JP2020146719A - Mold powder and method of producing medium-carbon steel - Google Patents

Mold powder and method of producing medium-carbon steel Download PDF

Info

Publication number
JP2020146719A
JP2020146719A JP2019045996A JP2019045996A JP2020146719A JP 2020146719 A JP2020146719 A JP 2020146719A JP 2019045996 A JP2019045996 A JP 2019045996A JP 2019045996 A JP2019045996 A JP 2019045996A JP 2020146719 A JP2020146719 A JP 2020146719A
Authority
JP
Japan
Prior art keywords
mass
slag
mold
mold powder
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019045996A
Other languages
Japanese (ja)
Other versions
JP6871521B2 (en
Inventor
伊藤 純哉
Junya Ito
純哉 伊藤
正典 岡田
Masanori Okada
正典 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2019045996A priority Critical patent/JP6871521B2/en
Publication of JP2020146719A publication Critical patent/JP2020146719A/en
Application granted granted Critical
Publication of JP6871521B2 publication Critical patent/JP6871521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

To provide a mold powder that is compatible with both of inhibiting cracks in a surface of a cast slab and lubrication between a solidification shell and a mold to a higher degree, in continuous casting of medium-carbon steel having a carbon concentration of 0.08-0.25 mass%.SOLUTION: A mold powder contains SiO2 and CaO as main ingredients in which a mass ratio of CaO to SiO2 (CaO/SiO2) is 1.1 or greater and 2.5 or smaller, and has a K2O content of 1.0-10.0 mass%, Na2O and Li2O contents of 1.0-18.0 mass% in total, F, MgO, Al2O3 and total carbon contents of respectively 3.0-15.0 mass%, 0.5-3.0 mass%, 0.5-10.0 mass% and 1.0-20.0 mass%, a viscosity at 1300°C of 0.03-0.7 Pa s, and a crystallization temperature of 1080-1280°C, in which a primary crystal seed is of Cuspidine (Cuspidine: 3CaO2SiO2 CaF2).SELECTED DRAWING: None

Description

本発明は、モールドパウダー及びカーボン濃度が0.08〜0.25質量%の中炭素綱の製造方法に関する。 The present invention relates to a method for producing a mold powder and a medium carbon rope having a carbon concentration of 0.08 to 0.25% by mass.

鋼の連続鋳造とは、溶鋼を連続鋳造機のモールドに流し込んで冷却、固化しながら、固化した凝固シェルをモールドの下方向から引き抜くことを連続的に行うことにより、鋼を連続的に鋳造することをいう。モールド内の溶鋼の表面には、粉末状又は顆粒状のモールドパウダーが添加される。モールドパウダーは溶鋼の熱によって溶融し(以下、モールドパウダーが溶融している状態のものを「パウダースラグ」又は「スラグ」とよぶ。)、スラグは凝固シェルとモールドの間に流入し、フィルム(スラグフィルム)に変化する。スラグが凝固シェルとモールドの間に流入する駆動力は、モールドのオシレーション(振動)、凝固シェルの引き抜きによる引き込み及びスラグの自重である。モールドパウダーの主な役割は(1)溶鋼表面の保温及び酸化防止、(2)溶鋼から浮上する非金属介在物の吸収及び溶鋼の清浄化、(3)凝固シェルとモールドの間の潤滑の保持、(4)凝固シェルからモールドへの抜熱の抑制及び均一化等である。 Continuous steel casting is the continuous casting of steel by pouring molten steel into a mold of a continuous casting machine, cooling and solidifying it, and continuously pulling out the solidified solidified shell from below the mold. Say that. Powdered or granular mold powder is added to the surface of the molten steel in the mold. The mold powder is melted by the heat of the molten steel (hereinafter, the state in which the mold powder is melted is called "powder slag" or "slag"), and the slag flows between the solidified shell and the mold, and the film (hereinafter, It changes to slag film). The driving force that the slag flows between the solidified shell and the mold is the oscillation (vibration) of the mold, the pull-in by pulling out the solidified shell, and the weight of the slag. The main roles of the mold powder are (1) heat retention and oxidation prevention of the molten steel surface, (2) absorption of non-metal inclusions floating from the molten steel and cleaning of the molten steel, and (3) maintenance of lubrication between the solidified shell and the mold. , (4) Suppression and homogenization of heat removal from the solidified shell to the mold.

ところで、カーボン濃度が0.08〜0.25質量%の炭素鋼(以下、「中炭素鋼」とよぶ。「亜包晶鋼」とよぶこともある。)は凝固時に相変態を伴うため収縮量が大きい(特許文献1〜2、非特許文献1参照)。このため、中炭素鋼の連続鋳造では凝固シェルにたわみや凝固遅れが生じて応力が集中し、鋳片表面に割れが生じやすい。さらに、中炭素鋼は凝固収縮によりモールド下部で凝固シェルとモールドの間隙が大きくなり、エアギャップが形成されやすい。このため凝固シェルには局所的にスラグに濡れない部分が生じたり、付着するスラグが薄くなるといったスラグの被覆ムラが生じやすい。スラグの被覆ムラが生じると抜熱が不均一になり、鋳片表面に割れが生じやすい。このように、中炭素鋼は、歩留まり悪化やそれを防ぐための鋳造速度の規制等により生産性が低下しやすい。 By the way, carbon steel having a carbon concentration of 0.08 to 0.25% by mass (hereinafter, referred to as "medium carbon steel", sometimes referred to as "subcapsular steel") shrinks because it undergoes phase transformation during solidification. The amount is large (see Patent Documents 1 and 2 and Non-Patent Document 1). For this reason, in continuous casting of medium carbon steel, the solidification shell is bent or delayed in solidification, stress is concentrated, and the surface of the slab is likely to be cracked. Further, in medium carbon steel, the gap between the solidified shell and the mold becomes large at the lower part of the mold due to solidification shrinkage, and an air gap is likely to be formed. For this reason, uneven coating of slag is likely to occur in the solidified shell, such as a portion that does not locally get wet with the slag or the attached slag becomes thin. If uneven coating of slag occurs, heat removal becomes non-uniform and cracks are likely to occur on the surface of the slag. As described above, the productivity of medium carbon steel tends to decrease due to deterioration of yield and regulation of casting speed to prevent it.

対策として、モールドパウダーの結晶化温度を高め、凝固シェルとモールドの間に流入するスラグフィルムの中に伝熱抵抗となる結晶層を厚く析出させ、鋼の凝固速度を遅くする手法、いわゆる緩冷却が指向されてきた。 As a countermeasure, a method of raising the crystallization temperature of the mold powder, thickly precipitating a crystal layer that acts as a thermal resistance in the slag film flowing between the solidified shell and the mold, and slowing the solidification rate of steel, so-called slow cooling. Has been oriented.

