the discharge electrode 310 is linear formed of wires, the temperature rises uniformly as a whole because it does not have a protrusion, and the temperature of the passivation coating does not rise locally, and ozone It is probable that the temperature (470K) at which the rapid increase phenomenon occurred was not reached.

次に、オゾン濃度の急激な変化が起こる条件となる湿度について説明する。図7は、通電時間に対する放電電極310の形状および相対湿度とオゾン生成量との関係を示すグラフである。なお、ここでのオゾン生成量はオゾン濃度と比例関係にあるため、オゾン生成量の増加とオゾン濃度の上昇には強い相関がある。図7に示すように、RH30%の低湿度雰囲気下の場合であっても、放電電極がワイヤで形成された線状の電極である場合は、通電時間が180分を超えてもオゾン生成量(オゾン濃度)に変化はない。他方、放電電極310が鋸歯状の場合、RH50%の雰囲気下では、通電時間が180分を超えてもオゾン生成量に殆ど変化はないが、RH30%の低湿度雰囲気下では、通電時間が60分を過ぎると、オゾン生成量は、通電開始直後のオゾン生成量の3倍ほどの生成量まで急激に高くなることが分かった。 Next, the humidity, which is a condition for abrupt changes in ozone concentration, will be described. FIG. 7 is a graph showing the relationship between the shape of the discharge electrode 310 and the relative humidity and the amount of ozone generated with respect to the energization time. Since the ozone production amount here is proportional to the ozone concentration, there is a strong correlation between the increase in the ozone production amount and the increase in the ozone concentration. As shown in FIG. 7, even in a low humidity atmosphere of RH 30%, if the discharge electrode is a linear electrode formed of wire, the amount of ozone generated even if the energization time exceeds 180 minutes. There is no change in (ozone concentration). On the other hand, when the discharge electrode 310 is serrated, there is almost no change in the amount of ozone generated even if the energization time exceeds 180 minutes in an atmosphere of RH 50%, but the energization time is 60 in a low humidity atmosphere of RH 30%. After a minute, it was found that the amount of ozone produced sharply increased to about three times the amount of ozone produced immediately after the start of energization.

これは、放電電極310の突起部315の表面に形成された不動態被膜316を構成する酸化クロム(III)(Cr)の一部が、470K以上の温度でオゾンと反応し、酸化クロム(VI)(Cr0)に変化したものの、RH50%雰囲気下においては安定せず、直ちに酸化クロム(III)(Cr)に戻り触媒として作用しなかったため、オゾンの急増現象が発生しなかったものと推定される。一方、酸化クロム(VI)(Cr0)は、RH30%の低湿度雰囲気下では安定し、触媒として作用することでオゾンの発生量を急増させてしまうと推定される。そこで次に、オゾンの急増現象が起きるか否かの境界となる湿度条件を探索した。 This is part of the chromium oxide constituting the passive film 316 formed on the surface of the projecting portion 315 of the discharge electrodes 310 (III) (Cr 2 0 3) is reacted with ozone at temperatures above 470K, oxide despite changes in chromium (VI) (Cr0 3), not stable under RH 50% atmosphere, immediately because it did not act as a catalyst to return to the chromium oxide (III) (Cr 2 0 3 ), surge phenomenon of ozone generated It is presumed that it did not. On the other hand, chromium oxide (VI) (Cr0 3) is stable under low humidity atmosphere Rh30%, is estimated to cause by rapidly increasing the amount of ozone generated by acting as a catalyst. Therefore, next, we searched for the humidity condition that is the boundary of whether or not the ozone rapid increase phenomenon occurs.

