JP2020147333A - Handling facility of liquefied cryogenic fluid - Google Patents

Handling facility of liquefied cryogenic fluid Download PDF

Info

Publication number
JP2020147333A
JP2020147333A JP2019047505A JP2019047505A JP2020147333A JP 2020147333 A JP2020147333 A JP 2020147333A JP 2019047505 A JP2019047505 A JP 2019047505A JP 2019047505 A JP2019047505 A JP 2019047505A JP 2020147333 A JP2020147333 A JP 2020147333A
Authority
JP
Japan
Prior art keywords
temperature fluid
liquefied low
flow path
liquid
side storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019047505A
Other languages
Japanese (ja)
Other versions
JP7229050B2 (en
Inventor
舜 田窪
Shun Takubo
舜 田窪
一彦 村田
Kazuhiko Murata
一彦 村田
室 嘉浩
Yoshihiro Muro
嘉浩 室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2019047505A priority Critical patent/JP7229050B2/en
Publication of JP2020147333A publication Critical patent/JP2020147333A/en
Application granted granted Critical
Publication of JP7229050B2 publication Critical patent/JP7229050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To effectively and quickly execute handling of LNG to a marine vessel.SOLUTION: The handling facility comprises: a fluid conduction pipe that conducts a liquefied cryogenic fluid or a vaporized fluid which is the liquefied cryogenic fluid that has been vaporized, between land side storage parts LT1 and LT2, and a marine vessel side storage part ST; and a flexible fluid conduction part H having on one end an attachment/detachment mechanism QC2 that is freely attachable to/detachable from a connecting end of the fluid conduction pipe, and the other end being connected to the marine vessel side storage part to allow conduction of the liquefied cryogenic fluid. Provided as fluid conduction pipes are: a liquefied cryogenic fluid conduction path that conducts the liquefied cryogenic fluid from the land side storage parts LT1 and LT2; and a liquid extraction piping communicated and connected to the liquefied cryogenic fluid conduction path via liquid extraction opening/closing valves DV1 to DV4 in a state positioned below the liquefied cryogenic fluid conduction path in a vertical direction.SELECTED DRAWING: Figure 1

Description

本発明は、 液化低温流体を水上で搬送する船舶との間において液化低温流体を荷役する液化低温流体の荷役設備に関する。 The present invention relates to a cargo handling facility for a liquefied low-temperature fluid that handles the liquefied low-temperature fluid with a ship that transports the liquefied low-temperature fluid on water.

液化低温流体としてのLNGを荷役する荷役設備として、特許文献1に示すように、陸上に設けられるLNG貯留タンクから、圧送ポンプにて圧送されるLNGを流体通流管等を介して、水上の船舶に設けられる船舶側LNG貯留部へ圧送する設備が知られている。 As a cargo handling facility that handles LNG as a liquefied low-temperature fluid, as shown in Patent Document 1, LNG pumped by a pressure pump from an LNG storage tank provided on land is pumped onto water via a fluid flow pipe or the like. A facility for pumping to a ship-side LNG storage unit provided on a ship is known.

特開2017−105507号公報JP-A-2017-105507

上述したような液化低温流体の荷役設備に関し、昨今、内燃機関等に対する排ガス規制により排ガス中の窒素酸化物や二酸化炭素の低減を図る手段として、天然ガス燃料の需要が高まりつつあるため、船舶へのLNGの荷役を効果的且つ迅速に実行できる技術が望まれており、開発の余地があった。 Regarding the cargo handling equipment for liquefied low-temperature fluids as described above, the demand for natural gas fuel is increasing as a means of reducing nitrogen oxides and carbon dioxide in exhaust gas due to exhaust gas regulations for internal combustion engines, etc. There is a need for a technology that can effectively and quickly carry out cargo handling of LNG, and there is room for development.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、船舶へのLNGの荷役を効果的且つ迅速に実行できる液化低温流体の荷役設備を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a cargo handling facility for a liquefied low-temperature fluid capable of effectively and quickly carrying out loading and unloading of LNG to a ship.

上記目的を達成するための液化低温流体の荷役設備は、
液化低温流体を水上で搬送する船舶との間において液化低温流体を荷役する液化低温流体の荷役設備であって、その特徴構成は、
陸上において液化低温流体を貯留する陸側貯留部からの液化低温流体を前記船舶にて液化低温流体を貯留する船舶側貯留部へ圧送する圧送手段と、前記陸側貯留部と前記船舶側貯留部との間において液化低温流体又は液化低温流体が気化した気化流体を通流する流体通流管と、前記流体通流管の接続端部に着脱自在な着脱機構を一端に有すると共に他端を前記船舶側貯留部に接続して液化低温流体を通流可能な可撓性流体通流部とを備え、
前記流体通流管として、
前記陸側貯留部からの液化低温流体を通流する液化低温流体通流路と、
前記液化低温流体通流路の鉛直方向で下方に位置する状態で前記液化低温流体通流路に液抜き開閉弁を介して連通接続される液抜き配管とを備える点にある。
The cargo handling equipment for liquefied low-temperature fluid to achieve the above objectives
It is a cargo handling facility for liquefied low-temperature fluid that handles liquefied low-temperature fluid with a ship that transports liquefied low-temperature fluid on water.
A pumping means for pumping the liquefied low-temperature fluid from the land-side storage unit that stores the liquefied low-temperature fluid on land to the ship-side storage unit that stores the liquefied low-temperature fluid on the ship, and the land-side storage unit and the ship-side storage unit. A fluid flow pipe through which a liquefied low-temperature fluid or a vaporized fluid vaporized by the liquefied low-temperature fluid flows, and a detachable attachment / detachment mechanism at one end at the connection end of the fluid flow pipe, and the other end It is equipped with a flexible fluid flow section that can be connected to the storage section on the ship side to allow liquefied low-temperature fluid to flow.
As the fluid flow pipe,
The liquefied low-temperature fluid flow path through which the liquefied low-temperature fluid flows from the land-side storage section,
The point is that the liquefied low-temperature fluid passage is provided with a liquid drain pipe that is connected to the liquefied low-temperature fluid passage through a liquid drain on-off valve in a state of being located downward in the vertical direction.

上記特徴構成によれば、液化低温流体通流路の鉛直方向で下方に位置する状態で、液化低温流体通流路に液抜き開閉弁を介して連通接続される液抜き配管を備えるから、例えば、液化低温流体通流路が比較的複雑な回路構成をとる場合であっても、液化低温流体の荷役終了前に、液化低温流体通流路に滞留している液化低温流体を、液抜き配管へ迅速に液抜きして、効果的且つ迅速に液化低温流体の荷役を実行できる。 According to the above-mentioned characteristic configuration, the liquefied low-temperature fluid passage is provided with a liquid drain pipe that is continuously connected to the liquefied low-temperature fluid passage via a liquid drain on-off valve while being located below in the vertical direction. Even when the liquefied low-temperature fluid flow path has a relatively complicated circuit configuration, the liquefied low-temperature fluid staying in the liquefied low-temperature fluid flow path is drained before the cargo handling of the liquefied low-temperature fluid is completed. The liquid can be quickly drained to effectively and quickly carry out the cargo handling of the liquefied low temperature fluid.

液化低温流体の荷役設備の更なる特徴構成は、
前記液抜き配管は、液化低温流体を抜き出す際の流れ方向としての液抜き方向で、上流側より下流側を鉛直方向で下方となるよう配設している点にある。
Further features of the cargo handling equipment for liquefied low-temperature fluids
The liquid draining pipe is arranged so that the downstream side is vertically downward from the upstream side in the liquid draining direction as the flow direction when the liquefied low temperature fluid is discharged.

上記特徴構成によれば、液化低温流体を抜き出す際の流れ方向としての液抜き方向で、上流側より下流側を下方へ向けて配設している液抜き配管を備えるから、液抜き配管に流入した液化低温流体を自重により上流側から下流側へ流下させ、液抜き配管の下流側から順に液化低温流体で満たすことができるから、液化低温液体を設備内に遍在させることなく、特定の場所に確実に集液できる。 According to the above-mentioned characteristic configuration, since the liquid draining pipe is provided so that the downstream side is directed downward from the upstream side in the liquid draining direction as the flow direction when the liquefied low temperature fluid is discharged, the fluid flows into the liquid draining pipe. The liquefied low-temperature fluid can be flowed down from the upstream side to the downstream side by its own weight, and can be filled with the liquefied low-temperature fluid in order from the downstream side of the drainage pipe. Can reliably collect fluid.

液化低温流体の荷役設備の更なる特徴構成は、
前記液抜き配管の前記液抜き方向での上流側端部には、圧送気体を通流する圧送気体通流路に連通接続されており、
前記圧送気体通流路から流入した圧送気体により圧送された前記液抜き配管の液化低温流体を前記陸側貯留部まで一筆書きの流路にて導く一筆書流路が、前記液化低温流体通流路にて構成される点にある。
Further features of the cargo handling equipment for liquefied low-temperature fluids
The upstream end of the drainage pipe in the drainage direction is connected to a pressure feed gas passage through which the pressure feed gas flows.
The liquefied low-temperature fluid flow is a one-stroke flow path that guides the liquefied low-temperature fluid of the drainage pipe, which is pumped by the pressure-feed gas flowing from the pumped gas passage, to the land-side storage unit by a one-stroke flow path. It is a point composed of roads.

上記特徴構成によれば、液抜き配管に貯留された液化低温流体を、圧送気体により圧送して陸側貯留部へ導くことで、自重により液化低温流体を液抜き配管から取り出す場合に比べ、迅速な処理が可能となる。
尚、本明細書において、一筆書流路とは、上流側から下流側まで液化低温流体を一本の流路で圧送可能な流路を意味するものとする。
According to the above-mentioned characteristic configuration, the liquefied low-temperature fluid stored in the drainage pipe is pumped by the pumping gas and guided to the land-side storage portion, so that the liquefied low-temperature fluid is taken out from the liquid drainage pipe by its own weight more quickly. Processing becomes possible.
In the present specification, the one-stroke calligraphy flow path means a flow path capable of pumping a liquefied low-temperature fluid from the upstream side to the downstream side with one flow path.

液化低温流体の荷役設備は、前記圧送気体通流路が、パージガスを貯留するパージガス貯留部からのパージガスを通流するパージガス通流路であることが好ましい。 In the cargo handling equipment for the liquefied low-temperature fluid, it is preferable that the pumping gas passage is a purge gas passage for passing the purge gas from the purge gas storage portion for storing the purge gas.

液化低温流体の荷役設備の更なる特徴構成は、
前記圧送手段と前記流体通流管とを有して、前記船舶及び前記陸側貯留部との接続が解除された状態で移動可能な移動体を少なくとも1つ備え、
前記液抜き配管が、前記移動体の夫々に対して独立して設けられている点にある。
Further features of the cargo handling equipment for liquefied low-temperature fluids
It is provided with at least one moving body having the pumping means and the fluid flow pipe and capable of moving in a state where the connection between the ship and the land side storage portion is disconnected.
The point is that the drainage pipe is provided independently of each of the moving bodies.

上述の如く、圧送手段及び流体通流管を移動体として、船舶及び陸側貯留部との接続が解除された状態で移動可能に構成することで、例えば、荷役設備が既設される特定の港に限らず、種々の場所にて船舶の荷役を実行することが可能となる。
このような構成にあっては、陸側貯留部として複数のタンクローリーから液化低温流体が供給されると共に、それらを受け入れて船舶へ導く移動体を複数備える構成が考えられるが、このような構成において、移動体毎に液抜き配管を独立して設けることで、移動体の液抜き配管同士を接続することのない簡易な構成にて、液化低温流体の荷役設備を実現できる。
特に、液抜き配管は、液抜き方向で傾斜を設けることが実用上有効と考えられるが、このように傾斜を持たせる構成では、異なる移動体の異なる液抜き配管同士の接続が比較的難しくなる。上記特徴構成の如く、移動体毎に独立して液抜き配管を設けることで、このような接続上の問題を生じさせることなく、液抜き配管を有効に運用できる。
As described above, by using the pumping means and the fluid flow pipe as moving bodies and configuring them so that they can move in a state where the connection with the ship and the land side storage section is disconnected, for example, a specific port where cargo handling equipment is already installed. It is possible to carry out cargo handling of ships in various places.
In such a configuration, a configuration in which liquefied low-temperature fluid is supplied from a plurality of tank trucks as a land-side storage unit and a plurality of moving bodies that receive them and guide them to a ship can be considered. By independently providing the liquid draining pipe for each moving body, it is possible to realize a cargo handling facility for liquefied low-temperature fluid with a simple configuration in which the liquid draining pipes of the moving body are not connected to each other.
In particular, it is considered practically effective to provide an inclination in the liquid draining direction for the liquid draining pipe, but in such a configuration having an inclination, it is relatively difficult to connect different liquid draining pipes of different moving bodies. .. By providing the drainage pipe independently for each moving body as in the above-mentioned feature configuration, the drainage pipe can be effectively operated without causing such a connection problem.

