JP2020145984A - Abalone feed and method for producing abalone feed - Google Patents

Abalone feed and method for producing abalone feed Download PDF

Info

Publication number
JP2020145984A
JP2020145984A JP2019047055A JP2019047055A JP2020145984A JP 2020145984 A JP2020145984 A JP 2020145984A JP 2019047055 A JP2019047055 A JP 2019047055A JP 2019047055 A JP2019047055 A JP 2019047055A JP 2020145984 A JP2020145984 A JP 2020145984A
Authority
JP
Japan
Prior art keywords
abalone
feed
microalgae
medium
abalone feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019047055A
Other languages
Japanese (ja)
Other versions
JP7107259B2 (en
Inventor
孝幸 小林
Takayuki Kobayashi
孝幸 小林
福田 裕章
Hiroaki Fukuda
裕章 福田
欣也 渥美
Kinya Atsumi
欣也 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019047055A priority Critical patent/JP7107259B2/en
Publication of JP2020145984A publication Critical patent/JP2020145984A/en
Application granted granted Critical
Publication of JP7107259B2 publication Critical patent/JP7107259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feed For Specific Animals (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Fodder In General (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide new feed suitable for culture of abalone with excellent growth and survival rates of shellfish fry.SOLUTION: An abalone feed contains Coccomyxa microalgae.SELECTED DRAWING: None

Description

本開示は、アワビ類用餌料及びアワビ類用餌料の製造方法に関する。 The present disclosure relates to abalone feeds and methods for producing abalone feeds.

アワビ類の養殖には、育成カゴを湾内に吊るして行う海面養殖と、内陸のコンクリート水槽などに海水を引き入れて陸上で行う陸上養殖とがある。陸上養殖は、海面養殖と比較して、気候、気象等の影響を受けにくく、飼育環境を制御できるため、安定してアワビ類を生産できるというメリットがある。 There are two types of abalone farming: sea surface farming, in which a breeding basket is hung in the bay, and land farming, in which seawater is drawn into an inland concrete aquarium. Compared to sea surface aquaculture, land aquaculture is less susceptible to the effects of climate, weather, etc., and can control the breeding environment, so it has the advantage of being able to produce abalone in a stable manner.

陸上養殖の一つとして、海水を循環ろ過して行う閉鎖循環式陸上養殖があり、実用化もなされている。例えば、非特許文献1には、アワビの養殖において海水を再利用する閉鎖循環式陸上養殖が実用化されていることが記載されている。 As one of the land-based aquaculture, there is a closed-circulation type land-based aquaculture that circulates and filters seawater, and has been put into practical use. For example, Non-Patent Document 1 describes that closed-circulation aquaculture that reuses seawater has been put into practical use in abalone farming.

陸上養殖では、内陸に設置した水槽やコンクリート水槽にアワビ類の稚貝を入れ、餌料を与え出荷サイズになるまで育成を行う。アワビ類の養殖に使用される餌料としては、天然海藻及び市販の配合飼料がある。天然海藻は安価であり、アワビ類の養殖の大部分の餌料は天然海藻である。しかし、天然海藻には、近年磯焼けによって資源量が減少していること、天然のため栄養成分の組成が不安定であること、及び稚貝の成長が遅いこと、といった課題がある。一方、配合飼料は、栄養価が高く稚貝の成長に優れる反面、崩れやすいので水を汚し水質が低下しやすいという課題がある(非特許文献2)。特に、無脊椎動物であるアワビ類は、硬骨魚類と比べて水質に非常に敏感であるため、水質をいかに維持するかが重要である。水質が低下すると、稚貝の生残率が低下する場合がある。 In aquaculture on land, juvenile abalone is placed in an inland aquarium or concrete aquarium, fed and cultivated until it reaches the shipping size. Feeds used for abalone farming include natural seaweed and commercially available compound feeds. Natural seaweeds are inexpensive, and most abalone farming feeds are natural seaweeds. However, natural seaweed has problems that the amount of resources has decreased due to shore burning in recent years, the composition of nutritional components is unstable because it is natural, and the growth of juveniles is slow. On the other hand, the compound feed has a high nutritional value and excellent growth of juvenile mussels, but on the other hand, it has a problem that it easily pollutes water and deteriorates water quality because it easily collapses (Non-Patent Document 2). In particular, abalone, which is an invertebrate, is much more sensitive to water quality than teleost fish, so how to maintain water quality is important. When the water quality deteriorates, the survival rate of juvenile mussels may decrease.

