JP2020148593A - 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法 - Google Patents

自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法 Download PDF

Info

Publication number
JP2020148593A
JP2020148593A JP2019045848A JP2019045848A JP2020148593A JP 2020148593 A JP2020148593 A JP 2020148593A JP 2019045848 A JP2019045848 A JP 2019045848A JP 2019045848 A JP2019045848 A JP 2019045848A JP 2020148593 A JP2020148593 A JP 2020148593A
Authority
JP
Japan
Prior art keywords
vehicle
learning model
learning
inference
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019045848A
Other languages
English (en)
Inventor
健人 吉田
Taketo Yoshida
健人 吉田
寛修 深井
Hironaga Fukai
寛修 深井
凛平 望月
Rimpei Mochizuki
凛平 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2019045848A priority Critical patent/JP2020148593A/ja
Priority to PCT/JP2019/050747 priority patent/WO2020183864A1/ja
Priority to US17/438,168 priority patent/US20220143823A1/en
Publication of JP2020148593A publication Critical patent/JP2020148593A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0018Method for the design of a control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Feedback Control In General (AREA)

Abstract

【課題】自動操縦ロボット(ドライブロボット)を制御する操作推論学習モデルの学習システム及び学習方法を提供する。【解決手段】車速を含む車両2の走行状態を基に、車両2を規定された指令車速に従って走行させるような、車両2の操作を推論する操作推論学習モデル70と、車両2に搭載されて、操作を基に当該車両2を走行させる自動操縦ロボット4を備え、操作推論学習モデル70を強化学習する、自動操縦ロボット4を制御する操作推論学習モデル70の学習システム10であって、車両2の実際の走行実績を基に車両2を模擬動作するように機械学習され、操作推論学習モデル70が推論した操作を基に、車両2を模した走行状態である模擬走行状態を出力する、車両学習モデル60を備え、車両学習モデル60が出力した模擬走行状態を操作推論学習モデル70に適用することで、操作推論学習モデル70を事前に強化学習する。【選択図】図2

