JP6718539B1 - Mold powder - Google Patents

Mold powder Download PDF

Info

Publication number
JP6718539B1
JP6718539B1 JP2019079342A JP2019079342A JP6718539B1 JP 6718539 B1 JP6718539 B1 JP 6718539B1 JP 2019079342 A JP2019079342 A JP 2019079342A JP 2019079342 A JP2019079342 A JP 2019079342A JP 6718539 B1 JP6718539 B1 JP 6718539B1
Authority
JP
Japan
Prior art keywords
mass
mold
slag
cao
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019079342A
Other languages
Japanese (ja)
Other versions
JP2020175413A (en
Inventor
正典 岡田
正典 岡田
伊藤 純哉
純哉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2019079342A priority Critical patent/JP6718539B1/en
Application granted granted Critical
Publication of JP6718539B1 publication Critical patent/JP6718539B1/en
Publication of JP2020175413A publication Critical patent/JP2020175413A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

【課題】 高品質な鋳片の連続鋳造の安定操業に資するべく、スラグに求められる3要件が高度に調和されたモールドパウダーを提供すること。(要件1)凝固シェルとモールドの間の潤滑を保つこと(要件2)粘度と界面張力を適切に保ち、溶鋼に巻き込まれないこと(要件3)凝固シェルからモールドへの熱流束を制御し、適切な冷却速度を保つこと【解決手段】 モールドパウダーは、SiO2とCaOを主成分として含み、CaOのSiO2に対する質量比(CaO/SiO2)が0.9以上1.6以下であり、F及びAl2O3の含有量がそれぞれ5.0〜14.0質量%、6.0〜14.0質量%であり、FのAl2O3に対する質量比(F/Al2O3)が0.8以上であり、MgOの含有量が2.0〜14.0質量%であり、Na2OとLi2Oの含有量の合計が0.0〜2.0質量%である。【選択図】 なしPROBLEM TO BE SOLVED: To provide a mold powder in which three requirements required for slag are highly harmonized in order to contribute to stable operation of continuous casting of high quality slab. (Requirement 1) Maintain lubrication between the solidified shell and the mold (Requirement 2) Maintain viscosity and interfacial tension appropriately and do not get caught in molten steel (Requirement 3) Control the heat flux from the solidified shell to the mold, Maintaining an appropriate cooling rate A mold powder contains SiO2 and CaO as main components, and the mass ratio of CaO to SiO2 (CaO/SiO2) is 0.9 or more and 1.6 or less, and F and Al2O3. Are 5.0 to 14.0 mass% and 6.0 to 14.0 mass %, respectively, the mass ratio of F to Al2O3 (F/Al2O3) is 0.8 or more, and the content of MgO is Is 2.0 to 14.0% by mass, and the total content of Na2O and Li2O is 0.0 to 2.0% by mass. [Selection diagram] None

Description

本発明は、鋼の連続鋳造に適するモールドパウダーに関する。 The present invention relates to a mold powder suitable for continuous casting of steel.

鋼の連続鋳造とは、溶鋼を連続鋳造機のモールドに流し込んで冷却、凝固させながら、凝固したシェル(凝固シェル)をモールドの下方向に引き抜くことを連続的に行うことにより、鋼を連続的に鋳造することをいう。モールド内の溶鋼の表面には、粉末状又は顆粒状のモールドパウダーが添加される。モールドパウダーは溶鋼の熱によって溶融し(以下、溶融している状態のモールドパウダーを「パウダースラグ」又は「スラグ」とよぶ。)、スラグは凝固シェルとモールドの間に流入し、フィルム(スラグフィルム)に変化する。モールドパウダーの主な役割は(1)溶鋼表面の保温及び酸化防止、(2)溶鋼から浮上する非金属介在物の吸収及び溶鋼の清浄化、(3)凝固シェルとモールドの間の潤滑の保持、(4)凝固シェルからモールドへの熱流束の制御等である。 Continuous casting of steel refers to continuous casting of steel by pouring molten steel into the mold of a continuous casting machine, cooling and solidifying it, and continuously pulling out the solidified shell (solidified shell) in the downward direction of the mold. It means casting in. Powdered or granular mold powder is added to the surface of the molten steel in the mold. The mold powder is melted by the heat of the molten steel (hereinafter, the melted mold powder is referred to as “powder slag” or “slag”), and the slag flows between the solidified shell and the mold to form a film (slag film). ). The main functions of the mold powder are (1) heat retention and oxidation prevention of the molten steel surface, (2) absorption of non-metallic inclusions floating from the molten steel and cleaning of the molten steel, (3) maintenance of lubrication between the solidified shell and the mold. (4) Control of heat flux from the solidified shell to the mold.

スラグが凝固シェルとモールドの間に流入する駆動力は、モールドのオシレーション(振動)、凝固シェルの引き抜きによる引き込み及びスラグの自重であるが、高品質な鋳片の連続鋳造の安定操業に資するには、特に、以下の3つの要件を高度に調和させる必要がある(以下、「3要件」とよぶ。)。
(要件1)凝固シェルとモールドの間の潤滑を保つこと
(要件2)粘度と界面張力を適切に保ち、溶鋼に巻き込まれないこと
(要件3)凝固シェルからモールドへの熱流束を制御し、適切な冷却速度を保つこと
The driving force that the slag flows between the solidified shell and the mold is the oscillation (vibration) of the mold, the withdrawal of the solidified shell and the slag's own weight, but it contributes to the stable operation of continuous casting of high quality slabs. In particular, it is necessary to highly harmonize the following three requirements (hereinafter referred to as “3 requirements”).
(Requirement 1) Maintain lubrication between the solidified shell and the mold (Requirement 2) Maintain viscosity and interfacial tension appropriately and do not get caught in molten steel (Requirement 3) Control the heat flux from the solidified shell to the mold, Maintaining proper cooling rate