辻洋一、「アワビ種苗生産開発 閉鎖循環式での実用化」、養殖ビジネス臨時増刊号「よくわかる!種苗生産と育種」、2014、p.103−106Yoichi Tsuji, "Abalone Seedling Production Development, Practical Use in Closed Circulation", Special Issue on Aquaculture Business "Understanding! Seedling Production and Breeding", 2014, p. 103-106 原田恭行、熊谷敬之、小善圭一、横井健二、「異なる餌料で養殖したアワビF1交雑種の肉質の比較」、日本水産学会誌、2012、第78巻、第5号、p.945−950Yasuyuki Harada, Takayuki Kumagai, Keiichi Kozen, Kenji Yokoi, "Comparison of meat quality of abalone F1 hybrids cultivated with different diets", Journal of the Fisheries Society of Japan, 2012, Vol. 78, No. 5, p. 945-950

本開示の一局面は、稚貝の成長及び生残率に優れた、アワビ類の養殖に適する新たな餌料及びその製造方法を提供する。 One aspect of the present disclosure provides a new feed suitable for abalone farming and a method for producing the same, which has excellent growth and survival rate of juvenile mussels.

本開示の一態様は、コッコミクサ属に属する微細藻類を含有するアワビ類用餌料である。本開示の一態様のアワビ類用餌料は、稚貝の成長及び生残率に優れる。
本開示の一態様は、コッコミクサ属に属する微細藻類を培養し、培養した微細藻類を含有させたアワビ類用餌料を製造する、アワビ類用餌料の製造方法である。本開示の一態様のアワビ類用餌料の製造方法によれば、稚貝の成長及び生残率に優れるアワビ類用餌料を製造することができる。
One aspect of the present disclosure is a feed for abalone containing microalgae belonging to the genus Kokkomixa. The abalone feed according to one aspect of the present disclosure is excellent in the growth and survival rate of juvenile mussels.
One aspect of the present disclosure is a method for producing an abalone feed, which comprises culturing microalgae belonging to the genus Kokkomixa and producing a feed for abalone containing the cultured microalgae. According to the method for producing abalone feed according to one aspect of the present disclosure, it is possible to produce abalone feed having excellent growth and survival rate of juvenile clams.

TBARSの測定結果を示すグラフである。It is a graph which shows the measurement result of TBARS. ω3脂肪酸(ω3高度不飽和脂肪酸)の測定結果を示すグラフである。It is a graph which shows the measurement result of ω3 fatty acid (ω3 highly unsaturated fatty acid). 図3(a)は旨味成分の測定結果を示すグラフ、図3(b)は甘味成分の測定結果を示すグラフ、図3(c)は苦味成分の測定結果を示すグラフである。FIG. 3A is a graph showing the measurement result of the umami component, FIG. 3B is a graph showing the measurement result of the sweetness component, and FIG. 3C is a graph showing the measurement result of the bitterness component. 各成分の含有量の測定結果を示すレーダーチャートである。It is a radar chart which shows the measurement result of the content of each component.

本開示の一態様のアワビ類用餌料は、コッコミクサ(Coccomyxa)属に属する微細藻類(以下、単に微細藻類ともいう)を含有する。
本発明者の検討によれば、本開示の一態様のアワビ類用餌料は、稚貝の成長及び生残率に優れている。また、本発明者の検討によれば、本開示の一態様のアワビ類用餌料を用いて養殖されたアワビ類は、肉質中における、機能性成分である、α−リノレン酸等のω3脂肪酸の含有量が多い。また、本発明者の検討によれば、本開示の一態様のアワビ類用餌料を用いて養殖されたアワビ類は、その肉質中における、旨味成分及び甘味成分の含有量が多い。さらに、本発明者の検討によれば、本開示の一態様のアワビ類用餌料を用いると、アワビ類の免疫力が高い。
The abalone feed according to one aspect of the present disclosure contains microalgae belonging to the genus Coccomyxa (hereinafter, also simply referred to as microalgae).
According to the study of the present inventor, the abalone feed according to one aspect of the present disclosure is excellent in the growth and survival rate of juvenile mussels. Further, according to the study of the present inventor, the abalone cultivated using the abalone feed according to one aspect of the present disclosure contains ω3 fatty acids such as α-linolenic acid, which are functional components in the meat. High content. Further, according to the study of the present inventor, the abalone cultivated using the abalone feed according to one aspect of the present disclosure has a large content of umami component and sweet component in the meat quality. Furthermore, according to the study of the present inventor, the immunity of abalone is high when the abalone feed of one aspect of the present disclosure is used.