液化低温流体の荷役設備の更なる特徴構成は、
前記移動体を複数備え、
前記液化低温流体通流路が複数の前記陸側貯留部の夫々からの液化低温流体を通流可能に構成されると共に、当該液化低温流体通流路を通流する液化低温流体が合流する合流流路とを備え、
前記液抜き配管の配管容量は、前記船舶側貯留部へ液化低温流体を導入する液体導入運転の終了時に、前記陸側貯留部から前記船舶側貯留部までの間の前記可撓性流体通流部と前記液化低温流体通流路と前記合流流路とを含むすべての流路の内部に存在する液化低温流体の全量を貯留可能な容量である点にある。
Further features of the cargo handling equipment for liquefied low-temperature fluids
With a plurality of the moving bodies
The liquefied low-temperature fluid passage is configured to allow the liquefied low-temperature fluid from each of the plurality of land-side storage portions to flow, and the liquefied low-temperature fluid flowing through the liquefied low-temperature fluid passage merges. Equipped with a flow path
The piping capacity of the drainage pipe is the flexible fluid flow between the land-side storage section and the ship-side storage section at the end of the liquid introduction operation for introducing the liquefied low-temperature fluid into the ship-side storage section. The point is that the capacity is such that the entire amount of the liquefied low-temperature fluid existing inside all the flow paths including the unit, the liquefied low-temperature fluid flow path, and the merging flow path can be stored.

本発明の液化低温流体の荷役設備は、上記特徴構成に示すように、複数のタンクローリー等の陸側貯留部から船舶側貯留部へ迅速に液化低温流体を荷役でき、かつ荷役が完了した後には複数の移動体及び複数の陸側貯留部を移動させることで、荷役設備を撤去若しくは他の船舶が停留する荷役箇所へ移設することができるものである。
このような構成にあっては、液化低温流体を導く可撓性液体通流部や液化低温流体通流路や合流流路が複雑な回路構成になる場合があるが、上記特徴構成によれば、導入途中の液化低温流体のすべてを迅速に液抜き配管へ受け入れることが可能となり、荷役速度の向上を図ることができるから、荷役設備の移設をより効率的且つ効果的に実行できる。
As shown in the above-mentioned characteristic configuration, the cargo handling facility for the liquefied low-temperature fluid of the present invention can quickly load the liquefied low-temperature fluid from the land-side storage section such as a plurality of tank trucks to the ship-side storage section, and after the cargo handling is completed. By moving a plurality of moving bodies and a plurality of land-side storage units, the cargo handling equipment can be removed or relocated to a cargo handling location where other vessels are stopped.
In such a configuration, the flexible liquid flow path for guiding the liquefied low-temperature fluid, the liquefied low-temperature fluid flow path, and the confluence flow path may have a complicated circuit configuration. Since all of the liquefied low-temperature fluid in the process of introduction can be quickly received in the drainage pipe and the cargo handling speed can be improved, the relocation of the cargo handling equipment can be carried out more efficiently and effectively.

第1実施形態に係る液化低温流体の荷役設備の概略構成図Schematic configuration diagram of cargo handling equipment for liquefied low-temperature fluid according to the first embodiment 第1実施形態に係る空気パージ運転を実行している場合の流れを示す図The figure which shows the flow when the air purge operation which concerns on 1st Embodiment is executed 第1実施形態に係る気体導入運転を実行している場合の流れを示す図The figure which shows the flow when the gas introduction operation which concerns on 1st Embodiment is executed 第1実施形態に係る液体導入運転を実行している場合の流れを示す図The figure which shows the flow when the liquid introduction operation which concerns on 1st Embodiment is executed 第1実施形態に係る液抜き運転を実行している場合の流れを示す図The figure which shows the flow when the liquid draining operation which concerns on 1st Embodiment is executed. 第1実施形態に係るパージ運転を実行している場合の流れを示す図The figure which shows the flow when the purge operation which concerns on 1st Embodiment is executed 紙面上下方向を鉛直方向として、第1実施形態に係る第1液抜き配管NL0a及び1混合流路MF1等を示す側面図Side view showing the first liquid draining pipe NL0a and the one mixing flow path MF1 according to the first embodiment, with the vertical direction of the paper surface as the vertical direction. 第2実施形態に係る液化低温流体の荷役設備の概略構成図、及び予冷運転を実行している場合の流れを示す図A schematic configuration diagram of a cargo handling facility for a liquefied low-temperature fluid according to the second embodiment, and a diagram showing a flow when a precooling operation is executed. 第3実施形態に係る液化低温流体の荷役設備の概略構成図、及びミニフロー運転を実行している場合の流れを示す図A schematic configuration diagram of a cargo handling facility for a liquefied low-temperature fluid according to a third embodiment, and a diagram showing a flow when a mini-flow operation is being executed. 第4実施形態に係る液化低温流体の荷役設備の概略構成図、及び気体導入運転を実行している場合の流れを示す図A schematic configuration diagram of a cargo handling facility for a liquefied low-temperature fluid according to a fourth embodiment, and a diagram showing a flow when a gas introduction operation is being executed. 第4実施形態に係る吐出圧変更運転を実行している場合の流れを示す図The figure which shows the flow when the discharge pressure change operation which concerns on 4th Embodiment is executed. 第4実施形態に係る吐出先変更運転及び液体導入運転を実行している場合の流れを示す図The figure which shows the flow when the discharge destination change operation and the liquid introduction operation which concerns on 4th Embodiment are executed. 第4実施形態に係る第1残液処理運転を実行している場合の流れを示す図The figure which shows the flow when the 1st residual liquid processing operation which concerns on 4th Embodiment is executed. 第4実施形態に係る第2残液処理運転を実行している場合の流れを示す図The figure which shows the flow when the 2nd residual liquid processing operation which concerns on 4th Embodiment is executed. 第4実施形態に係る第3残液処理運転を実行している場合の流れを示す図The figure which shows the flow when the 3rd residual liquid processing operation which concerns on 4th Embodiment is executed.

本発明の実施形態に係る液化低温流体(例えば、液化天然ガス:以下LNGと略称)の荷役設備100は、船舶へのLNGの荷役を効果的且つ迅速に実行できるものに関する。 The cargo handling facility 100 for a liquefied low-temperature fluid (for example, liquefied natural gas: hereinafter abbreviated as LNG) according to an embodiment of the present invention relates to a cargo handling facility 100 capable of effectively and quickly carrying out loading and unloading of LNG to a ship.

〔第1実施形態〕
以下、第1実施形態に係る液化低温流体の荷役設備100を、図1〜6に基づいて説明する。
当該実施形態に係る液化低温流体の荷役設備100は、図1に示すように、液化低温流体を水上で搬送するLNGタンカー等の船舶Sとの間において液化低温流体を荷役する荷役設備であり、特に、陸上において液化低温流体を貯留する第1、2陸側貯留部LT1、LT2からの液化低温流体を船舶Sにて液化低温流体を貯留する船舶側貯留部STへ圧送するポンプ(圧送手段の一例)と、陸側貯留部と船舶側貯留部STとの間において液化低温流体又は液化低温流体が気化した気化流体(例えば、天然ガス:以下NTと略称)を通流する流体通流管とを有して、船舶S及び陸側貯留部との接続が解除された状態で移動可能な移動体を少なくとも1つ備えている。
尚、本明細書においては、陸側貯留部を上流側とし船舶側貯留部STを下流側として説明をする場合がある。
[First Embodiment]
Hereinafter, the cargo handling facility 100 for the liquefied low-temperature fluid according to the first embodiment will be described with reference to FIGS. 1 to 6.
As shown in FIG. 1, the cargo handling facility 100 for the liquefied low-temperature fluid according to the embodiment is a cargo handling facility for handling the liquefied low-temperature fluid with a ship S such as an LNG tanker that transports the liquefied low-temperature fluid on water. In particular, a pump (of the pumping means) that pumps the liquefied low-temperature fluid from the first and second land-side storage units LT1 and LT2 that store the liquefied low-temperature fluid on land to the ship-side storage unit ST that stores the liquefied low-temperature fluid on the ship S. An example) and a fluid flow pipe through which a liquefied low-temperature fluid or a vaporized fluid (for example, natural gas: hereinafter abbreviated as NT) is vaporized between the land-side storage section and the ship-side storage section ST. It is provided with at least one moving fluid which can move in a state where the connection with the ship S and the land side storage unit is disconnected.
In this specification, the land side storage unit may be referred to as the upstream side and the ship side storage unit ST may be referred to as the downstream side.

ここで、移動体としては、流体通流管の接続端部に着脱自在な第1クイックカプラQC1(着脱機構の一例)を一端に有すると共に他端の第2クイックカプラQC2(着脱機構の一例)を船舶側貯留部STに連通接続して液化低温流体を通流可能なホースHを備える親移動体PM(図1で一点鎖線で囲まれる構成)を少なくとも一つ備える。図1に示す親移動体PMは、流体通流管において船舶Sと荷役設備100との間の流体の通流を遮断する緊急遮断弁EVが備えられると共に、船舶Sの急な移動の際に船舶Sと荷役設備100とを切り離す緊急離脱装置EWがホースH(可撓性流体通流部の一例)に対して備えられている。更に、親移動体PMとしては、荷役設備100の全体の流体の通流状態を制御するべく、ポンプP1、P2、及び後述する各種弁体の開閉状態を制御する制御装置C(制御部の一例)が設けられている。尚、着脱機構としての第1クイックカプラQC1及び第2クイックカプラQC2は、フランジ等の構成を代用しても構わない。
また、図1に示す荷役設備100では、一の親移動体PMに加え、一の子移動体CM(図1で二点鎖線で囲まれる構成)が設けられており、図示は省略するが、親移動体PM及び子移動体CMは、双方ともコンテナの内部に各構成機器を内設する形態で、移動可能に構成されている。また、夫々の移動体には、コンテナ内での各種機器の移動及び設置や陸側貯留部と移動体との間の流体通流管の移動及び設置等を担うハンドリングクレーンが設けられると共に、メタン等のガス濃度を検知するガス検知器が設けられている。
加えて、親移動体PMには、流体通流配管をパージするためのパージガス(例えば、窒素やメタン)を貯留するためのガス貯留部と、移動体に設けられる各種機器の駆動に用いる電力を発電する発電機と、荷役の際に発生した余剰の天然ガス等の低温流体を放散したり流体通流管の内圧が許容値を超えた場合に低温流体を放散したりする放散塔と、各種弁体を駆動するための圧力を蓄圧するアキュムレーターとが備えられている。ちなみに、上述した親移動体PMのみが備える各種構成については、子移動体CMの夫々にも備える構成を採用しても構わない。
Here, the moving body has a detachable first quick coupler QC1 (an example of an attachment / detachment mechanism) at one end and a second quick coupler QC2 (an example of an attachment / detachment mechanism) at the other end at the connection end of the fluid communication pipe. Is provided with at least one parent moving body PM (a configuration surrounded by a chain line in FIG. 1) having a hose H capable of allowing a liquefied low-temperature fluid to flow by communicating with the storage unit ST on the ship side. The parent moving body PM shown in FIG. 1 is provided with an emergency shutoff valve EV that shuts off the flow of fluid between the ship S and the cargo handling facility 100 in the fluid flow pipe, and when the ship S suddenly moves. An emergency release device EW that separates the ship S from the cargo handling equipment 100 is provided for the hose H (an example of a flexible fluid passage portion). Further, as the parent moving body PM, a control device C (an example of a control unit) that controls the open / closed state of the pumps P1 and P2 and various valve bodies described later in order to control the flow state of the entire fluid of the cargo handling facility 100. ) Is provided. The first quick coupler QC1 and the second quick coupler QC2 as the attachment / detachment mechanism may substitute the configuration of the flange or the like.
Further, in the cargo handling facility 100 shown in FIG. 1, in addition to the one parent moving body PM, one child moving body CM (a configuration surrounded by a two-dot chain line in FIG. 1) is provided, and although not shown, the illustration is omitted. Both the parent moving body PM and the child moving body CM are configured to be movable in a form in which each component device is internally installed inside the container. In addition, each moving body is equipped with a handling crane that is responsible for the movement and installation of various devices in the container and the movement and installation of the fluid flow pipe between the land-side storage and the moving body, as well as methane. A gas detector is provided to detect the gas concentration of the above.
In addition, the parent moving body PM includes a gas storage unit for storing purge gas (for example, nitrogen and methane) for purging the fluid flow pipe, and electric power used for driving various devices provided in the moving body. Various types of generators that generate power, and a radiation tower that dissipates low-temperature fluid such as excess natural gas generated during cargo handling and dissipates low-temperature fluid when the internal pressure of the fluid flow pipe exceeds the permissible value. It is equipped with an accumulator that accumulates the pressure to drive the valve body. Incidentally, with respect to the various configurations provided only in the parent moving body PM described above, the configurations provided in each of the child moving body CMs may be adopted.