図8は、通電中に荷電部3周辺の相対湿度を変化させることで、通電時間とともにオゾン濃度がどのように変動するのか観察した実験結果を示すグラフである。具体的には、通電時間が0〜250min.の間は相対湿度をほぼRH30%に保ち、通電時間が250min.を経過した時点で相対湿度を上昇させて通電時間が350min.まではほぼRH40%に保ち、通電時間が350min.を経過した時点で更に相対湿度を上昇させてRH50%とする条件で、オゾン濃度を測定した。なお、グラフ中の黒丸(●)は通電時間の各時点でのオゾン濃度を表し、白丸(〇)は通電時間の各時点での相対湿度を表す。また、このとき、荷電部3における風速は1.1m/s、放電電極310に流れる電流は150μAで一定である。 FIG. 8 is a graph showing the experimental results of observing how the ozone concentration fluctuates with the energization time by changing the relative humidity around the charged portion 3 during energization. Specifically, the energizing time is 0 to 250 min. During that time, the relative humidity was maintained at approximately RH 30%, and the energizing time was 250 min. After that, the relative humidity was increased and the energizing time was 350 min. Until, the RH was kept at about 40%, and the energizing time was 350 min. After that, the ozone concentration was measured under the condition that the relative humidity was further increased to RH 50%. The black circles (●) in the graph represent the ozone concentration at each time point of the energization time, and the white circles (○) represent the relative humidity at each time point of the energization time. At this time, the wind speed in the charged portion 3 is 1.1 m / s, and the current flowing through the discharge electrode 310 is constant at 150 μA.

グラフから分かるように、相対湿度がほぼRH30%で一定である通電時間が0〜250min.の場合、オゾン濃度は、通電時間が30分を過ぎると、通電開始直後の0.05ppm程度の濃度から急激に高くなり始める。そして、通電時間が80分を過ぎると、オゾン濃度は0.2ppmを超えるまで増加し、その後は0.18〜0.22ppmの間で安定している。その後、相対湿度を徐々に上げていき、相対湿度をRH40%程度まで上昇させると、オゾン濃度は急激に低下していくことが分かる。その後、相対湿度を更に上げていき、相対湿度がRH50%程度まで上昇すると、オゾン濃度は更に低下し、通電開始直後の0.05ppm付近まで戻っている。本実施例では以上の結果を考慮し、オゾン濃度の急激な増加が発生する条件を、RH35%以下の低湿度雰囲気下であることとした。 As can be seen from the graph, the energizing time at which the relative humidity is almost constant at RH 30% is 0 to 250 min. In the case of, the ozone concentration starts to increase sharply from the concentration of about 0.05 ppm immediately after the start of energization after the energization time exceeds 30 minutes. Then, when the energization time exceeds 80 minutes, the ozone concentration increases until it exceeds 0.2 ppm, and thereafter it is stable between 0.18 and 0.22 ppm. After that, when the relative humidity is gradually increased and the relative humidity is increased to about RH 40%, it can be seen that the ozone concentration decreases sharply. After that, when the relative humidity is further increased and the relative humidity rises to about RH 50%, the ozone concentration further decreases and returns to around 0.05 ppm immediately after the start of energization. In this example, in consideration of the above results, the condition under which a rapid increase in ozone concentration occurs is a low humidity atmosphere with an RH of 35% or less.

また、図9は、荷電部3における風速を0.06m/s、相対湿度をRH20%とし、放電電極310の針数(突起部315の数)を117とした場合におけるオゾン濃度の時間変化を示すグラフ、図10は、荷電部3における風速を0.06m/s、相対湿度をRH20%とし、放電電極310の針数(突起部315の数)を58(図9の場合の約半分の針数)とした場合におけるオゾン濃度の時間変化を示すグラフである。なお、このとき、放電電極310全体に流れる電流は150μAで一定であるものの、突起部315の数が117のときと58のときとでは、1つ1つの突起部315に流れる電流が変わるため、突起部315における電力密度(単位面積あたりの電力)に差がある。つまり、突起部315の数を58としたときの電力密度は、突起部315の数を117としたときの電力密度の約2倍になる。 Further, FIG. 9 shows the time change of the ozone concentration when the wind speed in the charged portion 3 is 0.06 m / s, the relative humidity is RH 20%, and the number of needles (the number of protrusions 315) of the discharge electrode 310 is 117. In the graph and FIG. 10, the wind speed in the charged portion 3 is 0.06 m / s, the relative humidity is RH 20%, and the number of needles (the number of protrusions 315) of the discharge electrode 310 is 58 (about half that in the case of FIG. 9). It is a graph which shows the time change of the ozone concentration in the case of (the number of stitches). At this time, although the current flowing through the entire discharge electrode 310 is constant at 150 μA, the current flowing through each of the protrusions 315 changes depending on whether the number of protrusions 315 is 117 or 58. There is a difference in the power density (power per unit area) in the protrusion 315. That is, the power density when the number of protrusions 315 is 58 is about twice the power density when the number of protrusions 315 is 117.