以下、本開示の一態様のアワビ類用餌料及びその製造方法について詳細に説明する。
[アワビ類用餌料]
アワビ類用餌料は、アワビ類の養殖に好適に使用することができる。本開示中のアワビ類とは、軟体動物門腹足網に属する巻貝類の総称である。アワビ類には、磯根資源である、クロアワビ、メガイアワビ、マダカアワビ、エゾアワビ等のアワビ属類、トコブシ等のトコブシ属類など、水産産業上、重要とされる巻貝類が含まれる。
Hereinafter, an abalone feed according to one aspect of the present disclosure and a method for producing the same will be described in detail.
[Abalone food]
The abalone feed can be suitably used for abalone farming. The abalone in the present disclosure is a general term for shellfish belonging to the mollusc phylum gastropod. Abalones include abalone species such as black abalone, mega abalone, madaka abalone, and Ezo abalone, and genus Tokobushi such as Tokobushi, which are important resources in the fisheries industry.

コッコミクサ属に属する微細藻類としては、コッコミクサ属に属するあらゆる株を用いることができる。コッコミクサ属に属する株としては、Coccomyxa sp. KJ株(以下、KJ株という)が好ましい。KJ株は、2013年6月4日付で独立行政法人製品評価技術基盤機構特許生物寄託センター(IPOD)に受託番号FERM P−22254として寄託され、更に2015年6月2日付で受託番号FERM BP−22254としてブダペスト条約に基づく国際寄託へ移管されている。なお、KJ株は、従前はシュードココミクサ(Pseudococcomyxa)属に分類されていたが、現在はコッコミクサ属に分類されている。 As the microalgae belonging to the genus Kokkomixa, any strain belonging to the genus Kokkomixa can be used. Examples of the strain belonging to the genus Coccomyxa include Coccomyxa sp. The KJ strain (hereinafter referred to as KJ strain) is preferable. The KJ shares were deposited with the National Institute of Technology and Evaluation Patent Organisms Depositary (IPOD) on June 4, 2013 under the accession number FERM P-22254, and on June 2, 2015, the accession number FERM BP- It has been transferred to an international deposit under the Budapest Treaty as 22254. The KJ strain was previously classified into the genus Pseudococcomyxa, but is now classified into the genus Pseudococcomyxa.

微細藻類は、乾燥させた状態で2質量%以上5質量%以下のα−リノレン酸を含有することが好ましい。すなわち、培養した微細藻類を乾燥させて得られる乾燥粉末において、2質量%以上5質量%以下のα−リノレン酸を含有することが好ましい。α−リノレン酸をこのような量で含有するアワビ類用餌料を使用して養殖されたアワビ類は、後述する実施例で示すように、α−リノレン酸を多量に含有することが判明している。これは、アワビ類用餌料に含まれるα−リノレン酸がアワビに取り込まれたためと考えられる。α−リノレン酸は必須脂肪酸の一つであり、血圧低下等の健康効果を有すると言われている。よって、このような量のα−リノレン酸を含有する微細藻類を使用したアワビ類用餌料を用いて養殖することで、高い健康効果が期待されるアワビ類を産生することができる。このような量のα−リノレン酸を含有する微細藻類は、窒素が欠乏しない状態で培養することで得ることができる。微細藻類の培養方法については後に詳述する。 The microalgae preferably contain 2% by mass or more and 5% by mass or less of α-linolenic acid in a dried state. That is, it is preferable that the dry powder obtained by drying the cultured microalgae contains α-linolenic acid of 2% by mass or more and 5% by mass or less. Abalones cultivated using abalone feeds containing such an amount of α-linolenic acid have been found to contain large amounts of α-linolenic acid, as shown in Examples below. There is. It is considered that this is because α-linolenic acid contained in the abalone feed was incorporated into the abalone. α-linolenic acid is one of the essential fatty acids and is said to have health effects such as lowering blood pressure. Therefore, abalone that is expected to have a high health effect can be produced by culturing using a diet for abalone using microalgae containing such an amount of α-linolenic acid. Microalgae containing such an amount of α-linolenic acid can be obtained by culturing in a state where nitrogen is not deficient. The method for culturing microalgae will be described in detail later.

