JP2020149780A - Vacuum circuit breaker - Google Patents

Vacuum circuit breaker Download PDF

Info

Publication number
JP2020149780A
JP2020149780A JP2019043602A JP2019043602A JP2020149780A JP 2020149780 A JP2020149780 A JP 2020149780A JP 2019043602 A JP2019043602 A JP 2019043602A JP 2019043602 A JP2019043602 A JP 2019043602A JP 2020149780 A JP2020149780 A JP 2020149780A
Authority
JP
Japan
Prior art keywords
contact
recess
circuit breaker
vacuum circuit
facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019043602A
Other languages
Japanese (ja)
Other versions
JP7175802B2 (en
Inventor
山城 啓輔
Hirosuke Yamashiro
啓輔 山城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2019043602A priority Critical patent/JP7175802B2/en
Publication of JP2020149780A publication Critical patent/JP2020149780A/en
Application granted granted Critical
Publication of JP7175802B2 publication Critical patent/JP7175802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To improve the insulation performance at a contact point.SOLUTION: A vacuum circuit breaker (10) is provided inside a vacuum vessel (11) so as to be detachable and be energized in a contact state, and includes a movable contact (12) and a fixed contact (14) that cut off in a separated state. The movable contact and the fixed contact respectively have electrode portions (30, 40) that generate a longitudinal magnetic field with contact portions (32, 42) formed with facing surfaces (33, 43) facing each other. The facing surface is provided with a contact region (47) in contact with the other facing surface and a recess (48) in which a distance from the other facing surface is larger than the contact region. The bottom (48a) of the recess is formed to have a smaller maximum surface roughness (Rmax) than the contact region.SELECTED DRAWING: Figure 2

Description

本発明は、真空となる空間内で接触子を離間して電流を遮断する真空遮断器に関する。 The present invention relates to a vacuum circuit breaker that cuts off an electric current by separating contacts in a vacuum space.

従来、真空容器内に接離可能な一対の電極を設け、電流遮断時に電極間に発生したアークを真空中で消弧する真空遮断器が利用されている(特許文献1参照)。真空遮断器は、変電機器や受配電機器での高電圧大電流を遮断できるよう遮断性能を向上することが要求される。また、地球温暖化係数の大きな絶縁ガスを使うことなく運用できるクリーンな機器として真空遮断器のニーズがある。 Conventionally, a vacuum circuit breaker has been used in which a pair of electrodes that can be brought into contact with each other are provided in a vacuum vessel and an arc generated between the electrodes is extinguished in a vacuum when a current is cut off (see Patent Document 1). The vacuum circuit breaker is required to improve the breaking performance so that the high voltage and large current in the substation equipment and the power receiving and distributing equipment can be cut off. In addition, there is a need for a vacuum circuit breaker as a clean device that can be operated without using an insulating gas having a large global warming potential.

特開2003−92050号公報Japanese Unexamined Patent Publication No. 2003-92050

真空遮断器の電流遮断時における電極間の絶縁破壊(アークの発生)については、パッシェン曲線に基づいて説明できる。図12は、パッシェン曲線のグラフである。図12のパッシェン曲線のグラフでは、横軸を気圧×ギャップ長、縦軸を絶縁破壊電圧(絶縁強さ)とする。パッシェン曲線では、絶縁破壊電圧の極小値Vminが得られる横軸のギャップ長×気圧をさらに小さくすると、絶縁破壊電圧は急激に立ち上がることがわかっている。 Dielectric breakdown (generation of arc) between electrodes when the current of a vacuum circuit breaker is cut off can be explained based on the Paschen curve. FIG. 12 is a graph of Paschen curve. In the Paschen curve graph of FIG. 12, the horizontal axis is atmospheric pressure × gap length, and the vertical axis is insulation breakdown voltage (insulation strength). In the Paschen curve, it is known that the breakdown voltage rises sharply when the gap length × pressure on the horizontal axis at which the minimum value Vmin of the breakdown voltage is obtained is further reduced.

真空遮断器で扱う真空圧力下(例えば10−4Pa以下程度)では、図12のグラフにおいて、絶縁破壊電圧が極小値Vminとなる横軸の値より小さい値での条件下で絶縁破壊が発生する。また、気圧が真空となって略一定なので、横軸の気圧×ギャップ長の値は、ギャップ長に応じて変化し、ギャップ長が大きくなる程、絶縁破壊電圧が小さくなる。従って、ギャップ長が小さくなる領域に比べて大きくなる領域の方が、絶縁破壊が発生し易い条件となる。 Under vacuum pressure handled by a vacuum circuit breaker (for example, about 10 -4 Pa or less), dielectric breakdown occurs under the condition that the dielectric breakdown voltage is smaller than the value on the horizontal axis, which is the minimum value Vmin, in the graph of FIG. To do. Further, since the atmospheric pressure becomes a vacuum and is substantially constant, the value of atmospheric pressure × gap length on the horizontal axis changes according to the gap length, and the larger the gap length, the smaller the breakdown voltage. Therefore, the region where the gap length is large is more likely to undergo dielectric breakdown than the region where the gap length is small.

本発明者は、このようなギャップ長による絶縁破壊の発生条件について研究し、接点部に凹部を形成する電極を用いることを検討した。 The present inventor studied the conditions under which dielectric breakdown occurs due to such a gap length, and examined the use of an electrode that forms a recess in the contact portion.