荷電部3における放電電極310の針数(突起部315の数)が117のときは、図9で示したように、通電開始直後は0.05ppm程度のオゾン濃度であるが、通電開始から30分ほどでオゾン濃度の急増現象が起きており、通電開始から60分が経過して以降は4〜7ppmまで時間経過とともにオゾン濃度が高くなっていることが分かる。 When the number of needles (the number of protrusions 315) of the discharge electrode 310 in the charged portion 3 is 117, the ozone concentration is about 0.05 ppm immediately after the start of energization, as shown in FIG. 9, but 30 from the start of energization. It can be seen that the ozone concentration suddenly increases in about a minute, and after 60 minutes have passed since the start of energization, the ozone concentration has increased to 4 to 7 ppm with the passage of time.

他方、荷電部3における放電電極310の針数(突起部315の数)が58のときは、図10に示すように、通電開始直後は0.05ppm程度のオゾン濃度であるが、通電開始から15分ほどでオゾン濃度の急増現象が起きており、通電開始から30分が経過して以降はオゾン濃度が6〜9ppmで推移していることが分かる。図9と図10の比較から、放電電極310の針数(突起部315の数)が少ないほど、すなわち、各々の突起部315に流れる電流(電力密度)が大きいほど、オゾンの急増現象は、より短時間で起きることが分かる。 On the other hand, when the number of needles (the number of protrusions 315) of the discharge electrode 310 in the charged portion 3 is 58, the ozone concentration is about 0.05 ppm immediately after the start of energization, as shown in FIG. It can be seen that the ozone concentration suddenly increased in about 15 minutes, and that the ozone concentration remained at 6 to 9 ppm after 30 minutes had passed from the start of energization. From the comparison between FIGS. 9 and 10, the smaller the number of needles (the number of protrusions 315) of the discharge electrode 310, that is, the larger the current (power density) flowing through each protrusion 315, the more the ozone rapid increase phenomenon occurs. It turns out that it happens in a shorter time.

図9と図10の比較から分かるように、放電電極310の形状や不動態被膜316の有無、荷電部3周辺における相対湿度などの条件が同じである場合、突起部315の数が少ないほど(各々の突起部315に流れる電流、すなわち電力密度が大きいほど)、通電開始からオゾン濃度の急増現象が起きるまでの時間は短くなることが分かる。これは、各々の突起部315に流れる電流(電力密度)が大きいほど、放電電極310の表面に形成された不動態被膜316の温度が470Kに到達するまでの時間が短くなるからであると推定される。 As can be seen from the comparison between FIGS. 9 and 10, when the conditions such as the shape of the discharge electrode 310, the presence or absence of the passivation coating 316, and the relative humidity around the charged portion 3 are the same, the smaller the number of the protrusions 315 ( It can be seen that the current flowing through each protrusion 315, that is, the larger the power density), the shorter the time from the start of energization to the occurrence of the phenomenon of rapid increase in ozone concentration. It is estimated that this is because the larger the current (power density) flowing through each protrusion 315, the shorter the time required for the temperature of the passivation coating 316 formed on the surface of the discharge electrode 310 to reach 470K. Will be done.

また、図6および図7のグラフより、低湿度の場合のオゾン濃度の急激な上昇は、放電電極310の形状がワイヤのような線状ではなく、平板状の鋸歯形状の場合に生じることが分かったが、図11に示す参考例のように、線状のワイヤからなる放電電極であっても、相対湿度が低くなるにつれて生成されるオゾン濃度が高くなっていくことは知られている。図11は、参考例に係る放電電極におけるオゾン濃度湿度特性を示すグラフである。 Further, from the graphs of FIGS. 6 and 7, a rapid increase in ozone concentration in the case of low humidity may occur when the shape of the discharge electrode 310 is not a linear shape like a wire but a flat sawtooth shape. It was found, as shown in the reference example shown in FIG. 11, it is known that even in a discharge electrode made of a linear wire, the ozone concentration generated increases as the relative humidity decreases. FIG. 11 is a graph showing the ozone concentration and humidity characteristics of the discharge electrode according to the reference example.

図11に示すように、確かに相対湿度が高いときよりも低いときの方がオゾン濃度は高いが、この場合のオゾン濃度は、0.025ppmから0.029ppmに増加した程度であり、また、相対湿度が10%程度変化しても、オゾン濃度の変化量は5%程度でしかない。 As shown in FIG. 11, it is true that the ozone concentration is higher when the relative humidity is lower than when the relative humidity is high, but the ozone concentration in this case is only increased from 0.025 ppm to 0.029 ppm, and also. Even if the relative humidity changes by about 10%, the amount of change in ozone concentration is only about 5%.