アワビ類用餌料の形状は特に限定されないが、固体状であることが好ましい。微細藻類を使用した餌料の形状としては、例えば、微細藻類を培養した培養液を濃縮して得られる濃縮液も考えられる。しかし、着底した稚貝、特に殻長が2mm程度以上に成長した稚貝は、固形状の餌料を歯舌で剥ぎ取りながら摂餌する性質を有するため、アワビ類用餌料としては固体状の方が好ましい。アワビ類用餌料の具体的な形状としては、ペレット状又はゼリー状が挙げられる。アワビ類用餌料には、必要に応じて粘結剤等の添加剤を添加してもよい。 The shape of the abalone feed is not particularly limited, but it is preferably solid. As the shape of the feed using the microalgae, for example, a concentrated solution obtained by concentrating the culture solution in which the microalgae are cultured can be considered. However, since the bottomed juveniles, especially the juveniles that have grown to a shell length of about 2 mm or more, have the property of feeding while peeling off the solid food with the radula, they are solid foods for abalone. Is preferable. Specific shapes of the abalone feed include pellets and jellies. Additives such as a binder may be added to the abalone feed, if necessary.

[アワビ類用餌料の製造方法]
アワビ類用餌料の製造方法では、コッコミクサ属に属する微細藻類を培養し、培養した微細藻類を含有させたアワビ類用餌料を製造する。具体的には、培養した微細藻類を用いてアワビ類用餌料の所望の形状に成形する。以下、アワビ類用餌料の製造方法について詳細に説明する。
[Manufacturing method of abalone feed]
In the method for producing abalone feed, microalgae belonging to the genus Kokkomixa are cultivated to produce abalone feed containing the cultured microalgae. Specifically, the cultured microalgae are used to form the abalone feed into a desired shape. Hereinafter, a method for producing abalone feed will be described in detail.

<微細藻類の培養>
コッコミクサ属に属する微細藻類の培養には、微細藻類の培養に通常使用されている培地を使用することができる。具体的には、各種栄養塩、微量金属の塩、ビタミン等を含む、公知の淡水産微細藻類用の培地又は海産微細藻類用の培地等を使用することができる。栄養塩としては、例えば、NaNO、KNO、NHCl、尿素等の窒素源、KHPO、KHPO、グリセロリン酸ナトリウム等のリン源が挙げられる。微量金属としては、例えば、鉄、マグネシウム、マンガン、カルシウム、亜鉛等が挙げられる。ビタミンとしては、例えば、ビタミンB1、ビタミンB12等が挙げられる。
<Culture of microalgae>
For culturing microalgae belonging to the genus Kokkomixa, a medium usually used for culturing microalgae can be used. Specifically, a known medium for freshwater microalgae or a medium for marine microalgae containing various nutrient salts, trace metal salts, vitamins and the like can be used. Examples of nutrient salts include nitrogen sources such as NaNO 3 , KNO 3 , NH 4 Cl, and urea, and phosphorus sources such as K 2 HPO 4 , KH 2 PO 4 , and sodium glycerophosphate. Examples of trace metals include iron, magnesium, manganese, calcium, zinc and the like. Examples of vitamins include vitamin B1 and vitamin B12.

具体的な培地としては、例えば、AF−6培地が挙げられる。AF−6培地の組成は以下のとおりである。以下の数値は100mlの培地に含まれる質量である。
NaNO3:14 mg
NH4NO3:2.2 mg
MgSO4・7H2O:3 mg
KH2PO4:1 mg
K2HPO4:0.5 mg
CaCl2・2H2O:1 mg
CaCO3:1 mg
Fe-citrate:0.2 mg
Citric acid:0.2 mg
Biotin:0.2 μg
Thiamine HCl:1 μg
Vitamin B6:0.1 μg
Vitamin B12:0.1 μg
Trace metals:0.5 mL
Distilled water:99.5 mL
培地は、必要に応じて硫酸等の酸を添加することによって、酸性に調整されることが好ましい。培地が酸性である場合、雑菌の繁殖を抑制することができる。培地のpHは、4以下であることが好ましく、3以上4以下であることがより好ましい。
Specific examples of the medium include AF-6 medium. The composition of the AF-6 medium is as follows. The following numbers are the mass contained in 100 ml of medium.
NaNO 3 : 14 mg
NH 4 NO 3 : 2.2 mg
MgSO 4 · 7H 2 O: 3 mg
KH 2 PO 4 : 1 mg
K 2 HPO 4 : 0.5 mg
CaCl 2 · 2H 2 O: 1 mg
CaCO 3 : 1 mg
Fe-citrate: 0.2 mg
Citric acid: 0.2 mg
Biotin: 0.2 μg
Thiamine HCl: 1 μg
Vitamin B6: 0.1 μg
Vitamin B12: 0.1 μg
Trace metals: 0.5 mL
Distilled water: 99.5 mL
The medium is preferably adjusted to be acidic by adding an acid such as sulfuric acid as needed. When the medium is acidic, the growth of germs can be suppressed. The pH of the medium is preferably 4 or less, and more preferably 3 or more and 4 or less.