要件1を満たすためにはスラグの粘度は低い方が好ましい。しかし、スラグの粘度が低いとスラグが溶鋼中に巻き込まれやすくなり、鋳片品質が低下する。つまり、要件2を満たさなくなる。そこで、スラグ巻き込みによる鋳片欠陥の低減が特に求められる極低炭素鋼、低炭素鋼では要件2を満たすためにスラグの高粘度化が指向される。特許文献1では、粘度だけでなく、表面張力を高めることが提案され、実施例には、1250℃の表面張力が290〜310dyne/cmのスラグが開示されている。特許文献2では、表面張力を高める手段として、MgO含有量を増加させることが開示されている。 In order to satisfy the requirement 1, it is preferable that the viscosity of the slag is low. However, if the viscosity of the slag is low, the slag is likely to be caught in the molten steel, and the quality of the slab deteriorates. That is, the requirement 2 is not satisfied. Therefore, for extremely low carbon steels and low carbon steels, which are particularly required to reduce slab defects due to slag entrainment, higher slag viscosity is aimed to satisfy Requirement 2. Patent Document 1 proposes to increase not only the viscosity but also the surface tension, and Examples disclose a slag having a surface tension of 1250° C. of 290 to 310 dyne/cm. Patent Document 2 discloses increasing the MgO content as a means of increasing the surface tension.

要件3を満たすためにスラグフィルムへの結晶の析出が指向される。スラグフィルムに結晶が析出せず、ガラス質であると凝固シェルからモールドへの熱流束は大きく、結晶が析出し、結晶質であると熱流束は小さくなる。また、結晶の種類によっても凝固シェルからモールドへの熱流束は異なる。したがって、要件3を満たすには、熱流束を小さくする特定の結晶種を安定的に析出させる必要がある。鋳片からモールドへの熱流束が安定しないとモールド内温度の乱れが大きくなり、ブレークアウト予知システムの警報が発生するなど、操業が不安定になり生産性が低下する。特許文献3では、最適な結晶種としてカスピダイン(Cuspidine:3CaO・2SiO・CaF)が提案されている。 To satisfy the requirement 3, the precipitation of crystals on the slag film is directed. If crystals are not deposited on the slag film and they are glassy, the heat flux from the solidified shell to the mold is large, and if crystals are deposited, if they are crystalline, the heat flux is small. The heat flux from the solidified shell to the mold also differs depending on the type of crystal. Therefore, in order to satisfy the requirement 3, it is necessary to stably deposit a specific crystal seed that reduces the heat flux. If the heat flux from the slab to the mold is not stable, the temperature inside the mold will be greatly disturbed, which will cause an alarm in the breakout prediction system, resulting in unstable operation and reduced productivity. Patent Document 3 proposes caspidine (Cuspidine: 3CaO.2SiO 2 .CaF 2 ) as an optimum crystal species.

特開平2−25254号公報JP-A-2-25254 特開2016−002591号公報JP, 2016-002591, A 特開2018−144055号公報Japanese Unexamined Patent Application Publication No. 2018-144055

しかし、特許文献1に開示されるスラグは、依然として溶鋼中への巻き込みが完全に解消されておらず、要件1、2の両立が不十分である。また、カスピダインが析出しにくいため、要件3も不十分である。さらに、特許文献2、3に開示されたスラグは、表面張力を十分高めることができないため、溶鋼中への巻き込みが解消されず、要件1、2の両立が不十分である。 However, in the slag disclosed in Patent Document 1, the entrainment in molten steel has not been completely eliminated, and compatibility of requirements 1 and 2 is insufficient. Further, the requirement 3 is also insufficient because caspodyne is hard to precipitate. Further, since the slags disclosed in Patent Documents 2 and 3 cannot sufficiently increase the surface tension, the entrainment in molten steel cannot be eliminated, and the requirements 1 and 2 are not satisfied at the same time.

本発明の態様は上記実状を鑑みてなされたものであり、本発明の目的は、高品質な鋳片の連続鋳造の安定操業に資するべく、スラグに求められる3要件が高度に調和されたモールドパウダーを提供することである。 Aspects of the present invention have been made in view of the above circumstances, and an object of the present invention is to provide a mold in which three requirements required for slag are highly harmonized in order to contribute to stable operation of continuous casting of high quality slabs. Is to provide powder.

なお、本明細書に示すモールドパウダーの化学組成は加熱される前のものであり、FとC以外の成分については酸化物換算での質量%で表し、Fについては単体換算での質量%で表し、Cについては炭素原料として添加されるものの質量%と、炭酸塩等として添加されるものの炭素単体換算での質量%とを合計した全炭素量(トータルカーボン)で表す。 The chemical composition of the mold powder shown in the present specification is that before heating, and the components other than F and C are represented by mass% in terms of oxide, and F is mass% in terms of simple substance. C is expressed as the total carbon amount (total carbon), which is the sum of the mass% of those added as a carbon raw material and the mass% of carbonaceous substances added as a simple substance of carbon.