その点、本実施形態に係る荷電部3においては、図6〜図10から分かるように、図11に示した参考例におけるオゾン濃度に対し、その数倍から数十倍の濃度となることが分かる。 In that respect, in the charged portion 3 according to the present embodiment, as can be seen from FIGS. 6 to 10, the concentration may be several to several tens of times higher than the ozone concentration in the reference example shown in FIG. I understand.

図12は、荷電部3の放電電極310に印加する電圧の極性(正極と負極)とオゾン生成量との関係を時間変化で示すグラフである。なお、このときの荷電部3における相対湿度はRH30%であり、風速は1.1m/s、放電電極310に流れる電流は150μAで一定としている。図示するように、放電電極310に印加する高電圧の極性が負極の場合、通電開始時点から通電時間が180分を超えるまでの間、オゾン生成量(オゾン濃度)は0.15〜0.2ppmで推移しており、時間経過による変化は殆どない。一方、放電電極310に印加する高電圧の極性が正極の場合、通電開始時点では0.02ppmだったオゾン生成量が、通電時間が30分を過ぎると急激に増え始めることが分かる。すなわち、通電時間が30分を過ぎると、0.02ppm程度だったオゾン生成量が、そこから30分ほどの間に0.25ppmを超えるまで増加し、その後は0.25〜0.33ppmの間で安定している。この結果は、オゾンの急増現象が、放電電極310に対して負極の高電圧を印加した場合には起こらず、放電電極310に対して正極の高電圧を印加した場合にのみ起こる可能性を示唆している。 FIG. 12 is a graph showing the relationship between the polarity (positive electrode and negative electrode) of the voltage applied to the discharge electrode 310 of the charged portion 3 and the amount of ozone generated over time. At this time, the relative humidity in the charged portion 3 is RH 30%, the wind speed is 1.1 m / s, and the current flowing through the discharge electrode 310 is constant at 150 μA. As shown in the figure, when the polarity of the high voltage applied to the discharge electrode 310 is the negative electrode, the amount of ozone generated (ozone concentration) is 0.15 to 0.2 ppm from the start of energization until the energization time exceeds 180 minutes. There is almost no change over time. On the other hand, when the polarity of the high voltage applied to the discharge electrode 310 is the positive electrode, it can be seen that the amount of ozone generated, which was 0.02 ppm at the start of energization, begins to increase rapidly after the energization time of 30 minutes. That is, when the energization time exceeds 30 minutes, the amount of ozone produced, which was about 0.02 ppm, increases to exceed 0.25 ppm within about 30 minutes, and then between 0.25 to 0.33 ppm. It is stable. This result suggests that the phenomenon of rapid increase in ozone does not occur when a high voltage of the negative electrode is applied to the discharge electrode 310, but may occur only when a high voltage of the positive electrode is applied to the discharge electrode 310. are doing.

また、通電開始時点から通電時間が60分を超えるまでは、放電電極310に印加する高電圧の極性を正極としていた場合よりも、印加する高電圧の極性を負極としていた場合の方が、オゾン生成量が多い。一方、通電時間が60分を超えて以降(すなわちオゾンの急増現象が起きて以降)は、放電電極310に印加する高電圧の極性を負極としていた場合よりも、印加する高電圧の極性を正極としていた場合の方が、オゾン生成量が多くなるようになる。よって、本実施形態に係る荷電部3では、放電電極310に対し、正極の高電圧を印加するよう制御することで、負極の高電圧を印加するよう制御した場合よりも、オゾン濃度を更に高濃度とすることが可能になると考えられる。 Further, from the start of energization until the energization time exceeds 60 minutes, ozone is applied when the high voltage polarity applied to the discharge electrode 310 is used as the negative electrode than when the high voltage polarity applied is used as the negative electrode. The amount of production is large. On the other hand, after the energization time exceeds 60 minutes (that is, after the sudden increase of ozone occurs), the polarity of the high voltage applied to the discharge electrode 310 is the positive electrode as compared with the case where the polarity of the high voltage applied to the discharge electrode 310 is the negative electrode. If it is set to, the amount of ozone generated will be larger. Therefore, in the charged unit 3 according to the present embodiment, by controlling the discharge electrode 310 to apply the high voltage of the positive electrode, the ozone concentration is further higher than that in the case of controlling to apply the high voltage of the negative electrode. It will be possible to make the concentration.