第1陸側貯留部LT1は、流入出端としての第5フランジF5と第10開閉弁V10とを有して液体を流入出する第1液体流入出部LE1を備えると共に、流入出端としての第6フランジF6と第11開閉弁V11とを有して気体を流入出する第1気体流入出部GE1を備える。
親移動体PMは、一端にて第5フランジF5を介して第1液体流入出部LE1と連通接続すると共に他端に第6開閉弁V6を有する第1液体通流路LF1と、一端に第6フランジF6を介して第1気体流入出部GE1と連通接続すると共に他端に第7開閉弁V7を有する第1気体通流路GF1とを備え、両者は、他端側にて接続して第1混合流路MF1に連通接続される。第1混合流路MF1には、上流側から、液化低温流体を上流側から下流側へ圧送すると共にその回転数を調整可能なインバータ式の第1ポンプP1、第2混合流路MF2を通流する流体の流量を調整する第1流量調整弁RV1、流体の下流側から上流側の逆流を禁止する第1逆止弁CV1が記載の順に設けられており、その下流端が、他の移動体からの流体が通流する合流流路JTLに接続されている。尚、第1混合流路MF1には、第1逆止弁CV1をバイパスする第1バイパス流路MF1aが設けられており、当該第1バイパス流路MF1aには、第4開閉弁V4が設けられている。
The first land-side storage section LT1 includes a first liquid inflow / out section LE1 having a fifth flange F5 as an inflow / out end and a tenth on-off valve V10 to inflow and out the liquid, and also serves as an inflow / out end. It has a sixth flange F6 and an eleventh on-off valve V11, and includes a first gas inflow / outflow portion GE1 for inflowing and outflowing gas.
The parent moving body PM communicates with the first liquid inflow / outflow portion LE1 at one end via the fifth flange F5, and has a first liquid passage LF1 having a sixth on-off valve V6 at the other end, and a first liquid passage LF1 at one end. It is provided with a first gas flow path GF1 having a seventh on-off valve V7 at the other end while communicating with the first gas inflow / outflow portion GE1 via a 6-flange F6, and both are connected at the other end side. It is continuously connected to the first mixing flow path MF1. Inverter-type first pump P1 and second mixing flow path MF2 that can pump liquefied low-temperature fluid from the upstream side to the downstream side and adjust the rotation rate thereof flow through the first mixing flow path MF1 from the upstream side. The first flow rate adjusting valve RV1 for adjusting the flow rate of the fluid and the first check valve CV1 for prohibiting the backflow from the downstream side to the upstream side of the fluid are provided in the order described, and the downstream end thereof is another moving body. It is connected to the confluence flow path JTL through which the fluid from the above flows. The first mixing flow path MF1 is provided with a first bypass flow path MF1a that bypasses the first check valve CV1, and the first bypass flow path MF1a is provided with a fourth on-off valve V4. ing.

第2陸側貯留部LT2及び子移動体CMとは、液化低温流体及び低温気体が通流する流路に関し、上述した第1陸側貯留部LT1及び親移動体PMと同一の構成を有している。
即ち、第2陸側貯留部LT2は、流入出端としての第7フランジF7と第12開閉弁V12とを有して液体を流入出する第2液体流入出部LE2を備えると共に、流入出端としての第8フランジF8と第13開閉弁V13とを有して気体を流入出する第2気体流入出部GE2を備える。
子移動体CMは、一端にて第7フランジF7を介して第2液体流入出部LE2と連通接続すると共に他端に第8開閉弁V8を有する第2液体通流路LF2と、一端に第8フランジF8を介して第2気体流入出部GE2と連通接続すると共に他端に第9開閉弁V9を有する第2気体通流路GF2とを備え、両者は、他端側にて接続して第2混合流路MF2に連通接続される。第2混合流路MF2には、上流側から、液化低温流体を上流側から下流側へ圧送すると共にその回転数を調整可能なインバータ式の第2ポンプP2、第2混合流路MF2を通流する流体の流量を調整する第2流量調整弁RV2、流体の下流側から上流側の逆流を禁止する第2逆止弁CV2が記載の順に設けられており、その下流端が、他の移動体からの流体が通流する合流流路JTLに接続されている。尚、第2混合流路MF2には、第2逆止弁CV2をバイパスする第2バイパス流路MF2aが設けられており、当該第2バイパス流路MF2aには、第5開閉弁V5が設けられている。
The second land-side storage unit LT2 and the child moving body CM have the same configuration as the above-mentioned first land-side storage unit LT1 and the parent moving body PM with respect to the flow path through which the liquefied low-temperature fluid and the low-temperature gas flow. ing.
That is, the second land-side storage section LT2 includes a second liquid inflow / out section LE2 having a seventh flange F7 and a twelfth on-off valve V12 as inflow / out ends and inflowing / out of the liquid, and the inflow / out end. The second gas inflow / out section GE2 is provided with the eighth flange F8 and the thirteenth on-off valve V13.
The child moving body CM communicates with the second liquid inflow / outflow portion LE2 at one end via the seventh flange F7, and has a second liquid passage LF2 having an eighth on-off valve V8 at the other end, and a second liquid passage LF2 at one end. It is provided with a second gas flow path GF2 having a ninth on-off valve V9 at the other end while being communicatively connected to the second gas inflow / outflow portion GE2 via an eight flange F8, and both are connected at the other end side. It is continuously connected to the second mixing flow path MF2. Inverter-type second pump P2 and second mixing flow path MF2 that can pump liquefied low-temperature fluid from the upstream side to the downstream side and adjust the rotation rate thereof flow through the second mixing flow path MF2 from the upstream side. A second flow rate adjusting valve RV2 for adjusting the flow rate of the fluid and a second check valve CV2 for prohibiting backflow from the downstream side to the upstream side of the fluid are provided in the order described, and the downstream end thereof is another moving body. It is connected to the confluence flow path JTL through which the fluid from the above flows. The second mixing flow path MF2 is provided with a second bypass flow path MF2a that bypasses the second check valve CV2, and the second bypass flow path MF2a is provided with a fifth on-off valve V5. ing.

合流流路JTLは、複数の移動体に対して共通して形成される流路であり、移動体の間ではフランジを介して流路を連通接続する構成を採用しており、親移動体PMと子移動体CMとの間は、第1フランジF1を介して連通接続されている。当該合流流路JTLの上流側には、第3フランジF3が設けられ他の移動体の合流流路JTLが連通接続可能となっており、合流流路JTLの下流側には、緊急遮断弁EVが設けられると共にその下流端にホースHと迅速な接続が可能な第1クイックカプラQC1が設けられている。
ホースHには、緊急離脱装置EWが設けられ、その下流端が第2クイックカプラQC2を介して、船舶側流路SLに接続されている。
The merging flow path JTL is a flow path commonly formed for a plurality of moving bodies, and adopts a configuration in which the flow paths are communicated and connected between the moving bodies via flanges, and the parent moving body PM. And the child moving body CM are communicated with each other via the first flange F1. A third flange F3 is provided on the upstream side of the merging flow path JTL so that the merging flow path JTL of other moving bodies can be communicated and connected, and an emergency shutoff valve EV is provided on the downstream side of the merging flow path JTL. A first quick coupler QC1 capable of quickly connecting to the hose H is provided at the downstream end thereof.
The hose H is provided with an emergency release device EW, and its downstream end is connected to the ship side flow path SL via the second quick coupler QC2.

船舶側流路SLは、その上流端に第3開閉弁V3が設けられると共に、その下流側に、主に天然ガス等の低温気体を通流する船舶側気体通流路SLaと、主にLNG等の液化低温流体を通流する船舶側液体通流路SLbとがパラレルに設けられている。両者の下流端は、船舶側貯留部STに連通接続されており、船舶側気体通流路SLaには第1開閉弁V1が、船舶側液体通流路SLbには第2開閉弁V2が夫々設けられている。尚、場合によっては、船舶側気体通流路SLaは、液化低温流体を通流するときもある。 The ship-side flow path SL is provided with a third on-off valve V3 at its upstream end, and on its downstream side, a ship-side gas flow path SLa that mainly allows low-temperature gas such as natural gas to flow, and mainly LNG. The ship-side liquid passage SLb through which the liquefied low-temperature fluid such as the above flows is provided in parallel. The downstream ends of both are communicated with the ship side storage unit ST, and the first on-off valve V1 is connected to the ship-side gas passage SLa and the second on-off valve V2 is connected to the ship-side liquid passage SLb. It is provided. In some cases, the ship-side gas passage SLa may pass a liquefied low-temperature fluid.

これまで説明してきた流体通流管には、内部をパージした際等に気体を外部へ放散する放散弁が複数設けられている。
説明を追加すると、合流流路JTLのうち、緊急遮断弁EVの下流側に第1放散弁HV1が上流側に第2放散弁HV2が夫々設けられている。更に、第1液体通流路LF1の第6開閉弁V6の上流側に第3放散弁HV3が、第2液体通流路LF2の第8開閉弁V8の上流側に第5放散弁HV5が、第1気体通流路GF1の第7開閉弁V7の上流側に第4放散弁HV4が、第2気体通流路GF2の第9開閉弁V9の上流側に第6放散弁HV6が、夫々設けられている。
The fluid flow pipe described so far is provided with a plurality of diffusion valves that dissipate gas to the outside when the inside is purged.
To add an explanation, the first radiation valve HV1 is provided on the downstream side of the emergency shutoff valve EV and the second radiation valve HV2 is provided on the upstream side of the confluence flow path JTL. Further, a third release valve HV3 is provided on the upstream side of the sixth on-off valve V6 of the first liquid flow path LF1, and a fifth release valve HV5 is provided on the upstream side of the eighth on-off valve V8 of the second liquid flow path LF2. A fourth release valve HV4 is provided on the upstream side of the seventh on-off valve V7 of the first gas passage GF1, and a sixth release valve HV6 is provided on the upstream side of the ninth on-off valve V9 of the second gas passage GF2. Has been done.

更に、流体通流管の内部に滞留した液化低温流体又は低温気体を、パージするパージガスを通流するパージガス通流路が設けられている。
具体的には、パージガス貯留部PTに連通接続される主パージガス通流路PL0、主パージガス通流路PL0に連通接続されると共に合流流路JTLで緊急遮断弁EVと第1放散弁EV1との間にその一端が接続される第1パージガス通流路PL1、一端が第1パージガス通流路PL1に連通接続されると共に他端が第1液体通流路LF1に連通接続される第2パージガス通流路PL2、一端が第1パージガス通流路PL1に連通接続されると共に他端が第1気体通流路GF1に連通接続される第3パージガス通流路PL3、一端が第1パージガス通流路PL1に連通接続されると共に他端が第2液体通流路LF2に連通接続される第4パージガス通流路PL4、一端が第1パージガス通流路PL1に連通接続されると共に他端が第2気体通流路GF2に連通接続される第5パージガス通流路PL5、一端が第1パージガス通流路PL1に連通接続されると共に他端が後述する第1液抜き配管NL0a及び第2液抜き配管NL0bに連通接続される第6パージガス通流路PL6が設けられている。
また、主パージガス通流路PL0には第1パージ弁PV1が、第1パージガス通流路PL1には第2パージ弁PV2が、第2パージガス通流路PL2には第3パージ弁PV3が、第3パージガス通流路PL3には第4パージ弁PV4が、第4パージガス通流路PL4には第5パージ弁PV5が、第5パージガス通流路PL5には第6パージ弁PV6が、第6パージガス通流路PL6と第1液抜き配管NL0aとの間には第9aパージ弁PV9aが、第6パージガス通流路PL6と第2液抜き配管NL0bとの間には第9bパージ弁PV9bが、夫々設けられており、特に、第2パージ弁PV2は第1パージガス通流路PL1と合流流路JTLの接続部位の近傍に設けられている。
当該第1パージガス通流路PL1についても、合流流路JTLと同様に、複数の移動体に対して共通して形成される流路であり、移動体の間ではフランジを介して流路を連通接続する構成が採用されている。親移動体PMと子移動体CMとの間は、第2フランジF2を介して連通接続されており、他端の第4フランジF4には、他の移動体の第1パージガス通流路PL1が連通接続可能となっている。
このように、フランジを介する他の移動体の流体通流管と連通接続又は当該連通接続を解除する形で、移動体を増減設置可能で且つ交換可能となっている。
更に、当該実施形態に係る液化低温流体の荷役設備100においては、少なくとも2つ以上の第1、2陸側貯留部LT1、LT2から同時に液化低温流体の荷役を実行可能に構成されている。
Further, a purge gas flow path is provided to pass the purge gas for purging the liquefied low-temperature fluid or low-temperature gas staying inside the fluid flow pipe.
Specifically, the main purge gas flow path PL0 communicated with the purge gas storage unit PT, the main purge gas flow path PL0 communicated with each other, and the merging flow path JTL connects the emergency shutoff valve EV and the first dissipation valve EV1. The first purge gas passage PL1 to which one end is connected between them, and the second purge gas passage to which one end is connected to the first purge gas passage PL1 and the other end is connected to the first liquid passage LF1. The third purge gas flow path PL3, one end of which is connected to the first purge gas flow path PL1 and the other end of which is connected to the first gas flow path GF1, the first purge gas flow path PL3. The fourth purge gas passage PL4 is connected to PL1 and the other end is connected to the second liquid passage LF2, one end is connected to the first purge gas passage PL1 and the other end is second. The fifth purge gas flow path PL5 which is communicated with the gas flow path GF2, one end is connected to the first purge gas flow path PL1 and the other end is the first liquid drainage pipe NL0a and the second liquid drainage pipe which will be described later. A sixth purge gas passage PL6 is provided which is continuously connected to NL0b.
Further, the main purge gas passage PL0 has a first purge valve PV1, the first purge gas passage PL1 has a second purge valve PV2, and the second purge gas passage PL2 has a third purge valve PV3. 3 The purge gas passage PL3 has a fourth purge valve PV4, the fourth purge gas passage PL4 has a fifth purge valve PV5, the fifth purge gas passage PL5 has a sixth purge valve PV6, and the sixth purge gas has a sixth purge gas. A ninth a purge valve PV9a is provided between the flow path PL6 and the first liquid drainage pipe NL0a, and a ninth b purge valve PV9b is provided between the sixth purge gas flow path PL6 and the second liquid drainage pipe NL0b. In particular, the second purge valve PV2 is provided near the connection portion between the first purge gas flow path PL1 and the confluence flow path JTL.
Similar to the confluence flow path JTL, the first purge gas flow path PL1 is also a flow path commonly formed for a plurality of moving bodies, and the flow paths are communicated between the moving bodies via flanges. The configuration to connect is adopted. The parent moving body PM and the child moving body CM are communicated with each other via the second flange F2, and the first purge gas passage path PL1 of the other moving body is connected to the fourth flange F4 at the other end. Communication connection is possible.
In this way, the moving body can be increased or decreased and can be exchanged by communicating with the fluid communication pipe of another moving body via the flange or by breaking the communication connection.
Further, in the liquefied low-temperature fluid cargo handling facility 100 according to the embodiment, at least two or more first and second land-side storage units LT1 and LT2 can simultaneously carry out cargo handling of the liquefied low-temperature fluid.