ところで、真空遮断器における真空下の絶縁破壊は、大気中や高圧力下におけるガス雰囲気環境での気中絶縁破壊と異なる。ガス雰囲気環境下では、ガス分子と電圧によって加速された電子との衝突電離によって電子増倍が進み、電子雪崩となって絶縁破壊に至る。これに対し、真空遮断器で扱う真空圧力下では、ガス雰囲気が少ない条件であるため、電子がガス分子と衝突するために必要な平均自由工程が著しく長い、具体的には、陰極から出た電子が無衝突で電極に衝突する長さとなる。よって、絶縁破壊のきっかけとなるのは、最初に陰極から電界電子放出によって発生する電子である。 By the way, dielectric breakdown under vacuum in a vacuum circuit breaker is different from dielectric breakdown in air in a gas atmosphere environment under atmospheric pressure or high pressure. In a gas atmosphere environment, electron multiplication progresses due to impact ionization of gas molecules and electrons accelerated by voltage, resulting in electron avalanche and dielectric breakdown. On the other hand, under the vacuum pressure handled by the vacuum breaker, the gas atmosphere is small, so the mean free path required for the electrons to collide with the gas molecules is extremely long, specifically, it comes out of the cathode. The length is such that the electrons collide with the electrode without collision. Therefore, the trigger of dielectric breakdown is the electrons generated by the field electron emission from the cathode first.

本発明者は、かかる電界電子放出による初期電子の発生を抑制することが、真空遮断器の絶縁性能向上において重要なポイントと捉えた。更に、本発明者は、様々な試行錯誤の結果、電界電子放出による初期電子発生の抑制と接点部の表面粗さとの関係性について鋭意研究し、この研究にて上述の凹部を形成した接点部での絶縁性能を向上できる発明を案出した。 The present inventor considers that suppressing the generation of initial electrons due to such field electron emission is an important point in improving the insulation performance of the vacuum circuit breaker. Furthermore, as a result of various trials and errors, the present inventor has diligently studied the relationship between the suppression of initial electron generation due to field electron emission and the surface roughness of the contact portion, and in this research, the contact portion having the above-mentioned recess formed. We have devised an invention that can improve the insulation performance in Japan.

本発明は、かかる点に鑑みてなされたものであり、接点部での絶縁性能向上を図ることができる真空遮断器を提供することを目的とする。 The present invention has been made in view of this point, and an object of the present invention is to provide a vacuum circuit breaker capable of improving the insulation performance at a contact portion.

本発明における一態様の真空遮断器は、真空容器の内部で接離可能に設けられて接触状態で通電し、離間状態で通電を遮断する可動接触子及び固定接触子を備えた真空遮断器であって、前記可動接触子及び前記固定接触子の電極部は、相互に対向する対向面が形成された接点部を備え、前記対向面の少なくとも一方は、前記接触状態で他方の前記対向面に接触する接触領域と、他方の前記対向面からの距離が前記接触領域よりも大きい凹部と備え、前記凹部の底部は、前記接触領域に比べて最大表面粗さ(Rmax)が小さく形成されていることを特徴とする。 The vacuum circuit breaker of one aspect of the present invention is a vacuum circuit breaker provided inside the vacuum vessel so as to be contactable and detachable, and includes a movable contactor and a fixed contactor that energize in a contact state and cut off the energization in a separated state. The movable contact and the electrode portion of the fixed contact include contact portions on which facing surfaces facing each other are formed, and at least one of the facing surfaces is in the contact state with the other facing surface. A contact region to be contacted and a recess having a distance from the other facing surface larger than the contact region are provided, and the bottom portion of the recess is formed to have a smaller maximum surface roughness (Rmax) than the contact region. It is characterized by that.

本発明によれば、電流遮断時に各接触子の接点部は真空下にて離間するので、接点部間の距離が長い方、つまり、凹部の底部の方に電界を集中でき、接触領域に比べて凹部を放電し易い状態にすることができる。更に、凹部の表面粗さが小さくなる、言い換えると放電し易い領域の表面粗さが小さくなるので、電界電子放出による初期電子の発生を抑制でき、結果として接点部での絶縁性能向上を図ることができる。 According to the present invention, since the contact portions of the contacts are separated under vacuum when the current is cut off, the electric field can be concentrated on the longer distance between the contact portions, that is, toward the bottom of the recess, as compared with the contact region. The recess can be easily discharged. Further, since the surface roughness of the concave portion is reduced, in other words, the surface roughness of the region where discharge is likely to occur is reduced, the generation of initial electrons due to field electron emission can be suppressed, and as a result, the insulation performance at the contact portion is improved. Can be done.

第1の実施の形態に係る真空遮断器を一部断面視した概略構成図である。It is a schematic blocker which made a part view of the vacuum circuit breaker which concerns on 1st Embodiment. 図2Aは、第1の実施の形態における固定接触子の電極部を上方から見た説明図である。図2Bは、接点部における図2AのA−A線の縦断面図である。FIG. 2A is an explanatory view of the electrode portion of the fixed contact according to the first embodiment as viewed from above. FIG. 2B is a vertical sectional view taken along the line AA of FIG. 2A at the contact portion. 図3A及び図3Bは、第2の実施の形態に係る電極部の図2A及び図2Bと同様の説明図である。3A and 3B are explanatory views similar to those of FIGS. 2A and 2B of the electrode portion according to the second embodiment. 図4A及び図4Bは、第3の実施の形態に係る電極部の図2A及び図2Bと同様の説明図である。4A and 4B are explanatory views similar to those of FIGS. 2A and 2B of the electrode portion according to the third embodiment. 図5A及び図5Bは、第4の実施の形態に係る電極部の図2A及び図2Bと同様の説明図である。5A and 5B are explanatory views similar to those of FIGS. 2A and 2B of the electrode portion according to the fourth embodiment. 第5の実施の形態に係る接点部の説明用断面図である。It is sectional drawing for explanation for explanation of the contact part which concerns on 5th Embodiment. 第6の実施の形態に係る接点部の説明用断面図である。It is sectional drawing for explanation for explanation of the contact part which concerns on 6th Embodiment. 図8A及び図8Bは、第7の実施の形態に係る電極部の図2A及び図2Bと同様の説明図である。8A and 8B are explanatory views similar to those of FIGS. 2A and 2B of the electrode portion according to the seventh embodiment. 第8の実施の形態に係る接点部の説明用断面図である。It is sectional drawing for explanation for explanation of the contact part which concerns on 8th Embodiment. 第9の実施の形態に係る接点部の説明用断面図である。It is sectional drawing for explanation for explanation of the contact part which concerns on 9th Embodiment. 第10の実施の形態に係る接点部の説明用断面図である。It is sectional drawing for explanation for explanation of the contact part which concerns on tenth Embodiment. パッシェン曲線のグラフである。It is a graph of Paschen curve.

