JP2020147816A - Method for producing metal plate - Google Patents

Method for producing metal plate Download PDF

Info

Publication number
JP2020147816A
JP2020147816A JP2019047644A JP2019047644A JP2020147816A JP 2020147816 A JP2020147816 A JP 2020147816A JP 2019047644 A JP2019047644 A JP 2019047644A JP 2019047644 A JP2019047644 A JP 2019047644A JP 2020147816 A JP2020147816 A JP 2020147816A
Authority
JP
Japan
Prior art keywords
insulating material
conductive plate
cathode
plate material
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019047644A
Other languages
Japanese (ja)
Other versions
JP6989550B2 (en
Inventor
邦男 渡辺
Kunio Watanabe
邦男 渡辺
潤 川嶋
Jun Kawashima
潤 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2019047644A priority Critical patent/JP6989550B2/en
Publication of JP2020147816A publication Critical patent/JP2020147816A/en
Application granted granted Critical
Publication of JP6989550B2 publication Critical patent/JP6989550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

To provide means to prevent two metal plates deposited on both sides of a cathode from joining at the bottom of the cathode.SOLUTION: The method for producing metal plate is a method for producing metal plate by electrolytic refining, and the method comprises supplying electricity to the cathode and the anode in an electrolytic tank, and in which the cathode includes a conductive plate material and an insulating material, and the insulating material extends from the lower end side of the conductive plate material and extends so as to be substantially flush with the conductive plate material.SELECTED DRAWING: Figure 4

Description

本開示は、金属板を製造する方法に関する。より具体的には、本開示は、電解精錬によって金属板を製造する方法に関する。 The present disclosure relates to a method of manufacturing a metal plate. More specifically, the present disclosure relates to a method for producing a metal plate by electrolytic refining.

電気銅は、電解精錬によって製造される銅材料である。例えば、粗銅をアノード側に設置し、ステンレス板をカソード側に設置する。そして、電流を供給することにより、アノードから銅が溶解し、溶解した銅がカソード側に析出する。一定量以上析出した後、カソード側の板を電解槽から引き上げる。次に、カソード側の板表面に析出した銅をスクレイパーによって剥ぎとる。剥ぎとった後の銅板に対して、検査が行われ、その後、製品として出荷される。 Electrocopper is a copper material produced by electrolytic refining. For example, blister copper is installed on the anode side and a stainless plate is installed on the cathode side. Then, by supplying an electric current, copper is melted from the anode, and the melted copper is deposited on the cathode side. After depositing a certain amount or more, the plate on the cathode side is pulled up from the electrolytic cell. Next, the copper deposited on the surface of the plate on the cathode side is peeled off by a scraper. The peeled copper plate is inspected and then shipped as a product.

カソードに析出した銅を剥ぎとる際に問題となるのが、カソードの両面それぞれに析出した2枚の銅板が部分的に接合してしまう点があげられる。カソードを電解槽に設置している間、カソードの底辺側及び側辺側が電解液に浸漬される。従って、2枚の銅板が、カソードの底辺側及び/又は側辺側を通して部分的に連結する可能性がある。 A problem when peeling off the copper deposited on the cathode is that the two copper plates deposited on both sides of the cathode are partially bonded. While the cathode is installed in the electrolytic cell, the bottom side and the side side of the cathode are immersed in the electrolytic solution. Therefore, the two copper plates may be partially connected through the bottom side and / or the side side of the cathode.

特許文献1では、側辺側での連結を防止するため、塩化ビニール等の絶縁部材からなる帯板をカソードの側辺部分に設けることを開示している。絶縁性材料の表面上では、通常銅が析出しないので、側辺部分において、2枚の銅板を隔てた状態を維持できる。また、特許文献1では、カソードの底辺部分に、V字形状の溝を設けることを開示している。これにより、2枚の銅板との間に、境界面が形成される。この境界面を形成する目的は、剥ぎとった2枚の銅板を互いに逆方向になるように引っ張ることで、前記境界面で分離させることにある。 Patent Document 1 discloses that a strip made of an insulating member such as vinyl chloride is provided on the side side portion of the cathode in order to prevent connection on the side side side. Since copper usually does not precipitate on the surface of the insulating material, it is possible to maintain a state in which the two copper plates are separated from each other on the side side portion. Further, Patent Document 1 discloses that a V-shaped groove is provided at the bottom portion of the cathode. As a result, a boundary surface is formed between the two copper plates. The purpose of forming this boundary surface is to separate the two peeled copper plates at the boundary surface by pulling them in opposite directions.

特許文献2では、図4などに示すように、カソードの底辺部分に溝を設けて、当該溝に嵌め込む形で、絶縁性材料のエッジストリップを取り付けることを開示している。 Patent Document 2 discloses that, as shown in FIG. 4 and the like, a groove is provided in the bottom portion of the cathode, and an edge strip of an insulating material is attached by fitting the groove into the groove.

特開2012−036415号公報Japanese Unexamined Patent Publication No. 2012-036415 特表2001−519479号公報Special Table 2001-591479

特許文献1では、カソードの底部の境界面で、両面に析出した2枚の銅板(且つカソード底部で部分的に接合した2枚の銅板)が割れることを狙って、カソードの底部にV字形状の溝を設けている。 In Patent Document 1, a V-shape is formed on the bottom of the cathode with the aim of cracking the two copper plates deposited on both sides (and the two copper plates partially joined at the bottom of the cathode) at the boundary surface of the bottom of the cathode. Groove is provided.