以上、本願の実施例を図面に基づいて説明したが、あくまでも例示であって、当業者の知識に基づいて種々の変形、改良を施すことができる。 Although the examples of the present application have been described above based on the drawings, they are merely examples, and various modifications and improvements can be made based on the knowledge of those skilled in the art.

上述してきた実施形態より、以下に示す荷電装置および空気清浄機1が実現できる。なお、以下の荷電装置は、電気集塵機2における荷電部3に相当する。 From the above-described embodiment, the following charging device and air purifier 1 can be realized. The following charging device corresponds to the charging unit 3 in the electrostatic precipitator 2.

(1)表面に不動態被膜316が形成される放電電極310と、この放電電極310に対向配置される対向電極320とを有する荷電部3と、放電電極310への通電を制御する制御部70と、湿度を検出する湿度センサ210とを備え、制御部70は、湿度センサ210で検出される相対湿度が所定湿度以下のとき、放電電極310への通電によってこの放電電極310の温度を所定温度以上まで高めるように制御する荷電装置。 (1) A charged unit 3 having a discharge electrode 310 on which a dynamic coating 316 is formed on the surface, a counter electrode 320 arranged to face the discharge electrode 310, and a control unit 70 that controls energization of the discharge electrode 310. When the relative humidity detected by the humidity sensor 210 is equal to or lower than the predetermined humidity, the control unit 70 sets the temperature of the discharge electrode 310 to a predetermined temperature by energizing the discharge electrode 310. A charging device that controls to increase to the above.

かかる構成により、一つの荷電装置において、十分なオゾンの発生が望める。そのため、装置の大型化を抑制しつつ、荷電効率とオゾン発生効率を同時に高めることができる。また、かかる荷電装置を、例えば、電気集塵機2や空気清浄機1に適用することで、これらの大型化も抑制することができる。 With such a configuration, sufficient ozone generation can be expected in one charging device. Therefore, it is possible to increase the charging efficiency and the ozone generation efficiency at the same time while suppressing the increase in size of the apparatus. Further, by applying such a charging device to, for example, an electrostatic precipitator 2 or an air purifier 1, it is possible to suppress the increase in size of these.

(2)上記(1)において、所定湿度は、オゾンの急増現象が生じるか否かの境界となる湿度である、荷電装置。 (2) In the above (1), the predetermined humidity is a humidity that is a boundary as to whether or not a rapid increase phenomenon of ozone occurs.

かかる構成により、上記(1)の効果をより確実に奏することができる。 With such a configuration, the effect of the above (1) can be more reliably achieved.

(3)上記(1)または(2)において、放電電極310は突起部315を有し、この突起部315に不動態被膜316が形成されている荷電装置。 (3) In the above (1) or (2), the discharge electrode 310 has a protrusion 315, and a passivation coating 316 is formed on the protrusion 315.

かかる構成により、上記(1)または(2)の効果をより確実に奏することができる。 With such a configuration, the effect of the above (1) or (2) can be more reliably achieved.

(4)上記(1)から(3)のいずれかにおいて、放電電極310は、ステンレスで形成される荷電装置。 (4) In any of the above (1) to (3), the discharge electrode 310 is a charging device made of stainless steel.

かかる構成により、低コストで上記(1)から(3)の効果を奏することができる。 With such a configuration, the above effects (1) to (3) can be obtained at low cost.

(5)上記(4)において、不動態被膜316は、酸化クロム(III)(Cr)である荷電装置。 (5) In the above (4), passive film 316 is a chromium oxide (III) (Cr 2 0 3) charging device.

かかる構成により、上記(4)の効果をより確実に奏することができる。 With such a configuration, the effect of the above (4) can be more reliably achieved.

(6)上記(4)または(5)において、所定湿度はRH35%である荷電装置。 (6) In the above (4) or (5), the charging device having a predetermined humidity of RH 35%.

かかる構成により、(4)または(5)の効果をより確実に奏することができる。 With such a configuration, the effect of (4) or (5) can be more reliably achieved.