特開2018−153813号公報Japanese Unexamined Patent Publication No. 2018-153831 WO2017/078178号WO2017 / 078178

村上洋 他3名,「連続鋳造モールド内における亜包晶炭素鋼の不均一凝固の制御」,鉄と鋼,日本鉄鋼協会,Vol.78,No.1,p.105-112,1992Hiroshi Murakami and 3 others, "Control of non-uniform solidification of subcapsular carbon steel in continuous casting mold", Iron and Steel, The Iron and Steel Institute of Japan, Vol.78, No.1, p.105-112, 1992

しかし、緩冷却は凝固シェルとモールドの間の潤滑や凝固シェルの十分な厚みを阻害する面も指摘されている。さらに、スラグフィルム中に析出して緩冷却に寄与する結晶種はカスピダイン(Cuspidine:3CaO・2SiO・CaF)が一般的であるが、モールドパウダー組成の最適化によるカスピダイン析出の促進は改善の余地がほぼない。したがって、緩冷却とは異なる手法や特性に着目した鋳片割れ抑制技術が強く望まれている。 However, it has been pointed out that slow cooling hinders lubrication between the solidified shell and the mold and sufficient thickness of the solidified shell. Furthermore, although caspidine (Cuspidine: 3CaO, 2SiO 2 , CaF 2 ) is generally used as the crystal species that precipitates in the slag film and contributes to slow cooling, the promotion of caspidine precipitation by optimizing the mold powder composition is improved. There is almost no room. Therefore, there is a strong demand for a slab crack suppression technique that focuses on methods and characteristics different from slow cooling.

本発明のいくつかの態様は上記実状を鑑みてなされたものであり、本発明の目的は、カーボン濃度が0.08〜0.25質量%の中炭素鋼の連続鋳造において、鋳片表面の割れの抑制と、凝固シェルとモールドの間の潤滑とをより高度に両立することができるモールドパウダーを提供すること、及び、それを用いる連続鋳造を有する中炭素鋼の製造方法を提供することにある。 Some aspects of the present invention have been made in view of the above circumstances, and an object of the present invention is to continuously cast medium carbon steel having a carbon concentration of 0.08 to 0.25% by mass on the surface of a slab. To provide a mold powder capable of suppressing cracks and lubricating between a solidified shell and a mold to a higher degree, and to provide a method for producing a medium carbon steel having continuous casting using the same. is there.

なお、モールドパウダーは溶鋼温度まで加熱すると分解、酸化等の化学反応が生じるため、化学組成は加熱前後で変動する。そこで、本明細書は、モールドパウダーの化学組成を、FとC以外の成分については酸化物換算での質量%で表し、Fについては単体換算での質量%で表し、Cについては炭素原料として添加されるものは単体換算での質量%で表し、炭素原料として添加されるもの以外のC(炭酸カルシウムのC等)は消失するもの(0質量%)とする。 When the mold powder is heated to the molten steel temperature, chemical reactions such as decomposition and oxidation occur, so that the chemical composition fluctuates before and after heating. Therefore, in the present specification, the chemical composition of the mold powder is expressed by mass% in terms of oxide for components other than F and C, F in mass% in terms of simple substance, and C as a carbon raw material. What is added is expressed in mass% in terms of simple substance, and C (C of calcium carbonate, etc.) other than those added as a carbon raw material is assumed to disappear (0% by mass).

(1)本発明の一の態様は、SiOとCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が1.1以上2.5以下であり、KOの含有量は1.0〜10.0質量%であり、NaOとLiOの含有量の合計は1.0〜18.0質量%であり、F、MgO、Al及びトータルカーボンの含有量はそれぞれ3.0〜15.0質量%、0.5〜3.0質量%、0.5〜10.0質量%及び1.0〜20.0質量%であり、1300℃における粘度が0.03〜0.7Pa・sであり、結晶化温度が1080〜1280℃であり、初晶種がカスピダイン(Cuspidine:3CaO・2SiO・CaF)であることを特徴とするモールドパウダーに関する。 (1) One aspect of the present invention comprises SiO 2 and CaO as main components, a mass ratio of SiO 2 CaO (CaO / SiO 2) is 1.1 to 2.5, the K 2 O The content is 1.0 to 10.0% by mass, the total content of Na 2 O and Li 2 O is 1.0 to 18.0% by mass, and F, MgO, Al 2 O 3 and total. The carbon contents are 3.0 to 15.0% by mass, 0.5 to 3.0% by mass, 0.5 to 10.0% by mass and 1.0 to 20.0% by mass, respectively, and 1300 ° C. The mold is characterized by having a viscosity of 0.03 to 0.7 Pa · s, a crystallization temperature of 1080 to 1280 ° C., and a primary crystal species of Caspidine (Cuspidine: 3CaO · 2SiO 2 · CaF 2 ). Regarding powder.

Oは同じアルカリ金属酸化物であるLiO、NaOと同様に粘度、結晶化温度、表面張力を低下させる効果を有するが、粘度、結晶化温度の低下効果は最も小さく、表面張力の低下効果は最も大きい。即ち、KOは粘度、結晶化温度を大きく変化させずに表面張力を大きく低下させる。モールドパウダーが上記要件を全て満たすことにより、特に、KOの含有量が1.0〜10.0質量%であることにより、スラグの粘度、結晶化温度は大きく変化させずに、表面張力を大きく低下させる。スラグの粘度、結晶化温度は大きく変化しないため、緩冷却を高い水準で維持できるとともに、スラグの被覆ムラを減少させることができる。したがって、凝固シェルからモールドへの均一抜熱が保持され、鋳片表面の割れを抑制することができる。さらに、表面張力は大きく低下するため、スラグは凝固シェルによく濡れ、凝固シェルとモールドの間に流入し易くなると考えられる。このため、凝固シェルとモールドの間の潤滑を保持することができる。このように、鋳片表面の割れの抑制と、凝固シェルとモールドの間の潤滑とを高度に両立することができる。 K 2 O is Li 2 O is the same alkali metal oxide, the viscosity as with Na 2 O, crystallization temperature, has the effect of lowering the surface tension, viscosity, decrease the effect of crystallization temperature is the smallest, the surface The effect of reducing tension is greatest. That is, K 2 O greatly reduces the surface tension without significantly changing the viscosity and the crystallization temperature. By mold powder satisfies all the above requirements, in particular, by the K 2 O content is 1.0 to 10.0 wt%, the viscosity of the slag, crystallization temperature without widely changing the surface tension Is greatly reduced. Since the viscosity and crystallization temperature of the slag do not change significantly, slow cooling can be maintained at a high level and uneven coating of the slag can be reduced. Therefore, uniform heat removal from the solidified shell to the mold is maintained, and cracking on the surface of the slab can be suppressed. Further, since the surface tension is greatly reduced, it is considered that the slag is well wetted with the solidified shell and easily flows into the solidified shell and the mold. Therefore, the lubrication between the solidified shell and the mold can be maintained. In this way, it is possible to achieve both suppression of cracks on the surface of the slab and lubrication between the solidified shell and the mold.