しかし、V字形状の溝を設けても、2枚の銅板が境界面で割れにくくなる事象がしばしば発生していた。この原因として、電解精製中に停電が発生するとラミネーションと呼ばれる現象が発生することがあげられる。「ラミネーション」とは、停電前に析出した層と停電後に析出した層との間で分離がおこり、銅板をカソードから機械的に剥ぎ取る際に、境界面に発生する亀裂が、再電着銅層にまで進展しにくくなる現象をいう。従って、境界面を設ける方法では、2枚の銅板が部分的に接合する問題を解決するにも限界があった。 However, even if the V-shaped groove is provided, an event that the two copper plates are hard to crack at the boundary surface often occurs. The cause of this is that a phenomenon called lamination occurs when a power failure occurs during electrolytic refining. "Lamination" means that the layer deposited before the power failure and the layer deposited after the power failure are separated, and when the copper plate is mechanically peeled off from the cathode, cracks generated at the interface are re-electrodeposited copper. A phenomenon in which it becomes difficult to progress to layers. Therefore, the method of providing the boundary surface has a limit in solving the problem that the two copper plates are partially joined.

また、特許文献2に開示した方法では、両側の角部の間の距離(例えば、図4に示す2つの部分(24)の間の距離)が短いため、析出した2枚の銅板の端部同士が成長して接合してしまうという問題がある。 Further, in the method disclosed in Patent Document 2, since the distance between the corners on both sides (for example, the distance between the two portions (24) shown in FIG. 4) is short, the end portions of the two precipitated copper plates are deposited. There is a problem that they grow and join each other.

以上の事情にかんがみ、本開示では、カソードの両面に析出する2枚の銅板が、カソードの底部にて接合することを回避する手段を提供することを目的とする。 In view of the above circumstances, it is an object of the present disclosure to provide a means for preventing the two copper plates deposited on both sides of the cathode from joining at the bottom of the cathode.

本発明者らが検討した結果、2枚の銅板の下端同士の物理的な距離を延ばすことで、接合が起こる可能性を低減できると考えた。そのため、物理的な距離を大きくする構造となる絶縁材をカソードの底部側に設けることにした。 As a result of studies by the present inventors, it was considered that the possibility of joining can be reduced by extending the physical distance between the lower ends of the two copper plates. Therefore, we decided to provide an insulating material with a structure that increases the physical distance on the bottom side of the cathode.

本開示は、上記知見に基づいて完成され、一側面において、以下の発明を包含する。 The present disclosure has been completed based on the above findings and includes the following inventions in one aspect.

(発明1)
電解精錬によって金属板を製造する方法であって、
前記方法は、電解槽中のカソードとアノードとに電気を供給する工程を含み、
前記カソードは、導電性板材と絶縁性材料とを備え、
前記絶縁性材料は、前記導電性板材の下端側から延在し、且つ前記導電性板材と略同一平面となるように延在する、
該方法。
(Invention 1)
It is a method of manufacturing a metal plate by electrolytic refining.
The method comprises supplying electricity to the cathode and anode in the electrolytic cell.
The cathode includes a conductive plate material and an insulating material.
The insulating material extends from the lower end side of the conductive plate material and extends so as to be substantially flush with the conductive plate material.
The method.

(発明2)
発明1の方法であって、前記方法が、前記絶縁材料の寸法を予め調節する工程を含み、
前記寸法は、前記カソード板を側面から観察したときに導電性板材と絶縁性材料とが接触している部分を除いた絶縁性材料の周囲長さに該当する寸法であり、
前記調節する工程は、カソードに金属が析出する度合いが高い条件に変更したときに、前記寸法を大きくすることを含む、該方法。
(Invention 2)
The method of the invention 1, wherein the method includes a step of preliminarily adjusting the dimensions of the insulating material.
The dimensions correspond to the peripheral length of the insulating material excluding the portion where the conductive plate material and the insulating material are in contact when the cathode plate is observed from the side surface.
The adjusting step comprises increasing the dimensions when the condition is changed so that the degree of metal precipitation on the cathode is high.

(発明3)
発明1の方法であって、前記方法が、前記絶縁材料の寸法を予め調節する工程を含み、
前記寸法は、前記導電性板材との境界部から前記絶縁材料の下端までの寸法であり、
前記調節する工程は、カソードに金属が析出する度合いが高い条件に変更したときに、前記寸法を大きくすることを含む、該方法。
(Invention 3)
A method of the invention 1, wherein the method includes a step of preliminarily adjusting the dimensions of the insulating material.
The dimension is a dimension from the boundary portion with the conductive plate material to the lower end of the insulating material.
The adjusting step comprises increasing the dimensions when the condition is changed so that the degree of metal precipitation on the cathode is high.

(発明4)
発明1〜3いずれか1項の方法であって、前記導電性板材の面と、前記絶縁材料の面とが形成する角度が180°±5°である、該方法。
(Invention 4)
The method according to any one of the inventions 1 to 3, wherein the angle formed by the surface of the conductive plate material and the surface of the insulating material is 180 ° ± 5 °.

(発明5)
発明1〜4いずれか1項の方法であって、前記絶縁材料において、前記導電性板材との境界部から前記絶縁材料の下端までの寸法が、6mm以上である、該方法。
(Invention 5)
The method according to any one of the inventions 1 to 4, wherein the dimension of the insulating material from the boundary with the conductive plate material to the lower end of the insulating material is 6 mm or more.

(発明6)
発明1〜5いずれか1項の方法であって、前記導電性板材の底部は溝を備え、
入口から奥に進むにつれて、溝の幅が増加する領域を少なくとも備える、該方法。
(Invention 6)
The method according to any one of the inventions 1 to 5, wherein the bottom of the conductive plate material is provided with a groove.
The method comprising at least an area where the width of the groove increases as it goes from the entrance to the back.