(7)上記(1)から(6)のいずれかにおいて、所定温度は、不動態被膜(酸化クロム(III)(Cr))がオゾンと反応して、不動態被膜を構成する金属元素の六価の化合物(酸化クロム(VI)(Cr0))が生成される温度である荷電装置。 (7) In any one of (1) to (6), a predetermined temperature, metal passivation film (chromium oxide (III) (Cr 2 0 3)) is reacted with ozone to form a passive film hexavalent compound of an element is the temperature at which (chromic acid (VI) (Cr0 3)) is generated charging device.

かかる構成により、(1)から(6)の効果をより確実に奏することができる。 With such a configuration, the effects of (1) to (6) can be more reliably achieved.

(8)上記(1)から(7)のいずれかにおいて、所定温度は470Kである荷電装置。 (8) A charging device having a predetermined temperature of 470 K in any of the above (1) to (7).

かかる構成により、(1)から(7)のいずれかの効果をより確実に奏することができる。 With such a configuration, the effect of any one of (1) to (7) can be more reliably achieved.

(9)上記(1)から(8)のいずれかの荷電装置を備える空気清浄機1において、除湿部230をさらに備える、空気清浄機1。 (9) In the air purifier 1 provided with any of the charging devices (1) to (8) above, the air purifier 1 further provided with a dehumidifying unit 230.

かかる構成により、除湿の有無でオゾンの生成量を制御することが可能となる。また、例えば、荷電装置を有する電気集塵機2や、これを搭載した空気清浄機1の使用環境における湿度に左右されず、上記(1)から(8)のいずれかの効果を確実に奏することができる。 With such a configuration, it is possible to control the amount of ozone produced depending on the presence or absence of dehumidification. Further, for example, the effect of any one of (1) to (8) above can be reliably achieved regardless of the humidity in the usage environment of the electrostatic precipitator 2 having a charging device and the air purifier 1 equipped with the electrostatic precipitator 2. it can.

(10)上記(9)において、制御部70は、湿度センサ210で検出される湿度が所定湿度を超えているとき、除湿部230を駆動して荷電部3の湿度を所定湿度以下に制御する空気清浄機1。 (10) In (9) above, when the humidity detected by the humidity sensor 210 exceeds the predetermined humidity, the control unit 70 drives the dehumidifying unit 230 to control the humidity of the charged unit 3 to the predetermined humidity or less. Air purifier 1.

かかる構成により、除湿の有無でオゾンの生成量を制御することが可能となる。また、例えば荷電装置を有する電気集塵機2や、これを搭載した空気清浄機1の使用環境における湿度に左右されず、上記(9)の効果を確実に奏することができる。 With such a configuration, it is possible to control the amount of ozone produced depending on the presence or absence of dehumidification. Further, for example, the effect of (9) above can be reliably achieved regardless of the humidity in the usage environment of the electrostatic precipitator 2 having a charging device and the air purifier 1 equipped with the electrostatic precipitator 2.

上述の実施形態および図示の具体的名称、処理、制御、各種のデータなどについては、一例を示すに過ぎず、適宜変更される場合がある。例えば、上述の実施形態では、放電電極310を、SUS304を材料として鋸歯状に形成している。これにより、放電電極310の先端に形成される突起部315には、三価クロムの一つである酸化クロム(III)(Cr)からなる不動態被膜316が形成されるものとした。しかし、必ずしも放電電極310の形状が鋸歯形状でなくとも、不動態被膜316に電流が集中し電力密度が高くなる突起部315を有する形状(例えば、とげ付き線、とげ付き円筒、針付きロッド等の形状)であれば、低湿度雰囲気下でオゾン濃度が急激に上昇する現象が生じるものと推察される。さらに、クロム以外で不動態被膜を形成しやすい金属としては、アルミニウム、ニッケル、チタン等が挙げられ、放電電極310に形成された酸化クロム(III)(Cr)の不動態被膜316が、これらの金属の不動態被膜に置き換えられた場合であっても、同様の現象が生じるものと推察される。 The above-described embodiment and the specific names, processes, controls, various data, and the like shown are merely examples and may be changed as appropriate. For example, in the above-described embodiment, the discharge electrode 310 is formed in a serrated shape using SUS304 as a material. Thus, the protrusion 315 which is formed at the tip of the discharge electrode 310 was assumed that trivalent is one chromium oxide chromium (III) (Cr 2 0 3 ) passive film 316 made of is formed .. However, even if the shape of the discharge electrode 310 is not necessarily a sawtooth shape, a shape having a protrusion 315 where the current concentrates on the passivation coating 316 and the power density becomes high (for example, a thorned wire, a thorny cylinder, a needled rod, etc.) If it is (shape), it is presumed that a phenomenon in which the ozone concentration rises sharply occurs in a low humidity atmosphere. Further, as a formation easily metals passivation film except chromium, aluminum, nickel, titanium and the like, are passive film 316 is formed on the discharge electrodes 310 chromium oxide (III) (Cr 2 0 3 ) It is presumed that the same phenomenon occurs even when the passivation film of these metals is replaced.