コッコミクサ属に属する微細藻類の培養方法としては、例えば、通気条件でCO(二酸化炭素)の供給とともに攪拌を行う方法が挙げられる。その際、例えば、明暗サイクルをつけた光照射、又は、連続光照射を行って培養することができる。明暗サイクルとして、例えば、蛍光灯での12時間の光照射と、12時間の暗条件とを繰り返す明暗サイクル等が挙げられる。 Examples of the method for culturing microalgae belonging to the genus Kokkomixa include a method of supplying CO 2 (carbon dioxide) and stirring under aeration conditions. At that time, for example, light irradiation with a light-dark cycle or continuous light irradiation can be performed for culturing. Examples of the light-dark cycle include a light-dark cycle in which a 12-hour light irradiation with a fluorescent lamp and a 12-hour dark condition are repeated.

コッコミクサ属に属する微細藻類は、窒素が欠乏しない状態で培養することが好ましい。具体的には、単位体積当たりの培地に含まれる窒素源の窒素の総質量に対して、当該単位体積当たりの培地中で培養されている微細藻類の質量、例えば乾燥状態での質量が、所定の値を超えないような条件で培養することが好ましい。 Microalgae belonging to the genus Kokkomixa are preferably cultured in a state where they are not deficient in nitrogen. Specifically, the mass of microalgae cultivated in the medium per unit volume, for example, the mass in a dry state, is predetermined with respect to the total mass of nitrogen of the nitrogen source contained in the medium per unit volume. It is preferable to culture under conditions that do not exceed the value of.

この所定の値とは、以下のようにして適宜設定される。微細藻類は、栄養素としての窒素が欠乏する状態で培養すると、トリグリセリドを主成分とするオイルを産生する。この
オイルは、藻類オイルとして、バイオ燃料、化粧品等の様々な分野での利用が期待されているものである。一方、栄養素としての窒素が欠乏しない状態で培養すると、微細藻類はこのようなオイルを産生しなくなる。上記所定の値は、その値を上回ると、微細藻類がオイルを産生するようになる、窒素が欠乏した状態となる条件である。窒素が欠乏しない状態で培養した場合には、微細藻類は、オイルを産生しないかわりに、α−リノレン酸を多く産生するという特徴を有する。
This predetermined value is appropriately set as follows. Microalgae produce oil containing triglyceride as a main component when cultured in a state of being deficient in nitrogen as a nutrient. This oil is expected to be used as an algae oil in various fields such as biofuels and cosmetics. On the other hand, when cultured in a state where nitrogen as a nutrient is not deficient, microalgae do not produce such oil. The above-mentioned predetermined value is a condition in which when the value is exceeded, the microalgae produce oil, resulting in a nitrogen-deficient state. When cultured in a nitrogen-free state, microalgae are characterized by producing a large amount of α-linolenic acid instead of producing oil.