Description

本発明は、自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法に関する。
一般に、普通自動車などの車両を製造、販売する際には、国や地域により規定された、特定の走行パターン(モード)により車両を走行させた際の燃費や排出ガスを測定し、これを表示する必要がある。
モードは、例えば、走行開始から経過した時間と、その時に到達すべき車速との関係として、グラフにより表わすことが可能である。この到達すべき車速は、車両へ与えられる達成すべき速度に関する指令という観点で、指令車速と呼ばれることがある。
上記のような、燃費や排出ガスに関する試験は、シャシーダイナモメータ上に車両を載置し、車両に搭載された自動操縦ロボット、所謂ドライブロボット(登録商標)により、モードに従って車両を運転させることにより行われる。
指令車速には、許容誤差範囲が規定されている。車速が許容誤差範囲を逸脱すると、その試験は無効となるため、自動操縦ロボットの制御には、指令車速への高い追従性が求められる。このため、自動操縦ロボットを、例えば強化学習により学習された学習モデルを用いて制御することがある。
例えば、特許文献1には、人間らしいペダル操作を行うドライバモデルを強化学習によって構築することが可能な車輌用走行シミュレーション装置、ドライバモデル構築方法及びドライバモデル構築プログラムが開示されている。
より詳細には、車輌用走行シミュレーション装置は、ドライバモデルのゲインの値を変更させながら、車輌モデルを複数回走行させ、この時に変更されたゲインの値を報酬値に基づいて評価することによって、ドライバモデルのゲインの設定を自動的に行う。上記ゲインの値は、車速の追従性を評価する車速報酬関数のみならず、アクセルペダルの操作の滑らかさを評価するアクセル報酬関数、ブレーキペダルの操作の滑らかさを評価するブレーキ報酬関数によっても評価が行われる。
特許文献1等において用いられる車両モデルとしては、通常、車両の各構成要素に対して、動作を模した物理モデルを各々作成し、これらを組み合わせた物理モデルとして作成される。
特開2014−115168号公報
特許文献1に開示されたような装置においては、車両の操作を推論する操作推論学習モデルを、車両モデルを基に学習している。このため、車両モデルの再現精度が低いと、操作推論学習モデルをどれだけ精密に学習させたとしても、操作推論学習モデルが推論する操作が、実際の車両にそぐわないものとなり得る。特に、物理モデルの作成は、実車両の微細なパラメータを解析してこれを反映させる必要があるために、これを用いて精度が高い車両モデルを構築するのは容易ではない。このため、特に車両モデルとして物理モデルを使用すると、操作推論学習モデルにより出力する操作の精度を高めるのが難しい。
他方、操作推論学習モデルの強化学習時に、車両モデルに替えて、実際の車両を使用することが考えられる。すなわち、操作推論学習モデルによる操作の推論、当該操作による実車両の操作、操作の結果である走行実績としての実車両の走行状態の蓄積、及び蓄積された走行状態を用いた操作推論学習モデルの更なる学習を、操作推論学習モデルの操作推論の精度が高まるまで繰り返すことで、操作推論学習モデルを強化学習する。この場合においては、最終的に生成される操作推論学習モデルを、実際の車両の試験に十分に適用可能な程度の精度にすることができる。
しかし、強化学習においては、上記のように学習モデルの学習と、学習途中の学習モデルが推論した操作を用いた走行状態の取得を繰り返して、学習モデルの学習を進める。したがって、学習モデルは、学習の初期段階においては、例えばペダルを極端に高い頻度で操作するような、人間には不可能で、実車両に負担がかかる、好ましくない操作を出力する可能性がある。
本発明が解決しようとする課題は、強化学習中の操作推論学習モデルによる好ましくない車両操作の出力を低減して実車両の負担を低減可能で、かつ操作推論学習モデルにより出力する操作の精度を向上可能な、自動操縦ロボット(ドライブロボット)を制御する操作推論学習モデルの学習システム及び学習方法を提供することである。
本発明は、上記課題を解決するため、以下の手段を採用する。すなわち、本発明は、車速を含む車両の走行状態を基に、前記車両を規定された指令車速に従って走行させるような、前記車両の操作を推論する操作推論学習モデルと、前記車両に搭載されて、前記操作を基に当該車両を走行させる自動操縦ロボットを備え、前記操作推論学習モデルを強化学習する、自動操縦ロボットを制御する操作推論学習モデルの学習システムであって、前記車両の実際の走行実績を基に前記車両を模擬動作するように機械学習され、前記操作推論学習モデルが推論した前記操作を基に、前記車両を模した前記走行状態である模擬走行状態を出力する、車両学習モデルを備え、前記車両学習モデルが出力した前記模擬走行状態を前記操作推論学習モデルに適用することで、前記操作推論学習モデルを事前に強化学習し、当該事前の強化学習が終了した後に、前記操作推論学習モデルが推論した前記操作を基に前記車両を走行させて取得された前記走行状態を前記操作推論学習モデルに適用することで、前記操作推論学習モデルを更に強化学習する、自動操縦ロボットを制御する操作推論学習モデルの学習システムを提供する。
また、本発明は、車速を含む車両の走行状態を基に、前記車両を規定された指令車速に従って走行させるような、前記車両の操作を推論する操作推論学習モデルと、前記車両に搭載されて、前記操作を基に当該車両を走行させる自動操縦ロボットに関し、前記操作推論学習モデルを強化学習する、自動操縦ロボットを制御する操作推論学習モデルの学習方法であって、前記車両の実際の走行実績を基に前記車両を模擬動作するように機械学習された車両学習モデルにより、前記操作推論学習モデルが推論した前記操作を基に、前記車両を模した前記走行状態である模擬走行状態を出力し、当該模擬走行状態を前記操作推論学習モデルに適用することで、前記操作推論学習モデルを事前に強化学習し、前記事前の強化学習が終了した後に、前記操作推論学習モデルが推論した前記操作を基に前記車両を走行させて取得された前記走行状態を前記操作推論学習モデルに適用することで、前記操作推論学習モデルを更に強化学習する、自動操縦ロボットを制御する操作推論学習モデルの学習方法を提供する。
本発明によれば、強化学習中の操作推論学習モデルによる好ましくない車両操作の出力を低減して実車両の負担を低減可能で、かつ操作推論学習モデルにより出力する操作の精度を向上可能な、自動操縦ロボット(ドライブロボット)を制御する操作推論学習モデルの学習システム及び学習方法を提供することができる。
本発明の実施形態における、自動操縦ロボット(ドライブロボット)を用いた試験環境の説明図である。 上記実施形態における自動操縦ロボットを制御する操作推論学習モデルの学習システムの、車両学習モデルの学習時における処理の流れを記したブロック図である。 上記車両学習モデルのブロック図である。 上記自動操縦ロボットを制御する操作推論学習モデルの学習システムの、操作推論学習モデルの事前学習時における処理の流れを記したブロック図である。 上記操作推論学習モデルのブロック図である。 上記操作推論学習モデルの強化学習に用いられる、価値推論学習モデルのブロック図である。 上記自動操縦ロボットを制御する操作推論学習モデルの学習システムの、操作推論学習モデルの事前学習が終了した後の強化学習時における処理の流れを記したブロック図である。 上記実施形態における自動操縦ロボットを制御する操作推論学習モデルの学習方法のフローチャートである。
以下、本発明の実施形態について図面を参照して詳細に説明する。
本実施形態においては、自動操縦ロボットとしては、ドライブロボット(登録商標)を用いているため、以下、自動操縦ロボットをドライブロボットと記載する。
図1は、実施形態におけるドライブロボットを用いた試験環境の説明図である。試験装置1は、車両2、シャシーダイナモメータ3、及びドライブロボット4を備えている。
車両2は、床面上に設けられている。シャシーダイナモメータ3は、床面の下方に設けられている。車両2は、車両2の駆動輪2aがシャシーダイナモメータ3の上に載置されるように、位置づけられている。車両2が走行し駆動輪2aが回転する際には、シャシーダイナモメータ3が反対の方向に回転する。
ドライブロボット4は、車両2の運転席2bに搭載されて、車両2を走行させる。ドライブロボット4は、第1アクチュエータ4cと第2アクチュエータ4dを備えており、これらはそれぞれ、車両2のアクセルペダル2cとブレーキペダル2dに当接するように設けられている。
ドライブロボット4は、後に詳説する学習制御装置11によって制御されている。学習制御装置11は、ドライブロボット4の第1アクチュエータ4cと第2アクチュエータ4dを制御することにより、車両2のアクセルペダル2cとブレーキペダル2dの開度を変更、調整する。