以下に、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、本発明は、下記の実施の形態に限定されるものではなく、その要旨を変更しない範囲内で適宜変形して実施することができるものである。以下の図においては、説明の便宜上、一部の構成を省略することがある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the following embodiments, and can be appropriately modified and implemented without changing the gist thereof. In the following figures, some configurations may be omitted for convenience of explanation.

[第1の実施の形態]
図1は、第1の実施の形態に係る真空遮断器を一部断面視した概略構成図である。図1に示すように、真空遮断器10は、真空容器11と、真空容器11の内部で接離可能に設けられた可動接触子12及び固定接触子14を備えている。真空遮断器10では、可動接触子12及び固定接触子14が接触状態(図示省略)で通電(閉路)し、図1に示す離間状態で通電を遮断(開路)するものである。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a partial cross-sectional view of the vacuum circuit breaker according to the first embodiment. As shown in FIG. 1, the vacuum circuit breaker 10 includes a vacuum container 11, a movable contact 12 and a fixed contact 14 provided so as to be contactable and detachable inside the vacuum container 11. In the vacuum circuit breaker 10, the movable contact 12 and the fixed contact 14 are energized (closed) in a contact state (not shown), and the energization is cut off (open) in the separated state shown in FIG.

真空容器11は、セラミック等によって形成される絶縁筒15と、絶縁筒15の図1中上端側及び下端側を閉塞するように設けられた端板16、17とを備えている。上方の端板16には、可動接触子12が上下動可能に貫通して設けられている。下方の端板17には、固定接触子14が固定されている。 The vacuum container 11 includes an insulating cylinder 15 made of ceramic or the like, and end plates 16 and 17 provided so as to close the upper end side and the lower end side of the insulating cylinder 15 in FIG. 1. A movable contact 12 is provided on the upper end plate 16 so as to be vertically movable. A fixed contact 14 is fixed to the lower end plate 17.

可動接触子12は、可動側ロッド19を備え、可動側ロッド19は、ベローズ等の気密部材(不図示)を介して真空容器11内の真空状態を保ちながら軸方向(上下方向)に移動可能に設けられる。可動側ロッド19は、引張りばねとなる遮断ばね20に接続されており、遮断ばね20を引き伸ばした状態でラッチ等(不図示)を介して係止されつつ、可動接触子12及び固定接触子14が接触して通電される。この状態から、ラッチ等を動作させることで、遮断ばね20の復元力で可動側ロッド19を上方に移動させて固定接触子14から可動接触子12を離間動作して通電が遮断される。 The movable contact 12 includes a movable rod 19, and the movable rod 19 can move in the axial direction (vertical direction) while maintaining a vacuum state in the vacuum vessel 11 via an airtight member (not shown) such as a bellows. It is provided in. The movable rod 19 is connected to a blocking spring 20 serving as a tension spring, and is locked via a latch or the like (not shown) in a stretched state of the blocking spring 20, while the movable contact 12 and the fixed contact 14 Is in contact and energized. From this state, by operating the latch or the like, the movable side rod 19 is moved upward by the restoring force of the blocking spring 20 to separate the movable contact 12 from the fixed contact 14, and the energization is cut off.

固定接触子14は、固定側ロッド22を備え、固定側ロッド22は、下方の端板17に装着された固定ブロック23を介して固定されている。 The fixed contact 14 includes a fixed side rod 22, and the fixed side rod 22 is fixed via a fixed block 23 mounted on the lower end plate 17.

可動接触子12は、可動側ロッド19の一端部(図1中下端部)に電極部30を備えている。固定接触子14は、固定側ロッド22の一端部(図1中上端部)に電極部40を備えている。本実施の形態では、各電極部30、40は、上下対称となる向きに設けられて対向するように配置されている。各電極部30、40の外側には絶縁筒15の内周面を保護するシールド25が設けられている。 The movable contact 12 includes an electrode portion 30 at one end (lower end in the middle of FIG. 1) of the movable rod 19. The fixed contact 14 includes an electrode portion 40 at one end portion (upper end portion in FIG. 1) of the fixed side rod 22. In the present embodiment, the electrode portions 30 and 40 are provided so as to be vertically symmetrical and are arranged so as to face each other. A shield 25 that protects the inner peripheral surface of the insulating cylinder 15 is provided on the outside of each of the electrode portions 30 and 40.

電極部30、40は、円柱状の外形をなす電極本体部31、41と、電極本体部31、41の端部にろう付け等によって連結された円板状の接点部32、42とを備えている。固定接触子14の接点部42にあっては上面が対向面43として形成され、可動接触子12の接点部32の下面となる対向面33と相互に対向するようになる。 The electrode portions 30 and 40 include electrode body portions 31 and 41 having a columnar outer shape, and disk-shaped contact portions 32 and 42 connected to the ends of the electrode body portions 31 and 41 by brazing or the like. ing. The upper surface of the contact portion 42 of the fixed contact 14 is formed as the facing surface 43, and is opposed to the facing surface 33 which is the lower surface of the contact portion 32 of the movable contact 12.

電極本体部31、41には、その軸線に対して傾斜しつつ螺旋状に延びる傾斜スリット34、44が複数本(本実施の形態では6本)形成されている。傾斜スリット34、44は、電極本体部31、41の外周面から所定深さで形成されている。接点部32、42には、その外周縁に一端が形成されるスリット35、45が形成され、スリット35、45の一端と傾斜スリット34、44の上端とが連続するように形成される。 A plurality of inclined slits 34, 44 (six in the present embodiment) are formed in the electrode main bodies 31 and 41 so as to extend spirally while being inclined with respect to the axis. The inclined slits 34 and 44 are formed at a predetermined depth from the outer peripheral surfaces of the electrode main bodies 31 and 41. The contact portions 32 and 42 are formed with slits 35 and 45 having one end formed on the outer peripheral edge thereof, so that one end of the slits 35 and 45 and the upper ends of the inclined slits 34 and 44 are continuous.