本発明の一の態様は、SiOとCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が0.9以上1.6以下であり、F及びAlの含有量がそれぞれ5.0〜14.0質量%、6.0〜14.0質量%であり、FのAlに対する質量比(F/Al)が0.8以上であり、MgOの含有量が2.0〜14.0質量%であり、NaOとLiOの含有量の合計が0.0〜2.0質量%であり、1300℃における粘度及び表面張力がそれぞれ0.20Pa・s以上及び360mN/m以上であり、析出する主結晶種がカスピダイン(Cuspidine:3CaO・2SiO・CaF)であることを特徴とするモールドパウダーに関する。 One aspect of the present invention comprises SiO 2 and CaO as main components, a mass ratio of SiO 2 CaO (CaO / SiO 2) is 0.9 to 1.6, the F and Al 2 O 3 5.0 to 14.0% by weight content of each is from 6.0 to 14.0 wt%, the weight ratio Al 2 O 3 of F (F / Al 2 O 3 ) is located at least 0.8 , The content of MgO is 2.0 to 14.0 mass %, the total content of Na 2 O and Li 2 O is 0.0 to 2.0 mass %, and the viscosity and surface tension at 1300° C. Are 0.20 Pa·s or more and 360 mN/m or more, respectively, and the main crystal species to be precipitated are caspidine (Cuspidine: 3CaO·2SiO 2 ·CaF 2 ).

モールドパウダーが上記要件を全て満たすことにより、スラグに求められる3要件を高度に調和させることができる。モールドパウダーは、スラグ巻き込みによる鋳片欠陥を減少させるとともに、モールド内温度の乱れによるブレークアウト予知警報の発生を抑制することができるため、高品質な鋳片の連続鋳造の安定操業に資する。 When the mold powder satisfies all the above requirements, the three requirements required for the slag can be highly harmonized. Mold powder contributes to stable operation of continuous casting of high quality slabs because it can reduce slab defects due to slag entrainment and suppress the occurrence of breakout prediction warnings due to temperature fluctuations in the mold.

以下、本発明の好適な実施形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成のすべてが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. Note that the present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and all the configurations described in the present embodiment are essential as a solution means of the present invention. Not necessarily.

本実施形態のモールドパウダーは、SiOとCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が0.9以上1.6以下であり、F及びAlの含有量がそれぞれ5.0〜14.0質量%、6.0〜14.0質量%であり、FのAlに対する質量比(F/Al)が0.8以上であり、MgOの含有量が2.0〜14.0質量%であり、NaOとLiOの含有量の合計が0.0〜2.0質量%であり、1300℃における粘度及び表面張力がそれぞれ0.20Pa・s以上及び360mN/m以上であり、析出する主結晶種がカスピダイン(Cuspidine:3CaO・2SiO・CaF)である。 Mold powder of the present embodiment includes a SiO 2 and CaO as main components, a mass ratio of SiO 2 CaO (CaO / SiO 2) is 0.9 to 1.6, the F and Al 2 O 3 5.0 to 14.0% by weight content of each is from 6.0 to 14.0 wt%, the weight ratio Al 2 O 3 of F (F / Al 2 O 3 ) is located at least 0.8 , The content of MgO is 2.0 to 14.0 mass %, the total content of Na 2 O and Li 2 O is 0.0 to 2.0 mass %, and the viscosity and surface tension at 1300° C. Are 0.20 Pa·s or more and 360 mN/m or more, respectively, and the main crystal species to be precipitated is caspidine (Cuspidine: 3CaO·2SiO 2 ·CaF 2 ).

[質量比(CaO/SiO)]
モールドパウダーはSiOとCaOを主成分として含有する。CaOのSiOに対する質量比(CaO/SiO)は0.9以上1.6以下であり、好ましくは1.0以上1.5以下であり、より好ましくは1.0以上1.4以下である。質量比(CaO/SiO)が0.9未満の場合、スラグの表面張力を高く保つことができないため、要件1、2が両立せず、鋳片の品質が悪化しやすい。一方、質量比(CaO/SiO)が1.6を超える場合、スラグの粘度が大きく低下するため、要件1、2が両立せず、鋳片の品質が悪化しやすい。さらに、凝固温度が大きく上昇し、凝固しやすくなるため、ブレークアウトの発生リスクが高まる。
[Mass ratio (CaO/SiO 2 )]
The mold powder contains SiO 2 and CaO as main components. Weight ratio of SiO 2 CaO (CaO / SiO 2) is 0.9 to 1.6, preferably from 1.0 to 1.5, more preferably 1.0 to 1.4 is there. When the mass ratio (CaO/SiO 2 ) is less than 0.9, the surface tension of the slag cannot be kept high, and thus requirements 1 and 2 are not compatible and the quality of the cast piece is likely to deteriorate. On the other hand, when the mass ratio (CaO/SiO 2 ) exceeds 1.6, the viscosity of the slag is significantly reduced, and requirements 1 and 2 are not compatible with each other, and the quality of the cast piece is likely to deteriorate. In addition, the solidification temperature rises significantly and the solidification becomes easier, which increases the risk of breakout.

[F]
Fの含有量は5.0〜14.0質量%であり、好ましくは6.0〜13.0質量%であり、より好ましくは7.0〜12.0質量%である。Fの含有量が5.0質量%未満の場合、結晶としてカスピダインが析出しにくくなり、ゲーレナイト(Gehlenite;CaAlSiO)、アケルマナイト(Akermanite;CaMgSi)、ダイカルシウムシリケート(Dicalcium silicate;2CaO・SiO)等が析出し、要件3を満たさなくなる。一方、Fの含有量が14.0質量%を超える場合、スラグの粘度と表面張力が大きく低下するため、要件1、2が両立しなくなる他、浸漬ノズルの溶損が増大する。
[F]
The content of F is 5.0 to 14.0 mass%, preferably 6.0 to 13.0 mass%, and more preferably 7.0 to 12.0 mass%. When the F content is less than 5.0% by mass, it becomes difficult for cuspidine to precipitate as crystals, and gehlenite (Gehlenite; Ca 2 Al 2 SiO 7 ), akermanite (Akermanite; Ca 2 MgSi 2 O 7 ), dicalcium silicate. (Dicalcium silicate; 2CaO·SiO 2 ) etc. will be deposited and requirement 3 will not be satisfied. On the other hand, when the content of F exceeds 14.0 mass %, the viscosity and the surface tension of the slag are greatly reduced, and thus requirements 1 and 2 are not compatible with each other and melting loss of the immersion nozzle is increased.