(2)本発明の一の態様では、1300℃における表面張力が190〜300mN/mであることが好ましい。凝固シェルとモールドの間の潤滑をより向上することができるとともに、モールド下部での被覆ムラがより減少し、凝固シェルからモールドへの抜熱がより均一になるため、鋳片表面の割れをより低減することができるからである。 (2) In one aspect of the present invention, the surface tension at 1300 ° C. is preferably 190 to 300 mN / m. Lubrication between the solidified shell and the mold can be further improved, coating unevenness at the lower part of the mold is further reduced, and heat removal from the solidified shell to the mold becomes more uniform, so that cracks on the slab surface are further reduced. This is because it can be reduced.

(3)本発明の他の態様は、中炭素鋼を連続鋳造する工程を有し、中炭素綱はカーボン濃度が0.08〜0.25質量%であり、前記工程において、本発明の一の態様のモールドパウダーを用いることを特徴とする中炭素鋼の製造方法に関する。 (3) Another aspect of the present invention includes a step of continuously casting medium carbon steel, and the medium carbon steel has a carbon concentration of 0.08 to 0.25% by mass, and in the above step, one of the present inventions. The present invention relates to a method for producing a medium carbon steel, which comprises using the mold powder according to the above embodiment.

本発明の一の態様のモールドパウダーを用いることにより、収縮量が大きい中炭素鋼の連続鋳造であっても鋳片表面の割れの抑制と、凝固シェルとモールドの間の潤滑とを高度に両立することができるため、良好な表面品質を有する中炭素鋼の鋳片を安定的に製造することができる。 By using the mold powder of one aspect of the present invention, even in the continuous casting of medium carbon steel having a large shrinkage amount, it is possible to suppress cracks on the surface of the slab and to lubricate between the solidified shell and the mold. Therefore, it is possible to stably produce slabs of medium carbon steel having good surface quality.

以下、本発明の好適な実施形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成のすべてが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. It should be noted that the present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and all the configurations described in the present embodiment are essential as a means for solving the present invention. Is not always the case.

(1)モールドパウダー
本実施形態のモールドパウダーは、SiOとCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が1.1以上2.5以下であり、KOの含有量は1.0〜10.0質量%であり、NaOとLiOの含有量の合計は1.0〜18.0質量%であり、F、MgO、Al及びトータルカーボンの含有量はそれぞれ3.0〜15.0質量%、0.5〜3.0質量%、0.5〜10.0質量%及び1.0〜20.0質量%であり、1300℃における粘度が0.03〜0.7Pa・sであり、結晶化温度が1080〜1280℃であり、初晶種がカスピダイン(Cuspidine:3CaO・2SiO・CaF)である。
(1) mold powder mold powder of the present embodiment includes a SiO 2 and CaO as main components, a mass ratio of SiO 2 CaO (CaO / SiO 2) is 1.1 to 2.5, K 2 The content of O is 1.0 to 10.0% by mass, the total content of Na 2 O and Li 2 O is 1.0 to 18.0% by mass, and F, MgO, Al 2 O 3 And the total carbon content is 3.0 to 15.0% by mass, 0.5 to 3.0% by mass, 0.5 to 10.0% by mass and 1.0 to 20.0% by mass, respectively. The viscosity at 1300 ° C. is 0.03 to 0.7 Pa · s, the crystallization temperature is 1080 to 1280 ° C., and the primary crystal species is caspidine (Cuspidine: 3CaO · 2SiO 2 · CaF 2 ).

[質量比(CaO/SiO)]
モールドパウダーはSiOとCaOを主成分として含有する。CaOのSiOに対する質量比(CaO/SiO)は好ましくは1.1以上2.5以下であり、より好ましくは1.2以上2.1以下である。質量比(CaO/SiO)が1.1未満だとスラグフィルム中の結晶量が少なく、十分な緩冷却効果が得られない。一方、質量比(CaO/SiO)が2.5を超えるとスラグの粘度が大きく低下し、スラグの液滴が離脱して溶鋼中に巻き込まれ、鋳片の欠陥になりやすい。さらに、カスピダインが減少し、カスピダイン以外の結晶が増加するため、十分な緩冷却効果が得られない。
[Mass ratio (CaO / SiO 2 )]
The mold powder contains SiO 2 and CaO as main components. Weight ratio of SiO 2 CaO (CaO / SiO 2) is preferably 1.1 or more and 2.5 or less, more preferably 1.2 or more 2.1 or less. If the mass ratio (CaO / SiO 2 ) is less than 1.1, the amount of crystals in the slag film is small, and a sufficient slow cooling effect cannot be obtained. On the other hand, when the mass ratio (CaO / SiO 2 ) exceeds 2.5, the viscosity of the slag is significantly reduced, and the slag droplets are separated and caught in the molten steel, which tends to cause defects in the slab. Further, since caspidine decreases and crystals other than caspidine increase, a sufficient slow cooling effect cannot be obtained.

[KO]
Oの含有量は1.0〜10.0質量%であり、好ましくは1.5〜6.0質量%である。KOは同じアルカリ金属酸化物であるLiO、NaOと同様に粘度、結晶化温度、表面張力を低下させる効果を有するが、粘度、結晶化温度の低下効果は最も小さく、表面張力の低下効果は最も大きい。即ち、KOは粘度、結晶化温度を大きく変化させずに表面張力だけを大きく低下させる。したがって、KOの含有量が上記の範囲であれば、表面張力の低下によってスラグの凝固シェルとモールドの間への流入を促進し、凝固シェルとモールドの間の潤滑を保持することができる。さらに、スラグの粘度、結晶化温度は大きく変化しないため、緩冷却を高い水準で維持でき、鋳片表面の割れを抑制することができる。KOの含有量が1質量%未満だと表面張力の低下効果が得られず、スラグの流入を促進できないため、凝固シェルとモールドの間の潤滑を保持できず、歩留まりが悪化しやすい。一方、KOの含有量が10.0質量%を超えるとスラグの粘度が大きく低下し、スラグの巻き込み欠陥になりやすい。さらに、カスピダインが減少するため、十分な緩冷却効果が得られない。
[K 2 O]
The K 2 O content is 1.0 to 10.0 wt%, preferably from 1.5 to 6.0 wt%. K 2 O is Li 2 O is the same alkali metal oxide, the viscosity as with Na 2 O, crystallization temperature, has the effect of lowering the surface tension, viscosity, decrease the effect of crystallization temperature is the smallest, the surface The effect of reducing tension is greatest. That is, K 2 O greatly reduces only the surface tension without significantly changing the viscosity and the crystallization temperature. Therefore, when the K 2 O content is in the above range, the decrease in surface tension can promote the inflow of slag between the solidified shell and the mold, and maintain the lubrication between the solidified shell and the mold. .. Furthermore, since the viscosity and crystallization temperature of the slag do not change significantly, slow cooling can be maintained at a high level and cracking on the surface of the slab can be suppressed. If the content of K 2 O is less than 1% by mass, the effect of lowering the surface tension cannot be obtained and the inflow of slag cannot be promoted, so that the lubrication between the solidified shell and the mold cannot be maintained, and the yield tends to deteriorate. On the other hand, if the K 2 O content exceeds 10.0% by mass, the viscosity of the slag is significantly reduced, and slag entanglement defects are likely to occur. Furthermore, since caspidine is reduced, a sufficient slow cooling effect cannot be obtained.