図2Aは、第1の実施の形態における固定接触子の電極部を上方から見た図である。図2Bは、固定接触子の接点部における図2AのA−A線の縦断面図である。図2A及び図2Bに示すように、固定接触子14における接点部42の対向面43には、その外周縁に沿う所定幅で円環状に形成される接触領域47と、接触領域47より面内中心側に形成される凹部48とが形成される。かかる接触領域47及び凹部48の形成によって、対向面43では、接触領域47より凹部48の方が可動接触子12の対向面33(図1参照)に対する距離が長くなる。また、対向面43において、通電(閉路)時に可動接触子12の対向面33と接触する領域が接触領域47となる。 FIG. 2A is a view of the electrode portion of the fixed contactor in the first embodiment as viewed from above. FIG. 2B is a vertical cross-sectional view taken along the line AA of FIG. 2A at the contact portion of the fixed contact. As shown in FIGS. 2A and 2B, the contact surface 43 of the contact portion 42 of the fixed contact 14 has a contact region 47 formed in an annular shape with a predetermined width along the outer peripheral edge thereof and an in-plane contact region 47. A recess 48 formed on the center side is formed. Due to the formation of the contact region 47 and the recess 48, the distance of the recess 48 to the facing surface 33 (see FIG. 1) of the movable contact 12 is longer in the facing surface 43 than in the contact region 47. Further, on the facing surface 43, a region in contact with the facing surface 33 of the movable contact 12 when energized (closed) is the contact region 47.

ここで、凹部48の内部における底部48a(図2Aで網点を付した領域)は、接触領域47より最大表面粗さ(Rmax)が小さく滑らかな面として形成されている。一例を挙げると、底部48aの最大表面粗さRmaxが0.25μm、接触領域47の最大表面粗さRmaxが8μmに形成される。 Here, the bottom portion 48a (the region with halftone dots in FIG. 2A) inside the recess 48 is formed as a smooth surface having a smaller maximum surface roughness (Rmax) than the contact region 47. As an example, the maximum surface roughness Rmax of the bottom portion 48a is formed to be 0.25 μm, and the maximum surface roughness Rmax of the contact region 47 is formed to be 8 μm.

接点部42におけるスリット45は、複数本(本実施の形態では6本)形成され、接点部42外周縁の一端から内方となる凹部48の底部48aに延出している。そして、スリット45の他端(内方端)は、接触領域47と凹部48との境界より内方となる底部48aに位置するように形成される。なお、図示省略したが、可動接触子12における接点部32においては、対向面33に凹部が形成されていないものの、スリット35がスリット45と同様の形状をなしている。スリット35、45及び傾斜スリット34、44によって、電極部30、40の通電路がコイル状となって縦磁界(図1中上下方向に平行な方向の磁界)が発生し、遮断特性を向上できるようになる。 A plurality of slits 45 (six in the present embodiment) are formed in the contact portion 42, and extend from one end of the outer peripheral edge of the contact portion 42 to the bottom portion 48a of the recess 48 which is inward. The other end (inner end) of the slit 45 is formed so as to be located at the bottom portion 48a which is inward from the boundary between the contact region 47 and the recess 48. Although not shown, the slit 35 has the same shape as the slit 45 in the contact portion 32 of the movable contact 12 although the recess is not formed in the facing surface 33. Due to the slits 35 and 45 and the inclined slits 34 and 44, the energizing paths of the electrode portions 30 and 40 are coiled to generate a vertical magnetic field (magnetic field in the direction parallel to the vertical direction in FIG. 1), and the breaking characteristics can be improved. Will be.

なお、本実施の形態では、可動接触子12における接点部32の対向面33は、スリット35の形成領域以外は平坦な面として形成され、対向面33全体が接触領域とされる。 In the present embodiment, the facing surface 33 of the contact portion 32 of the movable contact 12 is formed as a flat surface except for the region where the slit 35 is formed, and the entire facing surface 33 is the contact region.

真空遮断器10において、可動接触子12及び固定接触子14が接触する通電状態では、固定接触子14の接触領域47と、これに対向する位置の可動接触子12の対向面33とが接触する。一方、遮断状態において、可動接触子12の対向面33と、固定接触子14における接触領域47及び凹部48の底部48aとは所定距離離れた非接触状態で対向することとなる。 In the vacuum circuit breaker 10, in the energized state where the movable contact 12 and the fixed contact 14 are in contact with each other, the contact region 47 of the fixed contact 14 and the facing surface 33 of the movable contact 12 at a position facing the contact region 47 are in contact with each other. .. On the other hand, in the cutoff state, the facing surface 33 of the movable contact 12 and the contact region 47 of the fixed contact 14 and the bottom portion 48a of the recess 48 face each other in a non-contact state separated by a predetermined distance.

真空遮断器10にて通電状態から電流を遮断すべく、固定接触子14及び可動接触子12の各接点部32、42が離間されると、各接点部32、42の間にアークが発生する。 When the contact portions 32 and 42 of the fixed contact 14 and the movable contact 12 are separated from each other in order to cut off the current from the energized state by the vacuum circuit breaker 10, an arc is generated between the contact portions 32 and 42. ..

電流遮断時の各接点部32、42にて、相互に接触する対向面33と接触領域47とが離間された直後には、対向面33と接触領域47との離間距離に対し、対向面33と凹部48の底部48aとの離間距離の方が大きくなる。上述のパッシェン曲線(図12参照)の説明に基づき、対向面33に対して離間距離が大きい凹部48の底部48aの方が放電し易い状態となり、アークが選択的に発生する。つまり、接触領域47でアークが発生することを抑制し、凹部48の底部48aで安定して絶縁破壊可能な状態にすることができる。 Immediately after the facing surfaces 33 and the contact area 47 that are in contact with each other are separated from each other at the contact portions 32 and 42 when the current is cut off, the facing surface 33 is separated from the distance between the facing surface 33 and the contact area 47. The separation distance between the recess 48 and the bottom 48a of the recess 48 is larger. Based on the explanation of the Paschen curve (see FIG. 12) described above, the bottom portion 48a of the recess 48 having a large separation distance from the facing surface 33 is in a state of being more easily discharged, and an arc is selectively generated. That is, it is possible to suppress the generation of an arc in the contact region 47 and make it possible to stably break down the insulation at the bottom 48a of the recess 48.