また、上述の実施形態のより広範な態様は、上述のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。従って、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念または範囲から逸脱することなく、様々な変更が可能である。 Also, the broader aspects of the above embodiments are not limited to the particular details and representative embodiments expressed and described as described above. Therefore, various modifications can be made without departing from the general concept or scope of the invention as defined by the appended claims and their equivalents.

1 空気清浄機
2 電気集塵機
3 荷電部(荷電装置)
70 制御部
210 湿度センサ(湿度検出部)
230 除湿部
310 放電電極
315 突起部
316 不動態被膜
320 対向電極
1 Air purifier 2 Electrostatic precipitator 3 Charged part (charging device)
70 Control unit 210 Humidity sensor (humidity detection unit)
230 Dehumidifying part 310 Discharge electrode 315 Projection part 316 Passivation coating 320 Opposite electrode

Claims (10)

表面に不動態被膜が形成される放電電極と、当該放電電極に対向配置される対向電極とを有する荷電部と、
前記放電電極への通電を制御する制御部と、
湿度を検出する湿度検出部と、を備え、
前記制御部は、
前記湿度検出部で検出される湿度が所定湿度以下のとき、前記放電電極への通電によって当該放電電極の温度を所定温度以上まで高めるように制御する、荷電装置。
A charged portion having a discharge electrode on which a passivation film is formed on the surface and a counter electrode arranged to face the discharge electrode,
A control unit that controls energization of the discharge electrode and
Equipped with a humidity detector that detects humidity,
The control unit
A charging device that controls the temperature of the discharge electrode to rise to the predetermined temperature or higher by energizing the discharge electrode when the humidity detected by the humidity detection unit is equal to or lower than the predetermined humidity.
前記所定湿度は、オゾンの急増現象が生じるか否かの境界となる湿度である、請求項1に記載の荷電装置。 The charging device according to claim 1, wherein the predetermined humidity is a humidity that serves as a boundary for whether or not a rapid increase phenomenon of ozone occurs. 前記放電電極は突起部を有し、当該突起部に前記不動態被膜が形成されている、請求項1または2に記載の荷電装置。 The charging device according to claim 1 or 2, wherein the discharge electrode has a protrusion, and the passivation film is formed on the protrusion. 前記放電電極は、ステンレスで形成される、請求項1から3のいずれか一項に記載の荷電装置。 The charging device according to any one of claims 1 to 3, wherein the discharge electrode is made of stainless steel. 前記不動態被膜は、酸化クロム(III)(Cr)である、請求項4に記載の荷電装置。 The passive film is a chromium oxide (III) (Cr 2 0 3 ), charging device according to claim 4. 前記所定湿度はRH35%である、請求項4または5に記載の荷電装置。 The charging device according to claim 4 or 5, wherein the predetermined humidity is RH 35%. 前記所定温度は、前記不動態被膜がオゾンと反応して、前記不動態被膜を構成する金属元素の六価の化合物が生成される温度である、請求項1から6のいずれか一項に記載の荷電装置。 The predetermined temperature is the temperature at which the passivation film reacts with ozone to form a hexavalent compound of a metal element constituting the passivation film, according to any one of claims 1 to 6. Charging device. 前記所定温度は470Kである、請求項1から7のいずれか一項に記載の荷電装置。 The charging device according to any one of claims 1 to 7, wherein the predetermined temperature is 470 K. 請求項1から8のいずれか一項に記載の荷電装置を備える空気清浄機であって、
除湿部をさらに備える空気清浄機。
An air purifier including the charging device according to any one of claims 1 to 8.
An air purifier with a dehumidifying section.
請求項9に記載の空気清浄機であって、
前記制御部は、
前記湿度検出部で検出される湿度が所定湿度を超えているとき、前記除湿部を駆動して前記荷電部の湿度を前記所定湿度以下に制御する、空気清浄機。
The air purifier according to claim 9.
The control unit
An air purifier that drives the dehumidifying unit to control the humidity of the charged unit to or less than the predetermined humidity when the humidity detected by the humidity detecting unit exceeds a predetermined humidity.
JP2019051765A 2019-03-19 2019-03-19 Charging device and air purifier with charging device Active JP7342391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051765A JP7342391B2 (en) 2019-03-19 2019-03-19 Charging device and air purifier with charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051765A JP7342391B2 (en) 2019-03-19 2019-03-19 Charging device and air purifier with charging device