(発明7)
発明6の方法であって、前記溝の入口から奥に進むにつれて、前記溝の幅が増加する領域に到達する前に、溝の幅が漸次減少する領域を備える、該方法。
(Invention 7)
The method of the sixth invention, comprising: a region in which the width of the groove gradually decreases as it advances from the entrance of the groove to the back, before reaching the region in which the width of the groove increases.

一側面において、絶縁性材料は、導電性板材の下端側から延在し、且つ導電性板材と略同一平面となるように延在する。これにより、導電性板材の両面に析出した銅板が、導電性板材の下端で接合することを防止することができる。 On one side, the insulating material extends from the lower end side of the conductive plate material and extends so as to be substantially coplanar with the conductive plate material. This makes it possible to prevent the copper plates deposited on both sides of the conductive plate material from joining at the lower end of the conductive plate material.

一実施形態における導電性板材の形状を表す。それぞれ斜視図(A)、正面図(B)、背面図(C)、平面図(D)、底面図(E)、右側面図(F)及び左側面図(G)を表す。Represents the shape of the conductive plate material in one embodiment. A perspective view (A), a front view (B), a rear view (C), a plan view (D), a bottom view (E), a right side view (F), and a left side view (G) are shown, respectively. 一実施形態における導電性板材の溝部の形状を表す。Represents the shape of the groove portion of the conductive plate material in one embodiment. 一実施形態における導電性板材の寸法を表す。Represents the dimensions of the conductive plate material in one embodiment. 一実施形態における絶縁性材料の形状を表す。それぞれ斜視図(A)、正面図(B)、背面図(C)、右側面図(D)、左側面図(E)、平面図(F)、及び底面図(G)を表す。Represents the shape of the insulating material in one embodiment. A perspective view (A), a front view (B), a rear view (C), a right side view (D), a left side view (E), a plan view (F), and a bottom view (G) are shown, respectively. 一実施形態における絶縁性材料を表す。Represents an insulating material in one embodiment. 一実施形態において、導電性板材に絶縁性材料が装着された状態を表す。In one embodiment, it represents a state in which an insulating material is attached to a conductive plate material. 一実施形態における絶縁性材料の寸法を表す。Represents the dimensions of the insulating material in one embodiment. 一実施形態における絶縁性材料の下端の形状を表す。Represents the shape of the lower end of the insulating material in one embodiment. 導電性板材に絶縁性材料が装着された状態を表す。Represents a state in which an insulating material is attached to a conductive plate material. 一実施形態において、カソード板を側面から観察したとき、導電性板材に絶縁性材料が装着された状態を表す。点線は、導電性板材と絶縁性材料とが接触している部分を除いた絶縁性材料の周囲長さを表す。In one embodiment, when the cathode plate is observed from the side surface, it represents a state in which an insulating material is attached to the conductive plate material. The dotted line represents the peripheral length of the insulating material excluding the portion where the conductive plate material and the insulating material are in contact with each other. 一実施形態において、導電性板材に絶縁性材料が装着された状態を表す。ここで、絶縁性材料の寸法の調節が行われている。また、導電性板材の表面上に析出した金属板が絶縁性材料の表面にまで延長している状態が描写されている。導電性(A)と(B)を対比すると、(B)では、絶縁性材料の下端側を湾曲させることで周囲長さを増加させている。(A)と(C)を対比すると、(C)では、導電性板材との境界部から絶縁材料の下端までの寸法を増加させることで周囲長さを増加させている。In one embodiment, it represents a state in which an insulating material is attached to a conductive plate material. Here, the dimensions of the insulating material are adjusted. Further, a state in which the metal plate deposited on the surface of the conductive plate material extends to the surface of the insulating material is depicted. Comparing the conductive (A) and (B), in (B), the peripheral length is increased by bending the lower end side of the insulating material. Comparing (A) and (C), in (C), the peripheral length is increased by increasing the dimension from the boundary portion with the conductive plate material to the lower end of the insulating material.

以下、本開示の具体的な実施形態について説明する。以下の説明は、発明の理解を促進するためのものである。即ち、本発明の範囲を限定することを意図するものではない。 Hereinafter, specific embodiments of the present disclosure will be described. The following description is for facilitating the understanding of the invention. That is, it is not intended to limit the scope of the present invention.

1. カソード
一実施形態において、本開示は、電気銅を製造するために使用されるカソードに関する。前記カソードは、導電性板材と絶縁性材料とを備える。以下では、カソードが備える構成要件について説明する。無論、銅に限定されず、当分野で電解精錬の対象となる他の金属(例えば、亜鉛、アルミニウムなど)に、本開示の実施形態を適用することも可能である。
1. 1. Cathodes In one embodiment, the present disclosure relates to cathodes used to produce electrolytic copper. The cathode includes a conductive plate material and an insulating material. The configuration requirements of the cathode will be described below. Of course, the embodiment of the present disclosure can be applied not only to copper but also to other metals (for example, zinc, aluminum, etc.) that are subject to electrolytic refining in this field.

1−1.導電性板材
導電性板材は、電極としての役割、特にカソードとしての役割を果たし、電解液中に存在する銅が、導電性板材の表面上に析出することを促進することができる。
1-1. Conductive plate material The conductive plate material serves as an electrode, particularly as a cathode, and can promote the precipitation of copper present in the electrolytic solution on the surface of the conductive plate material.

導電性板材の材質については、特に限定されず、電気を良好に通す材質であればよい。例示的な材料としては、ステンレス、チタン及び銅などがあげられる。 The material of the conductive plate material is not particularly limited as long as it is a material that conducts electricity well. Illustrative materials include stainless steel, titanium and copper.

図1に一実施形態における導電性板材を示す。 FIG. 1 shows a conductive plate material in one embodiment.