[NaO+LiO]
NaOとLiOの含有量の合計は1.0〜18.0質量%であり、好ましくは3.0〜14.0質量%である。NaOやLiOはスラグの表面張力を低下させる効果を有するが、その効果はKOより小さい。スラグの表面張力を十分低下させるためにNaOやLiOを過剰に添加すると、スラグの結晶化が阻害され、十分な緩冷却効果が得られなかったり、スラグの粘度が大きく低下し、スラグの巻き込み欠陥になりやすい。NaOとLiOの含有量の合計が1.0質量%未満だとスラグの凝固温度が高くなり、凝固シェルとモールドの間の潤滑を損ねる。一方、NaOとLiOの含有量の合計が18.0質量%を超えるとスラグの粘度が大きく低下し、スラグの巻き込み欠陥や浸漬ノズルの溶損が増大する。
[Na 2 O + Li 2 O]
The total content of Na 2 O and Li 2 O is 1.0 to 18.0% by mass, preferably 3.0 to 14.0% by mass. Na 2 O and Li 2 O have the effect of lowering the surface tension of the slag, but the effect is smaller than that of K 2 O. If Na 2 O or Li 2 O is excessively added in order to sufficiently reduce the surface tension of the slag, the crystallization of the slag is inhibited, a sufficient slow cooling effect cannot be obtained, or the viscosity of the slag is significantly reduced. It is prone to slag entanglement defects. If the total content of Na 2 O and Li 2 O is less than 1.0% by mass, the solidification temperature of the slag becomes high and the lubrication between the solidified shell and the mold is impaired. On the other hand, when the total content of Na 2 O and Li 2 O exceeds 18.0% by mass, the viscosity of the slag is significantly reduced, and the slag entrainment defect and the melting damage of the immersion nozzle are increased.

[F]
Fの含有量は3.0〜15.0質量%であり、好ましくは5.0〜14.0質量%である。Fの含有量が3.0質量%未満だと緩冷却効果を与えるスラグフィルム中のカスピダインの析出が不足し、カスピダイン以外の結晶が増大する。一方、Fの含有量が15.0質量%を超えるとスラグの粘度が大きく低下し、スラグの巻き込み欠陥や浸漬ノズルの溶損が増大する。
[F]
The content of F is 3.0 to 15.0% by mass, preferably 5.0 to 14.0% by mass. If the content of F is less than 3.0% by mass, the precipitation of caspidine in the slag film that gives a slow cooling effect is insufficient, and crystals other than caspidine increase. On the other hand, when the F content exceeds 15.0% by mass, the viscosity of the slag is significantly reduced, and the slag entrainment defect and the melting damage of the immersion nozzle are increased.

[MgO]
MgOの含有量は0.5〜3.0質量%であり、好ましくは0.8〜2.5質量%である。MgO含有量が3.0質量%を超えるとカスピダインの析出が著しく低下し、緩冷却効果が得られない。
[MgO]
The content of MgO is 0.5 to 3.0% by mass, preferably 0.8 to 2.5% by mass. If the MgO content exceeds 3.0% by mass, the precipitation of caspidine is remarkably reduced, and the slow cooling effect cannot be obtained.

[Al
Alの含有量は0.5〜10.0質量%であり、好ましくは1.0〜6.0質量%である。Alの含有量が10.0質量%を超えるとカスピダインが析出し難くなり、高融点結晶であるゲーレナイトの析出が増大し、溶融性状の不良や不均一抜熱が生じる。
[Al 2 O 3 ]
The content of Al 2 O 3 is 0.5 to 10.0% by mass, preferably 1.0 to 6.0% by mass. If the content of Al 2 O 3 exceeds 10.0% by mass, it becomes difficult for caspidine to precipitate, and the precipitation of gerenite, which is a refractory crystal, increases, resulting in poor melt properties and non-uniform heat removal.

[トータルカーボン]
トータルカーボンの含有量は1.0〜20.0質量%であり、より好ましくは2.0〜12.0質量%である。トータルカーボンの含有量が1.0質量%未満だと滓化速度が過剰に大きくなり、モールド内のスラグの溶融層が過剰に厚くなるため、スラグベアが生成したり、スラグが湯面センサーに付着し、破損することもある。一方、トータルカーボンの含有量が20質量%を超えると滓化速度が小さくなり、スラグの溶融層の厚みが不足し、溶鋼表面の保温不足、凝固シェルとモールドの間の潤滑不足、溶鋼への未溶融モールドパウダーの巻き込み等の操業異常が生じる。
[Total carbon]
The total carbon content is 1.0 to 20.0% by mass, more preferably 2.0 to 12.0% by mass. If the total carbon content is less than 1.0% by mass, the slag rate becomes excessively high and the molten layer of slag in the mold becomes excessively thick, resulting in the formation of slag bears and slag adhering to the molten metal level sensor. However, it may be damaged. On the other hand, when the total carbon content exceeds 20% by mass, the slagging rate becomes low, the thickness of the molten layer of slag is insufficient, the heat retention of the molten steel surface is insufficient, the lubrication between the solidified shell and the mold is insufficient, and the molten steel is affected. Operational abnormalities such as entrainment of unmelted mold powder occur.

[粘度]
1300℃におけるスラグの粘度は0.04〜0.7Pa・sであり、好ましくは0.04〜0.50Pa・sである。1300℃におけるスラグの粘度が0.04Pa・s未満だとスラグの巻き込み欠陥が増大し、1.0Pa・sを超えるとスラグの流入が減少し、潤滑不足となる。
[viscosity]
The viscosity of the slag at 1300 ° C. is 0.04 to 0.7 Pa · s, preferably 0.04 to 0.50 Pa · s. If the viscosity of the slag at 1300 ° C. is less than 0.04 Pa · s, the slag entrainment defect increases, and if it exceeds 1.0 Pa · s, the inflow of slag decreases, resulting in insufficient lubrication.