尚、流体通流管は可撓性を有する配管から構成しても構わない。特に、複数の移動体の間の部分、及び陸側貯留部と移動体の間の部分を、可撓性を有する配管から構成することで、複数の移動体の間の位置決めの自由度を向上できる。 The fluid flow pipe may be composed of a flexible pipe. In particular, the degree of freedom of positioning between the plurality of moving bodies is improved by forming the part between the plurality of moving bodies and the part between the land side storage portion and the moving body from flexible pipes. it can.

更に、図1に示すように、液化低温流体通流路として第1液体通流路LF1と第1混合流路MF1と第2液体通流路LF2と第2混合流路MF2を備えると共に、当該液化低温流体通流路の鉛直方向で下方に位置する状態で液化低温流体通流路に液抜き開閉弁DV1〜DV4を介して連通接続される液抜き配管NL0を備えている。
尚、当該第1実施形態においては、図1に示すように、液抜き配管NL0は、移動体PM、CMの夫々に対して独立して設けられている。図1に示す構成例では、荷役する使用状態において、親移動体PMを外囲するコンテナの内部に第1液抜き配管NL0aのすべてが収められており、子移動体CMを外囲するコンテナの内部に第2液抜き配管NL0bのすべてが収められている。
より具体的には、第1液抜き配管NL0aは、図1、7に示すように、第1混合流路MF1の鉛直方向(図7でZ方向)での最下端との接続部位に第1液抜き開閉弁DV1を有すると共に、当該第1液抜き配管NL0aからの液化低温流体の液抜き時の流れ方向である液抜き方向(図1で白抜き矢印の矢示方向)の下流端が第1液体通流路LF1の第6開閉弁V6の上流側入口に第2液抜き開閉弁DV2を介して接続されている。また、第2液抜き配管NL0bは、第2混合流路MF2の鉛直方向での最下端との接続部位に第3液抜き開閉弁DV3を有すると共に、当該第2液抜き配管NL0bからの液化低温流体の液抜き方向(図1で白抜き矢印の矢示方向)の下流端が第2液体通流路LF2の第8開閉弁V8の上流側入口に第4液抜き開閉弁DV4を介して接続されている。
第1、2液抜き配管NL0a、NL0bは、液抜き方向で、上流側より下流側を鉛直方向で下方となるよう配設している(図7に第1液抜き配管NL0aの鉛直方向Zに対する設置状態を図示)。また、第1、2液抜き配管NL0a、NL0bの総配管容量は、船舶側貯留部STへ液化低温流体を導入する液体導入運転の終了時に、第1、2陸側貯留部LT1、LT2から船舶側貯留部STまでの間の可撓性液体通流部(例えば、ホースH、第1、2液体流入出部LE1、LE2を構成するホース)と液化低温流体通流路と合流流路JTLとの内部に存在する液化低温流体の全量を貯留可能な容量である。
Further, as shown in FIG. 1, as the liquefied low-temperature fluid flow path, the first liquid flow path LF1, the first mixing flow path MF1, the second liquid flow path LF2, and the second mixing flow path MF2 are provided. A liquid drain pipe NL0 is provided which is connected to the liquefied low temperature fluid flow path in a state of being located downward in the vertical direction of the liquefied low temperature fluid flow path via the liquid drain opening / closing valves DV1 to DV4.
In the first embodiment, as shown in FIG. 1, the drainage pipe NL0 is provided independently for each of the moving body PM and CM. In the configuration example shown in FIG. 1, in the used state of loading and unloading, all of the first liquid draining pipe NL0a is housed inside the container surrounding the parent moving body PM, and the container surrounding the child moving body CM. All of the second liquid draining pipe NL0b is housed inside.
More specifically, as shown in FIGS. 1 and 7, the first liquid draining pipe NL0a has a first connection portion with the lowermost end of the first mixing flow path MF1 in the vertical direction (Z direction in FIG. 7). It has a liquid draining on-off valve DV1, and the downstream end in the liquid draining direction (the direction indicated by the white arrow in FIG. 1), which is the flow direction when the liquefied low-temperature fluid is drained from the first liquid draining pipe NL0a, is the first. 1 The liquid flow path LF1 is connected to the upstream inlet of the sixth on-off valve V6 via the second liquid drain on-off valve DV2. Further, the second liquid draining pipe NL0b has a third liquid draining on-off valve DV3 at a connection portion with the lowermost end in the vertical direction of the second mixing flow path MF2, and the liquefied low temperature from the second liquid draining pipe NL0b. The downstream end of the fluid in the draining direction (indicated by the white arrow in FIG. 1) is connected to the upstream inlet of the eighth on-off valve V8 of the second liquid passage LF2 via the fourth liquid-draining on-off valve DV4. Has been done.
The first and second drainage pipes NL0a and NL0b are arranged so that the downstream side is vertically downward from the upstream side in the liquid drainage direction (FIG. 7 shows the first liquid drainage pipe NL0a with respect to the vertical direction Z). The installation state is shown). Further, the total piping capacities of the first and second liquid drainage pipes NL0a and NL0b are measured from the first and second land side storage units LT1 and LT2 at the end of the liquid introduction operation for introducing the liquefied low temperature fluid into the ship side storage unit ST. Flexible liquid flow path (for example, hose H, hoses constituting the first and second liquid inflow / out sections LE1 and LE2), liquefied low-temperature fluid flow path, and merging flow path JTL between the side storage section ST. It is the capacity that can store the entire amount of liquefied low-temperature fluid existing inside the hose.

尚、当該実施形態においては、合流流路JTLは鉛直方向で液化低温流体通流路の上方に設けられている。すなわち、当該実施形態に係る液化低温流体の荷役設備100では、液抜き配管NL0が、液化低温流体を通流するすべての流路よりも、鉛直方向で下方側に設けられている。 In the embodiment, the confluence flow path JTL is provided above the liquefied low-temperature fluid flow path in the vertical direction. That is, in the cargo handling facility 100 for the liquefied low-temperature fluid according to the embodiment, the liquid drain pipe NL0 is provided on the lower side in the vertical direction with respect to all the flow paths through which the liquefied low-temperature fluid flows.

上記第1液抜き配管NL0a及び第2液抜き配管NL0bの液抜き方向での上流側端部は、パージガス(圧送気体の一例)を通流する第6パージガス通流路PL6(圧送気体通流路の一例)に連通接続されている。更に、第6パージガス通流路PL6から流入した圧送気体により圧送された第1、2液抜き配管NL0a、NL0bの液化低温流体を第1、2陸側貯留部LT1、LT2まで一筆書きの流路にて導く一筆書流路(図1で、HLで示す流路)が、液化低温流体通流路にて構成されている。
尚、当該実施形態において、一筆書流路HLとは、上流側から下流側まで液化低温流体を一本の流路で圧送可能な流路を意味する。
The upstream end of the first liquid drain pipe NL0a and the second liquid drain pipe NL0b in the liquid drain direction is a sixth purge gas flow path PL6 (pressure feed gas flow path PL6) through which purge gas (an example of pumping gas) flows. It is connected to one example). Further, the liquefied low-temperature fluids of the first and second liquid draining pipes NL0a and NL0b pumped by the pumped gas flowing from the sixth purge gas passage PL6 are sent to the first and second land side storage portions LT1 and LT2 in a single stroke. The one-stroke calligraphy flow path (the flow path indicated by HL in FIG. 1) led by the above is composed of a liquefied low-temperature fluid flow path.
In the embodiment, the one-stroke calligraphy flow path HL means a flow path capable of pumping a liquefied low-temperature fluid from the upstream side to the downstream side with one flow path.

さて、これまで説明してきた液化低温流体の荷役設備100は、以下の各運転を順次実行することにより、液化低温流体の荷役を行う。尚、図2〜6において、太破線は気体の流れを示し、太実線は液体の流れを示すものとする。
荷役設備100は、図1に示す接続状態が維持された状態で、接続段階で流体通流配管の内部に存在する空気をパージするパージ運転を実行する。当該パージ運転では、図2に示すように、パージガス貯留部PTから吹出されたパージガスが、すべてのパージガス通流路を介して、第1液体通流路LF1、第2液体通流路LF2、第1気体通流路GF1、第2気体通流路GF2及びホースHに導かれ、第2放散弁HV2を除いたすべての放散弁(第1放散弁HV1、第3放散弁HV3、第4放散弁HV4、第5放散弁HV5、第6放散弁HV6)を介して、空気を含むパージガスを大気へ放散する。当該パージ運転では、第2放散弁HV2を除くすべての放散弁及びすべてのパージ弁が開放状態となり、他の弁体は閉止状態となる。
By the way, the cargo handling facility 100 for the liquefied low temperature fluid described so far performs the cargo handling of the liquefied low temperature fluid by sequentially executing each of the following operations. In FIGS. 2 to 6, the thick broken line indicates the flow of gas, and the thick solid line indicates the flow of liquid.
The cargo handling equipment 100 executes a purge operation for purging the air existing inside the fluid flow pipe at the connection stage while the connection state shown in FIG. 1 is maintained. In the purge operation, as shown in FIG. 2, the purge gas blown out from the purge gas storage unit PT passes through all the purge gas passages, the first liquid passage LF1, the second liquid passage LF2, and the second. All the emission valves (1st emission valve HV1, 3rd emission valve HV3, 4th emission valve) led to 1 gas passage GF1, 2nd gas passage GF2 and hose H, except for 2nd emission valve HV2. The purge gas containing air is released to the atmosphere via the HV4, the fifth emission valve HV5, and the sixth emission valve HV6). In the purge operation, all the release valves and all the purge valves except the second release valve HV2 are in the open state, and the other valve bodies are in the closed state.

次に、天然ガス等の低温気体を、流体通流管に対して導入する気体導入運転が実行される。当該気体導入運転では、図3に示すように、船舶側貯留部STから低温気体を、船舶側気体通流路SLa、船舶側流路SL、ホースH、合流流路JTL、第1バイパス流路MF1a、第2バイパス流路MF2a、第1混合流路MF1、第2混合流路MF2、第1気体通流路GF1、第2気体通流路GF2、第1気体流入出部GE1及び第2気体流入出部GE2に導入する。即ち、第1開閉弁V1、第3開閉弁V3、緊急遮断弁EV、第4開閉弁V4、第5開閉弁V5、第1流量調整弁RV1、第2流量調整弁RV2、第7開閉弁V7、第9開閉弁V9、第11開閉弁V11、第13開閉弁V13が開放状態となり、それ以外の弁体が閉止状態となる。尚、第1ポンプP1及び第2ポンプP2が逆流ができないポンプである場合、図示しないバイパス流路を介してポンプをバイパスする形態で、低温気体を導入することになる。
尚、詳細な説明は割愛するが、第1、2陸側貯留部LT1、LT2の内部圧力が船舶側貯留部STの内部圧力よりも高い場合、低温気体が、第1、2陸側貯留部LT1、LT2から船舶側貯留部STへ向かって導入される気体導入運転が実行される。
Next, a gas introduction operation is executed in which a low-temperature gas such as natural gas is introduced into the fluid flow pipe. In the gas introduction operation, as shown in FIG. 3, low-temperature gas is introduced from the ship-side storage unit ST, the ship-side gas passage SLa, the ship-side flow path SL, the hose H, the merging flow path JTL, and the first bypass flow path. MF1a, 2nd bypass flow path MF2a, 1st mixing flow path MF1, 2nd mixing flow path MF2, 1st gas flow path GF1, 2nd gas flow path GF2, 1st gas inflow / outflow part GE1 and 2nd gas It is introduced into the inflow / outflow section GE2. That is, the first on-off valve V1, the third on-off valve V3, the emergency shutoff valve EV, the fourth on-off valve V4, the fifth on-off valve V5, the first flow rate adjusting valve RV1, the second flow rate adjusting valve RV2, and the seventh on-off valve V7. , The 9th on-off valve V9, the 11th on-off valve V11, and the 13th on-off valve V13 are in the open state, and the other valve bodies are in the closed state. When the first pump P1 and the second pump P2 are pumps that do not allow backflow, low-temperature gas is introduced in a form of bypassing the pumps through a bypass flow path (not shown).
Although detailed explanation is omitted, when the internal pressures of the first and second land side storage units LT1 and LT2 are higher than the internal pressure of the ship side storage unit ST, the low temperature gas is the first and second land side storage units. The gas introduction operation introduced from the LT1 and LT2 toward the ship-side storage unit ST is executed.