学習制御装置11は、ドライブロボット4を、車両2が規定された指令車速に従って走行するように制御する。すなわち、学習制御装置11は、車両2のアクセルペダル2cとブレーキペダル2dの開度を変更することで、規定された走行パターン(モード)に従うように、車両2を走行制御する。より詳細には、学習制御装置11は、走行開始から時間が経過するに従い、各時間に到達すべき車速である指令車速に従うように、車両2を走行制御する。
学習制御システム(学習システム)10は、上記のような試験装置1と学習制御装置11を備えている。
学習制御装置11は、ドライブロボット制御部20と学習部30を備えている。
ドライブロボット制御部20は、ドライブロボット4の制御を行うための制御信号を生成し、ドライブロボット4に送信することで、ドライブロボット4を制御する。学習部30は、後に説明するような機械学習を行い、車両学習モデル、操作推論学習モデル、及び価値推論学習モデルを生成する。上記のような、ドライブロボット4の制御を行うための制御信号は、操作推論学習モデルにより生成される。
ドライブロボット制御部20は、例えば、ドライブロボット4の筐体外部に設けられた、コントローラ等の情報処理装置である。学習部30は、例えばパーソナルコンピュータ等の情報処理装置である。
図2は、学習制御システム10のブロック図である。図2においては、各構成要素を結ぶ線は、上記車両学習モデルを機械学習する際にデータの送受信があるもののみが示されており、したがって構成要素間の全てのデータの送受信を示すものではない。
試験装置1は、既に説明したような車両2、シャシーダイナモメータ3、及びドライブロボット4に加え、車両状態計測部5を備えている。車両状態計測部5は、車両2の状態を計測する各種の計測装置である。車両状態計測部5としては、例えばアクセルペダル2cやブレーキペダル2dの操作量を計測するためのカメラや赤外線センサなどであり得る。
本実施形態においては、ドライブロボット4が第1及び第2アクチュエータ4c、4dを制御することでこれらペダル2c、2dを操作する。したがって、車両状態計測部5に依らずとも、例えば第1及び第2アクチュエータ4c、4dの制御量等を基に、ペダル2c、2dの操作量を把握することができる。このため、本実施形態においては、車両状態計測部5は必須の構成ではない。しかし、後に変形例として記載するような、例えばドライブロボット4に替えて人間が車両2を操縦する際にペダル2c、2dの操作量を把握したい場合や、エンジン回転数やギア状態、エンジン温度等の車両2の状態を直接計測して把握したい場合には必要となる。
ドライブロボット制御部20は、ペダル操作パターン生成部21、車両操作制御部22、及び駆動状態取得部23を備えている。学習部30は、指令車速生成部31、推論データ成形部32、学習データ成形部33、学習データ生成部34、学習データ記憶部35、強化学習部40、及び試験装置モデル50を備えている。強化学習部40は、操作内容推論部41、状態行動価値推論部42、及び報酬計算部43を備えている。試験装置モデル50は、ドライブロボットモデル51、車両モデル52、及びシャシーダイナモメータモデル53を備えている。
学習制御装置11の、学習データ記憶部35以外の各構成要素は、例えば上記の各情報処理装置内のCPUにより実行されるソフトウェア、プログラムであってよい。また、学習データ記憶部35は、上記各情報処理装置内外に設けられた半導体メモリや磁気ディスクなどの記憶装置により実現されていてよい。
後に説明するように、操作内容推論部41は、ある時刻における走行状態を基に、指令車速に従うような、当該時刻よりも後の車両2の操作を推論する。この、車両2の操作の推論を効果的に行うために、特に操作内容推論部41は、後に説明するように機械学習器を備えており、推論した操作に基づいたドライブロボット4の操作の後の時刻における走行状態に基づいて計算された報酬を基に機械学習器を強化学習して学習モデル(操作推論学習モデル)70を生成する。操作内容推論部41は、性能測定のために実際に車両2を走行制御させる際には、この学習が完了した操作推論学習モデル70を使用して、車両2の操作を推論する。
すなわち、学習制御システム10は大別して、強化学習時における操作の学習と、性能測定のために車両を走行制御させる際における操作の推論の、2通りの動作を行う。説明を簡単にするために、以下ではまず、操作の学習時における、学習制御システム10の各構成要素の説明をした後に、車両の性能測定に際して操作を推論する場合での各構成要素の挙動について説明する。
まず、操作の学習時における、学習制御装置11の構成要素の挙動を説明する。
学習制御装置11は、操作の学習に先立ち、学習時に使用する走行実績データ(走行実績)を、走行実績として収集する。詳細には、ドライブロボット制御部20が、アクセルペダル2c及びブレーキペダル2dの、車両特性計測用の操作パターンを生成して、これにより車両2を走行制御し、走行実績データを収集する。
ペダル操作パターン生成部21は、ペダル2c、2dの、車両特性計測用の操作パターンを生成する。ペダル操作パターンとしては、例えば車両2と類似する他の車両において、WLTC(Worldwide harmonized Light vehicles Test Cycle)モードなどによって走行した際のペダル操作の実績値を使用することができる。
ペダル操作パターン生成部21は、生成したペダル操作パターンを、車両操作制御部22へ送信する。
車両操作制御部22は、ペダル操作パターン生成部21から、ペダル操作パターンを受信し、これを、ドライブロボット4の第1及び第2アクチュエータ4c、4dへの指令に変換して、ドライブロボット4に送信する。
ドライブロボット4は、アクチュエータ4c、4dへの指令を受信すると、これに基づいて車両2をシャシーダイナモメータ3上で走行させる。
駆動状態取得部23は、例えばアクチュエータ4c、4dの位置等の、ドライブロボット4の実際の駆動状態を取得する。車両2が走行することにより、車両2の走行状態は逐次変化する。駆動状態取得部23と、車両状態計測部5、及びシャシーダイナモメータ3に設けられた様々な計測器により、車両2の走行状態が計測される。例えば、駆動状態取得部23は上記のように、アクセルペダル2cの検出量と、ブレーキペダル2dの検出量を、走行状態として計測する。また、シャシーダイナモメータ3に設けられた計測器は、車速を走行状態として計測する。
計測された車両2の走行状態は、学習部30の学習データ成形部33へ送信される。
学習データ成形部33は、車両2の走行状態を受信し、受信したデータを後の様々な学習において使用されるフォーマットに変換して、走行実績データとして学習データ記憶部35に保存する。
車両2の走行状態すなわち走行実績データの収集が終了すると、学習データ生成部34は学習データ記憶部35から走行実績データを取得し、適切なフォーマットに成形して、試験装置モデル50に送信する。
試験装置モデル50の車両モデル52は、学習データ生成部34から成形された走行実績データを取得し、これを用いて機械学習器60を機械学習して、車両学習モデル60を生成する。車両学習モデル60は、車両2の実際の走行実績である走行実績データを基に車両2を模擬動作するように機械学習され、車両2に対する操作を受信すると、これを基に、車両2を模した走行状態である模擬走行状態を出力する。すなわち、車両モデル52の機械学習器60は、人工知能ソフトウェアの一部であるプログラムモジュールとして利用される、適切な学習パラメータが学習された学習済みモデル60を生成するものである。
本実施形態においては、車両学習モデル60は、ニューラルネットワークで実現され、所定の時刻を基点とした走行状態が学習データとして、及び所定の時刻より後の時刻の走行実績が教師データとして入力され、後の時刻の模擬走行状態を出力してこれを教師データと比較することで機械学習される。
以下、説明を簡単にするため、車両モデル52が備えている機械学習器と、これが学習されて生成される学習モデルをともに、車両学習モデル60と呼称する。
図3は、車両学習モデル60のブロック図である。本実施形態においては、車両学習モデル60は、中間層を3層とした全5層の全結合型のニューラルネットワークにより実現されている。車両学習モデル60は、入力層61、中間層62、及び出力層63を備えている。図3においては、各層が矩形として描かれており、各層に含まれるノードは省略されている。
本実施形態においては、車両学習モデル60の入力となる走行状態は、任意の所定の時刻を基点として、所定の第1時間だけ過去から基点となる時刻までの間の、車速の系列を含む。また、本実施形態においては、車両学習モデル60の入力となる走行状態は、基点となる時刻から所定の第2時間だけ将来の時刻までの間の、アクセルペダル2cの操作量の系列、及びブレーキペダル2dの操作量の系列を含む。
入力層61は、上記のような車速の系列である車速系列i1、アクセルペダル2cの操作量の系列であるアクセルペダル系列i2、及びブレーキペダル2dの操作量の系列であるブレーキペダル系列i3の各々に対応する入力ノードを備えている。