[Al
Alの含有量は6.0〜14.0質量%であり、好ましくは6.0〜13.0質量%であり、より好ましくは7.0〜12.0質量%である。Alの含有量が6.0質量%未満の場合、粘度、表面張力を高くすることができないため、要件1、2が両立しなくなる。Al含有量が14.0質量%を超える場合、カスピダインよりもゲーレナイトが析出しやすくなり、要件3を満たさなくなる。
[Al 2 O 3 ]
The content of Al 2 O 3 is 6.0 to 14.0 mass%, preferably 6.0 to 13.0 mass%, and more preferably 7.0 to 12.0 mass%. When the content of Al 2 O 3 is less than 6.0% by mass, the viscosity and the surface tension cannot be increased, and thus requirements 1 and 2 are not compatible. When the Al 2 O 3 content exceeds 14.0 mass %, gehlenite is more likely to precipitate than in caspodyne, and the requirement 3 is not satisfied.

[質量比(F/Al)]
質量比(F/Al)は、0.8以上であり、より好ましくは0.9以上であり、より好ましくは1.0以上である。質量比(F/Al)が0.8未満の場合、ゲーレナイトが著しく析出しやすくなり、要件3を満たさなくなる。質量比(F/Al)が0.8以上の場合、カスピダインが析出しやすいため、要件3を満たし、連続鋳造の操業を安定化させることができる。
[Mass ratio (F/Al 2 O 3 )]
The mass ratio (F/Al 2 O 3 ) is 0.8 or more, more preferably 0.9 or more, and more preferably 1.0 or more. When the mass ratio (F/Al 2 O 3 ) is less than 0.8, gehlenite is apt to precipitate significantly, and the requirement 3 cannot be satisfied. When the mass ratio (F/Al 2 O 3 ) is 0.8 or more, caspodyne is likely to precipitate, so that requirement 3 can be satisfied and the continuous casting operation can be stabilized.

[MgO]
MgOの含有量は2.0〜14.0質量%であり、好ましくは3.0〜13.0質量%、より好ましくは4.0〜12.0質量%、特に好ましくは4.0〜7.0質量%である。MgOは融点を下げる点でアルカリ金属酸化物と共通し、表面張力を高める点でアルカリ金属酸化物と異なる。本実施形態の組成はモールドパウダーの融点を下げるアルカリ金属酸化物の含有量が少ないため、高い表面張力を保つ融点調整剤として好適である。MgOの含有量が2.0質量%未満の場合、融点が高くなり、要件1、2を満たさなくなる。MgOの含有量が14.0質量%を超える場合、カスピダインの析出が低下し、アケルマナイト等のMgOを含む結晶が析出しやすくなるため、要件3を満たさなくなる。
[MgO]
The content of MgO is 2.0 to 14.0 mass%, preferably 3.0 to 13.0 mass%, more preferably 4.0 to 12.0 mass%, and particularly preferably 4.0 to 7 mass%. It is 0.0% by mass. MgO is common with alkali metal oxides in that it lowers the melting point, and is different from alkali metal oxides in that it enhances surface tension. The composition of the present embodiment contains a small amount of the alkali metal oxide that lowers the melting point of the mold powder, and is therefore suitable as a melting point adjusting agent that maintains a high surface tension. When the content of MgO is less than 2.0% by mass, the melting point becomes high and the requirements 1 and 2 cannot be satisfied. When the content of MgO exceeds 14.0 mass %, the precipitation of caspodyne is lowered and the crystals containing MgO such as akermanite are likely to be precipitated, so that the requirement 3 is not satisfied.

[NaO+LiO]
NaOとLiOの含有量の合計は0.0〜2.0質量%であり、好ましくは0.0〜1.5質量%以下であり、より好ましくは0.0〜1.0質量%である。NaOとLiOの含有量の合計が2.0質量%を超える場合、表面張力が低下し、要件2を満たさなくなる。
[Na 2 O+Li 2 O]
The total content of Na 2 O and Li 2 O is 0.0 to 2.0 mass%, preferably 0.0 to 1.5 mass% or less, and more preferably 0.0 to 1.0. It is% by mass. When the total content of Na 2 O and Li 2 O exceeds 2.0% by mass, the surface tension decreases and the requirement 2 cannot be satisfied.

[粘度]
1300℃におけるスラグの粘度は0.20Pa・s以上であり、好ましくは0.30Pa・s以上である。1300℃におけるスラグの粘度が0.20Pa・s未満の場合、要件2を満たさず、スラグの巻き込みが増大する。スラグ巻き込みを抑制するにはモールドパウダーの粘度は高い方が望ましいため、本実施形態の組成範囲であれば、上限は特に規定するものではないが、0.75Pa・sが上限である。
[viscosity]
The viscosity of slag at 1300° C. is 0.20 Pa·s or more, preferably 0.30 Pa·s or more. When the viscosity of the slag at 1300° C. is less than 0.20 Pa·s, the requirement 2 is not satisfied and the slag entrainment increases. Since it is desirable that the viscosity of the mold powder be high in order to suppress slag entrapment, the upper limit is not particularly specified within the composition range of the present embodiment, but 0.75 Pa·s is the upper limit.