Publications (2)

Publication Number Publication Date
JP2020151654A true JP2020151654A (en) 2020-09-24
JP7342391B2 JP7342391B2 (en) 2023-09-12

Family

ID=72557008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051765A Active JP7342391B2 (en) 2019-03-19 2019-03-19 Charging device and air purifier with charging device

Country Status (1)

Country Link
JP (1) JP7342391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080298A1 (en) 2020-10-14 2022-04-21 クリーン・テクノロジー株式会社 Virus removal device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252555A (en) * 1987-04-10 1988-10-19 Nippon Light Metal Co Ltd Air purifying and sterilizing apparatus
JPH09315803A (en) * 1996-05-30 1997-12-09 Fuji Electric Co Ltd Ozonizer
JPH10216559A (en) * 1997-01-31 1998-08-18 Midori Anzen Co Ltd Air cleaner
JP2001106515A (en) * 1999-10-12 2001-04-17 Nippon Alum Co Ltd Ozonizer
US20080047433A1 (en) * 2006-08-25 2008-02-28 Chieh Ouyang Air purifier
JP2008308372A (en) * 2007-06-15 2008-12-25 Ooensu:Kk Ozone generating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252555A (en) * 1987-04-10 1988-10-19 Nippon Light Metal Co Ltd Air purifying and sterilizing apparatus
JPH09315803A (en) * 1996-05-30 1997-12-09 Fuji Electric Co Ltd Ozonizer
JPH10216559A (en) * 1997-01-31 1998-08-18 Midori Anzen Co Ltd Air cleaner
JP2001106515A (en) * 1999-10-12 2001-04-17 Nippon Alum Co Ltd Ozonizer
US20080047433A1 (en) * 2006-08-25 2008-02-28 Chieh Ouyang Air purifier
JP2008308372A (en) * 2007-06-15 2008-12-25 Ooensu:Kk Ozone generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080298A1 (en) 2020-10-14 2022-04-21 クリーン・テクノロジー株式会社 Virus removal device

Also Published As

Publication number Publication date
JP7342391B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
JP5855122B2 (en) Microbe / virus capture / inactivation apparatus and method thereof
AU2004244900B2 (en) Discharge apparatus and air purifying apparatus
JP5369210B2 (en) Dust collector and air conditioner
JP5304096B2 (en) Charging device and air treatment device
KR102085825B1 (en) Air conditioner and Control method of the same
JP3770782B2 (en) Air purifier and air conditioner equipped with an ion generator
WO2018100197A1 (en) Electrostatic particle filtering
JP7342391B2 (en) Charging device and air purifier with charging device
US11117138B2 (en) Systems and methods for gas cleaning using electrostatic precipitation and photoionization
JP2018126714A (en) Electrostatic precipitator and blower
JP2020151655A (en) Charging device, and air cleaner provided with the charging device
JP2003211023A (en) Dust collecting element
JP7363058B2 (en) Charging devices and electrostatic precipitators
JP2002319471A (en) Ion generating element and equipment provided with it
JP6278022B2 (en) Air purifier
JP2007196199A (en) Discharge device, air cleaning apparatus and air-flow generating device equipped with the discharge device
CN115989386A (en) Air conditioning equipment based on machine learning and control method thereof
JP2004174409A (en) Air cleaning apparatus
WO2015098127A1 (en) Air purification unit and air treatment device
Kim et al. Development of a novel electrostatic precipitator system using a wet-porous electrode array
JP5146353B2 (en) Dust collector
KR102305801B1 (en) Air cleaner
JP2007172994A (en) Static eliminator, static eliminating method, hdd device manufactured by using static eliminator
JP6229494B2 (en) Air treatment equipment
JP2022153185A (en) Ion generator and electric dust collector

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R151 Written notification of patent or utility model registration

Ref document number: 7342391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151