上記のように、各入力i1、i2、i3は系列であり、それぞれ、複数の値により実現されている。例えば、図3においては、一つの矩形として示されている、車速系列i1に対応する入力は、実際には、車速系列i1の複数の値の各々に対応するように、入力ノードが設けられている。
車両モデル52は、各入力ノードに、対応する走行実績データの値を格納する。
中間層62は、第1中間層62a、第2中間層62b、及び第3中間層62cを備えている。
中間層62の各ノードにおいては、前段の層(例えば、第1中間層62aの場合は入力層61、第2中間層62bの場合は第1中間層62a)の各ノードから、この前段の層の各ノードに格納された値と、前段の層の各ノードから当該中間層62のノードへの重みを基にした演算がなされて、当該中間層62のノード内に演算結果が格納される。
出力層63においても、中間層62の各々と同様な演算が行われ、出力層63に備えられた各出力ノードに演算結果が格納される。
本実施形態においては、車両学習モデル60の出力は、基点となる時刻から所定の第3時間だけ将来の時刻までの間の、推定された車速の系列である。この推定車速系列oは、系列であるため、複数の値により実現されている。例えば、図3においては、一つの矩形として示されている、推定車速系列oに対応する出力は、実際には、推定車速系列oの複数の値の各々に対応するように、出力ノードが設けられている。
車両学習モデル60においては、上記のように所定の時刻の走行実績が走行状態i1、i2、i3として入力されて、後の時刻の適切な推定車速系列oを、車両2の走行を模した走行状態である模擬走行状態oとして出力することができるように学習がなされる。
より詳細には、車両モデル52は、別途学習データ記憶部35から学習データ生成部34を介して送信された、基点となる所定の時刻から所定の第3時間だけ将来の時刻までの間の走行実績、本実施形態においては車速系列の正解値を、教師データとして受信する。車両モデル52は、教師データと、車両学習モデル60が出力した推定車速系列oの平均二乗誤差が小さくなるように、重みやバイアスの値等、ニューラルネットワークを構成する各パラメータの値を、誤差逆伝搬法、確率的勾配降下法により調整する。
車両モデル52は、車両学習モデル60の学習を繰り返しつつ、教師データと推定車速系列oの最小二乗誤差を都度計算し、これが所定の値よりも小さければ、車両学習モデル60の学習を終了する。
車両学習モデル60の学習が終了すると、学習制御システム10の強化学習部40は、操作内容推論部41に設けられた、車両2の操作を推論する操作推論学習モデル70を事前学習する。図4は、事前学習時のデータの送受信関係が示された学習制御システム10のブロック図である。操作推論学習モデル70は、機械学習器が学習されることにより、人工知能ソフトウェアの一部であるプログラムモジュールとして利用される、適切な学習パラメータが学習された学習済みモデルとなる。
学習制御システム10は、既に学習が終了した車両学習モデル60が出力した模擬走行状態を操作推論学習モデル70に適用することで、操作推論学習モデル70を事前に強化学習する。後に説明するように、操作推論学習モデル70の強化学習が進行して事前の強化学習が終了した後に、操作推論学習モデル70の出力した操作を基に実際に車両2を走行させて取得された走行状態を操作推論学習モデル70に適用することで、操作推論学習モデル70を更に強化学習する。このように、学習制御システム10は、操作推論学習モデル70の学習段階に応じて、推論した操作の実行対象及び走行状態の取得対象を、車両学習モデル60から実車両2へと変更する。
後に説明するように、操作内容推論部41は、現時点から所定の第3時間だけ将来の時刻までの間の車両2の操作を出力し、これをドライブロボットモデル51に送信する。本実施形態において、操作内容推論部41は、特にアクセルペダル2c及びブレーキペダル2dの操作の系列を出力する。
車両学習モデル60の学習により、試験装置モデル50は、全体として試験装置1の各々を模擬動作するように構成されている。試験装置モデル50は、操作の系列を受信する。
ドライブロボットモデル51は、ドライブロボット4を模擬動作するように構成されている。ドライブロボットモデル51は、受信した操作を基に、学習が終了した車両学習モデル60の入力となるアクセルペダル系列i2とブレーキペダル系列i3を生成し、車両モデル52に送信する。
シャシーダイナモメータモデル53は、シャシーダイナモメータ3を模擬動作するように構成されている。シャシーダイナモメータ3は、模擬走行中の車両学習モデル60の車速を検出しつつ、これを内部に随時記録している。シャシーダイナモメータモデル53は、この過去の車速の記録から車速系列i1を生成し、車両モデル52に送信する。
車両モデル52は、車速系列i1、アクセルペダル系列i2、及びブレーキペダル系列i3を受信してこれらを車両学習モデル60に入力する。車両学習モデル60が推定車速系列oを出力すると、車両モデル52は推定車速系列oを推論データ成形部32に送信する。
シャシーダイナモメータモデル53は、車両学習モデル60からこの時点における車速を検出して車速系列i1を更新し、推論データ成形部32に送信する。
指令車速生成部31は、モードに関する情報に基づいて生成された、指令車速を保持している。指令車速生成部31は、現時点から所定の第4時間だけ将来の時刻までの間に、車両学習モデル60が従うべき指令車速の系列を生成し、推論データ成形部32に送信する。
推論データ成形部32は、推定車速系列oと指令車速系列を受信し、適切に成形した後に強化学習部40に送信する。
強化学習部40は、過去に送信したアクセルペダル2cとブレーキペダル2dの操作を保持している。強化学習部40は、これらの送信した操作を、車両学習モデル60が実際にこれに従った結果としての検出値として見做し、これらアクセルペダル2cとブレーキペダル2dの操作の系列を基に、過去のアクセルペダル検出量の系列とブレーキペダル検出量の系列を生成する。強化学習部40は、これらを推定車速系列oと指令車速系列とともに、走行状態として操作内容推論部41に送信する。
操作内容推論部41は、ある時刻において走行状態を受信すると、これを基に、学習中の操作推論学習モデル70により、当該時刻より後の操作の系列を推論する。図5は、操作推論学習モデル70のブロック図である。
操作推論学習モデル70の入力層71においては、入力ノードが、例えばアクセルペダル検出量s1、ブレーキペダル検出量s2から、指令車速sNに至るまでの、走行状態sの各々に対応するように設けられている。操作推論学習モデル70は、車両学習モデル60と同様な構造のニューラルネットワークにより実現されているため、構造上の詳細な説明を割愛する。
操作推論学習モデル70の出力層73においては、出力ノードの各々は、操作aの各々に対応するように設けられている。本実施形態においては、操作の対象は、アクセルペダル2cとブレーキペダル2dであり、これに対応して、操作aは、例えばアクセルペダル操作の系列a1とブレーキペダル操作の系列a2となっている。
操作内容推論部41は、このようにして生成されたアクセルペダル操作a1とブレーキペダル操作a2をドライブロボットモデル51に送信する。ドライブロボットモデル51は、これを基にアクセルペダル系列i2とブレーキペダル系列i3を生成して車両学習モデル60に送信し、車両学習モデル60は次の車速を推論する。この、次の車速を基にして、次の走行状態sが生成される。
操作推論学習モデル70の学習、すなわち誤差逆伝搬法、確率的勾配降下法によるニューラルネットワークを構成する各パラメータの値の調整は、現段階においては行われず、操作推論学習モデル70は操作aを推論するのみである。操作推論学習モデル70の学習は、後に、価値推論学習モデル80の学習に伴って行われる。
報酬計算部43は、走行状態sと、これに対応して操作推論学習モデル70により推論された操作a、及び当該操作aを基に新たに生成された走行状態sを基に、適切に設計された式により報酬を計算する。報酬は、操作a、及びこれに伴う新たに生成された走行状態sが望ましくないほど小さい値を、望ましいほど大きい値を、有するように設計されている。後述する状態行動価値推論部42は、行動価値を、報酬が大きいほどこれが高くするように計算し、操作推論学習モデル70はこの行動価値が高くなるような操作aを出力するように、強化学習が行われる。
報酬計算部43は、走行状態s、これに対応して推論された操作a、当該操作aを基に新たに生成された走行状態s、及び計算した報酬を、学習データ成形部33に送信する。学習データ成形部33は、これらを適切に成形して学習データ記憶部35に保存する。これらのデータは、後述する価値推論学習モデル80の学習に使用される。
このようにして、操作内容推論部41による操作aの推論と、この操作aに対応した、車両モデル52による推定車速系列oの推論、及び報酬の計算が、価値推論学習モデル80の学習に十分なデータが蓄積されるまで、繰り返し行われる。