[表面張力]
1300℃におけるスラグの表面張力は360mN/m以上である。1300℃におけるスラグの表面張力が360mN/m未満の場合、要件2を満たさず、スラグの巻き込みによって鋳片品質が低下する。
[surface tension]
The surface tension of the slag at 1300° C. is 360 mN/m or more. When the surface tension of the slag at 1300° C. is less than 360 mN/m, the requirement 2 is not satisfied, and the quality of the cast product is deteriorated due to the inclusion of the slag.

[主結晶種]
スラグフィルムに析出する主結晶種はカスピダインである。カスピダイン以外の結晶が主結晶種であると熱流束の制御が困難となり、要件3を満たさなくなる。したがって、ブレークアウト予知警報の発生が多くなり、連続鋳造の操業が不安定になる。
[Main crystal type]
The main crystal seed deposited on the slag film is caspidine. When crystals other than caspodyne are the main crystal seeds, it becomes difficult to control the heat flux, and requirement 3 cannot be satisfied. Therefore, the breakout prediction warning is frequently generated, and the continuous casting operation becomes unstable.

[モールドパウダーの原料]
本実施形態のモールドパウダーの原料はCaO−SiO基材原料、シリカ原料、フラックス原料、炭素原料、及び/又はその他の原料で構成される。CaO−SiO基材原料としては、例えば、合成珪酸カルシウム、ウォラストナイト、リンスラグ、高炉スラグ、ダイカルシウムシリケート、炭酸カルシウム、石灰石、生石灰、ポルトランドセメント等のセメント類等が挙げられる。シリカ原料としては、例えば、パーライト、フライアッシュ、珪砂、長石、珪石、珪藻土、ガラス粉、シリカフューム、シリカフラワー等が挙げられる。フラックス原料は、軟化点、粘度及び/又は結晶化温度を調整する役割を有し、例えば、フッ化ナトリウム、フッ化リチウム、氷晶石、蛍石(フッ化カルシウム)、フッ化マグネシウム等の弗化物、炭酸ナトリウム、炭酸リチウム、炭酸マグネシウム等の炭酸塩、ホウ酸、ホウ砂、コレマナイト等が挙げられる。炭素原料は、溶融速度を調整する役割を有し、例えば、コークス、グラファイト、カーボンブラック等が挙げられる。その他の原料としては、マグネシア、アルミナ等が挙げられる。モールドパウダーの原料には不可避成分として微量のFe、TiO、MnO、KO、Cr、P、S等が含まれてもよい。モールドパウダーの形態は特に限定されず、例えば、粉末、押し出し成形顆粒、中空スプレー顆粒、撹拌造粒等が挙げられる。
[Mold powder ingredients]
The raw material of the mold powder of this embodiment is composed of a CaO—SiO 2 base material, silica raw material, flux raw material, carbon raw material, and/or other raw material. The CaO-SiO 2 substrate material, e.g., synthetic calcium silicate, wollastonite, slag, blast furnace slag, dicalcium silicate, calcium carbonate, limestone, lime, include cements such as Portland cement. Examples of the silica raw material include perlite, fly ash, silica sand, feldspar, silica stone, diatomaceous earth, glass powder, silica fume, silica flour and the like. The flux raw material has a role of adjusting the softening point, the viscosity and/or the crystallization temperature. For example, sodium fluoride, lithium fluoride, cryolite, fluorite (calcium fluoride), magnesium fluoride, and other fluorine materials. Compounds, carbonates such as sodium carbonate, lithium carbonate and magnesium carbonate, boric acid, borax, colemanite and the like. The carbon raw material has a role of adjusting the melting rate, and examples thereof include coke, graphite, and carbon black. Examples of other raw materials include magnesia and alumina. The raw material of the mold powder may contain trace amounts of Fe 2 O 3 , TiO 2 , MnO, K 2 O, Cr 2 O 3 , P 2 O 5 , S and the like as unavoidable components. The form of the mold powder is not particularly limited, and examples thereof include powder, extrusion-molded granules, hollow spray granules, and stirring granulation.

以下、本発明の実施例について詳細に説明する。 Hereinafter, examples of the present invention will be described in detail.

[実験方法]
モールドパウダーを用いて鋼の連続鋳造を行った。表1に、用いたモールドパウダーの組成を示す。実施例1〜16は本発明の実施例であり、比較例1〜11は本発明の比較例である。

[experimental method]
Continuous casting of steel was performed using mold powder. Table 1 shows the composition of the mold powder used. Examples 1 to 16 are examples of the present invention, and Comparative Examples 1 to 11 are comparative examples of the present invention.

実施例1〜16は、SiOとCaOを主成分として含み、CaOのSiOに対する質量比(CaO/SiO)が0.9以上1.6以下であり、F及びAlの含有量がそれぞれ5.0〜14.0質量%、6.0〜14.0質量%であり、FのAlに対する質量比(F/Al)が0.8以上であり、MgOの含有量が2.0〜14.0質量%であり、NaOとLiOの含有量の合計が0.0〜2.0質量%である。 Examples 1-16 includes SiO 2 and CaO as main components, a mass ratio of SiO 2 CaO (CaO / SiO 2) is 0.9 to 1.6, containing the F and Al 2 O 3 the amount respectively 5.0 to 14.0 wt%, a 6.0 to 14.0 wt%, the weight ratio Al 2 O 3 of F (F / Al 2 O 3 ) is not less than 0.8, The content of MgO is 2.0 to 14.0 mass %, and the total content of Na 2 O and Li 2 O is 0.0 to 2.0 mass %.