また、凹部48の底部48aにおける表面粗さを小さくしたので、絶縁破壊が発生する部位の表面粗さを小さくでき、底部48aにて、上述した電界電子放出による初期電子の発生を抑制することができる。これにより、絶縁破壊のきっかけが生じ難くなり、絶縁破壊電圧を高い値に保持して対向面33と凹部48の底部48aとの間の絶縁性能を向上でき、ひいては、真空遮断器10の遮断性能を向上することができる。 Further, since the surface roughness at the bottom 48a of the recess 48 is reduced, the surface roughness of the portion where dielectric breakdown occurs can be reduced, and the generation of initial electrons due to the above-mentioned field electron emission can be suppressed at the bottom 48a. it can. As a result, the trigger for dielectric breakdown is less likely to occur, the dielectric breakdown voltage can be maintained at a high value, the insulation performance between the facing surface 33 and the bottom portion 48a of the recess 48 can be improved, and by extension, the breaking performance of the vacuum circuit breaker 10. Can be improved.

ここで、電流遮断時にあっては、縦磁界を発生させるためのスリット35、45におけるエッヂ部分にマクロな電界集中が発生する。固定接触子14のスリット45は、凹部48の底部48aと接触領域47との両方に形成されるので、より放電し易い底部48a内に位置するスリット45のエッヂ部分で電界集中して絶縁破壊するようになる。これにより、接触領域47での絶縁破壊を防止して凹部48にて安定して絶縁破壊が可能となり、絶縁性能(絶縁破壊電圧)を向上させることができる。 Here, when the current is cut off, macroscopic electric field concentration is generated at the edge portions in the slits 35 and 45 for generating the longitudinal magnetic field. Since the slit 45 of the fixed contact 14 is formed in both the bottom portion 48a of the recess 48 and the contact region 47, the electric field is concentrated and dielectric breakdown occurs at the edge portion of the slit 45 located in the bottom portion 48a, which is more easily discharged. Will be. As a result, dielectric breakdown in the contact region 47 can be prevented, dielectric breakdown can be stably performed in the recess 48, and dielectric breakdown (dielectric breakdown voltage) can be improved.

このような第1の実施の形態によれば、底部48aの最大表面粗さRmaxを小さく設定することで、到達耐電界強度を上昇することができる。かかる到達耐電界強度は、電極材料、到達真空度、コンディショニングの有無、加工条件によって大きく異なるものの、底部48aの最大表面粗さRmaxの変化(例えば、2.5μmと0.8μm)で約1.7倍程度上昇可能となる。 According to the first embodiment as described above, the ultimate withstand electric field strength can be increased by setting the maximum surface roughness Rmax of the bottom portion 48a to be small. The ultimate electric field strength varies greatly depending on the electrode material, the ultimate vacuum degree, the presence or absence of conditioning, and the processing conditions, but it is about 1. With a change in the maximum surface roughness Rmax of the bottom 48a (for example, 2.5 μm and 0.8 μm). It can rise about 7 times.

ところで、真空遮断器10にあっては、保管や流通、施工時に、可動接触子12の対向面33に対して接触領域47が接触或いは圧接したり、実運転前の試験時に各接触子12、14を繰り返し開閉したりする場合がある。この場合であっても、凹部48の底部48aにあっては、可動接触子12の接点部32に対して非接触に保つことができ、最大表面粗さが小さい良好な表面状態を安定して確保でき、上述の絶縁性能を維持することができる。しかも、凹部48の底部48aに比べて接触領域47を粗い面とする関係性になり、実運転前の試験や運搬等を行ったとしても接触領域47の方が粗くなる傾向が強くなるので、かかる関係性を維持し易くすることができる。 By the way, in the vacuum circuit breaker 10, the contact area 47 comes into contact with or pressurizes the facing surface 33 of the movable contact 12 during storage, distribution, and construction, and each contact 12 is used during a test before actual operation. 14 may be repeatedly opened and closed. Even in this case, the bottom portion 48a of the recess 48 can be kept in non-contact with the contact portion 32 of the movable contactor 12, and a good surface condition with a small maximum surface roughness can be stably maintained. It can be secured and the above-mentioned insulation performance can be maintained. Moreover, the contact region 47 has a rougher surface than the bottom 48a of the recess 48, and the contact region 47 tends to be rougher even if a test or transportation is performed before actual operation. It is possible to facilitate maintaining such a relationship.

次に、本発明の前記以外の実施の形態について説明する。なお、以下の説明において、説明する実施の形態より前に記載された実施の形態と同一若しくは同等の構成部分については同一符号を用いる場合があり、説明を省略若しくは簡略にする場合がある。また、図3以降の図面にて、図2Aと同様の網点が付された領域は、第1の実施の形態の底部48aと同様の最大表面粗さに形成される。 Next, embodiments of the present invention other than the above will be described. In the following description, the same reference numerals may be used for the same or equivalent components as those of the embodiments described prior to the embodiments described, and the description may be omitted or simplified. Further, in the drawings of FIGS. 3 and 3 onward, the region with halftone dots similar to that of FIG. 2A is formed to have the same maximum surface roughness as the bottom portion 48a of the first embodiment.

[第2の実施の形態]
次に、本発明の第2の実施の形態について図3を参照して説明する。図3A及び図3Bは、第1の実施の形態に係る電極部の図2A及び図2Bと同様の説明図である。図3A及び図3Bに示すように、第2の実施の形態では、第1の実施の形態に対し、凹部48の形状を変更している。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. 3A and 3B are explanatory views similar to those of FIGS. 2A and 2B of the electrode portion according to the first embodiment. As shown in FIGS. 3A and 3B, in the second embodiment, the shape of the recess 48 is changed from that of the first embodiment.