学習データ記憶部35に、価値推論学習モデル80の学習に十分な量の走行データが蓄積されると、状態行動価値推論部42は価値推論学習モデル80を学習する。価値推論学習モデル80は、機械学習器が学習されることにより、人工知能ソフトウェアの一部であるプログラムモジュールとして利用される、適切な学習パラメータが学習された学習済みモデルとなる。
強化学習部40は全体として、操作推論学習モデル70が推論した操作aがどの程度適切であったかを示す行動価値を計算し、操作推論学習モデル70が、この行動価値が高くなるような操作aを出力するように、強化学習を行う。行動価値は、走行状態sと、これに対する操作aを引数として、報酬が大きいほど行動価値Qを高くするように設計された関数Qとして表わされる。本実施形態においては、この関数Qの計算を、走行状態sと操作aを入力として、行動価値Qを出力するように設計された、関数近似器としての学習モデル80により行う。
状態行動価値推論部42は、学習データ記憶部35から、学習データ生成部34を介して成形された走行状態sと操作aを受信し、価値推論学習モデル80を機械学習させる。図6は、価値推論学習モデル80のブロック図である。
価値推論学習モデル80の入力層81においては、入力ノードが、例えばアクセルペダル検出量s1、ブレーキペダル検出量s2から、指令車速sNに至るまでの、走行状態sの各々と、及び、例えばアクセルペダル操作a1とブレーキペダル操作a2の、操作aの各々に対応するように設けられている。価値推論学習モデル80は、車両学習モデル60と同様な構造のニューラルネットワークにより実現されているため、構造上の詳細な説明を割愛する。
価値推論学習モデル80の出力層83においては、出力ノードは、例えば1つであり、これが、計算された行動価値Qの値に相当する。
報酬計算部43は、TD(Temporal Difference)誤差、すなわち、操作aを実行する前の行動価値と、操作aを実行した後の行動価値の誤差を小さくして、行動価値Qとして適切な値が出力されるように、重みやバイアスの値等、ニューラルネットワークを構成する各パラメータの値を、誤差逆伝搬法、確率的勾配降下法により調整する。このように、現状の操作推論学習モデル70によって推論された操作aを適切に評価できるように、価値推論学習モデル80を学習させる。
価値推論学習モデル80の学習が終了すると、価値推論学習モデル80は、より適切な行動価値Qの値を出力するようになる。すなわち、価値推論学習モデル80が出力する行動価値Qの値が学習前とは変わるため、これに伴い、行動価値Qが高くなるような操作aを出力するように設計された操作推論学習モデル70を更新する必要がある。このため、操作内容推論部41は操作推論学習モデル70を学習する。
具体的には、状態行動価値推論部42は、例えば行動価値Qの負値を損失関数とし、これをできるだけ小さくするような、すなわち行動価値Qが大きくなるような操作aを出力するように、重みやバイアスの値等、ニューラルネットワークを構成する各パラメータの値を、誤差逆伝搬法、確率的勾配降下法により調整して、操作推論学習モデル70を学習させる。
操作推論学習モデル70が学習され更新されると、出力される操作aが変化するため、再度走行データを蓄積し、これを基に価値推論学習モデル80を学習する。
このように、学習部30は、操作推論学習モデル70と価値推論学習モデル80の学習を繰り返すことにより、これら学習モデル70、80を強化学習する。
学習部30は、この事前学習としての、車両学習モデル60を操作aの実行対象として用いた強化学習を、所定の事前学習終了基準を満たすまで実行する。
例えば、学習部30は、車両学習モデル60を操作aの実行対象として用いた制御で十分な走行性能が得られるまで、事前学習を実行する。例えば、学習制御システム10がモード走行を前提としている場合においては、車両学習モデル60によるモード走行において、車速指令と推定車速系列oとの誤差が所定の閾値以下となり十分に小さい値となるまで、事前学習が実行される。
あるいは、所定の時間範囲におけるアクセルペダル2cやブレーキペダル2dの操作回数、操作量や変化率が、所定の閾値以下になった場合は、実際に車両2で試験を実行しても車両2に大きな負荷を与える可能性が低いと判断して、事前学習を終了するようにしてもよい。
操作推論学習モデル70及び価値推論学習モデル80の、車両学習モデル60を操作aの実行対象として用いた事前学習が終了すると、学習部30は、車両学習モデル60に替えて、実車両2を操作aの実行対象として、操作推論学習モデル70及び価値推論学習モデル80を更に強化学習する。図7は、事前学習が終了した後の強化学習時におけるデータの送受信関係が示された学習制御システム10のブロック図である。
操作内容推論部41は、現時点から所定の第3時間だけ将来の時刻までの間の車両2の操作aを出力し、これを車両操作制御部22に送信する。
車両操作制御部22は、受信した操作aを、ドライブロボット4の第1及び第2アクチュエータ4c、4dへの指令に変換して、ドライブロボット4に送信する。
ドライブロボット4は、アクチュエータ4c、4dへの指令を受信すると、これに基づいて車両2をシャシーダイナモメータ3上で走行させる。
シャシーダイナモメータ3は、車両2の車速を検出し、車速系列を生成して推論データ成形部32に送信する。
指令車速生成部31は、指令車速系列を生成して推論データ成形部32に送信する。
推論データ成形部32は、車速系列と指令車速系列を受信し、適切に成形した後に走行状態として、強化学習部40に送信する。
強化学習部40は、車両モデル52により生成される推定車速系列oの替わりに上記の車速系列を用いて、図4を用いて説明した事前学習時と同様に、上記のように実車両2を操作aの実行対象として用いて学習データを学習データ記憶部35に蓄積する。強化学習部40は、十分な量の走行データが蓄積されると、価値推論学習モデル80を学習し、その後操作推論学習モデル70を学習する。
学習部30は、学習データの蓄積と、操作推論学習モデル70と価値推論学習モデル80の学習を繰り返すことにより、これら学習モデル70、80を強化学習する。
学習部30は、車両2を操作aの実行対象として用いた強化学習を、所定の学習終了基準を満たすまで実行する。
例えば、学習部30は、車両2を操作aの実行対象として用いた制御で十分な走行性能が得られるまで、事前学習を実行する。例えば、学習制御システム10がモード走行を前提としている場合においては、車両2によるモード走行において、車速指令と実際にシャシーダイナモメータ3により検出される車速との誤差が所定の閾値以下となり十分に小さい値となるまで、事前学習が実行される。
次に、車両2の性能測定に際して操作aを推論する場合での、すなわち、操作推論学習モデル70の強化学習が終了した後における、学習制御システム10の各構成要素の挙動について説明する。
駆動状態取得部23と、車両状態計測部5、及びシャシーダイナモメータ3に設けられた様々な計測器により、車両2の車速、アクセルペダル2cの検出量、ブレーキペダル2dの検出量等が計測される。これらの値は、推論データ成形部32に送信される。
指令車速生成部31は、指令車速系列を生成して推論データ成形部32に送信する。
推論データ成形部32は、車速、アクセルペダル2cの検出量、ブレーキペダル2dの検出量等と、指令車速系列を受信し、適切に成形した後に走行状態として、強化学習部40に送信する。
操作内容推論部41は、走行状態を受信すると、これを基に、学習済みの操作推論学習モデル70により、車両2の操作aを推論する。
操作内容推論部41は、推論した操作aを、車両操作制御部22へ送信する。
車両操作制御部22は、操作内容推論部41から操作aを受信し、この操作aに基づき、ドライブロボット4を操作する。
次に、図1〜図7、及び図8を用いて、上記の学習制御システム10を用いた、ドライブロボット4を制御する操作推論学習モデル70の学習方法を説明する。図8は、学習方法のフローチャートである。
学習制御装置11は、操作の学習に先立ち、学習時に使用する走行実績データ(走行実績)を、走行実績として収集する。詳細には、ドライブロボット制御部20が、アクセルペダル2c及びブレーキペダル2dの、車両特性計測用の操作パターンを生成して、これにより車両2を走行制御し、走行実績データを収集する(ステップS1)。
車両モデル52は、学習データ生成部34から成形された走行実績データを取得し、これを用いて機械学習器60を機械学習して、車両学習モデル60を生成する(ステップS3)。
車両学習モデル60の学習が終了すると、学習制御システム10の強化学習部40は、車両2の操作を推論する操作推論学習モデル70を事前学習する(ステップS5)。より詳細には、学習制御システム10は、既に学習が終了した車両学習モデル60が出力した模擬走行状態を操作推論学習モデル70に適用することで、操作推論学習モデル70を事前に強化学習する。