一方、比較例1〜2は質量比(F/Al)が0.8以上を満たさない。また、比較例2、11はFの含有量がそれぞれ5.0〜14.0質量%を満たさない。また、比較例3、9〜10はAlの含有量が6.0〜14.0質量を満たさない。また、比較例4、10はMgOの含有量が2.0〜14.0質量%を満たさない。また、比較例5〜6はNaOとLiOの含有量の合計が0.0〜2.0質量%を満たさない。また、比較例7〜8は質量比(CaO/SiO)が0.9以上1.6以下を満たさない。 On the other hand, in Comparative Examples 1 and 2, the mass ratio (F/Al 2 O 3 ) does not satisfy 0.8 or more. In addition, Comparative Examples 2 and 11 do not satisfy the F contents of 5.0 to 14.0 mass %, respectively. In addition, Comparative Examples 3 and 9 to 10 do not satisfy the Al 2 O 3 content of 6.0 to 14.0 mass. Further, in Comparative Examples 4 and 10, the content of MgO does not satisfy 2.0 to 14.0 mass %. Further, in Comparative Examples 5 to 6, the total content of Na 2 O and Li 2 O does not satisfy 0.0 to 2.0 mass %. Further, in Comparative Examples 7 to 8, the mass ratio (CaO/SiO 2 ) does not satisfy 0.9 or more and 1.6 or less.

表2に、連続鋳造の鋳造条件、即ち、モールドサイズ、鋼種、鋳造速度を示す。表2の鋼種の「極低炭素」、「低炭素」、「高炭素」はカーボン濃度がそれぞれ0.01質量%以下、0.01〜0.08質量%、0.20質量%以上の炭素綱である。
Table 2 shows casting conditions of continuous casting, that is, mold size, steel type, and casting speed. "Ultra-low carbon", "low carbon", and "high carbon" of the steel types in Table 2 have carbon concentrations of 0.01 mass% or less, 0.01 to 0.08 mass%, and 0.20 mass% or more, respectively. It is a rope.

実施例と比較例の鋳造条件はほぼ同様とした。 The casting conditions of the example and the comparative example were almost the same.

[評価方法]
モールドパウダー(スラグ)及び連続鋳造によって得られた鋳片について、以下の項目の評価を行った。
[Evaluation method]
The following items were evaluated for the mold powder (slag) and the slab obtained by continuous casting.

<粘度>
モールドパウダー(スラグ)の粘度を、球引き上げ法により測定した。即ち、1300℃のスラグ中に直径10mmの白金球を吊り下げ、0.85cm/sの速さで白金球を引き上げたときの荷重から粘度を求めた。
<Viscosity>
The viscosity of the mold powder (slag) was measured by the ball lifting method. That is, the viscosity was obtained from the load when a platinum ball having a diameter of 10 mm was suspended in slag at 1300° C. and the platinum ball was pulled up at a speed of 0.85 cm/s.

<表面張力>
モールドパウダー(スラグ)の表面張力を、リング法により測定した。即ち、1300℃のスラグ中に直径10mmの白金リングを浸漬し、0.85cm/sの速さで白金リングを引き上げ、白金リングがスラグ液面から離れて液滴が切断する瞬間に示す最大荷重から表面張力を求めた。
<Surface tension>
The surface tension of the mold powder (slag) was measured by the ring method. That is, a platinum ring with a diameter of 10 mm is immersed in slag at 1300° C., the platinum ring is pulled up at a speed of 0.85 cm/s, and the maximum load shown at the moment when the platinum ring separates from the liquid surface of the slag and droplets are cut off. The surface tension was obtained from

<主結晶種>
主結晶種は、1300℃で溶融状態のスラグ100gを鉄製容器に流し込んで急冷し、得られた凝固スラグのX線回折パターンにより同定した。
<Main crystal type>
The main crystal seed was identified by an X-ray diffraction pattern of the solidified slag obtained by pouring 100 g of molten slag at 1300° C. into an iron container and quenching.

<鋳片品質>
鋳片の品質は、スラグ巻き込みによる鋳片欠陥の発生率が0.5%以下を「優:★★★」、0.5%を超え1%未満を「良:★★」、1%を超え3%未満を「可:★」、3%以上を「不可:×」とした。
<Slab quality>
The quality of the slab is "excellent:★★★" when the occurrence rate of slab defects due to slag entrainment is 0.5% or less, "good:★★" when it exceeds 0.5% and less than 1%, and 1%. Exceeding less than 3% was evaluated as “OK:★” and 3% or more was evaluated as “No:X”.

<操業安定性>
連続鋳造の操業安定性は、100チャージ(1チャージ300t)を鋳造してブレークアウト予知警報の発生数が0回で、モールド内温度の乱れもなければ「優:★★★」、ブレークアウト予知警報の発生数が0回だがモールド内温度の乱れが多少あれば「良:★★」、ブレークアウト予知警報の発生数が1回であれば「可:★」、ブレークアウト予知警報の発生数が2回以上であれば「不可:×」とした。
<Operational stability>
As for the operational stability of continuous casting, 100 charges (1 charge 300t) were cast, the number of breakout prediction alarms was 0, and if there was no disturbance in the mold temperature, "Excellent: ★★★", breakout prediction If the number of alarms is 0, but the temperature in the mold is slightly disturbed, it is "Good: ★★", and if the number of breakout prediction alarms is 1, it is "OK: ★", the number of breakout prediction alarms is generated. If was twice or more, it was determined to be "impossible: x".