銅が析出したときに板状になるようにする目的から、導電性板材の形状については、板状であることが好ましい。 The shape of the conductive plate material is preferably plate-shaped for the purpose of forming a plate-like shape when copper is deposited.

導電性板材の下端部は、後述する絶縁性材料を取り付けるための溝部を設けてもよい。なお、本明細書において、導電性板材の上下方向については、電解槽に設置した時の状態を基準として言及する。 The lower end portion of the conductive plate material may be provided with a groove portion for attaching an insulating material described later. In this specification, the vertical direction of the conductive plate material will be referred to with reference to the state when it is installed in the electrolytic cell.

溝部は、カソードの幅方向に沿って設けることができる。また、図2に示すように、溝部は、入口から奥に進むにつれて、溝の幅が増加する領域を少なくとも備える(図2(A))。また、入口から奥に進むにつれて、溝の幅が増加する領域に到達する前は、溝の幅が同一の状態が続いてもよく(図2(B))、又は溝の幅が漸次減少する状態が続いてもよい(図2(C))。好ましい溝部の構造としては、入口から奥に進むにつれて、溝の幅が増加する領域に到達する前に、溝の幅が漸次減少する領域を備える構造である(図2(C))。この理由として、既存の設備で利用されていたカソード(導電性板材)の底部にはV字形状の溝を設けられていることがあげられる。すなわち、V字形状の溝の底部を更に加工することで、図2(C)に示す構造を実現できる。従って、既存の設備で利用されていたカソードを再利用できる。 The groove can be provided along the width direction of the cathode. Further, as shown in FIG. 2, the groove portion includes at least a region in which the width of the groove increases from the entrance to the back (FIG. 2A). Further, from the entrance to the back, the width of the groove may remain the same before reaching the region where the width of the groove increases (FIG. 2B), or the width of the groove gradually decreases. The state may continue (FIG. 2 (C)). A preferable structure of the groove portion is a structure including a region in which the width of the groove gradually decreases before reaching the region in which the width of the groove increases from the entrance to the back (FIG. 2C). The reason for this is that a V-shaped groove is provided at the bottom of the cathode (conductive plate material) used in the existing equipment. That is, the structure shown in FIG. 2C can be realized by further processing the bottom of the V-shaped groove. Therefore, the cathode used in the existing equipment can be reused.

いずれにしても、入口から奥に進むにつれて、溝の幅が増加する領域を備えることにより、絶縁性材料を取り付けたときに、外れにくくすることができる。 In any case, by providing a region where the width of the groove increases from the entrance to the back, it is possible to prevent the insulating material from coming off when the insulating material is attached.

導電性板材の寸法として、厚み、上下方向の長さ、及び幅などがあげられる(図3)。これらのサイズについては特に限定されない。 The dimensions of the conductive plate material include thickness, length in the vertical direction, width, and the like (FIG. 3). These sizes are not particularly limited.

ただし、厚みについては、薄すぎると上述した溝を設けるための加工が困難になる可能性がある。典型的な厚みサイズは、3.00mm以上、より好ましくは、3.10mm以上である。上限値ついては特に限定されず、3.25mm以下である。 However, if the thickness is too thin, it may be difficult to process for providing the above-mentioned groove. A typical thickness size is 3.00 mm or more, more preferably 3.10 mm or more. The upper limit is not particularly limited and is 3.25 mm or less.

1−2.絶縁性材料
一実施形態において、本開示は、絶縁性材料に関する(図4)。絶縁性材料は、本体部と、導電性板材の下端に装着するための係合部とを備える(図5)。例えば、絶縁性材料は、導電性板材の下端側から延在し、且つ前記導電性板材と略同一平面となるように延在する略同一平面となるように設けることができる(図6)。例えば、導電性板材の面と、絶縁材料の面とが形成する角度が180°±5°、好ましくは、180°±3°、最も好ましくは180°±0°であってもよい。
1-2. Insulating Materials In one embodiment, the present disclosure relates to insulating materials (FIG. 4). The insulating material includes a main body portion and an engaging portion for mounting on the lower end of the conductive plate material (FIG. 5). For example, the insulating material can be provided so as to extend from the lower end side of the conductive plate material and to have substantially the same plane extending so as to be substantially the same plane as the conductive plate material (FIG. 6). For example, the angle formed by the surface of the conductive plate material and the surface of the insulating material may be 180 ° ± 5 °, preferably 180 ° ± 3 °, and most preferably 180 ° ± 0 °.

本体部は対向する2つの略平行な面を備えることができる。ここで、2つの略平行な面は、完全に平行である必要はない(図6(B)(C))。例えば、±5°以内、より好ましくは、±3°以内のずれを許容することができる。しかし、最も好ましいのは完全な平行(±0°)である。 The main body can be provided with two substantially parallel surfaces facing each other. Here, the two substantially parallel planes do not have to be perfectly parallel (FIGS. 6B and 6C). For example, a deviation of ± 5 ° or less, more preferably ± 3 ° or less can be tolerated. However, the most preferred is perfect parallelism (± 0 °).

絶縁性材料の材質については特に限定されず、電気を通さない材質であればよい。例示的な材料としては、アクリロニトリル(Acrylonitrile)、ブタジエン(Butadiene)、スチレン(Styrene)共重合合成樹脂(ABS樹脂)、ポリプロピレン(PP)、変性ポリフェニレンエーテル樹脂(PPE樹脂)などがあげられる。 The material of the insulating material is not particularly limited as long as it does not conduct electricity. Examples of the exemplary material include acrylonitrile, butadiene, styrene synthetic resin (ABS resin), polypropylene (PP), modified polyphenylene ether resin (PPE resin), and the like.