学習部30は、この事前学習としての、車両学習モデル60を操作aの実行対象として用いた強化学習を、所定の事前学習終了基準を満たすまで実行する。事前学習終了基準を満たさなければ(ステップS7のNo)、事前学習を継続する。事前学習終了基準が満たされると(ステップS7のYes)、事前学習を終了する。
操作推論学習モデル70及び価値推論学習モデル80の、車両学習モデル60を操作aの実行対象として用いた事前学習が終了すると、学習部30は、車両学習モデル60に替えて、実車両2を操作aの実行対象として、操作推論学習モデル70及び価値推論学習モデル80を更に強化学習する(ステップS9)。
次に、上記のドライブロボットを制御する操作推論学習モデルの学習システム及び学習方法の効果について説明する。
本実施形態の学習制御システム10は、車速を含む車両2の走行状態sを基に、車両2を規定された指令車速に従って走行させるような、車両2の操作aを推論する操作推論学習モデル70と、車両2に搭載されて、操作aを基に車両2を走行させるドライブロボット(自動操縦ロボット)4を備え、操作推論学習モデル70を強化学習する、ドライブロボット4を制御する操作推論学習モデル70の学習システム10であって、車両2の実際の走行実績を基に車両2を模擬動作するように機械学習され、操作推論学習モデル70が推論した操作aを基に、車両2を模した走行状態sである模擬走行状態oを出力する、車両学習モデル60を備え、車両学習モデル60が出力した模擬走行状態oを操作推論学習モデル70に適用することで、操作推論学習モデル70を事前に強化学習し、事前の強化学習が終了した後に、操作推論学習モデル70が推論した操作aを基に車両2を走行させて取得された走行状態sを操作推論学習モデル70に適用することで、操作推論学習モデル70を更に強化学習する。
また、本実施形態の学習制御方法は、車速を含む車両2の走行状態sを基に、車両2を規定された指令車速に従って走行させるような、車両2の操作aを推論する操作推論学習モデル70と、車両2に搭載されて、操作aを基に車両2を走行させるドライブロボット(自動操縦ロボット)4に関し、操作推論学習モデル70を強化学習する、ドライブロボット4を制御する操作推論学習モデル70の学習方法であって、車両2の実際の走行実績を基に車両2を模擬動作するように機械学習された車両学習モデル60により、操作推論学習モデル70が推論した操作aを基に、車両2を模した走行状態sである模擬走行状態oを出力し、模擬走行状態oを操作推論学習モデル70に適用することで、操作推論学習モデル70を事前に強化学習し、事前の強化学習が終了した後に、操作推論学習モデル70が推論した操作aを基に車両2を走行させて取得された走行状態sを操作推論学習モデル70に適用することで、操作推論学習モデル70を更に強化学習する。
強化学習により学習される操作推論学習モデル70は、強化学習の初期段階においては、例えばペダルを極端に高い頻度で操作するような、人間には不可能で、実車両に負担がかかる、好ましくない操作aを出力する可能性がある。
上記のような構成によれば、このような強化学習の初期段階においては、当該車両学習モデル60が、操作推論学習モデル70が推論した操作aを基に、車両2を模した走行状態sである模擬走行状態oを出力し、これを操作推論学習モデル70に適用することで、操作推論学習モデル70を事前に強化学習する。すなわち、強化学習の初期段階においては、実車両2を使用せずに、操作推論学習モデル70を強化学習することができる。したがって、実車両2の負担を低減可能である。
また、事前学習が終了すると、実車両2を使用して操作推論学習モデル70を更に強化学習するため、車両学習モデル60のみを使用して操作推論学習モデル70を強化学習する場合に比べると、操作推論学習モデル70により出力する操作の学習精度を向上することができる。
特に、上記のような構成においては、事前学習を、車両学習モデル60を操作aの実行対象として行うため、事前学習の全過程において車両2を操作aの実行対象とした場合に比べると、学習時間を低減可能である。
また、車両学習モデル60は、ニューラルネットワークで実現され、所定の時刻の走行実績が学習データとして、及び所定の時刻より後の時刻の走行状態が教師データとして入力され、後の時刻の模擬走行状態を出力してこれを教師データと比較することで機械学習される。
従来のように、車両モデルとして、車両の各構成要素に対して、動作を模した物理モデルを各々作成し、これらを組み合わせた物理モデルとして作成するのは、開発コストが嵩む。また、物理モデルの作成のためには実車両2の微細なパラメータや特性を熟知する必要があり、これらが入手できない場合においては、必要に応じて車両2を改造し、解析しなければならない。
上記のような構成によれば、車両学習モデル60がニューラルネットワークにより実現されているため、物理モデルとして車両学習モデル60を実現する場合に比べると実現が容易である。
また、車両学習モデル60は、操作推論学習モデル70の事前学習のみに使用され、事前学習後の強化学習には実車両2が用いられる。すなわち、操作推論学習モデル70の出力する操作aの精度は、実車両2を操作aの実行対象として用いた事前学習後の強化学習により高められるため、車両学習モデル60の車両2の模擬精度は過度に高くする必要がない。
以上が相乗し、学習制御システム10全体の開発が容易である。
また、走行状態sは、車速に加え、アクセルペダル開度、ブレーキペダル開度のいずれか、またはいずれかの組み合わせを含む。
上記のような構成によれば、上記のような学習制御システム10を適切に実現可能である。
なお、本発明のドライブロボットを制御する操作推論学習モデルの学習システム及び学習方法は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において他の様々な変形例が考えられる。
例えば、上記実施形態においては、事前に車両学習モデル60を操作aの実行対象として操作推論学習モデル70を強化学習した後には、車両2を操作aの実行対象として操作推論学習モデル70を強化学習していた。
事前学習後においては、操作推論学習モデル70が推論した操作により車両2を走行させることで、車両2の走行実績を更に取得することができる。この、新たに取得された走行実績を用いて、車両学習モデル60を更に学習し、模擬走行状態の推論精度を高めたうえで、事前学習後の強化学習において、推論した操作の実行及び走行状態の取得の対象として、車両2に加えて、更なる学習がなされた車両学習モデル60を併用することもできる。このような構成においては、車両2を使用して試験を行う時間が低減するため、操作推論学習モデル70の学習時間を低減可能である。
また、上記実施形態においては、車両学習モデル60の学習に使用する、車両2の実際の走行実績データを収集する際に、ドライブロボット4を使用した構成を説明したが、この場合に車両2を操縦するのはドライブロボット4に限られず、例えば人間であってもよい。この場合においては、上記実施形態で既に説明したように、アクセルペダル2cやブレーキペダル2dの操作量を計測するために、例えばカメラや赤外線センサが用いられ得る。
また、上記実施形態においては、走行状態として、車速、アクセルペダル開度、ブレーキペダル開度を用いていたが、これに限られない。例えば、走行状態は、車速に加え、アクセルペダル開度、ブレーキペダル開度、エンジン回転数、ギア状態、エンジン温度のいずれか、またはいずれかの組み合わせを含むように構成してもよい。
例えば、走行状態として、上記実施形態の構成に加えてエンジン回転数、ギア状態、エンジン温度を追加する場合においては、車両学習モデル60の入力には、車速系列i1、アクセルペダル系列i2、ブレーキペダル系列i3に加え、過去の時間におけるエンジン回転数の系列、ギア状態の系列、及びエンジン温度の系列が追加され得る。また、出力には、推定車速系列oに加え、将来の時間におけるエンジン回転数の系列、ギア状態の系列、及びエンジン温度の系列が追加され得る。
このように構成した場合においては、より精度の高い車両学習モデル60を生成することができる。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
1 試験装置
2 車両
3 シャシーダイナモメータ
4 ドライブロボット(自動操縦ロボット)
10 学習制御システム(学習システム)
11 学習制御装置
20 ドライブロボット制御部
21 ペダル操作パターン生成部
22 車両操作制御部
23 駆動状態取得部
30 学習部
31 指令車速生成部
32 推論データ成形部
33 学習データ成形部
34 学習データ生成部
35 学習データ記憶部
40 強化学習部
41 操作内容推論部
42 状態行動価値推論部
43 報酬計算部
50 試験装置モデル
51 ドライブロボットモデル
52 車両モデル
53 シャシーダイナモメータモデル
60 車両学習モデル
70 操作推論学習モデル
80 価値推論学習モデル
i1 車速系列
i2 アクセルペダル系列
i3 ブレーキペダル系列
a 操作
s 走行状態
o 模擬走行状態