第2の実施の形態において、凹部48は溝状に形成され、接点部42の外周縁と同一中心となる1つの円(閉ループ)の軌跡に沿って形成されている。第2の実施の形態においても、スリット45の他端(内方端)は、凹部48の底部48aに位置するように形成される。なお、接点部42の対向面43にて、凹部48の外側領域だけでなく内側領域も接触領域47として形成されるようになる。第2の実施の形態においても、底部48aは、接触領域47より最大表面粗さ(Rmax)が小さく滑らかな面として形成されている。 In the second embodiment, the recess 48 is formed in a groove shape and is formed along the locus of one circle (closed loop) having the same center as the outer peripheral edge of the contact portion 42. Also in the second embodiment, the other end (inner end) of the slit 45 is formed so as to be located at the bottom 48a of the recess 48. In addition, on the facing surface 43 of the contact portion 42, not only the outer region of the recess 48 but also the inner region is formed as the contact region 47. Also in the second embodiment, the bottom portion 48a is formed as a smooth surface having a smaller maximum surface roughness (Rmax) than the contact region 47.

[第3の実施の形態]
次に、本発明の第3の実施の形態について図4を参照して説明する。図4A及び図4Bは、第3の実施の形態に係る電極部の図2A及び図2Bと同様の説明図である。図4A及び図4Bに示すように、第3の実施の形態では、第2の実施の形態に対し、溝状の凹部48を同心円上に二重に形成した点を変更している。第3の実施の形態においては、スリット45の他端(内方端)は、二重の凹部48のうち、内側の凹部48の底部48aに位置するように形成される。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. 4A and 4B are explanatory views similar to those of FIGS. 2A and 2B of the electrode portion according to the third embodiment. As shown in FIGS. 4A and 4B, in the third embodiment, the point where the groove-shaped recesses 48 are doubly formed concentrically is different from that of the second embodiment. In the third embodiment, the other end (inner end) of the slit 45 is formed so as to be located at the bottom 48a of the inner recess 48 of the double recess 48.

[第4の実施の形態]
次に、本発明の第4の実施の形態について図5を参照して説明する。図5A及び図5Bは、第4の実施の形態に係る電極部の図2A及び図2Bと同様の説明図である。図5A及び図5Bに示すように、第4の実施の形態では、第2の実施の形態に対し、溝状の凹部48を同心円上に三重に形成した点を変更している。第4の実施の形態においては、スリット45の他端(内方端)は、三重の凹部48のうち、最も外側の凹部48の底部48aに位置するように形成される。第2〜第4の実施の形態によれば、溝状に凹部48を形成しても、第1の実施の形態と同様の効果を得ることができ、加工容易性や材質等を考慮して凹部48の形成数を変更することで製造コストの削減効果と絶縁性能向上効果とがバランス良く得られるようになる。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. 5A and 5B are explanatory views similar to those of FIGS. 2A and 2B of the electrode portion according to the fourth embodiment. As shown in FIGS. 5A and 5B, the fourth embodiment is different from the second embodiment in that the groove-shaped recesses 48 are formed in triple concentric circles. In the fourth embodiment, the other end (inner end) of the slit 45 is formed so as to be located at the bottom 48a of the outermost recess 48 of the triple recess 48. According to the second to fourth embodiments, even if the recess 48 is formed in a groove shape, the same effect as that of the first embodiment can be obtained, and in consideration of ease of processing, material, and the like. By changing the number of recesses 48 formed, the effect of reducing the manufacturing cost and the effect of improving the insulation performance can be obtained in a well-balanced manner.

[第5の実施の形態]
次に、本発明の第5の実施の形態について図6を参照して説明する。図6は、第5の実施の形態に係る接点部の説明用断面図である。図6に示すように、第5の実施の形態では、第1の実施の形態に対し、可動接触子12の接点部32においても、固定接触子14の接点部42における凹部48と同様の凹部38を形成している。図6では、平面視した場合の各凹部38、48の大きさ及び形状を同一としたが、これに限られず、各凹部38、48の大きさ、形状、形成位置が異なっていてもよい。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 6 is an explanatory sectional view of a contact portion according to a fifth embodiment. As shown in FIG. 6, in the fifth embodiment, the contact portion 32 of the movable contact 12 also has the same recess as the recess 48 in the contact portion 42 of the fixed contact 14 as compared with the first embodiment. 38 is formed. In FIG. 6, the sizes and shapes of the recesses 38 and 48 in a plan view are the same, but the size, shape, and formation position of the recesses 38 and 48 may be different.

第5の実施の形態によれば、凹部38、48の底部38a、48a間の距離(ギャップ長)を長くすることができ、高電界でも安定した絶縁性能を維持することができる。 According to the fifth embodiment, the distance (gap length) between the bottoms 38a and 48a of the recesses 38 and 48 can be increased, and stable insulation performance can be maintained even in a high electric field.

[第6の実施の形態]
次に、本発明の第6の実施の形態について図7を参照して説明する。図7は、第6の実施の形態に係る接点部の説明用断面図である。図7に示すように、第6の実施の形態では、第5の実施の形態に対し、可動接触子12の接点部32における凹部38を変更している。
[Sixth Embodiment]
Next, a sixth embodiment of the present invention will be described with reference to FIG. 7. FIG. 7 is an explanatory sectional view of a contact portion according to a sixth embodiment. As shown in FIG. 7, in the sixth embodiment, the recess 38 in the contact portion 32 of the movable contact 12 is changed from the fifth embodiment.