窒素が欠乏しない状態での培養としては、例えば、N/DWが2質量%以上の条件を維持して培養することが好ましい。ここで、Nとは、単位体積当たりの培地に添加した窒素源の窒素の総質量であり、DWとは、当該単位体積当たりの培地に含まれる微細藻類の、乾燥状態における質量である。Nは、培地中に添加した窒素源及びその質量から求めることができる。DWは、例えば、培地の吸光度から求めることができる。具体的には、培地の、720nmの波長の光における吸光度を測定する。培地の吸光度と、単位体積当たりの培地から水を取り除き乾燥させて得られる微細藻類の粉末の質量との関係を、検量線としてあらかじめ求めておく。DWは、この検量線に基づき、測定した吸光度から求めることができる。N/DWが2質量%以上の、窒素が欠乏しない状態を維持して培養すると、上述のとおりα−リノレン酸を多量に含有する微細藻類が得られる。 As the culture in a state where nitrogen is not deficient, for example, it is preferable to culture while maintaining the condition that N / DW is 2% by mass or more. Here, N is the total mass of nitrogen of the nitrogen source added to the medium per unit volume, and DW is the mass of microalgae contained in the medium per unit volume in a dry state. N can be determined from the nitrogen source added to the medium and its mass. DW can be determined, for example, from the absorbance of the medium. Specifically, the absorbance of the medium in light having a wavelength of 720 nm is measured. The relationship between the absorbance of the medium and the mass of the fine algae powder obtained by removing water from the medium per unit volume and drying it is determined in advance as a calibration curve. The DW can be determined from the measured absorbance based on this calibration curve. When cultured while maintaining a state in which N / DW is 2% by mass or more and nitrogen is not deficient, microalgae containing a large amount of α-linolenic acid can be obtained as described above.

窒素が欠乏しない状態で培養する方法としては、例えば、最初に培地に添加した窒素源の窒素の総質量に対し、培地中で培養されている微細藻類の質量が、上記所定の値となる前に、培地から微細藻類を取り出す方法が挙げられる。 As a method of culturing in a state where nitrogen is not deficient, for example, before the mass of microalgae cultivated in the medium reaches the above-mentioned predetermined value with respect to the total mass of nitrogen of the nitrogen source first added to the medium. In addition, there is a method of removing microalgae from the medium.

<アワビ類用餌料の成形>
培養した微細藻類を用いてアワビ類用餌料の所望の形状に成形する。
まず、培養した微細藻類を、培地に含まれる水の少なくとも一部を除去して濃縮する。濃縮は、例えば、遠心分離、膜分離等の方法で行うことができる。次に、濃縮した微細藻類を乾燥させることで乾燥粉末を得る。そして、得られた微細藻類の乾燥粉末を用いてアワビ類用餌料の所望の形状に成形する。例えば、ペレットミル又はエクストルーダーを使用して造粒することで、ペレット状のアワビ類用餌料を製造することができる。また、寒天等に微細藻類の乾燥粉末を混合して固めることで、ゼリー状のアワビ類用餌料を製造することができる。
<Molding of abalone feed>
The cultured microalgae are used to shape the abalone feed into the desired shape.
First, the cultured microalgae are concentrated by removing at least a part of the water contained in the medium. Concentration can be carried out by a method such as centrifugation or membrane separation. Next, the concentrated microalgae are dried to obtain a dry powder. Then, the obtained dry powder of microalgae is used to shape the abalone feed into a desired shape. For example, pelletized abalone feed can be produced by granulating using a pellet mill or an extruder. In addition, a jelly-like abalone feed can be produced by mixing dry powder of fine algae with agar or the like and hardening the powder.

[1.アワビ類用餌料の製造]
以下の手順で、KJ株を培養した。
(1)AF−6培地を調製した。培地のpHは3.5に調整した。
(2)121℃、20minの条件で培地を滅菌し、KJ株を植藻した。
(3)2%COを通気した。
(4)光を照射しながら室温にて培養した。光の強さは約100μmol/m2・s、室温は25℃とした。また、上述のとおり、窒素が欠乏しない状態を維持して培養した。
[1. Manufacture of abalone feed]
The KJ strain was cultured according to the following procedure.
(1) AF-6 medium was prepared. The pH of the medium was adjusted to 3.5.
(2) The medium was sterilized at 121 ° C. for 20 minutes, and the KJ strain was planted.
(3) 2% CO 2 was aerated.
(4) The cells were cultured at room temperature while being irradiated with light. The light intensity was about 100 μmol / m 2 · s, and the room temperature was 25 ° C. In addition, as described above, the cells were cultured while maintaining a state in which nitrogen was not deficient.