その後、第1、2陸側貯留部LT1、LT2から液化低温流体を吐出して船舶側貯留部STにて受け入れる液体導入運転が実行される。当該液体導入運転では、図4に示すように、第1、2陸側貯留部LT1、LT2から液化低温流体を、第1液体流入出部LE1、第2液体流入出部LE2、第1液体通流路LF1、第2液体通流路LF2、第1混合流路MF1、第2混合流路MF2、合流流路JTL、ホースH、船舶側流路SL及び船舶側液体通流路SLbを介して、船舶側貯留部STへ導入される。即ち、第10開閉弁V10、第12開閉弁V12、第6開閉弁V6、第8開閉弁V8、第1流量調整弁RV1、第2流量調整弁RV2、第1逆止弁CV1、第2逆止弁CV2、緊急遮断弁EV、第3開閉弁V3、第2開閉弁V2が開放状態となり、それ以外の弁体が閉止状態となる。
当該運転において、必要圧力を第1ポンプP1及び第2ポンプP2にて加圧する形態で、液化低温流体を圧送する。
After that, a liquid introduction operation is executed in which the liquefied low-temperature fluid is discharged from the first and second land-side storage units LT1 and LT2 and received by the ship-side storage unit ST. In the liquid introduction operation, as shown in FIG. 4, liquefied low-temperature fluid is supplied from the first and second land-side storage units LT1 and LT2, the first liquid inflow / outflow part LE1, the second liquid inflow / out part LE2, and the first liquid passage. Via the flow path LF1, the second liquid flow path LF2, the first mixing flow path MF1, the second mixing flow path MF2, the merging flow path JTL, the hose H, the ship side flow path SL, and the ship side liquid flow path SLb. , Introduced to the ship side storage unit ST. That is, the 10th on-off valve V10, the 12th on-off valve V12, the 6th on-off valve V6, the 8th on-off valve V8, the 1st flow rate adjusting valve RV1, the 2nd flow rate adjusting valve RV2, the 1st check valve CV1, and the 2nd check valve. The stop valve CV2, the emergency shutoff valve EV, the third on-off valve V3, and the second on-off valve V2 are in the open state, and the other valve bodies are in the closed state.
In this operation, the liquefied low-temperature fluid is pumped in a form in which the required pressure is pressurized by the first pump P1 and the second pump P2.

液化低温流体の船舶側貯留部STへの導入が完了すると、流体通流管の内部に存在する液化低温流体の液抜きを行う液抜き運転が実行される。当該液抜き運転では、図5に示すように、液化低温流体通流路及び合流流路JTLに貯留されている液化低温流体を、第1、2液抜き配管NL0a、NL0bへ流入して貯留する。即ち、放散弁HV1〜HV6、パージ弁PV1〜PV8、PV9a、PV9b、第1開閉弁V1、第2開閉弁V2、第10開閉弁V10〜第13開閉弁V13、第2液抜き開閉弁DV2、及び第4液抜き開閉弁DV4を閉止状態とし、第1液抜き開閉弁DV1及び第3液抜き開閉弁DV3を含む残りの弁体を開放状態として、液化低温流体を第1、2液抜き配管NL0a、NL0bへ流入させる。 When the introduction of the liquefied low-temperature fluid into the ship-side storage section ST is completed, a bleeding operation for draining the liquefied low-temperature fluid existing inside the fluid flow pipe is executed. In the liquid draining operation, as shown in FIG. 5, the liquefied low-temperature fluid stored in the liquefied low-temperature fluid flow path and the confluence flow path JTL flows into the first and second liquid drainage pipes NL0a and NL0b and is stored. .. That is, the dissipation valves HV1 to HV6, the purge valves PV1 to PV8, PV9a, PV9b, the first on-off valve V1, the second on-off valve V2, the tenth on-off valve V10 to the thirteenth on-off valve V13, the second liquid-draining on-off valve DV2, And the 4th liquid draining on-off valve DV4 is closed, the remaining valve body including the 1st liquid draining on-off valve DV1 and the 3rd liquid draining on-off valve DV3 is in the open state, and the liquefied low temperature fluid is put into the 1st and 2nd liquid draining pipes. It flows into NL0a and NL0b.

最後に、図6に示すような弁体の開閉状態を維持した状態で、パージガス貯留部PTに貯留されるパージガスを用いて、第1、2液抜き配管NL0a、NL0bの内部をパージするパージ運転を実行する。当該パージ運転にてパージされた第1、2液抜き配管NL0a、NL0bの内部の液化低温流体は、液化低温流体通流路としての第1液体通流路LF1及び第2液体通流路LF2を通流して、第1、2陸側貯留部LT1、LT2へ返送される。 Finally, a purge operation for purging the insides of the first and second liquid drain pipes NL0a and NL0b using the purge gas stored in the purge gas storage unit PT while maintaining the open / closed state of the valve body as shown in FIG. To execute. The liquefied low-temperature fluid inside the first and second liquid drain pipes NL0a and NL0b purged by the purge operation passes through the first liquid passage LF1 and the second liquid passage LF2 as the liquefied low-temperature fluid passage. It passes through and is returned to the first and second land side storage units LT1 and LT2.

〔第2実施形態〕
当該第2実施形態に係る液化低温流体の荷役設備100は、図8に示すように、予冷運転の際に発生する低温気体を第1、2陸側貯留部LT1、LT2の夫々へ返送する複数の第1、2返送流路RL1、RL2を備える点、及び流体通流配管に滞留した液化低温流体を抜き取る液抜き配管NL0を備える点に特徴があるので、その点に重点をおいて説明し、第1実施形態と同一の構成については同一の符号を付すと共にその説明を割愛することがある。
尚、第1実施形態においては、第1液体通流路LF1と第1気体通流路GF1とが合流して第1混合流路MF1に連通接続する構成、及び第2液体通流路LF2と第2気体通流路GF2とが合流して第2混合流路MF2に連通接続する構成を示したが、当該実施形態においては、第1気体通流路GF1は第1液体通流路LF1へ合流せず、更には、第2気体通流路GF2は第2液体通流路LF2へ合流しない構成を採用している。
[Second Embodiment]
As shown in FIG. 8, the cargo handling facility 100 for the liquefied low-temperature fluid according to the second embodiment returns the low-temperature gas generated during the precooling operation to the first and second land-side storage units LT1 and LT2, respectively. The first and second return flow paths RL1 and RL2 are provided, and the liquid drainage pipe NL0 for extracting the liquefied low-temperature fluid accumulated in the fluid flow pipe is provided, so the explanation will be focused on that point. , The same components as those in the first embodiment are designated by the same reference numerals and the description thereof may be omitted.
In the first embodiment, the first liquid flow path LF1 and the first gas flow path GF1 are merged and connected to the first mixing flow path MF1 and the second liquid flow path LF2. Although the configuration is shown in which the second gas flow path GF2 merges with the second mixing flow path MF2 and is communicated with and connected to the second mixing flow path MF2, in the embodiment, the first gas flow path GF1 goes to the first liquid flow path LF1. Furthermore, the second gas flow path GF2 does not merge with the second liquid flow path LF2.

一端が第1返送開閉弁RTV1を介して合流流路JTLへ接続すると共に他端が第1気体側返送流路RL1bを介して第1気体通流路GF1の第7開閉弁V7の下流側出口に接続される第1返送流路RL1が設けられている。また、当該第1返送流路RL1の他端には、第1液体通流路LF1の第6開閉弁V6の下流側出口に接続される第1液体側返送流路RL1aが連通接続されており、当該第1液体側返送流路RL1aには、第3返送開閉弁RTV3が設けられている。
更には、一端が第2返送開閉弁RTV2を介して合流流路JTLへ接続すると共に他端が第2気体側返送流路RL2bを介して第2気体通流路GF2の第9開閉弁V9の下流側出口に接続される第2返送流路RL2が設けられている。また、当該第2返送流路RL2の他端には、第2液体通流路LF2の第8開閉弁V8の下流側出口に接続される第2液体側返送流路RL2aが連通接続されており、当該第2液体側返送流路RL2aには、第4返送開閉弁RTV4が設けられている。
One end is connected to the confluence flow path JTL via the first return on-off valve RTV1, and the other end is connected to the downstream side outlet of the seventh on-off valve V7 of the first gas passage GF1 via the first gas side return flow path RL1b. A first return flow path RL1 connected to is provided. Further, at the other end of the first return flow path RL1, a first liquid side return flow path RL1a connected to the downstream outlet of the sixth on-off valve V6 of the first liquid flow path LF1 is communicatively connected. A third return on-off valve RTV3 is provided in the first liquid side return flow path RL1a.
Further, one end is connected to the confluence flow path JTL via the second return on-off valve RTV2, and the other end is connected to the ninth on-off valve V9 of the second gas passage flow path GF2 via the second gas side return flow path RL2b. A second return flow path RL2 connected to the downstream outlet is provided. Further, at the other end of the second return flow path RL2, a second liquid side return flow path RL2a connected to the downstream outlet of the eighth on-off valve V8 of the second liquid flow path LF2 is communicatively connected. The second liquid side return flow path RL2a is provided with a fourth return on-off valve RTV4.

以上の構成を採用することにより、液化低温流体の導入初期において、液化低温流体通流路としての第1液体通流路LF1と第1混合流路MF1、及び合流流路JTLとから液化低温流体が気化することにより発生する低温気体を、第1返送流路RL1、第1液体側返送流路RL1a及び第1気体側返送流路RL1bを介して、第1気体通流路GF1へ導き、第1陸側貯留部LT1へ返送することができる。
更に、液化低温流体通流路としての第2液体通流路LF2と第2混合流路MF2、及び合流流路JTLとから液化低温流体が気化することにより発生する低温気体を、第2返送流路RL2、第2液体側返送流路RL2a及び第2気体側返送流路RL2bを介して、第2気体通流路GF2へ導き、第2陸側貯留部LT2へ返送することができる。
By adopting the above configuration, at the initial stage of introduction of the liquefied low-temperature fluid, the liquefied low-temperature fluid is formed from the first liquid flow path LF1 and the first mixing flow path MF1 as the liquefied low-temperature fluid flow path, and the merging flow path JTL. The low-temperature gas generated by vaporization of the gas is guided to the first gas flow path GF1 via the first return flow path RL1, the first liquid side return flow path RL1a, and the first gas side return flow path RL1b. 1 It can be returned to the land side storage unit LT1.
Further, the low temperature gas generated by the vaporization of the liquefied low temperature fluid from the second liquid passage LF2 and the second mixing flow path MF2 as the liquefied low temperature fluid passage and the confluence flow JTL is returned to the second flow. It can be guided to the second gas flow path GF2 via the path RL2, the second liquid side return flow path RL2a, and the second gas side return flow path RL2b, and can be returned to the second land side storage unit LT2.

当該低温気体の返送においては、第1返送開閉弁RTV1〜第4返送開閉弁RTV4、及び第1、2逆止弁CV1、CV2、第1、2流量調整弁RV1、RV2、第6開閉弁V6〜第13開閉弁V13を開放状態とし、他の弁体を閉止状態とする。 In the return of the low temperature gas, the first return on-off valve RTV1 to the fourth return on-off valve RTV4, and the first and second check valves CV1, CV2, the first and second flow control valves RV1, RV2, and the sixth on-off valve V6. ~ The thirteenth on-off valve V13 is opened, and the other valve bodies are closed.

尚、当該第2実施形態では、流体通流管として、液化低温流体通流路の鉛直方向で下方に位置する状態で、第1、2液抜き開閉弁DV1、DV2を介して液化低温流体通流路に連通接続される液抜き配管NL0を備え、当該液抜き配管NL0には第6パージガス通流路PL6を介してパージガスを圧送可能に構成されている。
当該液抜き配管NL0を用いた液抜き運転については、第4実施形態において詳述する。
In the second embodiment, the liquefied low-temperature fluid passage is performed through the first and second liquid draining on-off valves DV1 and DV2 in a state where the fluid passage pipe is located downward in the vertical direction of the liquefied low-temperature fluid passage. A fluid draining pipe NL0 that is communicated with and connected to the flow path is provided, and the purge gas can be pumped to the drainage pipe NL0 via the sixth purge gas passage path PL6.
The liquid draining operation using the liquid draining pipe NL0 will be described in detail in the fourth embodiment.

〔第3実施形態〕
当該第3実施形態に係る液化低温流体の荷役設備100は、陸側貯留部として、内部の充填容量に余裕のある回収用陸側貯留部LT3を接続可能に構成されており、例えば、液化低温流体等を当該回収用陸側貯留部LT3へ回収する回収運転を実行できる点を特徴としている。以下、当該特徴に重点をおいて説明し、第1実施形態と同一の構成については同一の符号を付すと共にその説明を割愛することがある。
尚、第1実施形態においては、混合流路MF1、MF2の合流流路JTLへの接続部位においては、逆止弁CV1、CV2と、逆止弁CV1、CV2をバイパスするバイパス流路Mf1a、Mf2aと、当該バイパス流路Mf1a、Mf2aを開閉する開閉弁V4、V5を設ける構成を示したが、当該実施形態においては、これらの構成は省略している。
[Third Embodiment]
The cargo handling facility 100 for the liquefied low-temperature fluid according to the third embodiment is configured to be able to connect the recovery land-side storage unit LT3 having a sufficient internal filling capacity as the land-side storage unit. It is characterized in that a recovery operation for recovering a fluid or the like to the land side storage unit LT3 for recovery can be executed. Hereinafter, the features will be described with emphasis, and the same configurations as those in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.
In the first embodiment, at the connection site of the mixing flow paths MF1 and MF2 to the merging flow path JTL, the check valves CV1 and CV2 and the bypass flow paths Mf1a and Mf2a bypassing the check valves CV1 and CV2 Although the configuration is shown in which the on-off valves V4 and V5 for opening and closing the bypass flow paths Mf1a and Mf2a are provided, these configurations are omitted in the embodiment.