<総合評価>
総合評価は、鋳片品質、操業安定性の両者が「優:★★★」であれば「優:◎」、いずれかに「良:★★」もしくは「可:★」があり、「不可:×」がなければ「可:○」、いずれかに「不可:×」があれば「不可:×」とした。
<Comprehensive evaluation>
In the overall evaluation, if both the slab quality and the operational stability are "excellent:★★★", then "excellent: ◎", either is "good:★★" or "acceptable:★", and "impossible" If there is no: ×, it is judged as “OK: ○”, and if there is any “Improper: ×”, it is judged as “Improper: ×”.

[評価結果]
評価結果を表3に示す。
[Evaluation results]
The evaluation results are shown in Table 3.

実施例1〜16はいずれも1300℃における粘度及び表面張力がそれぞれ0.20Pa・s以上及び360mN/m以上であり、析出する主結晶種がカスピダインであった。また、鋳片品質及び操業安定性は「優:★★★」〜「可:★」であり、総合評価は「優:◎」又は「可:○」であった。これは、3要件が高度に調和されたためと考えられる。 In each of Examples 1 to 16, the viscosity and the surface tension at 1300° C. were 0.20 Pa·s or more and 360 mN/m or more, respectively, and the main crystal seed to be precipitated was caspodyne. In addition, the slab quality and operation stability were "excellent:★★★" to "possible:★", and the overall evaluation was "excellent: ◎" or "possible:○". This is probably because the three requirements were highly harmonized.

一方、比較例1〜11は操業安定性か鋳片品質のいずれかが「不可:×」であり、総合評価は「不可:×」であった。比較例1〜4は操業時にブレークアウト予知警報が多発し、操業安定性が「不可:×」であった。これは、主結晶種がカスピダインではないため、凝固シェルからモールドへの熱流束が適切でなく、要件3を満たさなかったと考えられる。比較例1〜3は質量比(CaO/SiO)が0.9以上1.6以下を下回り、主結晶種がゲーレナイトであった。また、比較例4はAlの含有量が6.0〜14.0質量を上回り、主結晶種がアケルマナイトであった。 On the other hand, in Comparative Examples 1 to 11, either the operation stability or the slab quality was "impossible:x", and the comprehensive evaluation was "impossible:x". In Comparative Examples 1 to 4, breakout prediction warnings frequently occurred during operation, and the operation stability was “impossible: x”. It is considered that this is because the heat flux from the solidified shell to the mold was not appropriate and the requirement 3 was not satisfied because the main crystal seed was not caspodyne. In Comparative Examples 1 to 3, the mass ratio (CaO/SiO 2 ) was less than 0.9 and less than 1.6, and the main crystal seed was gehlenite. Further, in Comparative Example 4, the content of Al 2 O 3 exceeded 6.0 to 14.0 mass, and the main crystal seed was akermanite.

比較例5〜11は鋳片品質が「不可:×」であった。これは、1300℃における表面張力が360mN/m以上を満たさないため、スラグの界面張力を適切に保つことができず、要件2を満たさなかったと考えられる。比較例5、6はNaOとLiOの含有量の合計が0.0〜2.0質量%を上回り、表面張力が360mN/m以上を満たさなかった。比較例7は(CaO/SiO)が0.9以上1.6以下を上回り、粘度及び表面張力がそれぞれ0.20Pa・s以上及び360mN/m以上を満たさなかった。比較例8は(CaO/SiO)が0.9以上1.6以下を下回り、表面張力が360mN/m以上を満たさなかった。比較例9、10はAlの含有量が6.0〜14.0質量を下回り、表面張力が360mN/m以上を満たさなかった。比較例11はFの含有量が5.0〜14.0質量%を上回り、表面張力が360mN/m以上を満たさなかった。 In Comparative Examples 5 to 11, the slab quality was "impossible: x". It is considered that this is because the surface tension at 1300° C. did not satisfy 360 mN/m or more, so that the interfacial tension of the slag could not be appropriately maintained and the requirement 2 was not satisfied. In Comparative Examples 5 and 6, the total content of Na 2 O and Li 2 O exceeded 0.0 to 2.0 mass %, and the surface tension did not satisfy 360 mN/m or more. In Comparative Example 7, (CaO/SiO 2 ) exceeded 0.9 or more and 1.6 or less, and the viscosity and the surface tension did not satisfy 0.20 Pa·s or more and 360 mN/m or more, respectively. In Comparative Example 8, (CaO/SiO 2 ) was less than 0.9 and less than 1.6, and the surface tension did not satisfy 360 mN/m or more. In Comparative Examples 9 and 10, the content of Al 2 O 3 was less than 6.0 to 14.0 mass, and the surface tension did not satisfy 360 mN/m or more. In Comparative Example 11, the F content exceeded 5.0 to 14.0 mass %, and the surface tension did not satisfy 360 mN/m or more.

なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。したがって、このような変形例はすべて本発明の範囲に含まれる。例えば、明細書において、少なくとも一度、より広義又は同義な異なる用語とともに記載された用語は、明細書のいかなる箇所においても、その異なる用語に置き換えられることができる。また、本実施形態の製造装置等の構成及び動作も本実施形態で説明したものに限定されず、種々の変形が可能である。 Although the present embodiment has been described above in detail, it will be easily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. Therefore, all such modifications are included in the scope of the present invention. For example, in the specification, a term described at least once together with a different term having a broader meaning or the same meaning can be replaced with the different term anywhere in the specification. Further, the configuration and operation of the manufacturing apparatus and the like of this embodiment are not limited to those described in this embodiment, and various modifications are possible.