培養終了後、培地に含まれる水の一部を遠心分離により除去して濃縮し、得られた濃縮液を乾燥させた。
その後、得られた乾燥粉末を用いて、ペレット状のアワビ類用餌料、及びゼリー状のアワビ類用餌料を製造した。ペレット状のアワビ類用餌料は、ペレットミルダイスローラーを用いて、直径2mm、長さ6mmのペレット状に成形することで製造した。得られたペレット状のアワビ類用餌料中の微細藻類の含有割合は、100質量%であった。ゼリー状のアワビ類用餌料は、水70gに寒天粉末2gと微細藻類の乾燥粉末5gとを添加して混合し、固めることによって製造した。得られたゼリー状のアワビ類用餌料中の微細藻類の含有割合は、6.5質量%であった。
After completion of the culture, a part of the water contained in the medium was removed by centrifugation and concentrated, and the obtained concentrate was dried.
Then, using the obtained dry powder, a pellet-shaped abalone feed and a jelly-shaped abalone feed were produced. The pellet-shaped abalone feed was produced by molding into pellets having a diameter of 2 mm and a length of 6 mm using a pellet mill die roller. The content ratio of microalgae in the obtained pelletized abalone feed was 100% by mass. The jelly-like abalone feed was produced by adding 2 g of agar powder and 5 g of dry powder of microalgae to 70 g of water, mixing them, and hardening them. The content ratio of microalgae in the obtained jelly-like abalone feed was 6.5% by mass.

[2.給餌試験]
以下の4つの区に分けて、それぞれ、隠れ場を用意した120Lの水槽に、殻長32mm程度、総質量3.7g以上3.8g以下の稚アワビ(メガイアワビ)を100個体収容し、生海水を使用して掛け流し方式で飼育した。生海水の塩分濃度は32psu、水温は15℃以上20℃以下であった。また、生海水の回転率は15回転以上20回転以下/日とした。各区において、2日に1回、1回20gで給餌した。飼育は6ヶ月間行い、総給餌量は1800gであった。また、給餌の前にその都度、サイホンにより水槽の底面の沈んでいる残餌等の汚れを取り除いた。
[2. Feeding test]
Divided into the following four sections, 100 juvenile abalone (mega abalone) with a shell length of about 32 mm and a total mass of 3.7 g or more and 3.8 g or less are stored in a 120 L aquarium with a hiding place, and raw seawater. It was bred by a free-flowing method using. The salinity of the raw seawater was 32 psu, and the water temperature was 15 ° C. or higher and 20 ° C. or lower. The rotation rate of raw seawater was 15 to 20 rotations / day. In each ward, 20 g was fed once every two days. The breeding was carried out for 6 months, and the total feeding amount was 1800 g. In addition, each time before feeding, a siphon was used to remove dirt such as residual food that had sunk on the bottom of the aquarium.

(i)海藻区
対照区として、餌料に、乾燥したアラメ及びカジメを海水に戻したものを使用した。
(ii)ペレット区
実施例として、餌料に、製造したペレット状のアワビ類用餌料を使用した。
(I) Seaweed plot As a control plot, dried arame and Ecklonia cava returned to seawater were used as feed.
(Ii) Pellet group As an example, the produced pellet-shaped abalone feed was used as the feed.

(iii)ゼリー区
実施例として、餌料に、製造したゼリー状のアワビ類用餌料を使用した。
(iv)配合飼料区
比較例として、餌料に、一般的な市販のアワビ用配合飼料を使用した。
(Iii) Jelly plot As an example, the produced jelly-like abalone feed was used as the feed.
(Iv) Mixed feed group As a comparative example, a general commercially available mixed feed for abalone was used as the feed.

飼育成績を下記表1に示す。 The breeding results are shown in Table 1 below.

Figure 2020145984
Figure 2020145984

表1に示すとおり、ペレット区及びゼリー区では、対照区の海藻区よりも、殻長及び体重が大きいアワビが得られ、アワビの成長に優れていた。一方、ペレット区及びゼリー区では、配合飼料区と比べると、アワビの成長は小さかったが、生残率については優れていた。生残率が高いと出荷個数が増やせるため好ましい。配合飼料区で生残率が低かったのは、配合飼料が水中で崩れ、細粉化した飼料がアワビの鰓に詰まったためと考えられる。なお、アワビの総生産量は、対照区の海藻区が最も低く、ペレット区、ゼリー区及び配合飼料区は同程度となった。 As shown in Table 1, in the pellet group and the jelly group, abalone having a larger shell length and weight than the seaweed group in the control group was obtained, and the abalone growth was excellent. On the other hand, in the pellet group and the jelly group, the growth of abalone was smaller than that in the compound feed group, but the survival rate was excellent. A high survival rate is preferable because the number of shipments can be increased. It is probable that the low survival rate in the mixed feed plot was due to the fact that the mixed feed collapsed in water and the finely divided feed clogged the gills of the abalone. The total production of abalone was the lowest in the seaweed plot of the control plot, and was about the same in the pellet plot, jelly plot and compound feed plot.