[結晶化温度]
モールドパウダーの結晶化温度は1080〜1280℃であり、好ましくは1100〜1220℃である。スラグの結晶化温度が1080℃未満だと凝固シェルの緩冷却効果が不十分で鋳片表面に割れが生じやすくなる。一方、スラグの結晶化温度が1280℃を超えると結晶層が過剰に厚くなるため、スラグの流入が減少し、凝固シェルが破断し、ブレークアウトが生じやすくなる。
[Crystalization temperature]
The crystallization temperature of the mold powder is 1080 to 1280 ° C, preferably 1100 to 1220 ° C. If the slag crystallization temperature is less than 1080 ° C., the slow cooling effect of the solidified shell is insufficient and the slab surface is liable to crack. On the other hand, when the slag crystallization temperature exceeds 1280 ° C., the crystal layer becomes excessively thick, so that the inflow of slag is reduced, the solidified shell is broken, and breakout is likely to occur.

[初晶種]
初晶種はカスピダイン(Cuspidine:3CaO・2SiO・CaF)であることが必要である。カスピダイン以外の結晶が初晶種であると、緩冷却効果が得られない。
[Primary crystal species]
The primary crystal species needs to be caspidine (Cuspidine: 3CaO, 2SiO 2 , CaF 2 ). If crystals other than caspidyne are primary crystal species, the slow cooling effect cannot be obtained.

[表面張力]
1300℃におけるスラグの表面張力は190〜300mN/mであり、好ましくは210〜280mN/mである。スラグの表面張力が300mN/mを超えるとスラグの凝固シェルとモールドの間への流入が少なく、潤滑不足や不均一抜熱、緩冷却不足等が生じる。さらに、結晶化が促進されず緩冷却が不足し、鋳片割れが生じやすい。表面張力は低いほど好ましいが、190mN/m未満だと、粘度、結晶化温度等、他の特性が中炭素鋼を鋳造するのに不適となる。
[surface tension]
The surface tension of the slag at 1300 ° C. is 190 to 300 mN / m, preferably 210 to 280 mN / m. When the surface tension of the slag exceeds 300 mN / m, the inflow of the slag between the solidified shell and the mold is small, resulting in insufficient lubrication, non-uniform heat removal, insufficient slow cooling, and the like. Further, crystallization is not promoted, slow cooling is insufficient, and slab cracking is likely to occur. The lower the surface tension, the more preferable, but if it is less than 190 mN / m, other properties such as viscosity and crystallization temperature are unsuitable for casting medium carbon steel.

[モールドパウダーの原料]
本実施形態のモールドパウダーの原料はCaO−SiO基材原料、シリカ原料、KO原料、フラックス原料、炭素原料、及び/又はその他の原料で構成される。CaO−SiO基材原料としては、例えば、合成珪酸カルシウム、ウォラストナイト、リンスラグ、高炉スラグ、ダイカルシウムシリケート、炭酸カルシウム、石灰石、生石灰、ポルトランドセメント等のセメント類等が挙げられる。シリカ原料としては、例えば、パーライト、フライアッシュ、珪砂、長石、珪石、珪藻土、ガラス粉、シリカフューム、シリカフラワー等が挙げられる。KO原料としては、例えば、炭酸カリウム、硝酸カリウム、カリウム長石、炭酸水素カリウム、カリウム氷晶石、フッ化カリウム、又はこれらを含む合成原料等が挙げられる。フラックス原料は、軟化点、粘度及び/又は結晶化温度を調整する役割を有し、例えば、フッ化ナトリウム、フッ化リチウム、氷晶石、蛍石、フッ化マグネシウム等の弗化物、炭酸ナトリウム、炭酸リチウム、炭酸マグネシウム等の炭酸塩、ホウ酸、ホウ砂、コレマナイト等が挙げられる。炭素原料は、溶融速度を調整する役割を有し、例えば、コークス、グラファイト、カーボンブラック等が挙げられる。その他の原料としては、マグネシア、アルミナ等が挙げられる。モールドパウダーの形態は特に限定されず、例えば、粉末、押し出し成形顆粒、中空スプレー顆粒、撹拌造粒等が挙げられる。
[Raw material for mold powder]
Raw materials for mold powder of the present embodiment CaO-SiO 2 substrate material, silica material, K 2 O ingredients, flux material, and a carbon source, and / or other raw materials. Examples of the CaO-SiO 2 base material include cements such as synthetic calcium silicate, wollastonite, rinse slag, blast furnace slag, dicalcium silicate, calcium carbonate, limestone, quicklime, and Portland cement. Examples of the silica raw material include pearlite, fly ash, silica sand, feldspar, silica stone, diatomaceous earth, glass powder, silica fume, silica flower and the like. The K 2 O using, for example, potassium carbonate, potassium nitrate, potassium feldspar, potassium hydrogen carbonate, potassium cryolite, potassium fluoride, or synthetic raw materials containing these is. The flux raw material has a role of adjusting the softening point, viscosity and / or crystallization temperature, and for example, fluoride such as sodium fluoride, lithium fluoride, cryolite, fluorite, magnesium fluoride, sodium carbonate, etc. Examples thereof include carbonates such as lithium carbonate and magnesium carbonate, boric acid, boar sand, and cryolite. The carbon raw material has a role of adjusting the melting rate, and examples thereof include coke, graphite, and carbon black. Examples of other raw materials include magnesia and alumina. The form of the mold powder is not particularly limited, and examples thereof include powder, extruded granules, hollow spray granules, and agitated granules.

(2)中炭素鋼の製造方法
本実施形態の中炭素鋼の製造方法は、中炭素鋼を連続鋳造する工程を有し、中炭素綱はカーボン濃度が0.08〜0.25質量%であり、前記工程において本実施形態のモールドパウダーを用いる。
(2) Method for producing medium carbon steel The method for producing medium carbon steel of the present embodiment includes a step of continuously casting medium carbon steel, and the medium carbon rope has a carbon concentration of 0.08 to 0.25% by mass. Yes, the mold powder of this embodiment is used in the above step.

本実施形態のモールドパウダーを用いることにより、収縮量が大きい中炭素鋼の連続鋳造であっても鋳片表面の割れの抑制と、凝固シェルとモールドの間の潤滑とを高度に両立することができるため、良好な表面品質を有する中炭素鋼の鋳片を安定的に製造することができる。 By using the mold powder of the present embodiment, it is possible to highly achieve both suppression of cracks on the surface of the slab and lubrication between the solidified shell and the mold even in continuous casting of medium carbon steel having a large shrinkage amount. Therefore, it is possible to stably produce medium carbon steel slabs having good surface quality.