Claims (3)

SiOとCaOを主成分として含み、
CaOのSiOに対する質量比(CaO/SiO)が0.9以上1.6以下であり、
F及びAlの含有量がそれぞれ5.0〜14.0質量%、6.0〜14.0質量%であり、
FのAlに対する質量比(F/Al)が0.8以上であり、
MgOの含有量が4.0〜12.0質量%であり、
NaOとLiOの含有量の合計が0.0〜1.3質量%であり、
1300℃における粘度及び表面張力がそれぞれ0.20Pa・s以上0.75Pa・s以下及び360mN/m以上であり、
1300℃で溶融状態のスラグ100gを鉄製容器に流し込んで急冷したときに析出する主結晶種がカスピダイン(Cuspidine:3CaO・2SiO ・CaF )であることを特徴とするモールドパウダー。
Contains SiO 2 and CaO as main components,
Weight ratio of SiO 2 CaO (CaO / SiO 2) is 0.9 to 1.6,
The contents of F and Al 2 O 3 are 5.0 to 14.0% by mass and 6.0 to 14.0% by mass, respectively.
Weight ratio Al 2 O 3 of F (F / Al 2 O 3 ) is not less than 0.8,
The content of MgO is 4.0 to 12.0 mass %,
Total 0.0 to 1.3% by mass of the content of Na 2 O and Li 2 O is,
The viscosity and the surface tension at 1300° C. are 0.20 Pa·s or more and 0.75 Pa·s or less and 360 mN/m or more, respectively,
1300 main crystal species to be precipitated when the slag 100g molten and quenched by pouring into an iron container ℃ is Kasupidain (Cuspidine: 3CaO · 2SiO 2 · CaF 2) mold powder according to claim der Rukoto.
請求項1に記載のモールドパウダーであって、
前記Na OとLi Oの含有量の合計が0.0〜1.0質量%であることを特徴とするモールドパウダー。
The mold powder according to claim 1, wherein
Mold powder characterized in that the total content of Na 2 O and Li 2 O is 0.0 to 1.0 mass % .
請求項1又は2に記載のモールドパウダーであって、
前記Fの含有量が8.2〜14.0質量%であることを特徴とするモールドパウダー。
The mold powder according to claim 1 or 2, wherein
The mold powder, wherein the content of F is 8.2 to 14.0 mass % .
JP2019079342A 2019-04-18 2019-04-18 Mold powder Active JP6718539B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079342A JP6718539B1 (en) 2019-04-18 2019-04-18 Mold powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079342A JP6718539B1 (en) 2019-04-18 2019-04-18 Mold powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020102505A Division JP6871525B2 (en) 2020-06-12 2020-06-12 Mold powder

Publications (2)

Publication Number Publication Date
JP6718539B1 true JP6718539B1 (en) 2020-07-08
JP2020175413A JP2020175413A (en) 2020-10-29

Family

ID=71402327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079342A Active JP6718539B1 (en) 2019-04-18 2019-04-18 Mold powder

Country Status (1)

Country Link
JP (1) JP6718539B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358485A (en) * 2003-06-02 2004-12-24 Sumitomo Metal Ind Ltd Mold flux for continuous casting of steel
JP4486878B2 (en) * 2004-12-22 2010-06-23 新日本製鐵株式会社 Mold powder for continuous casting of steel and continuous casting method
JP4460463B2 (en) * 2005-01-11 2010-05-12 新日本製鐵株式会社 Mold powder for continuous casting of steel
JP5835153B2 (en) * 2012-08-20 2015-12-24 新日鐵住金株式会社 Mold flux for continuous casting of steel and continuous casting method
EP3372325B1 (en) * 2015-11-05 2020-07-08 Nippon Steel Corporation Mold flux for continuous casting and continuous casting method using it

Also Published As

Publication number Publication date
JP2020175413A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
AU764954B2 (en) Molding powder for continuous casting of steel and method for continuous casting of steel
JP4708055B2 (en) Mold powder for continuous casting of steel
JP6901696B1 (en) Mold powder
JP6871521B2 (en) Manufacturing method of mold powder and medium carbon rope
US4235632A (en) Particulate slagging composition for the extended optimum continuous casting of steel
KR20040079407A (en) Method for continuous casting of steel
JP6169648B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP6674093B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP5585347B2 (en) Mold powder for continuous casting of steel
JP5342296B2 (en) Mold powder for continuous casting of steel
JP6718539B1 (en) Mold powder
JP2021074782A (en) Mold powder and method of producing medium-carbon steel
JP6871525B2 (en) Mold powder
JP5148385B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP3107739B2 (en) Premelt flux of powder for continuous casting of steel
JP7239810B2 (en) Continuous casting method for mold powder and high Mn steel
JP3249429B2 (en) Mold powder for continuous casting of steel
JP5388739B2 (en) Mold powder for continuous casting of steel
JP2000051998A (en) Method for continuously casting lead-containing steel
JP7216310B2 (en) mold powder
JP7397361B2 (en) mold powder
JP7339568B2 (en) mold powder
JP2001334351A (en) Mold powder for continuously casting steel and method for continuously casting steel
WO2022075197A1 (en) Flux added onto molten steel accommodated in container
JP2003340555A (en) Mold powder for continuous casting of steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191111

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250