第6の実施の形態において、可動接触子12の凹部38は、第2の実施の形態の凹部48と同様に円の軌跡に沿う溝状に形成されている。図7では、固定接触子14の凹部48より可動接触子12の凹部38の方が大きい形寸法に形成され、上下に重ならない位置に設定されている。第6の実施の形態によれば、絶縁破壊する部位が同じになり難くなって当該部位の自由度を確保することができる。 In the sixth embodiment, the recess 38 of the movable contact 12 is formed in a groove shape along the locus of a circle like the recess 48 of the second embodiment. In FIG. 7, the recess 38 of the movable contact 12 is formed to have a larger shape and dimension than the recess 48 of the fixed contact 14, and is set at a position where it does not overlap vertically. According to the sixth embodiment, it is difficult for the parts to be dielectrically broken down to be the same, and the degree of freedom of the parts can be secured.

[第7の実施の形態]
次に、本発明の第7の実施の形態について図8を参照して説明する。図8A及び図8Bは、第7の実施の形態に係る電極部の図2A及び図2Bと同様の説明図である。図8A及び図8Bに示すように、第7の実施の形態では、第1の実施の形態に対し、凹部48の底部48aに段差を設けて2段の高さを有する形状に形成している。なお、かかる段差の段数は適宜増加させてもよい。
[7th Embodiment]
Next, a seventh embodiment of the present invention will be described with reference to FIG. 8A and 8B are explanatory views similar to those of FIGS. 2A and 2B of the electrode portion according to the seventh embodiment. As shown in FIGS. 8A and 8B, in the seventh embodiment, in contrast to the first embodiment, a step is provided at the bottom 48a of the recess 48 to form a shape having two steps of height. .. The number of steps may be increased as appropriate.

[第8の実施の形態]
次に、本発明の第8の実施の形態について図9を参照して説明する。図9は、第8の実施の形態に係る接点部の説明用断面図である。図9に示すように、第8の実施の形態では、第5の実施の形態に対し、両方の凹部38、48の底部38a、48aに段差を設けて2段の高さを有する形状に形成している。
[Eighth Embodiment]
Next, an eighth embodiment of the present invention will be described with reference to FIG. FIG. 9 is an explanatory sectional view of a contact portion according to an eighth embodiment. As shown in FIG. 9, in the eighth embodiment, as compared with the fifth embodiment, steps are provided at the bottoms 38a and 48a of both the recesses 38 and 48 to form a shape having two steps of height. are doing.

[第9の実施の形態]
次に、本発明の第9の実施の形態について図10を参照して説明する。図10は、第9の実施の形態に係る接点部の説明用断面図である。図10に示すように、第9の実施の形態では、第6の実施の形態(図7参照)に対し、両方の凹部38、48の底部38a、48aに段差を設けて2段の高さを有する形状に形成している。
[9th Embodiment]
Next, a ninth embodiment of the present invention will be described with reference to FIG. FIG. 10 is an explanatory sectional view of a contact portion according to a ninth embodiment. As shown in FIG. 10, in the ninth embodiment, as compared with the sixth embodiment (see FIG. 7), the bottoms 38a and 48a of both the recesses 38 and 48 are provided with steps to increase the height of two steps. It is formed in a shape having.

[第10の実施の形態]
次に、本発明の第10の実施の形態について図11を参照して説明する。図11は、第10の実施の形態に係る接点部の説明用断面図である。図11に示すように、第10の実施の形態では、第5の実施の形態(図6参照)に対し、可動接触子12における凹部38の底部38aに段差を設けて2段の高さを有する形状に形成している。固定接触子14の凹部48については、第1及び第5の実施の形態と同様に、段差を有しない形状に形成している。
[10th Embodiment]
Next, a tenth embodiment of the present invention will be described with reference to FIG. FIG. 11 is an explanatory sectional view of a contact portion according to the tenth embodiment. As shown in FIG. 11, in the tenth embodiment, as compared with the fifth embodiment (see FIG. 6), a step is provided at the bottom 38a of the recess 38 in the movable contact 12 to increase the height of two steps. It is formed in a shape that it has. The recess 48 of the fixed contact 14 is formed in a shape having no step, as in the first and fifth embodiments.

第7〜第10の実施の形態のように、底部38a、48aを2段の高さにすることによっても、ギャップ長となる底部38a、48a間の距離や、底部38a、48a及びこれに対向する対向面33、43間の距離を長くすることができ、高電界でも安定した絶縁性能を維持することができる。 By setting the bottoms 38a and 48a to two steps of height as in the seventh to tenth embodiments, the distance between the bottoms 38a and 48a, which is the gap length, and the bottoms 38a and 48a and facing the bottoms 38a and 48a. The distance between the facing surfaces 33 and 43 can be increased, and stable insulation performance can be maintained even in a high electric field.

なお、本発明は上記各実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状、向きなどについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。 The present invention is not limited to each of the above embodiments, and various modifications can be made. In the above embodiment, the size, shape, orientation, etc. shown in the accompanying drawings are not limited to this, and can be appropriately changed within the range in which the effects of the present invention are exhibited. In addition, it can be appropriately modified and implemented as long as it does not deviate from the scope of the object of the present invention.

上記各実施の形態において、可動接触子12の接点部32と、固定接触子14の接点部42とで凹部38、48の形状、大きさ、形成位置、形成の有無が異なるものにあっては、各接点部32、42の形状等を逆にしてもよい。更に、平面視した場合の各凹部38、48の形状等は、円形及び円環状に限定されるものでなく、底部38a、48aの最大表面粗さRmaxが小さくなる限りにおいて、楕円形や多角形にする等、種々の変更が可能である。 In each of the above embodiments, if the contact portion 32 of the movable contact 12 and the contact portion 42 of the fixed contact 14 differ in the shape, size, formation position, and presence / absence of formation of the recesses 38 and 48. , The shapes of the contact portions 32 and 42 may be reversed. Further, the shapes of the recesses 38 and 48 when viewed in a plan view are not limited to circular and annular shapes, and are elliptical or polygonal as long as the maximum surface roughness Rmax of the bottoms 38a and 48a is small. Various changes are possible, such as.