当該第3実施形態においては、フランジ等の接続に関する詳細構成については省略するが、図9に示すように、回収用陸側貯留部LT3は、第16開閉弁V16を有して液体を流入出する第3液体流入出部LE3を備えると共に、第17開閉弁V17を有して気体を流入出する第3気体流入出部GE3を備える。
更に、回収用陸側貯留部LT3を荷役の用に供するための第2子移動体CM2が設けられている。
第2子移動体CM2は、第3液体流入出部LE3と連通接続すると共に他端に第14開閉弁V14を有する第3液体通流路LF3と、第3気体流入出部GE3と連通接続すると共に他端に第15開閉弁V15を有する第3気体通流路GF3とを備え、両者は、他端側にて接続して第3混合流路MF3に連通接続される。第3混合流路MF3には、第3混合流路MF3を通流する流体の流量を調整する第3流量調整弁RV3が設けられており、その下流端が、他の移動体からの流体が通流する合流流路JTLに接続されている。
更に、第3液体通流路LF3及び第3気体通流路GF3の夫々には、内部の気体を放散するための第7放散弁HV7、第8放散弁HV8が記載の順に設けられている。
また、第3液体通流路LF3は、第7パージ弁PV7が設けられる第7パージガス通流路PL7を介して第1パージガス通流路PL1に連通接続されると共に、第3気体通流路GF3は、第8パージ弁PV8が設けられる第8パージガス通流路PL8を介して第1パージガス通流路PL1に連通接続されている。
In the third embodiment, the detailed configuration regarding the connection of the flange and the like is omitted, but as shown in FIG. 9, the recovery land side storage unit LT3 has the 16th on-off valve V16 to flow in and out of the liquid. A third liquid inflow / outflow section LE3 is provided, and a third gas inflow / outflow section GE3 having a 17th on-off valve V17 to flow in and out of gas is provided.
Further, a second child moving body CM2 for using the land side storage unit LT3 for recovery for cargo handling is provided.
The second child moving body CM2 communicates with the third liquid inflow / outflow portion LE3 and also communicates with the third liquid passage passage LF3 having the 14th on-off valve V14 at the other end and the third gas inflow / outflow portion GE3. A third gas flow path GF3 having a 15th on-off valve V15 is provided at the other end, and both are connected at the other end side and communicated with the third mixing flow path MF3. The third mixing flow path MF3 is provided with a third flow rate adjusting valve RV3 for adjusting the flow rate of the fluid flowing through the third mixing flow path MF3, and the downstream end thereof is a fluid from another moving body. It is connected to the confluence flow path JTL through which it flows.
Further, each of the third liquid passage LF3 and the third gas passage GF3 is provided with a seventh emission valve HV7 and an eighth emission valve HV8 for dissipating the gas inside in the order described.
Further, the third liquid passage LF3 is communicatively connected to the first purge gas passage PL1 via the seventh purge gas passage PL7 provided with the seventh purge valve PV7, and the third gas passage GF3 Is communicated with and connected to the first purge gas passage PL1 via the eighth purge gas passage PL8 provided with the eighth purge valve PV8.

以上の構成を採用することにより、回収用陸側貯留部LT3を合流流路JTLとを接続して液化低温流体を通流する回収用液化低温流体通流路として第3混合流路MF3及び第3液体通流路LF3を備えることとなり、第1、2陸側貯留部LT1、LT2から流出した液化低温流体を回収用液化低温流体通流路を介して回収用陸側貯留部LT3へ回収する回収運転を実行可能に構成されている。
当該回収運転は、例えば、図9に示すように、第1、2ポンプP1、P2が、最低吐出量を下回る低流量を合流流路JTLへ流出する場合に、最低吐出量から低流量を減算した残流量を、回収用陸側貯留部LT3へ回収するミニフロー運転を含む運転である。図9に示すミニフロー運転では、緊急遮断弁EVが閉止状態となっているが、当該緊急遮断弁EVを開放状態とすることで、低流量を船舶側貯留部STへ導くことができる。
By adopting the above configuration, the third mixing flow path MF3 and the third mixing flow path MF3 and the third mixing flow path MF3 and the third mixing flow path MF3 and the second 3 The liquid flow path LF3 is provided, and the liquefied low-temperature fluid flowing out from the first and second land-side storage sections LT1 and LT2 is recovered to the recovery land-side storage section LT3 via the recovery liquefied low-temperature fluid flow path. It is configured to enable recovery operation.
In the recovery operation, for example, as shown in FIG. 9, when the first and second pumps P1 and P2 flow out a low flow rate lower than the minimum discharge amount to the confluence flow path JTL, the low flow rate is subtracted from the minimum discharge amount. This operation includes a mini-flow operation in which the remaining flow rate is collected in the recovery land side storage unit LT3. In the mini-flow operation shown in FIG. 9, the emergency shutoff valve EV is in the closed state, but by opening the emergency shutoff valve EV, a low flow rate can be guided to the ship side storage unit ST.

尚、当該第3実施形態では、流体通流管として、液化低温流体通流路の鉛直方向で下方に位置する状態で、第1、2、3液抜き開閉弁DV1、DV2、DV3を介して液化低温流体通流路に連通接続される液抜き配管NL0を備え、当該液抜き配管NL0には第6パージガス通流路PL6を介してパージガスを圧送可能に構成されている。
当該液抜き配管NL0を用いた液抜き運転については、第4実施形態において詳述する。
In the third embodiment, the fluid flow pipe is located downward in the vertical direction of the liquefied low-temperature fluid passage through the first, second, and third liquid drainage on-off valves DV1, DV2, and DV3. A liquid drain pipe NL0 that is communicated with and connected to the liquefied low-temperature fluid passage is provided, and the purge gas can be pumped to the liquid drain pipe NL0 via the sixth purge gas passage PL6.
The liquid draining operation using the liquid draining pipe NL0 will be described in detail in the fourth embodiment.

〔第4実施形態〕
当該第4実施形態にあっては、図10〜15に示すように、第3実施形態に開示の構成に加え、流体通流管にて発生した低温気体を陸側貯留部LT1、LT2、LT3へ返送する第3返送流路RL3を備える点を特徴とするため、当該特徴に重点をおいて説明し、第3実施形態と同一の構成については同一の符号を付すと共にその説明を割愛することがある。
尚、第3実施形態においては、第1液体通流路LF1と第1気体通流路GF1とが合流して第1混合流路MF1に連通接続する構成、第2液体通流路LF2と第2気体通流路GF2とが合流して第2混合流路MF2に連通接続する構成、第3液体通流路LF3と第3気体通流路GF3とが合流して第3混合流路MF3に連通接続する構成を示したが、当該第4実施形態においては、第1気体通流路GF1は第1液体通流路LF1へ合流せず、第2気体通流路GF2は第2液体通流路LF2へ合流せず、更には、第3気体通流路GF3は第3液体通流路LF3へ合流しない構成を採用している。
[Fourth Embodiment]
In the fourth embodiment, as shown in FIGS. 10 to 15, in addition to the configuration disclosed in the third embodiment, the low temperature gas generated in the fluid flow pipe is stored in the land side storage portions LT1, LT2, LT3. Since it is characterized by having a third return flow path RL3 for returning to, the description will be focused on the feature, and the same components as those in the third embodiment will be designated by the same reference numerals and the description thereof will be omitted. There is.
In the third embodiment, the first liquid passage LF1 and the first gas passage GF1 are merged and connected to the first mixing passage MF1, the second liquid passage LF2 and the first. A configuration in which the two gas flow paths GF2 merge and communicate with the second mixing flow path MF2, and the third liquid flow path LF3 and the third gas flow path GF3 merge into the third mixing flow path MF3. Although the configuration for communicating and connecting is shown, in the fourth embodiment, the first gas passage GF1 does not merge with the first liquid passage LF1, and the second gas passage GF2 flows through the second liquid. Further, the third gas passage GF3 does not merge with the third liquid passage LF3, and the third gas passage GF3 does not merge with the third liquid passage LF3.

第3返送流路RL3は、その下流端がこれまで説明してきた第2放散弁HV2を介して合流流路JTLに接続されると共に、その上流端が、第1液体通流路LF1の第6開閉弁V6の下流側出口、第1気体通流路GF1の第7開閉弁V7の下流側出口、第2液体通流路LF2の第8開閉弁V8の下流側出口、第2気体通流路GF2の第9開閉弁V9の下流側出口、第3気体通流路GF3の第15開閉弁V15の下流側出口の夫々に、連通接続している。尚、第1液体通流路LF1の第6開閉弁V6の下流側出口への接続部位には第5返送開閉弁RTV5が設けられ、第2液体通流路LF2の第8開閉弁V8の下流側出口への接続部位には第6返送開閉弁RTV6が設けられている。 The downstream end of the third return flow path RL3 is connected to the confluence flow path JTL via the second dissipation valve HV2 described above, and the upstream end thereof is the sixth of the first liquid flow path LF1. Downstream outlet of on-off valve V6, downstream outlet of 7th on-off valve V7 of 1st gas passage GF1, downstream outlet of 8th on-off valve V8 of 2nd liquid passage LF2, 2nd gas passage The downstream outlet of the 9th on-off valve V9 of the GF2 and the downstream outlet of the 15th on-off valve V15 of the third gas passage GF3 are connected to each other. A fifth return on-off valve RTV5 is provided at a connection portion of the first liquid passage LF1 to the downstream outlet of the sixth on-off valve V6, and is downstream of the eighth on-off valve V8 of the second liquid passage LF2. A sixth return on-off valve RTV6 is provided at the connection site to the side outlet.

更に、流体通流管として、液化低温流体通流路の鉛直方向で下方に位置する状態で、第1、2、3液抜き開閉弁DV1、DV2、DV3を介して液化低温流体通流路に連通接続される液抜き配管NL0を備え、当該液抜き配管NL0には第6パージガス通流路PL6を介してパージガスを圧送可能に構成されている。
具体的には、第1混合流路MF1の鉛直方向での最下端と液抜き配管NL0との接続部位に第1液抜き開閉弁DV1を備え、第2混合流路MF2の鉛直方向での最下端と液抜き配管NL0との接続部位に第2液抜き開閉弁DV2を備え、第3混合流路MF3の鉛直方向での最下端と液抜き配管NL0との接続部位に第3液抜き開閉弁DV3を備えており、第6パージガス通流路PL6には、第9パージ弁PV9が設けられている。
Further, as a fluid communication pipe, in a state of being located downward in the vertical direction of the liquefied low-temperature fluid passage, the liquefied low-temperature fluid passage can be reached via the first, second, and third liquid draining on-off valves DV1, DV2, and DV3. A liquid draining pipe NL0 that is communicated and connected is provided, and the purge gas can be pumped to the liquid draining pipe NL0 via the sixth purge gas passage PL6.
Specifically, the first liquid draining on-off valve DV1 is provided at the connection portion between the lowermost end of the first mixing flow path MF1 in the vertical direction and the liquid draining pipe NL0, and the maximum in the vertical direction of the second mixing flow path MF2. A second liquid draining on-off valve DV2 is provided at the connection site between the lower end and the liquid draining pipe NL0, and a third liquid draining on-off valve is provided at the connecting part between the lowermost end of the third mixing flow path MF3 in the vertical direction and the liquid draining pipe NL0. A DV3 is provided, and a ninth purge valve PV9 is provided in the sixth purge gas passage PL6.

第4実施形態に係る荷役設備100にあっては、第1実施形態において示したパージ運転を実行した後、図10に示す弁の開閉状態において、気体導入運転及び液体導入運転が順次実行される。尚、当該第4実施形態における液体導入運転では、第3返送流路RL3、及び第1気体通流路GF1と第2気体通流路GF2と第3気体通流路GF3とを介して、発生した低温気体が第1、2陸側貯留部LT1、LT2及び回収用陸側貯留部LT3へ返送される。 In the cargo handling facility 100 according to the fourth embodiment, after the purge operation shown in the first embodiment is executed, the gas introduction operation and the liquid introduction operation are sequentially executed in the open / closed state of the valve shown in FIG. .. In the liquid introduction operation in the fourth embodiment, the gas is generated via the third return flow path RL3, the first gas flow path GF1, the second gas flow path GF2, and the third gas flow path GF3. The low-temperature gas is returned to the first and second land-side storage units LT1 and LT2 and the recovery land-side storage unit LT3.

液体導入運転の後、第1ポンプP1及び第2ポンプP2を作動させることになるが、船舶側貯留部STの内部圧力が第1、2陸側貯留部LT1、LT2の許容圧力を超えている場合、船舶側貯留部STの気体が第1、2陸側貯留部LT1、LT2に流れ込まないように、緊急遮断弁EVを閉止している必要がある。第1ポンプP1及び第2ポンプP2の昇圧に時間を要する場合、第1ポンプP1及び第2ポンプP2の吐出圧力(+高低差に伴う圧力+圧損)が船舶の圧力以上になるまで、緊急遮断弁EVは閉止している必要がある。
そこで、図11に示す回路状態において実行される吐出圧力変更運転においては、緊急遮断弁EVを閉止した状態で、第1ポンプP1及び第2ポンプP2にて液化低温流体を通流しながら吐出圧力を徐々に昇圧しつつ、吐出された液化低温流体を回収用陸側貯留部LT3に回収する。
尚、第1ポンプP1及び第2ポンプP2の降圧時においても同様の処理が実行される。
After the liquid introduction operation, the first pump P1 and the second pump P2 are operated, but the internal pressure of the ship side storage section ST exceeds the allowable pressures of the first and second land side storage sections LT1 and LT2. In this case, it is necessary to close the emergency shutoff valve EV so that the gas in the ship-side storage section ST does not flow into the first and second land-side storage sections LT1 and LT2. If it takes time to boost the pressure of the first pump P1 and the second pump P2, the emergency shutoff is performed until the discharge pressure (+ pressure due to height difference + pressure loss) of the first pump P1 and the second pump P2 exceeds the pressure of the ship. The valve EV needs to be closed.
Therefore, in the discharge pressure changing operation executed in the circuit state shown in FIG. 11, the discharge pressure is applied while the liquefied low-temperature fluid is passed through the first pump P1 and the second pump P2 with the emergency shutoff valve EV closed. While gradually increasing the pressure, the discharged liquefied low-temperature fluid is recovered in the recovery land side storage unit LT3.
The same process is executed when the first pump P1 and the second pump P2 are stepped down.