絶縁性材料の寸法(特に、本体部)については、厚み、上下方向の長さ、及び幅などがあげられる(図7)。これらのサイズは、取り付ける導電性板材に適合するサイズであることが好ましい。 Regarding the dimensions of the insulating material (particularly, the main body), the thickness, the length in the vertical direction, the width, and the like can be mentioned (FIG. 7). It is preferable that these sizes are suitable for the conductive plate material to be attached.

例えば、絶縁性材料の幅は、導電性板材の幅と略同一の幅となることが好ましい。あるいは、導電性板材の側面に別途絶縁性材料を取り付ける場合には、側面の絶縁性材料の分を考慮して、下端側の絶縁性材料の幅を減らしてもよい。 For example, the width of the insulating material is preferably substantially the same as the width of the conductive plate material. Alternatively, when a separate insulating material is attached to the side surface of the conductive plate material, the width of the insulating material on the lower end side may be reduced in consideration of the amount of the insulating material on the side surface.

例えば、絶縁性材料の厚みは、一定である必要はないものの、少なくとも導電性板材と接する部分においては、導電性板材の厚みと略同一の厚みとなることが好ましい。これにより、絶縁性材料と導電性板材とが連続した面を形成することができる。両者の厚みは完全に同一である必要はなく、例えば、導電性板材の厚みに対する±6%以内、より好ましくは、±3%以内のずれを許容することができる。 For example, the thickness of the insulating material does not have to be constant, but at least in the portion in contact with the conductive plate material, it is preferable that the thickness is substantially the same as the thickness of the conductive plate material. Thereby, a continuous surface can be formed between the insulating material and the conductive plate material. The thicknesses of the two do not have to be exactly the same, and for example, a deviation of ± 6% or less, more preferably ± 3% or less with respect to the thickness of the conductive plate material can be allowed.

絶縁性材料の厚みを、導電性板材の厚みと略同一にすることで、殿物が絶縁性材料のところに蓄積することを防止できる。単純に、2枚の銅板の下端の距離を増加させるのであれば、例えば、図9に示すように、絶縁性材料の厚みを、導電性板材の厚みより大きくすることで実現することもできる。しかし、厚みの差分に該当する部分に、電解液中に存在する殿物が蓄積する。そして、析出する銅板の純度に影響を及ぼす。従って、絶縁性材料の厚みを導電性板材の厚みと略同一にすることで、殿物の蓄積の低減と、析出する銅板の下端側での接合の防止を両立することができる。また、図9に示すように絶縁性材料の厚みを、導電性板材の厚みより大きくした場合、析出した銅板をはがす既存設備に適合しなくなる可能性がある。これは、当該既存の設備が、導電性板材の厚みを前提として設計されているからである。 By making the thickness of the insulating material substantially the same as the thickness of the conductive plate material, it is possible to prevent the deposits from accumulating on the insulating material. If the distance between the lower ends of the two copper plates is simply increased, for example, as shown in FIG. 9, the thickness of the insulating material can be made larger than the thickness of the conductive plate material. However, the ridges present in the electrolytic solution accumulate in the portion corresponding to the difference in thickness. Then, it affects the purity of the deposited copper plate. Therefore, by making the thickness of the insulating material substantially the same as the thickness of the conductive plate material, it is possible to reduce the accumulation of the deposits and prevent the deposited copper plate from joining at the lower end side. Further, when the thickness of the insulating material is made larger than the thickness of the conductive plate material as shown in FIG. 9, there is a possibility that it will not be compatible with the existing equipment for peeling off the deposited copper plate. This is because the existing equipment is designed on the premise of the thickness of the conductive plate material.

例えば、絶縁性材料の本体の上端から下端までの寸法は、特に限定されず、銅板が導電性板材の下端をはみ出して成長する速度、絶縁性材料の厚さ等の要素を考慮して適宜決定すればよい。好ましくは、絶縁性材料の上下方向の長さが長ければ長いほど、下端側において、2枚の銅板を隔てる距離が大きくなり、これにより、下端側において、2枚の銅板が接合する可能性を低減できる。 For example, the dimensions from the upper end to the lower end of the main body of the insulating material are not particularly limited, and are appropriately determined in consideration of factors such as the speed at which the copper plate protrudes from the lower end of the conductive plate material and grows, and the thickness of the insulating material. do it. Preferably, the longer the insulating material in the vertical direction, the greater the distance separating the two copper plates on the lower end side, thereby increasing the possibility of the two copper plates joining on the lower end side. Can be reduced.

絶縁性材料の本体の上端から下端までの寸法(或いは、導電性板材との境界部から絶縁材料の下端までの寸法)は、典型的には、6mm以上であってもよい(より好ましくは、10mm以上)。この理由として、カソード側面部に絶縁材料を取り付けた場合に両面の銅板を当該絶縁材料が隔てる距離を参考にして、底面部に絶縁材料を取り付けた場合に換算することで導かれる。上限は、銅板を剥ぎとる機械の構造上、15mm以下であることが好ましい。 The dimension from the upper end to the lower end of the main body of the insulating material (or the dimension from the boundary with the conductive plate material to the lower end of the insulating material) may typically be 6 mm or more (more preferably). 10 mm or more). The reason for this is that when the insulating material is attached to the side surface of the cathode, the distance between the copper plates on both sides is referred to the distance between the insulating materials, and the conversion is performed when the insulating material is attached to the bottom surface. The upper limit is preferably 15 mm or less due to the structure of the machine for peeling the copper plate.

絶縁性材料の下端部分の形状については特に限定されず、直線状でも、曲線状でも、又はV字形状であってもよい(図8)。 The shape of the lower end portion of the insulating material is not particularly limited, and may be linear, curved, or V-shaped (FIG. 8).