また、スリット35、45は、上記各実施の形態と同様の縦磁界を発生する限りにおいて、延出方向に対し不連続に形成してもよい。但し、電流遮断時にマクロな電界集中を発生させるべく、スリット35、45の一部が凹部38、48の底部38a、48aに形成されることが好ましい。 Further, the slits 35 and 45 may be formed discontinuously with respect to the extending direction as long as the same longitudinal magnetic field as in each of the above embodiments is generated. However, it is preferable that a part of the slits 35 and 45 is formed in the bottoms 38a and 48a of the recesses 38 and 48 in order to generate macroscopic electric field concentration when the current is cut off.

また、電極部30、40において、接点部32、42と電極本体部31、41とを別体として固定した構成としたが、これらを一体に形成してもよい。 Further, in the electrode portions 30 and 40, the contact portions 32 and 42 and the electrode main body portions 31 and 41 are fixed as separate bodies, but these may be integrally formed.

10 真空遮断器
11 真空容器
12 可動接触子
14 固定接触子
30 電極部
32 接点部
33 対向面
35 スリット
37 接触領域
38 凹部
38a 底部
40 電極部
42 接点部
43 対向面
45 スリット
47 接触領域
48 凹部
48a 底部
10 Vacuum circuit breaker 11 Vacuum vessel 12 Movable contact 14 Fixed contact 30 Electrode 32 Contact 33 Opposing surface 35 Slit 37 Contact area 38 Recess 38a Bottom 40 Electrode 42 Contact 43 Opposing surface 45 Slit 47 Contact area 48 Recess 48a bottom

Claims (3)

真空容器の内部で接離可能に設けられて接触状態で通電し、離間状態で通電を遮断する可動接触子及び固定接触子を備えた真空遮断器であって、
前記可動接触子及び前記固定接触子の電極部は、相互に対向する対向面が形成された接点部を備え、
前記対向面の少なくとも一方は、前記接触状態で他方の前記対向面に接触する接触領域と、他方の前記対向面からの距離が前記接触領域よりも大きい凹部と備え、
前記凹部の底部は、前記接触領域に比べて最大表面粗さ(Rmax)が小さく形成されていることを特徴とする真空遮断器。
A vacuum circuit breaker equipped with a movable contactor and a fixed contactor that are provided inside the vacuum vessel so as to be detachable and energize in a contact state and cut off the energization in a separated state.
The movable contact and the electrode portion of the fixed contact include contact portions having facing surfaces facing each other.
At least one of the facing surfaces is provided with a contact region that contacts the other facing surface in the contact state and a recess that has a greater distance from the other facing surface than the contact region.
A vacuum circuit breaker characterized in that the bottom of the recess is formed so that the maximum surface roughness (Rmax) is smaller than that of the contact region.
前記接点部は、前記対向面に縦磁界を発生させるためのスリットを備えていることを特徴とする請求項1に記載の真空遮断器。 The vacuum circuit breaker according to claim 1, wherein the contact portion is provided with a slit for generating a longitudinal magnetic field on the facing surface. 前記スリットは、前記接点部の外縁から前記凹部の前記底部に延出していることを特徴とする請求項2に記載の真空遮断器。 The vacuum circuit breaker according to claim 2, wherein the slit extends from the outer edge of the contact portion to the bottom portion of the recess.
JP2019043602A 2019-03-11 2019-03-11 vacuum circuit breaker Active JP7175802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019043602A JP7175802B2 (en) 2019-03-11 2019-03-11 vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019043602A JP7175802B2 (en) 2019-03-11 2019-03-11 vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JP2020149780A true JP2020149780A (en) 2020-09-17
JP7175802B2 JP7175802B2 (en) 2022-11-21

Family

ID=72429782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019043602A Active JP7175802B2 (en) 2019-03-11 2019-03-11 vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP7175802B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250782A (en) * 1998-02-26 1999-09-17 Toshiba Corp Electrode for breaker and its manufacture
JP2003092050A (en) * 2001-09-17 2003-03-28 Meidensha Corp Contactor for vacuum interrupter and vacuum interrupter
JP2009289652A (en) * 2008-05-30 2009-12-10 Toshiba Corp Agwc-ag composite contact, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250782A (en) * 1998-02-26 1999-09-17 Toshiba Corp Electrode for breaker and its manufacture
JP2003092050A (en) * 2001-09-17 2003-03-28 Meidensha Corp Contactor for vacuum interrupter and vacuum interrupter
JP2009289652A (en) * 2008-05-30 2009-12-10 Toshiba Corp Agwc-ag composite contact, and manufacturing method thereof

Also Published As

Publication number Publication date
JP7175802B2 (en) 2022-11-21

Similar Documents

Publication Publication Date Title
Slade et al. Electrical breakdown in atmospheric air between closely spaced (0.2/spl mu/m-40/spl mu/m) electrical contacts
KR102524433B1 (en) active gas generator
WO2010052992A1 (en) Electrode structure for vacuum circuit breaker
CN111052297B (en) Radio frequency resonator for ion beam acceleration
US3792214A (en) Vacuum interrupter for high voltage application
JP2020149780A (en) Vacuum circuit breaker
JP4977864B2 (en) Coaxial vacuum arc vapor deposition source and vapor deposition apparatus using the same
US20200040877A1 (en) Ion thruster with external plasma discharge
CN111480212B (en) High-voltage power switch and method for electromagnetically shielding a vacuum interrupter in an insulator
US2433755A (en) Spark gap electrical apparatus
JP7110031B2 (en) vacuum circuit breaker
JP5722254B2 (en) Deflector
US3471733A (en) High current vacuum gap devices
KR102640728B1 (en) Electron source and charged particle beam device
US20070297479A1 (en) Triggered spark gap
CN111584334A (en) Insulation structure for ion implantation device
JP4537191B2 (en) Electron gun
US10910795B2 (en) Arrester for surge protection
US11024487B2 (en) Current switch device including first and second electrodes and first and second grids
US3480821A (en) Stabilized vacuum gap device with elementary electrode structure
KR101850757B1 (en) ion beam source with arcing suppression
JP7228539B2 (en) switch device
JP2013012299A (en) Vacuum valve
US20160314916A1 (en) Contact of vacuum interrupter
JP2005149899A (en) Vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7175802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150