Claims (4)

  1. 車速を含む車両の走行状態を基に、前記車両を規定された指令車速に従って走行させるような、前記車両の操作を推論する操作推論学習モデルと、前記車両に搭載されて、前記操作を基に当該車両を走行させる自動操縦ロボットを備え、前記操作推論学習モデルを強化学習する、自動操縦ロボットを制御する操作推論学習モデルの学習システムであって、
    前記車両の実際の走行実績を基に前記車両を模擬動作するように機械学習され、前記操作推論学習モデルが推論した前記操作を基に、前記車両を模した前記走行状態である模擬走行状態を出力する、車両学習モデルを備え、
    前記車両学習モデルが出力した前記模擬走行状態を前記操作推論学習モデルに適用することで、前記操作推論学習モデルを事前に強化学習し、当該事前の強化学習が終了した後に、前記操作推論学習モデルが推論した前記操作を基に前記車両を走行させて取得された前記走行状態を前記操作推論学習モデルに適用することで、前記操作推論学習モデルを更に強化学習する、自動操縦ロボットを制御する操作推論学習モデルの学習システム。
  2. 前記車両学習モデルは、ニューラルネットワークで実現され、所定の時刻を基点とした前記走行状態が学習データとして、及び前記所定の時刻より後の時刻の前記走行実績が教師データとして入力され、前記後の時刻の前記模擬走行状態を出力してこれを前記教師データと比較することで機械学習される、請求項1に記載の自動操縦ロボットを制御する操作推論学習モデルの学習システム。
  3. 前記走行状態は、前記車速に加え、アクセルペダル開度、ブレーキペダル開度、エンジン回転数、ギア状態、エンジン温度のいずれか、またはいずれかの組み合わせを含む、請求項1または2に記載の自動操縦ロボットを制御する操作推論学習モデルの学習システム。
  4. 車速を含む車両の走行状態を基に、前記車両を規定された指令車速に従って走行させるような、前記車両の操作を推論する操作推論学習モデルと、前記車両に搭載されて、前記操作を基に当該車両を走行させる自動操縦ロボットに関し、前記操作推論学習モデルを強化学習する、自動操縦ロボットを制御する操作推論学習モデルの学習方法であって、
    前記車両の実際の走行実績を基に前記車両を模擬動作するように機械学習された車両学習モデルにより、前記操作推論学習モデルが推論した前記操作を基に、前記車両を模した前記走行状態である模擬走行状態を出力し、当該模擬走行状態を前記操作推論学習モデルに適用することで、前記操作推論学習モデルを事前に強化学習し、
    前記事前の強化学習が終了した後に、前記操作推論学習モデルが推論した前記操作を基に前記車両を走行させて取得された前記走行状態を前記操作推論学習モデルに適用することで、前記操作推論学習モデルを更に強化学習する、自動操縦ロボットを制御する操作推論学習モデルの学習方法。
JP2019045848A 2019-03-13 2019-03-13 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法 Pending JP2020148593A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019045848A JP2020148593A (ja) 2019-03-13 2019-03-13 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法
PCT/JP2019/050747 WO2020183864A1 (ja) 2019-03-13 2019-12-25 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法
US17/438,168 US20220143823A1 (en) 2019-03-13 2019-12-25 Learning System And Learning Method For Operation Inference Learning Model For Controlling Automatic Driving Robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045848A JP2020148593A (ja) 2019-03-13 2019-03-13 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法