当該運転を実行して、第1ポンプP1及び第2ポンプP2の吐出圧が、船舶側貯留部STの内部圧力を超えた所望の圧力となった時点で、図12に示すように、緊急遮断弁EV、第3開閉弁V3、第2開閉弁V2を開放状態へ移行すると共に、第3流量調整弁RV3と第14開閉弁V14と第16開閉弁V16を閉止状態へ移行する吐出先変更運転を実行した後、液化低温流体を船舶側貯留部STへ導入する定常荷役運転を実行する。 When the operation is executed and the discharge pressures of the first pump P1 and the second pump P2 reach a desired pressure exceeding the internal pressure of the ship-side storage unit ST, an emergency shutoff is performed as shown in FIG. Discharge destination change operation that shifts the valve EV, the third on-off valve V3, and the second on-off valve V2 to the open state, and shifts the third flow rate adjusting valve RV3, the 14th on-off valve V14, and the 16th on-off valve V16 to the closed state. After executing the above, the steady cargo handling operation for introducing the liquefied low-temperature fluid into the ship-side storage unit ST is executed.

定常荷役運転による荷役が完了すると、再び、吐出先変更運転にて液化低温流体の吐出先を回収用陸側貯留部LT3へ変更し且つ吐出圧力変更運転にて第1ポンプP1及び第2ポンプP2の吐出圧の降圧処理を実行した後、図13に示す回路状態において、パージガス貯留部PTのパージガスを、主パージガス通流路PL0及び第1パージガス通流路PL1を介して、ホースH、船舶側流路SL、船舶側液体通流路SLbに通流させ、その内部の液化低温流体を船舶側貯留部STへ圧送する第1残液処理運転を実行する。
更に、図13に示す回路状態に示すように、第1液抜き開閉弁DV1、第2液抜き開閉弁DV2、第3液抜き開閉弁DV3を開放状態として、合流流路JTL、第1混合流路MF1と第2混合流路MF2と第3混合流路MF3、第1液体通流路LF1と第2液体通流路LF2と第3液体通流路LF3に滞留する液化低温流体を、液抜き配管NL0へ導き、その後、図14に示す回路状態にて、液が抜かれた各流路に、第1、2陸側貯留部LT1、LT2及び回収用陸側貯留部LT3からの低温気体を充填する第2残液処理運転を実行する。
最後に、図15に示す回路状態において、パージガス貯留部PTから主パージガス通流路PL0、第1パージガス通流路PL1を介してパージガスを、液抜き配管NL0に導き、液抜き配管NL0に貯留される液化低温流体を、第3液体通流路LF3を介して回収用陸側貯留部LT3に回収する第3残液処理運転を実行する。即ち、第1実施形態と同様に一筆書きの要領で残液処理を実行する。
尚、第3残液処理運転では、回路構成を工夫することにより、残液を第1、2陸側貯留部LT1、LT2へ返送するようにしても構わない。
When the cargo handling by the steady cargo handling operation is completed, the discharge destination of the liquefied low-temperature fluid is changed to the recovery land side storage unit LT3 again by the discharge destination change operation, and the first pump P1 and the second pump P2 are changed by the discharge pressure change operation. After executing the step-down processing of the discharge pressure of, in the circuit state shown in FIG. 13, the purge gas of the purge gas storage unit PT is passed through the main purge gas flow path PL0 and the first purge gas flow path PL1 to the hose H and the ship side. The first residual liquid treatment operation is executed in which the liquefied low-temperature fluid is passed through the flow path SL and the ship-side liquid flow path SLb and pumped to the ship-side storage unit ST.
Further, as shown in the circuit state shown in FIG. 13, the first liquid draining on-off valve DV1, the second liquid draining on-off valve DV2, and the third liquid-draining on-off valve DV3 are opened, and the merging flow path JTL and the first mixed flow flow. Drain the liquefied low-temperature fluid that stays in the passage MF1, the second mixing flow path MF2, the third mixing flow path MF3, the first liquid flow path LF1, the second liquid flow path LF2, and the third liquid flow path LF3. It is guided to the pipe NL0, and then, in the circuit state shown in FIG. 14, each flow path from which the liquid has been drained is filled with low-temperature gas from the first and second land-side storage units LT1 and LT2 and the recovery land-side storage unit LT3. The second residual liquid treatment operation is executed.
Finally, in the circuit state shown in FIG. 15, the purge gas is guided from the purge gas storage unit PT to the liquid drain pipe NL0 via the main purge gas flow path PL0 and the first purge gas flow path PL1 and stored in the liquid drain pipe NL0. A third residual liquid treatment operation is executed in which the liquefied low-temperature fluid is recovered in the recovery land side storage unit LT3 via the third liquid flow path LF3. That is, the residual liquid treatment is executed in the same manner as in the first embodiment.
In the third residual liquid treatment operation, the residual liquid may be returned to the first and second land side storage units LT1 and LT2 by devising the circuit configuration.

〔別実施形態〕
(1)船舶との間で荷役される液化低温流体を貯留する陸側貯留部として、上記実施形態では、タンクローリーを例示した。しかしながら、当該陸側貯留部は、陸地に設けられる固定式の貯留タンクの他、水上に配置されたタンカーであっても構わない。
[Another Embodiment]
(1) In the above embodiment, a tank lorry has been exemplified as a land-side storage unit for storing a liquefied low-temperature fluid to be handled with a ship. However, the land-side storage unit may be a tanker placed on the water in addition to a fixed storage tank provided on land.

(2)更に、図示は省略するが、移動体の夫々には、第1、2陸側貯留部LT1、LT2から圧送されてきた液化低温流体を空気との熱交換により加熱する加熱蒸発器を第1ポンプP1及び第2ポンプP2に替えて圧送手段として備えると共に、当該蒸発により昇圧した天然ガス等の低温気体を第1、2陸側貯留部LT1、LT2へ返送する返送路を備え、第1、2陸側貯留部LT1、LT2からの圧力を所望の圧力へ制御する構成を採用することができる。
尚、当該加熱蒸発器にて生成された天然ガス等の低温流体は、燃料として親移動体PMに備えられる発電機に供給することができる。
尚、移動体に組み込まずに独立して設けてある発電機に対して、低温流体を供給しても構わない。
(2) Further, although not shown, each of the moving bodies is provided with a heating evaporator that heats the liquefied low-temperature fluid pumped from the first and second land-side storage portions LT1 and LT2 by heat exchange with air. In addition to being provided as a pumping means in place of the first pump P1 and the second pump P2, it is also provided with a return path for returning low-temperature gas such as natural gas boosted by the evaporation to the first and second land side storage units LT1 and LT2. It is possible to adopt a configuration in which the pressure from the 1st and 2nd land side storage portions LT1 and LT2 is controlled to a desired pressure.
The low-temperature fluid such as natural gas generated by the heating evaporator can be supplied as fuel to the generator provided in the parent moving body PM.
It should be noted that the low temperature fluid may be supplied to the generator which is independently provided without being incorporated in the moving body.

(3)上記実施形態において、移動体の夫々は、単一の陸側貯留部に連通接続される構成を示したが、一の移動体に対して、複数の陸側貯留部を連通接続する構成を採用することもできる。 (3) In the above embodiment, each of the moving bodies has been shown to be communicatively connected to a single land-side storage unit, but a plurality of land-side storage units are communicatively connected to one moving body. The configuration can also be adopted.

(4)子移動体CMが有する第2ポンプP2による液化低温流体の最大圧送流量は、親移動体PMが有する第1ポンプP1による液化低温流体の最大圧送流量よりも少ないものを採用しても構わない。そして、親移動体PMの第1ポンプP1を船舶側貯留部STへの液化低温流体を荷役する荷役運転に稼働し、子移動体CMの第2ポンプP2のみを、流体通流管や船舶のタンク等を予冷する予冷運転に稼働する構成を採用しても構わない。
ただし、子移動体CMの第2ポンプP2は、荷役運転時に稼動させても構わない。このように各ポンプの役割を明確にすることで、ポンプに要求する吐出流量の範囲を限定することができ、設備コストの低減を図ることができる。
(4) Even if the maximum pumping flow rate of the liquefied low-temperature fluid by the second pump P2 of the child moving body CM is smaller than the maximum pumping flow rate of the liquefied low-temperature fluid by the first pump P1 of the parent moving body PM. I do not care. Then, the first pump P1 of the parent moving body PM is operated for cargo handling operation to handle the liquefied low-temperature fluid to the storage unit ST on the ship side, and only the second pump P2 of the child moving body CM is used for the fluid flow pipe or the ship. A configuration that operates in a precooling operation for precooling a tank or the like may be adopted.
However, the second pump P2 of the child moving body CM may be operated during cargo handling operation. By clarifying the role of each pump in this way, the range of the discharge flow rate required for the pump can be limited, and the equipment cost can be reduced.

(5)上記実施形態では、荷役設備100において、一の親移動体PMを備える構成を示した。しかしながら、二以上の親移動体PMを備える構成を採用しても構わない。
そして、親移動体PM同士を離間した場所に配設した状態で、親移動体PMの夫々が各別に、異なる船舶Sとの間で液化低温流体の荷役を実行するように構成しても構わない。
また、親移動体PMの制御装置C同士が、互いに通信して主従関係を構築可能に構成されていても構わない。
(5) In the above embodiment, the cargo handling facility 100 is provided with one parent moving body PM. However, a configuration including two or more parent moving bodies PM may be adopted.
Then, in a state where the parent moving bodies PM are arranged at a distance from each other, each of the parent moving bodies PM may be configured to separately carry out cargo handling of the liquefied low-temperature fluid with a different ship S. Absent.
Further, the control devices C of the parent moving body PM may be configured to communicate with each other to establish a master-slave relationship.

(6)上記第1〜第4実施形態において、第1ポンプP1をバイパスするポンプバイパス流路を設ける構成を採用しても構わない。
当該構成を採用することで、第1ポンプP1が下流側から上流側への逆流が許容されないポンプである場合にも、ポンプバイパス流路を介して下流側から上流側へ流体を通流させることができる。
また、第1ポンプP1が、最低吐出量を下回る低流量を合流流路JTLへ流出する場合に、最低吐出量から最小流量を減算した残流量を、ポンプバイパス流路へ通流するミニフロー運転を実行することができる。
(6) In the first to fourth embodiments, a configuration in which a pump bypass flow path that bypasses the first pump P1 may be provided may be adopted.
By adopting this configuration, even when the first pump P1 is a pump that does not allow backflow from the downstream side to the upstream side, the fluid can flow from the downstream side to the upstream side through the pump bypass flow path. Can be done.
Further, when the first pump P1 flows out a low flow rate lower than the minimum discharge amount to the confluence flow path JTL, a mini-flow operation in which the residual flow rate obtained by subtracting the minimum flow rate from the minimum discharge amount is passed through the pump bypass flow path. Can be executed.

(7)上記実施形態にあっては、親移動体と子移動体との双方を含む構成例を示したが、親移動体が単体の構成であっても構わない。
また、陸側移動体としてのタンクローリーにつても、単体の構成を好適に採用することができる。
(7) In the above embodiment, the configuration example including both the parent moving body and the child moving body is shown, but the parent moving body may be a single configuration.
Further, as for the tank lorry as a land-side moving body, a single configuration can be preferably adopted.

(8)上記実施形態において、液抜き配管NL0に貯留された液化低温流体は、パージガス貯留部PTに貯留されたパージガスにより圧送する形態で、陸側貯留部LT1、LT2、又は回収用陸側貯留部LT3へ返送される構成例を示した。
他の構成として、船舶側貯留部STに貯留されるBOG(低温気体の一例)にて、液抜き配管NL0に貯留された液化低温流体を圧送するよう構成しても構わない。
この場合、船舶側気体通流路SLaを含む船舶側流路SL、及び合流流路JTLが圧送気体通流路として機能する。
(8) In the above embodiment, the liquefied low-temperature fluid stored in the drainage pipe NL0 is pumped by the purge gas stored in the purge gas storage unit PT, and is stored in the land-side storage units LT1, LT2, or the recovery land-side storage unit. An example of the configuration returned to the unit LT3 is shown.
As another configuration, the BOG (an example of low-temperature gas) stored in the ship-side storage unit ST may be configured to pump the liquefied low-temperature fluid stored in the liquid drain pipe NL0.
In this case, the ship-side flow path SL including the ship-side gas passage SLa and the confluence flow path JTL function as the pumping gas passage.