一方、係合部の形状については、導電性板材の溝部に適合する形状であることが好ましい。例えば、係合部の基部から先端にかけて幅が増加する領域を少なくとも備えることが好ましい(図5(A))。また、係合部の基部から先端にかけて、幅が増加する領域に到達する前は、幅が同一の状態が続いてもよく(図5(B))、又は幅が漸次減少する状態(図5(C))が続いてもよい。係合部の形状として特に好ましいのは、前記係合部の基部から先端にかけて、前記幅が増加する領域に到達する前は、幅が漸次減少する領域を備えることである(図5(C))。この理由としては、上述したように、V字形状の溝部を備える導電性板材の再利用が可能になるからである。 On the other hand, the shape of the engaging portion is preferably a shape that matches the groove portion of the conductive plate material. For example, it is preferable to provide at least a region where the width increases from the base to the tip of the engaging portion (FIG. 5 (A)). Further, from the base to the tip of the engaging portion, the width may remain the same before reaching the region where the width increases (FIG. 5 (B)), or the width gradually decreases (FIG. 5). (C)) may follow. A particularly preferable shape of the engaging portion is to include a region in which the width gradually decreases from the base to the tip of the engaging portion before reaching the region where the width increases (FIG. 5C). ). The reason for this is that, as described above, the conductive plate material having the V-shaped groove can be reused.

2.カソードの使用方法
一実施形態において、本開示は、電解精錬によって金属板を製造する方法に関する。前記方法は、電解槽中のカソードとアノードとに電気を供給する工程を含む。
より具体的な実施形態において、電解槽中にカソードとして設置することができる。アノード側には粗銅を設置し、電解槽中には所与の電解液を入れることができる。そして、アノード及びカソードに電気を供給し、アノード側の粗銅を電解液中に溶解させることができる。溶解した銅は、カソードの両面にて、銅板の形状で析出することができる。
2. 2. Cathode Usage In one embodiment, the present disclosure relates to a method of producing a metal plate by electrolytic refining. The method comprises supplying electricity to the cathode and anode in the electrolytic cell.
In a more specific embodiment, it can be installed as a cathode in an electrolytic cell. A blister copper is installed on the anode side, and a given electrolytic solution can be put in the electrolytic cell. Then, electricity can be supplied to the anode and the cathode, and the blister copper on the anode side can be dissolved in the electrolytic solution. The melted copper can be deposited in the form of a copper plate on both sides of the cathode.

所定量析出した後は、カソードを電解槽から引き揚げ、所定の操作により、銅板を、カソードから引きはがすことができる。 After the predetermined amount is deposited, the cathode is pulled up from the electrolytic cell, and the copper plate can be peeled off from the cathode by a predetermined operation.

上述したカソードを使用することで、カソードの両面に析出した銅板が互いに、カソードの下部で接合することを防止することができる。従って、銅板をカソードから引き剥がす作業をスムーズに実施できる。また、引き剥がした後の銅板の形状不良を低減することができる。 By using the above-mentioned cathode, it is possible to prevent the copper plates deposited on both sides of the cathode from joining each other at the lower part of the cathode. Therefore, the work of peeling the copper plate from the cathode can be smoothly performed. In addition, it is possible to reduce the shape defect of the copper plate after it is peeled off.

好ましい実施形態においては、予め、銅板を析出する条件に応じて、絶縁性材料の寸法を調節してもよい。例えば、調節する対象の寸法は、カソード板を側面から観察したときに導電性板材と絶縁性材料とが接触している部分を除いた絶縁性材料の周囲長さに該当する寸法であってもよい(図10、点線)。 In a preferred embodiment, the dimensions of the insulating material may be adjusted in advance according to the conditions for precipitating the copper plate. For example, the dimension to be adjusted is a dimension corresponding to the peripheral length of the insulating material excluding the portion where the conductive plate material and the insulating material are in contact when the cathode plate is observed from the side. Good (Fig. 10, dotted line).

銅がカソードに更に析出する度合いが高い条件に変更した場合、銅が導電性板材の表面上のみならず、絶縁性材料の表面上にまで析出する可能性がある(図11のグレー部分)。従って、カソードの両面側に析出した銅の下端同士の距離が近づく(図11(A))。しかし、上述した周囲長さの寸法を増加させることで、下端同士の距離が増加するため、両者が接合するリスクを低減させることができる(図11(B)(C))。周囲長さの寸法を増加させるには、図11(B)に示すように、絶縁性材料の下端側を湾曲させてもよい。あるいは、図11(C)に示すように、導電性板材との境界部から絶縁材料の下端までの寸法を増加させてもよい。図11(C)の方法は、図11(B)の方法と比べると、下端側への突出を抑制しながら、周囲長さを確保できる。従って、既存の設備に適合させるうえでの影響を小さくとどめることができる点で有利である。 When the condition is changed so that the degree of copper precipitation on the cathode is higher, copper may be deposited not only on the surface of the conductive plate material but also on the surface of the insulating material (gray portion in FIG. 11). Therefore, the distance between the lower ends of the copper deposited on both sides of the cathode becomes closer (FIG. 11 (A)). However, by increasing the above-mentioned dimension of the peripheral length, the distance between the lower ends increases, so that the risk of joining the two can be reduced (FIGS. 11B and 11C). In order to increase the dimension of the peripheral length, the lower end side of the insulating material may be curved as shown in FIG. 11 (B). Alternatively, as shown in FIG. 11C, the dimension from the boundary with the conductive plate material to the lower end of the insulating material may be increased. Compared with the method of FIG. 11B, the method of FIG. 11C can secure the peripheral length while suppressing the protrusion toward the lower end side. Therefore, it is advantageous in that the influence on adapting to the existing equipment can be kept small.