以下、本発明の実施例について詳細に説明する。 Hereinafter, examples of the present invention will be described in detail.

[実験方法]
モールドパウダーを用いて中炭素鋼の連続鋳造を行った。表1に、モールドパウダーの組成を示す。実施例1〜10は本発明の実施例であり、比較例1〜9は本発明の比較例である。

Figure 2020146719
[experimental method]
Continuous casting of medium carbon steel was performed using mold powder. Table 1 shows the composition of the mold powder. Examples 1 to 10 are examples of the present invention, and Comparative Examples 1 to 9 are comparative examples of the present invention.
Figure 2020146719

実施例1〜10は、CaOのSiOに対する質量比(CaO/SiO)が1.1以上2.5以下であり、KOの含有量は1.0〜10.0質量%であり、NaOとLiOの含有量の合計は1.0〜18.0質量%であり、F、MgO、Al及びトータルカーボンの含有量はそれぞれ3.0〜15.0質量%、0.5〜3.0質量%、0.5〜10.0質量%及び1.0〜20.0質量%である。一方、比較例1〜4はKOの含有量が1.0質量%を満たさない。また、比較例1は質量比(CaO/SiO)が1.1を満たさず、比較例2は質量比(CaO/SiO)が2.5を超える。比較例5〜8はそれぞれF、MgO、Al及びKOの含有量がそれぞれ15.0質量%、3.0質量%、10.0質量%及び10.0質量%を超える。比較例9はFの含有量が3.0質量%を満たさない。 Examples 1 to 10, weight ratio of SiO 2 CaO (CaO / SiO 2) is 1.1 to 2.5, the content of K 2 O is 1.0 to 10.0 wt% , Na 2 O and Li 2 O total content is 1.0 to 18.0 mass%, and F, MgO, Al 2 O 3 and total carbon content are 3.0 to 15.0 mass, respectively. %, 0.5 to 3.0% by mass, 0.5 to 10.0% by mass, and 1.0 to 20.0% by mass. On the other hand, in Comparative Examples 1 to 4, the content of K 2 O does not satisfy 1.0% by mass. Further, in Comparative Example 1, the mass ratio (CaO / SiO 2 ) does not satisfy 1.1, and in Comparative Example 2, the mass ratio (CaO / SiO 2 ) exceeds 2.5. In Comparative Examples 5 to 8, the contents of F, MgO, Al 2 O 3 and K 2 O exceed 15.0% by mass, 3.0% by mass, 10.0% by mass and 10.0% by mass, respectively. In Comparative Example 9, the content of F does not satisfy 3.0% by mass.

表2に、連続鋳造の鋳造条件、即ち、モールドサイズ、鋳造速度及び中炭素鋼のカーボン濃度を示す。

Figure 2020146719
Table 2 shows the casting conditions for continuous casting, that is, the mold size, casting speed, and carbon concentration of medium carbon steel.
Figure 2020146719

実施例と比較例の鋳造条件は同様とした。 The casting conditions of Examples and Comparative Examples were the same.

[評価方法]
モールドパウダー(スラグ)及び連続鋳造の結果について、以下の項目の評価を行った。
[Evaluation method]
The following items were evaluated for the results of mold powder (slag) and continuous casting.

<粘度>
モールドパウダー(スラグ)の粘度を、球引き上げ法により測定した。即ち、1300℃のスラグ中に直径10mmの白金球を吊り下げ、0.85cm/sの速さで白金球を引き上げたときの荷重から粘度を求めた。
<Viscosity>
The viscosity of the mold powder (slag) was measured by the ball pulling method. That is, the viscosity was obtained from the load when a platinum ball having a diameter of 10 mm was suspended in a slag at 1300 ° C. and the platinum ball was pulled up at a speed of 0.85 cm / s.

<結晶化温度>
モールドパウダーの結晶化温度を、示差熱法により測定した。即ち、約150gのモールドパウダーを昇温して溶融した後、4℃/minで降温させながらモールドパウダー(スラグ)の温度を測定し、発熱を開始したときの温度を結晶化温度とした。
<Crystallization temperature>
The crystallization temperature of the mold powder was measured by the differential thermal method. That is, after raising the temperature of about 150 g of the mold powder and melting it, the temperature of the mold powder (slag) was measured while lowering the temperature at 4 ° C./min, and the temperature at the start of heat generation was defined as the crystallization temperature.

<初晶種>
モールドパウダー(スラグ)の初晶種を、X線回折法により同定した。
<Primary crystal species>
The primary crystal species of the mold powder (slag) were identified by X-ray diffraction.

<表面張力>
モールドパウダー(スラグ)の表面張力を、リング法により測定した。即ち、1300℃のスラグ中に直径10mmの白金リングを浸漬し、0.85cm/sの速さで白金リングを引き上げ、白金リングがスラグ液面から離れて液滴が切断する瞬間に示す最大荷重から表面張力を求めた。
<Surface tension>
The surface tension of the mold powder (slag) was measured by the ring method. That is, a platinum ring having a diameter of 10 mm is immersed in a slag at 1300 ° C., the platinum ring is pulled up at a speed of 0.85 cm / s, and the maximum load shown at the moment when the platinum ring separates from the slag liquid surface and the droplet is cut. The surface tension was calculated from.

<表面割れ種類>
鋳片表面割れ種類を、鋳片表面の目視観察により調査した。
<Type of surface crack>
The type of crack on the surface of the slab was investigated by visual observation of the surface of the slab.

<割れ評価>
鋳片熱延後に発生した鋳片割れを、割れによる格落ち率により評価した。即ち、格落ち率が2%未満の場合「優:◎」、2〜5%の場合「良:○」、5〜10%の場合「可:△」、10%以上の場合「不可:×」と評価した。
<Crack evaluation>
The slab cracks generated after the slabs were hot-rolled were evaluated by the rate of downgrade due to cracks. That is, if the disqualification rate is less than 2%, it is "excellent: ◎", if it is 2 to 5%, it is "good: ○", if it is 5 to 10%, it is "possible: △", and if it is 10% or more, it is "impossible: ×". I evaluated it.

<操業安定性(拘束発生の有無)>
操業安定性(拘束発生の有無)を、連続鋳造の操業に問題がなかった場合「問題なし:○」、潤滑不足による鋳片拘束が発生した場合「問題有り:×」と評価した。
<Operational stability (presence or absence of restraint)>
The operational stability (presence or absence of restraint) was evaluated as "no problem: ○" when there was no problem in the continuous casting operation, and "problem: ×" when slab restraint occurred due to insufficient lubrication.