(9)上記第1実施形態において、第1、2液抜き配管NL0a、NL0bは、液抜き方向で上流側よりも下流側を鉛直方向で下方となるよう配設している構成例を示したが、水平であっても構わない。 (9) In the first embodiment, the first and second drainage pipes NL0a and NL0b are arranged so that the downstream side is vertically downward from the upstream side in the liquid drainage direction. However, it may be horizontal.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in the present specification are examples, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

本発明の液化低温流体の荷役設備は、船舶へのLNGの荷役を効果的且つ迅速に実行できる液化低温流体の荷役設備として、有効に利用可能である。 The cargo handling equipment for the liquefied low-temperature fluid of the present invention can be effectively used as the cargo handling equipment for the liquefied low-temperature fluid that can effectively and quickly carry out the cargo handling of LNG to a ship.

100 :荷役設備
CM :子移動体
CM2 :第2子移動体
DV1 :第1液抜き開閉弁
DV2 :第2液抜き開閉弁
DV3 :第3液抜き開閉弁
DV4 :第4液抜き開閉弁
JTL :合流流路
LF1 :第1液体通流路
LF2 :第2液体通流路
LF3 :第3液体通流路
LT1 :第1陸側貯留部
LT2 :第2陸側貯留部
LT3 :回収用陸側貯留部
MF1 :第1混合流路
MF2 :第2混合流路
MF3 :第3混合流路
NL0 :液抜き配管
P1 :第1ポンプ
P2 :第2ポンプ
PL0 :主パージガス通流路
PL1 :第1パージガス通流路
PL2 :第2パージガス通流路
PL3 :第3パージガス通流路
PL4 :第4パージガス通流路
PL5 :第5パージガス通流路
PL6 :第6パージガス通流路
PL7 :第7パージガス通流路
PL8 :第8パージガス通流路
PM :親移動体
PT :パージガス貯留部
S :船舶
ST :船舶側貯留部
TL1 :陸側貯留部
TL2 :陸側貯留部
TL3 :回収用陸側貯留部
QC2 :第2クイックカプラ
H :ホース
100: Cargo handling equipment CM: Child moving body CM2: Second child moving body DV1: First liquid draining on-off valve DV2: Second liquid draining on-off valve DV3: Third liquid-draining on-off valve DV4: Fourth liquid-draining on-off valve JTL: Confluence flow path LF1: First liquid flow path LF2: Second liquid flow path LF3: Third liquid flow path LT1: First land side storage unit LT2: Second land side storage part LT3: Recovery land side storage Part MF1: 1st mixing flow path MF2: 2nd mixing flow path MF3: 3rd mixing flow path NL0: Liquid draining pipe P1: 1st pump P2: 2nd pump PL0: Main purge gas passage flow path PL1: 1st purge gas passage Flow path PL2: 2nd purge gas flow path PL3: 3rd purge gas flow path PL4: 4th purge gas flow path PL5: 5th purge gas flow path PL6: 6th purge gas flow path PL7: 7th purge gas flow path PL7 PL8: 8th purge gas flow path PM: Parent moving body PT: Purge gas storage unit S: Ship ST: Ship side storage unit TL1: Land side storage unit TL2: Land side storage unit TL3: Recovery land side storage unit QC2: No. 2 Quick coupler H: Hose

Claims (6)

液化低温流体を水上で搬送する船舶との間において液化低温流体を荷役する液化低温流体の荷役設備であって、
陸上において液化低温流体を貯留する陸側貯留部からの液化低温流体を前記船舶にて液化低温流体を貯留する船舶側貯留部へ圧送する圧送手段と、前記陸側貯留部と前記船舶側貯留部との間において液化低温流体又は液化低温流体が気化した気化流体を通流する流体通流管と、前記流体通流管の接続端部に着脱自在な着脱機構を一端に有すると共に他端を前記船舶側貯留部に接続して液化低温流体を通流可能な可撓性流体通流部とを備え、
前記流体通流管として、
前記陸側貯留部からの液化低温流体を通流する液化低温流体通流路と、
前記液化低温流体通流路の鉛直方向で下方に位置する状態で前記液化低温流体通流路に液抜き開閉弁を介して連通接続される液抜き配管とを備える、液化低温流体の荷役設備。
It is a cargo handling facility for liquefied low-temperature fluid that handles liquefied low-temperature fluid with a ship that transports liquefied low-temperature fluid on water.
A pumping means for pumping the liquefied low-temperature fluid from the land-side storage unit that stores the liquefied low-temperature fluid on land to the ship-side storage unit that stores the liquefied low-temperature fluid on the ship, and the land-side storage unit and the ship-side storage unit. A fluid flow pipe through which a liquefied low-temperature fluid or a vaporized fluid vaporized by the liquefied low-temperature fluid flows, and a detachable attachment / detachment mechanism at one end at the connection end of the fluid flow pipe, and the other end It is equipped with a flexible fluid flow section that can be connected to the storage section on the ship side to allow liquefied low-temperature fluid to flow.
As the fluid flow pipe,
The liquefied low-temperature fluid flow path through which the liquefied low-temperature fluid flows from the land-side storage section,
A cargo handling facility for a liquefied low-temperature fluid, comprising a liquid-draining pipe that communicates with the liquefied low-temperature fluid passage through a liquid-draining on-off valve while being located downward in the vertical direction of the liquefied low-temperature fluid passage.
前記液抜き配管は、液化低温流体を抜き出す際の流れ方向としての液抜き方向で、上流側より下流側を鉛直方向で下方となるよう配設している請求項1に記載の液化低温流体の荷役設備。 The liquefied low-temperature fluid according to claim 1, wherein the liquefied low-temperature fluid is arranged so that the downstream side is vertically downward from the upstream side in the liquid bleeding direction as the flow direction when the liquefied low-temperature fluid is taken out. Cargo handling equipment. 前記液抜き配管の前記液抜き方向での上流側端部には、圧送気体を通流する圧送気体通流路に連通接続されており、
前記圧送気体通流路から流入した圧送気体により圧送された前記液抜き配管の液化低温流体を前記陸側貯留部まで一筆書きの流路にて導く一筆書流路が、前記液化低温流体通流路にて構成される請求項2に記載の液化低温流体の荷役設備。
The upstream end of the drainage pipe in the drainage direction is connected to a pressure feed gas passage through which the pressure feed gas flows.
The liquefied low-temperature fluid flow is a one-stroke flow path that guides the liquefied low-temperature fluid of the drainage pipe, which is pumped by the pressure-feed gas flowing from the pumped gas passage, to the land-side storage portion by a one-stroke flow path. The cargo handling facility for a liquefied low-temperature fluid according to claim 2, which is composed of a road.
前記圧送気体通流路は、パージガスを貯留するパージガス貯留部からのパージガスを通流するパージガス通流路である請求項3に記載の液化低温流体の荷役設備。 The cargo handling facility for a liquefied low-temperature fluid according to claim 3, wherein the pumped gas passage is a purge gas passage for passing purge gas from a purge gas storage unit for storing purge gas. 前記圧送手段と前記流体通流管とを有して、前記船舶及び前記陸側貯留部との接続が解除された状態で移動可能な移動体を少なくとも1つ備え、
前記液抜き配管が、前記移動体の夫々に対して独立して設けられている請求項1〜4の何れか一項に記載の液化低温流体の荷役設備。
It is provided with at least one moving body having the pumping means and the fluid flow pipe and capable of moving in a state where the connection between the ship and the land side storage portion is disconnected.
The cargo handling facility for a liquefied low-temperature fluid according to any one of claims 1 to 4, wherein the liquid draining pipe is provided independently for each of the moving bodies.
前記移動体を複数備え、
前記液化低温流体通流路が複数の前記陸側貯留部の夫々からの液化低温流体を通流可能に構成されると共に、当該液化低温流体通流路を通流する液化低温流体が合流する合流流路とを備え、
前記液抜き配管の配管容量は、前記船舶側貯留部へ液化低温流体を導入する液体導入運転の終了時に、前記陸側貯留部から前記船舶側貯留部までの間の前記可撓性流体通流部と前記液化低温流体通流路と前記合流流路との内部に存在する液化低温流体の全量を貯留可能な容量である請求項5に記載の液化低温流体の荷役設備。
With a plurality of the moving bodies
The liquefied low-temperature fluid passage is configured to allow the liquefied low-temperature fluid from each of the plurality of land-side storage portions to flow, and the liquefied low-temperature fluid flowing through the liquefied low-temperature fluid passage merges. Equipped with a flow path
The piping capacity of the drainage pipe is the flexible fluid flow between the land-side storage section and the ship-side storage section at the end of the liquid introduction operation for introducing the liquefied low-temperature fluid into the ship-side storage section. The cargo handling facility for a liquefied low-temperature fluid according to claim 5, which is a capacity capable of storing the entire amount of the liquefied low-temperature fluid existing inside the unit, the liquefied low-temperature fluid passage, and the confluence flow path.
JP2019047505A 2019-03-14 2019-03-14 Equipment for handling liquefied cryogenic fluids Active JP7229050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019047505A JP7229050B2 (en) 2019-03-14 2019-03-14 Equipment for handling liquefied cryogenic fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047505A JP7229050B2 (en) 2019-03-14 2019-03-14 Equipment for handling liquefied cryogenic fluids

Publications (2)

Publication Number Publication Date
JP2020147333A true JP2020147333A (en) 2020-09-17
JP7229050B2 JP7229050B2 (en) 2023-02-27

Family

ID=72431609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047505A Active JP7229050B2 (en) 2019-03-14 2019-03-14 Equipment for handling liquefied cryogenic fluids

Country Status (1)

Country Link
JP (1) JP7229050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023119774A (en) * 2022-02-17 2023-08-29 株式会社新来島どっく Lng supply facility of lng fuel ship

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145928A (en) * 1979-04-28 1980-11-13 Nippon Kayaku Co Ltd Loading arm type fluid conveyor
JPH0914597A (en) * 1995-06-26 1997-01-17 Chiyoda Corp Reception piping system for low temperature liquefied gas
JP2003270103A (en) * 2002-03-15 2003-09-25 Osaka Gas Co Ltd Method of sampling fluid in fluid supply facility
US20140116062A1 (en) * 2011-07-19 2014-05-01 Chevron U.S.A. Inc. Method and system for combusting boil-off gas and generating electricity at an offshore lng marine terminal
US20160215930A1 (en) * 2013-09-27 2016-07-28 Excelerate Energy Limited Partnership Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel
WO2017010082A1 (en) * 2015-07-14 2017-01-19 川崎重工業株式会社 Emergency detachment system for liquefied hydrogen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145928A (en) * 1979-04-28 1980-11-13 Nippon Kayaku Co Ltd Loading arm type fluid conveyor
JPH0914597A (en) * 1995-06-26 1997-01-17 Chiyoda Corp Reception piping system for low temperature liquefied gas
JP2003270103A (en) * 2002-03-15 2003-09-25 Osaka Gas Co Ltd Method of sampling fluid in fluid supply facility
US20140116062A1 (en) * 2011-07-19 2014-05-01 Chevron U.S.A. Inc. Method and system for combusting boil-off gas and generating electricity at an offshore lng marine terminal
US20160215930A1 (en) * 2013-09-27 2016-07-28 Excelerate Energy Limited Partnership Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel
WO2017010082A1 (en) * 2015-07-14 2017-01-19 川崎重工業株式会社 Emergency detachment system for liquefied hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023119774A (en) * 2022-02-17 2023-08-29 株式会社新来島どっく Lng supply facility of lng fuel ship

Also Published As

Publication number Publication date
JP7229050B2 (en) 2023-02-27

Similar Documents

Publication Publication Date Title
JP7190899B2 (en) Equipment for handling liquefied cryogenic fluids
CN108700497B (en) Fluid sampling
JP7241577B2 (en) Method of loading and unloading liquefied cryogenic fluid
JP2005024061A (en) Mobile hydrogen station and its operation method
CO5190729A1 (en) METHOD FOR LOADING NATURAL GAS LIQUID PRESSURIZED IN CONTAINERS
JP7236450B2 (en) Cryogenic fluid transfer system and method
CN108698673B (en) Ship with gas regasification system
JP2020147333A (en) Handling facility of liquefied cryogenic fluid
DK178151B1 (en) Liquid Natural Gas transfer
JP7399251B2 (en) Liquefied cryogenic fluid cargo handling equipment
CN102230574B (en) Liquefied natural gas (LNG) station with multifunctional air temperature type heating device
US11353161B2 (en) Module and system for depressurising a cryogenic tank
CN202056514U (en) Liquefied natural gas (LNG) filling station with multifunctional air temperature type heating device
CN103895550A (en) Water purifying and conveying vehicle applied to field plateau sections
EP1850060B1 (en) Method and system of purging a natural gas reservoir for vehicles
KR20200067208A (en) Indoor safety devices, liquefied fuel gas systems and vehicles
GB2598781A (en) A method and vessel for transporting a semi-stable oil product
WO2016088159A1 (en) Equipment safety management device, equipment safety management method, and natural gas liquefaction device
RU57709U1 (en) SHIP FOR TRANSPORTING COMPRESSED NATURAL GAS
CN203752973U (en) Pure water transporting vehicle suitable for wild plateau areas
RU195837U1 (en) UNIVERSAL FIRE FIGHTING INSTALLATION
KR20240043562A (en) fuel treatment system and ship having the same
KR20240032523A (en) fuel treatment system and ship having the same
KR20230101274A (en) Gas Purging System For Ammonia Fuelled ship and Method Thereof
KR20230084409A (en) ammonia treatment system and ship having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7229050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150