好ましい実施形態においては、生産性を上げる目的で、カソード及びアノードに電気を供給する際の電流密度を高くすることができる。例えば、電流密度は、280A/m2以上、より好ましくは、300A/m2以上、更に好ましくは320A/m2以上であってもよい。電流密度の上限値は特に限定されないが、典型的には、350A/m2以下であってもよい。 In a preferred embodiment, the current density when supplying electricity to the cathode and anode can be increased for the purpose of increasing productivity. For example, the current density may be 280 A / m 2 or more, more preferably 300 A / m 2 or more, and even more preferably 320 A / m 2 or more. The upper limit of the current density is not particularly limited, but typically may be 350 A / m 2 or less.

電流密度が高くなると、析出した銅板の下端側が更に絶縁性材料の表面領域まで成長する。しかし、上述したカソードの場合には、所定の絶縁性材料の寸法を調節することにより、接合した2枚の銅板の下端部同士を隔てる十分な距離を確保することができる。従って、例えば、銅板の下端側が成長したとしても、銅板同士が接合することを回避できる。 As the current density increases, the lower end side of the precipitated copper plate further grows to the surface region of the insulating material. However, in the case of the above-mentioned cathode, by adjusting the dimensions of the predetermined insulating material, it is possible to secure a sufficient distance between the lower ends of the two bonded copper plates. Therefore, for example, even if the lower end side of the copper plates grows, it is possible to prevent the copper plates from joining each other.

好ましい実施形態においては、上述したカソードは、停電対策にも適している。上述したような導電性板材の下端部分にV字形状の溝を設ける手段では、停電が起こった時に、接合した2枚の銅板を分離しにくい。しかし、上述したカソードの場合には、そもそも接合が起こりにくいため、V字形状の溝を設ける手段のときのような問題は生じない。 In a preferred embodiment, the cathode described above is also suitable for power failure countermeasures. With the means for providing the V-shaped groove at the lower end portion of the conductive plate material as described above, it is difficult to separate the two bonded copper plates when a power failure occurs. However, in the case of the above-mentioned cathode, since bonding is unlikely to occur in the first place, the problem as in the case of the means for providing the V-shaped groove does not occur.

以上、本発明の具体的な実施形態について説明してきた。上記実施形態は、本発明の具体例に過ぎず、本発明は上記実施形態に限定されない。例えば、上述の実施形態の1つに開示された技術的特徴は、他の実施形態に適用することができる。また、特記しない限り、特定の方法については、一部の工程を他の工程の順序と入れ替えることも可能であり、特定の2つの工程の間に更なる工程を追加してもよい。本発明の範囲は、特許請求の範囲によって規定される。 The specific embodiment of the present invention has been described above. The above-described embodiment is merely a specific example of the present invention, and the present invention is not limited to the above-described embodiment. For example, the technical features disclosed in one of the above embodiments can be applied to other embodiments. Further, unless otherwise specified, for a specific method, it is possible to replace some steps with the order of other steps, and an additional step may be added between the two specific steps. The scope of the present invention is defined by the claims.

Claims (7)

電解精錬によって金属板を製造する方法であって、
前記方法は、電解槽中のカソードとアノードとに電気を供給する工程を含み、
前記カソードは、導電性板材と絶縁性材料とを備え、
前記絶縁性材料は、前記導電性板材の下端側から延在し、且つ前記導電性板材と略同一平面となるように延在する、
該方法。
It is a method of manufacturing a metal plate by electrolytic refining.
The method comprises supplying electricity to the cathode and anode in the electrolytic cell.
The cathode includes a conductive plate material and an insulating material.
The insulating material extends from the lower end side of the conductive plate material and extends so as to be substantially flush with the conductive plate material.
The method.
請求項1の方法であって、前記方法が、前記絶縁材料の寸法を予め調節する工程を含み、
前記寸法は、前記カソード板を側面から観察したときに導電性板材と絶縁性材料とが接触している部分を除いた絶縁性材料の周囲長さに該当する寸法であり、
前記調節する工程は、カソードに金属が析出する度合いが高い条件に変更したときに、前記寸法を大きくすることを含む、該方法。
The method of claim 1, wherein the method includes a step of preliminarily adjusting the dimensions of the insulating material.
The dimensions correspond to the peripheral length of the insulating material excluding the portion where the conductive plate material and the insulating material are in contact when the cathode plate is observed from the side surface.
The adjusting step comprises increasing the dimensions when the condition is changed so that the degree of metal precipitation on the cathode is high.
請求項1の方法であって、前記方法が、前記絶縁材料の寸法を予め調節する工程を含み、
前記寸法は、前記導電性板材との境界部から前記絶縁材料の下端までの寸法であり、
前記調節する工程は、カソードに金属が析出する度合いが高い条件に変更したときに、前記寸法を大きくすることを含む、該方法。
The method of claim 1, wherein the method includes a step of preliminarily adjusting the dimensions of the insulating material.
The dimension is a dimension from the boundary portion with the conductive plate material to the lower end of the insulating material.
The adjusting step comprises increasing the dimensions when the condition is changed so that the degree of metal precipitation on the cathode is high.
請求項1〜3いずれか1項の方法であって、前記導電性板材の面と、前記絶縁材料の面とが形成する角度が180°±5°である、該方法。 The method according to any one of claims 1 to 3, wherein the angle formed by the surface of the conductive plate material and the surface of the insulating material is 180 ° ± 5 °. 請求項1〜4いずれか1項の方法であって、前記絶縁材料において、前記導電性板材との境界部から前記絶縁材料の下端までの寸法が、6mm以上である、該方法。 The method according to any one of claims 1 to 4, wherein the dimension of the insulating material from the boundary portion with the conductive plate material to the lower end of the insulating material is 6 mm or more. 請求項1〜5いずれか1項の方法であって、前記導電性板材の底部は溝を備え、
入口から奥に進むにつれて、溝の幅が増加する領域を少なくとも備える、該方法。
The method according to any one of claims 1 to 5, wherein the bottom portion of the conductive plate material is provided with a groove.
The method comprising at least an area where the width of the groove increases as it goes from the entrance to the back.
請求項6の方法であって、前記溝の入口から奥に進むにつれて、前記溝の幅が増加する領域に到達する前に、溝の幅が漸次減少する領域を備える、該方法。 The method according to claim 6, further comprising a region in which the width of the groove gradually decreases before reaching a region in which the width of the groove increases as the groove is advanced from the entrance to the back.
JP2019047644A 2019-03-14 2019-03-14 How to make a metal plate Active JP6989550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019047644A JP6989550B2 (en) 2019-03-14 2019-03-14 How to make a metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047644A JP6989550B2 (en) 2019-03-14 2019-03-14 How to make a metal plate