[評価結果]
評価結果を表3に示す。

Figure 2020146719
[Evaluation results]
The evaluation results are shown in Table 3.
Figure 2020146719

実施例1〜10はいずれも結晶化温度が1080℃以上、かつ、初晶種がカスピダイン(Cuspidine:3CaO・2SiO・CaF)であった。また、表面割れの種類は「なし」か「微細」、割れ評価は「◎」か「○」であった。これは、スラグ中にカスピダインが適切に析出し、凝固シェルの緩冷却効果が十分得られ、鋳片表面に割れが生じにくくなったためと考えられる。 In Examples 1 to 10, the crystallization temperature was 1080 ° C. or higher, and the primary crystal species was caspidine (Cuspidine: 3CaO, 2SiO 2 , CaF 2 ). The type of surface crack was "none" or "fine", and the crack evaluation was "◎" or "○". It is considered that this is because caspidyne was appropriately precipitated in the slag, a sufficient cooling effect of the solidified shell was obtained, and cracks were less likely to occur on the surface of the slab.

実施例1〜10はいずれも1300℃における粘度及び表面張力がそれぞれ0.03〜0.7Pa・s及び190〜300mN/mであった。また、操業安定性(拘束発生の有無)はいずれも「○」であり、鋳片拘束は認められなかった。これは、スラグが凝固シェルとモールドの間に適度に流入し、潤滑や均一抜熱が安定的に保持されたためと考えられる。 In each of Examples 1 to 10, the viscosity and surface tension at 1300 ° C. were 0.03 to 0.7 Pa · s and 190 to 300 mN / m, respectively. In addition, the operational stability (presence or absence of restraint) was "○", and slab restraint was not recognized. It is considered that this is because the slag flows in between the solidified shell and the mold appropriately, and lubrication and uniform heat removal are stably maintained.

以上より、実施例1〜10はいずれも鋳片表面の割れの抑制と、凝固シェルとモールドの間の潤滑とを高度に両立することができた。 From the above, in each of Examples 1 to 10, it was possible to achieve both suppression of cracks on the surface of the slab and lubrication between the solidified shell and the mold.

一方、比較例1、4及び7には縦割れ又は横割れが生じた。これは、粘度が0.11〜0.75Pa・sと比較的高く、かつ、表面張力が300mN/m以上と高いため、スラグが凝固シェルとモールドの間に十分に流入せず、緩冷却が不足したためと考えられる。比較例2及び5には浅い凹みが生じた。これは、粘度が0.03Pa・sと比較的低く、かつ、表面張力が240mN/m以上と比較的高く、スラグが過剰に流入したためと考えられる。比較例3には鋳片縦割れと鋳片拘束が生じた。これは、潤滑不足と不均一抜熱が生じたためと考えられる。比較例6には微細割れと鋳片拘束が生じた。これは、粘度が0.11Pa・sと比較的高く、表面張力が355mN/m以上と高く、さらに、結晶化温度が1285℃と高く、初晶種がダイカルシウムシリケートあるため、潤滑が不足し、スラグが凝固シェルとモールドの間に十分に流入せず、緩冷却が不足したためと考えられる。比較例7には縦割れと鋳片拘束が生じた。これは、粘度と表面張力が高いため、結晶析出が不足したとともに、スラグの流れ込みが不足し、潤滑が不足したためと考えられる。比較例8は縦方向の凹みに加えて深いオシレーションマークが形成された。比較例9には縦横割れと鋳片拘束が生じた。これは、Fの含有量が少ないため、カスピダインは析出せず、NiO、CaO、SiOで構成される結晶鉱物が析出し、不均一抜熱と潤滑不足が生じたためと考えられる。 On the other hand, vertical cracks or horizontal cracks occurred in Comparative Examples 1, 4 and 7. This is because the viscosity is relatively high at 0.11 to 0.75 Pa · s and the surface tension is high at 300 mN / m or more, so that slag does not sufficiently flow between the solidified shell and the mold, and slow cooling is possible. Probably because of the shortage. A shallow dent was formed in Comparative Examples 2 and 5. It is considered that this is because the viscosity is relatively low at 0.03 Pa · s, the surface tension is relatively high at 240 mN / m or more, and the slag has flowed in excessively. In Comparative Example 3, vertical cracking of the slab and restraint of the slab occurred. This is thought to be due to insufficient lubrication and uneven heat removal. In Comparative Example 6, fine cracks and slab restraints occurred. This is because the viscosity is relatively high at 0.11 Pa · s, the surface tension is high at 355 mN / m or more, the crystallization temperature is high at 1285 ° C., and the primary crystal species is dicalcium silicate, so that lubrication is insufficient. It is probable that the slag did not flow sufficiently between the solidified shell and the mold, and the slow cooling was insufficient. In Comparative Example 7, vertical cracks and slab restraints occurred. It is considered that this is because the viscosity and surface tension are high, so that crystal precipitation is insufficient, slag flow is insufficient, and lubrication is insufficient. In Comparative Example 8, a deep oscillation mark was formed in addition to the vertical dent. In Comparative Example 9, vertical and horizontal cracks and slab restraint occurred. It is probable that this is because the content of F is low, so that caspidine does not precipitate, but crystalline minerals composed of Ni 2 O, Ca O, and SiO 2 precipitate, resulting in non-uniform heat removal and insufficient lubrication.

なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。したがって、このような変形例はすべて本発明の範囲に含まれる。例えば、明細書において、少なくとも一度、より広義又は同義な異なる用語とともに記載された用語は、明細書のいかなる箇所においても、その異なる用語に置き換えられることができる。また、本実施形態の製造装置等の構成及び動作も本実施形態で説明したものに限定されず、種々の変形が可能である。 Although the present embodiment has been described in detail as described above, those skilled in the art will easily understand that many modifications that do not substantially deviate from the novel matters and effects of the present invention are possible. Therefore, all such modifications are within the scope of the present invention. For example, in the specification, a term described at least once with a different term having a broader meaning or a synonym may be replaced with the different term at any part of the specification. Further, the configuration and operation of the manufacturing apparatus and the like of the present embodiment are not limited to those described in the present embodiment, and various modifications are possible.