Publications (1)

Publication Number Publication Date
JP2020148593A true JP2020148593A (ja) 2020-09-17

Family

ID=72427003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045848A Pending JP2020148593A (ja) 2019-03-13 2019-03-13 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法

Country Status (3)

Country Link
US (1) US20220143823A1 (ja)
JP (1) JP2020148593A (ja)
WO (1) WO2020183864A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210114596A1 (en) * 2019-10-18 2021-04-22 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
WO2022138352A1 (ja) * 2020-12-23 2022-06-30 株式会社明電舎 自動操縦ロボットの制御装置及び制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046774B2 (ja) * 2018-10-02 2022-04-04 株式会社明電舎 制御器設計方法
US11645498B2 (en) * 2019-09-25 2023-05-09 International Business Machines Corporation Semi-supervised reinforcement learning
JP6866940B1 (ja) * 2020-01-22 2021-04-28 株式会社明電舎 自動操縦ロボットの制御装置及び制御方法
CN112288906B (zh) * 2020-10-27 2022-08-02 北京五一视界数字孪生科技股份有限公司 仿真数据集的获取方法、装置、存储介质和电子设备
JP7248053B2 (ja) * 2021-06-14 2023-03-29 株式会社明電舎 制御装置及び制御方法
CN115202341B (zh) * 2022-06-16 2023-11-03 同济大学 一种自动驾驶车辆横向运动控制方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2322354B (en) * 1997-02-25 2000-05-10 Fki Engineering Plc Robot for operating motor vehicle control
JP4705557B2 (ja) * 2006-11-24 2011-06-22 日本電信電話株式会社 音響モデル生成装置、方法、プログラム及びその記録媒体
JP6509631B2 (ja) * 2014-05-20 2019-05-08 株式会社堀場製作所 車両試験システム
CN112051855A (zh) * 2016-01-05 2020-12-08 御眼视觉技术有限公司 用于主车辆的导航系统、自主车辆及导航自主车辆的方法
JP6339655B1 (ja) * 2016-12-19 2018-06-06 ファナック株式会社 光源ユニットの光学部品の調芯手順を学習する機械学習装置および光源ユニット製造装置
US10332320B2 (en) * 2017-04-17 2019-06-25 Intel Corporation Autonomous vehicle advanced sensing and response
JP6640797B2 (ja) * 2017-07-31 2020-02-05 ファナック株式会社 無線中継器選択装置及び機械学習装置
US10809735B2 (en) * 2018-04-09 2020-10-20 SafeAI, Inc. System and method for a framework of robust and safe reinforcement learning application in real world autonomous vehicle application
US10676085B2 (en) * 2018-04-11 2020-06-09 Aurora Innovation, Inc. Training machine learning model based on training instances with: training instance input based on autonomous vehicle sensor data, and training instance output based on additional vehicle sensor data

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210114596A1 (en) * 2019-10-18 2021-04-22 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
US11654915B2 (en) * 2019-10-18 2023-05-23 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
WO2022138352A1 (ja) * 2020-12-23 2022-06-30 株式会社明電舎 自動操縦ロボットの制御装置及び制御方法

Also Published As

Publication number Publication date
US20220143823A1 (en) 2022-05-12
WO2020183864A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2020183864A1 (ja) 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法
JP6908144B1 (ja) 自動操縦ロボットの制御装置及び制御方法
Wang et al. Continuous control for automated lane change behavior based on deep deterministic policy gradient algorithm
JP6954168B2 (ja) 車両速度制御装置及び車両速度制御方法
CN112631128A (zh) 一种多模异构信息融合的机器人装配技能学习方法及系统
WO2022059484A1 (ja) 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法
JP7110891B2 (ja) 自動操縦ロボットの制御装置及び制御方法
JP2021143882A (ja) 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法
JP2021128510A (ja) 自動操縦ロボットを制御する操作推論学習モデルの学習システム及び学習方法
JP6866940B1 (ja) 自動操縦ロボットの制御装置及び制御方法
CN113954069B (zh) 一种基于深度强化学习的机械臂主动容错控制方法
Revell et al. Sim2real: Issues in transferring autonomous driving model from simulation to real world
Navarro et al. Using reinforcement learning and simulation to develop autonomous vehicle control strategies
JP2024001584A (ja) 自動操縦ロボットの制御装置及び制御方法
US20240202537A1 (en) Learning method, learning device, control method, control device, and storage medium
Kosior A Glimpse into the Methodology of Developing Shell-Based Control Systems for UGVs
Mirus et al. Short-term trajectory planning using reinforcement learning within a neuromorphic control architecture.
Tekin et al. Multi-input multi-output intelligent modelling techniques and application to human driver
CN116890855A (zh) 基于逆强化学习的自动驾驶选道决策方法和系统
Pretorius Artificial Neural Networks as simulators for behavioural evolution in evolutionary robotics
RU2701459C1 (ru) Устройство управления манипулятором робота
JP2023043899A (ja) 制御装置及び制御方法
CN117057225A (zh) 自适应学习的燃气阀高速高频高精伺服与性能重构方法
CN116110011A (zh) 仿人脑工作记忆内在评价机制驱动道路事件学习算法
CN116974187A (zh) 基于深度强化学习和扰动观测的磁悬浮动态控制方法和系统