Publications (2)

Publication Number Publication Date
JP2020147816A true JP2020147816A (en) 2020-09-17
JP6989550B2 JP6989550B2 (en) 2022-01-05

Family

ID=72430370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047644A Active JP6989550B2 (en) 2019-03-14 2019-03-14 How to make a metal plate

Country Status (1)

Country Link
JP (1) JP6989550B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541002U (en) * 1977-06-07 1979-01-06
JPS542205A (en) * 1977-06-08 1979-01-09 Hosokura Kougiyou Kk Insulating of electrolytic cathode electrode plate
JPS5450005U (en) * 1977-09-16 1979-04-06
JPS6333590A (en) * 1986-07-28 1988-02-13 Akita Seiren Kk Method for insulating and coating peripheral edge part of electrolytic cathode
US6017429A (en) * 1995-08-21 2000-01-25 Svedala Skega Ab Cathode element and a method of its manufacture
JP2001303287A (en) * 2000-04-18 2001-10-31 Sakushin Kogyo Kk Pole plate for electrolytic refining of zinc
JP2005029843A (en) * 2003-07-14 2005-02-03 Mitsubishi Materials Corp Electrode plate for electrolytic refining, its production method, and electrolytic refining method using the electrode plate for electrolytic refining
CN202401145U (en) * 2011-12-28 2012-08-29 河南瑞能超微材料股份有限公司 Negative plate for electrolyzing zinc

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541002U (en) * 1977-06-07 1979-01-06
JPS542205A (en) * 1977-06-08 1979-01-09 Hosokura Kougiyou Kk Insulating of electrolytic cathode electrode plate
JPS5450005U (en) * 1977-09-16 1979-04-06
JPS6333590A (en) * 1986-07-28 1988-02-13 Akita Seiren Kk Method for insulating and coating peripheral edge part of electrolytic cathode
US6017429A (en) * 1995-08-21 2000-01-25 Svedala Skega Ab Cathode element and a method of its manufacture
JP2001303287A (en) * 2000-04-18 2001-10-31 Sakushin Kogyo Kk Pole plate for electrolytic refining of zinc
JP2005029843A (en) * 2003-07-14 2005-02-03 Mitsubishi Materials Corp Electrode plate for electrolytic refining, its production method, and electrolytic refining method using the electrode plate for electrolytic refining
CN202401145U (en) * 2011-12-28 2012-08-29 河南瑞能超微材料股份有限公司 Negative plate for electrolyzing zinc

Also Published As

Publication number Publication date
JP6989550B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
US5492609A (en) Cathode for electrolytic refining of copper
JP2018519633A (en) Electrolytic copper foil for lithium secondary battery and lithium secondary battery including the same
CN1551827A (en) Copper foil with low profile bond enhancement
KR101495419B1 (en) Electro-plating apparatus utilizing edge mask to prevent the edge overcoating
JP6989550B2 (en) How to make a metal plate
CN201793781U (en) Negative plate preventing deposited metal from generating irregular stripping end surface
JP7043445B2 (en) Cathode and insulating material
JP2019065339A (en) Plating electrode and manufacturing apparatus of electrolytic metal foil
CN102534689B (en) Negative plate for metal electro-deposition
US3331763A (en) Blank for production of cathode starting sheets
JP2005288856A (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminated sheet using electrolytic copper foil with carrier foil
JPS61264189A (en) Matrix plate
US6291080B1 (en) Thin copper foil, and process and apparatus for the manufacture thereof
WO2018097152A1 (en) Electrolytic aluminum foil and method of manufacturing same
TWI446372B (en) Metal plate low resistance chip resistor and manufacturing method thereof
KR102065220B1 (en) Electroplating apparatus with edge mask
CA3063437C (en) Side protection for an electrolytic cell cathode for metallic zinc production
JP6978057B2 (en) Separator manufacturing method for fuel cells and film forming equipment
JP6775350B2 (en) Manufacturing method of electrolytic aluminum foil
JP4524248B2 (en) Copper collection method
CN202530177U (en) Cathode plate for metal electrodeposition
JP2005029843A (en) Electrode plate for electrolytic refining, its production method, and electrolytic refining method using the electrode plate for electrolytic refining
CN201538823U (en) Suspension type titanium negative plate of titanium copper bar
JP2009248184A (en) Welded joint, and method for producing the same
CN106011951A (en) Auxiliary anode device for reducing copper foil needle holes and manufacturing electrolytic copper foil and electrolytic copper foil manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211202

R151 Written notification of patent or utility model registration

Ref document number: 6989550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350