Claims (3)

SiOとCaOを主成分として含み、
CaOのSiOに対する質量比(CaO/SiO)が1.1以上2.5以下であり、
Oの含有量は1.0〜10.0質量%であり、
NaOとLiOの含有量の合計は1.0〜18.0質量%であり、
F、MgO、Al及びトータルカーボンの含有量はそれぞれ3.0〜15.0質量%、0.5〜3.0質量%、0.5〜10.0質量%及び1.0〜20.0質量%であり、
1300℃における粘度が0.03〜0.7Pa・sであり、
結晶化温度が1080〜1280℃であり、
初晶種がカスピダイン(Cuspidine:3CaO・2SiO・CaF)であることを特徴とするモールドパウダー。
Contains SiO 2 and CaO as main components
Weight ratio of SiO 2 CaO (CaO / SiO 2) is 1.1 to 2.5,
The K 2 O content is 1.0 to 10.0 wt%,
The total content of Na 2 O and Li 2 O is 1.0 to 18.0% by mass.
The contents of F, MgO, Al 2 O 3 and total carbon are 3.0 to 15.0% by mass, 0.5 to 3.0% by mass, 0.5 to 10.0% by mass and 1.0 to 1.0 to respectively. 20.0% by mass,
The viscosity at 1300 ° C. is 0.03 to 0.7 Pa · s.
The crystallization temperature is 1080-1280 ° C.
A mold powder characterized in that the primary crystal species is caspidine (Cuspidine: 3CaO, 2SiO 2 , CaF 2 ).
請求項1に記載のモールドパウダーにおいて、
1300℃における表面張力が190〜300mN/mであることを特徴とするモールドパウダー。
In the mold powder according to claim 1,
A mold powder having a surface tension of 190 to 300 mN / m at 1300 ° C.
中炭素鋼を連続鋳造する工程を有し、
前記中炭素綱はカーボン濃度が0.08〜0.25質量%であり、
前記工程において、請求項1又は2に記載のモールドパウダーを用いることを特徴とする中炭素鋼の製造方法。
Has a process of continuously casting medium carbon steel
The medium carbon class has a carbon concentration of 0.08 to 0.25% by mass.
A method for producing medium carbon steel, which comprises using the mold powder according to claim 1 or 2 in the step.
JP2019045996A 2019-03-13 2019-03-13 Manufacturing method of mold powder and medium carbon rope Active JP6871521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019045996A JP6871521B2 (en) 2019-03-13 2019-03-13 Manufacturing method of mold powder and medium carbon rope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045996A JP6871521B2 (en) 2019-03-13 2019-03-13 Manufacturing method of mold powder and medium carbon rope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021006918A Division JP7208544B2 (en) 2021-01-20 2021-01-20 Manufacturing method of mold powder and medium carbon steel

Publications (2)

Publication Number Publication Date
JP2020146719A true JP2020146719A (en) 2020-09-17
JP6871521B2 JP6871521B2 (en) 2021-05-12

Family

ID=72431157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045996A Active JP6871521B2 (en) 2019-03-13 2019-03-13 Manufacturing method of mold powder and medium carbon rope

Country Status (1)

Country Link
JP (1) JP6871521B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034864A1 (en) * 2020-08-12 2022-02-17 Jfeスチール株式会社 Method for continuously casting steel and test solidification device for steel
JP7075026B1 (en) * 2021-02-24 2022-05-25 品川リフラクトリーズ株式会社 Mold powder and manufacturing method of mold powder
CN115890063A (en) * 2022-12-30 2023-04-04 四川西冶新材料股份有限公司 Welding flux for submerged arc welding of P92 steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158107A (en) * 1998-11-30 2000-06-13 Shinagawa Refract Co Ltd Mold powder for open casting
JP2004136360A (en) * 2002-10-21 2004-05-13 Shinagawa Refract Co Ltd Mold powder for continuously casting steel
CN103990770A (en) * 2014-05-15 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 High-alkalinity high-lubricity continuous casting crystallizer casting powder and method for performing continuous casting on peritectic steel slab
CN104209485A (en) * 2014-08-11 2014-12-17 武汉钢铁(集团)公司 Environment-friendly type continuous casting covering slag for high-aluminum peritectic steel
CN104259412A (en) * 2014-10-24 2015-01-07 中冶赛迪工程技术股份有限公司 Super-thick slab medium-carbon low-alloy steel continuous casting mold powder and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158107A (en) * 1998-11-30 2000-06-13 Shinagawa Refract Co Ltd Mold powder for open casting
JP2004136360A (en) * 2002-10-21 2004-05-13 Shinagawa Refract Co Ltd Mold powder for continuously casting steel
CN103990770A (en) * 2014-05-15 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 High-alkalinity high-lubricity continuous casting crystallizer casting powder and method for performing continuous casting on peritectic steel slab
CN104209485A (en) * 2014-08-11 2014-12-17 武汉钢铁(集团)公司 Environment-friendly type continuous casting covering slag for high-aluminum peritectic steel
CN104259412A (en) * 2014-10-24 2015-01-07 中冶赛迪工程技术股份有限公司 Super-thick slab medium-carbon low-alloy steel continuous casting mold powder and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034864A1 (en) * 2020-08-12 2022-02-17 Jfeスチール株式会社 Method for continuously casting steel and test solidification device for steel
JP7075026B1 (en) * 2021-02-24 2022-05-25 品川リフラクトリーズ株式会社 Mold powder and manufacturing method of mold powder
CN115890063A (en) * 2022-12-30 2023-04-04 四川西冶新材料股份有限公司 Welding flux for submerged arc welding of P92 steel
CN115890063B (en) * 2022-12-30 2024-02-09 四川西冶新材料股份有限公司 Flux for submerged arc welding of P92 steel

Also Published As

Publication number Publication date
JP6871521B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP4708055B2 (en) Mold powder for continuous casting of steel
JP5370929B2 (en) Mold flux for continuous casting of steel
EP1063035B1 (en) Molding powder for continuous casting of steel and method for continuous casting of steel
JP6871521B2 (en) Manufacturing method of mold powder and medium carbon rope
JP6901696B1 (en) Mold powder
JP6674093B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP2017087273A (en) CONTINUOUS CASTING MOLD POWDER FOR Ti-CONTAINING STEEL, AND CONTINUOUS CASTING METHOD
JP6169648B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP7208544B2 (en) Manufacturing method of mold powder and medium carbon steel
JP5342296B2 (en) Mold powder for continuous casting of steel
JP7239810B2 (en) Continuous casting method for mold powder and high Mn steel
JP6871525B2 (en) Mold powder
JP5388739B2 (en) Mold powder for continuous casting of steel
JP5148385B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP6718539B1 (en) Mold powder
JP7397361B2 (en) mold powder
JP3717049B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP7216310B2 (en) mold powder
JP2006247744A (en) Continuous casting method for steel
JP2019069462A (en) Mold powder for continuously casting steel
JP6578940B2 (en) Mold powder for continuous casting
JP2018153813A (en) Mold powder for continuously casting steel
JP2022182420A (en) MOLD POWDER FOR CONTINUOUS CASTING, AND HIGH Mn STEEL CONTINUOUS CASTING METHOD
JP2006247713A (en) Continuous casting method for steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210120

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210129

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6871521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250