[3.アワビのTBARSの測定]
以下の手順で、各区で得られたアワビの可食肉についてTBARSを測定した。TBARSの測定には、Oxford Biomedical Research社製のFood TBARS Assayキットを使用した。なお、TBARSは、2−チオバルビツール酸反応性物質の略であり、酸化ストレスに応答して濃度が上昇する物質の総称である。得られたTBARSの測定値が低いほど、酸化ストレスに強く免疫力が高いことを示す。
[3. Measurement of abalone TBARS]
TBARS was measured for the abalone edible meat obtained in each plot by the following procedure. A Food TBARS Assay kit manufactured by Oxford Biomedical Research was used for the measurement of TBARS. TBARS is an abbreviation for 2-thiobarbituric acid-reactive substance, and is a general term for substances whose concentration increases in response to oxidative stress. The lower the measured value of the obtained TBARS, the stronger the resistance to oxidative stress and the higher the immunity.

(1)アワビの可食肉から5gのサンプルを正確に量り取り、蒸留水を5ml加えてホ
モジナイザーでホモジナイズした。
(2)蒸留水5mlを使用して容器の内側及びホモジナイザーを洗浄し、洗浄液をサンプルの溶液に添加し、計10mlの試料溶液とした。
(1) A 5 g sample was accurately weighed from the abalone edible meat, 5 ml of distilled water was added, and homogenized with a homogenizer.
(2) The inside of the container and the homogenizer were washed with 5 ml of distilled water, and the washing solution was added to the sample solution to prepare a total of 10 ml of the sample solution.

(3)試料溶液1mlを分取し、指示薬1mlを加え、攪拌した。
(4)指示薬を加えた試料溶液を、室温で60分間静置し、反応させた。
(5)反応後の試料溶液を、遠心力15000×g、及び温度22℃以上25℃以下の条件で、5分間遠心分離し、上澄み液を採取した。
(3) 1 ml of the sample solution was separated, 1 ml of the indicator was added, and the mixture was stirred.
(4) The sample solution to which the indicator was added was allowed to stand at room temperature for 60 minutes to react.
(5) The sample solution after the reaction was centrifuged for 5 minutes under the conditions of a centrifugal force of 15,000 × g and a temperature of 22 ° C. or higher and 25 ° C. or lower, and a supernatant was collected.

(6)上澄み液について、波長532nmの光の吸光度を測定した。
(7)標準試薬で作製した検量線と比較し、TBARSの測定値を算出した。
測定結果を図1に示す。図1に示すとおり、ペレット区及びゼリー区では、対照区の海藻区及び配合飼料区よりもTBARSの測定値が低く、免疫力が高いアワビが産生された。
(6) The absorbance of light having a wavelength of 532 nm was measured for the supernatant.
(7) The measured value of TBARS was calculated by comparing with the calibration curve prepared with the standard reagent.
The measurement results are shown in FIG. As shown in FIG. 1, in the pellet group and the jelly group, abalone having a lower TBARS measurement value and higher immunity than the seaweed group and the compound feed group in the control group was produced.

[4.アワビのω3脂肪酸の測定]
以下の手順で、各区で得られたアワビの可食肉に含まれる脂肪酸組成中のω3脂肪酸の含有割合を測定した。
[4. Measurement of abalone ω3 fatty acids]
According to the following procedure, the content ratio of ω3 fatty acids in the fatty acid composition contained in the edible meat of abalone obtained in each section was measured.

(1)アワビの可食肉のサンプルをミキサーでミンチにした。
(2)200mlの三角フラスコに、ミンチにしたサンプルの所定量を量り取り、クロロホルム:メタノール=2:1の溶液を100ml加え、攪拌しながら、65℃で1時間抽出した。
(1) A sample of abalone edible meat was minced with a mixer.
(2) A predetermined amount of the minced sample was weighed into a 200 ml Erlenmeyer flask, 100 ml of a solution of chloroform: methanol = 2: 1 was added, and the mixture was extracted at 65 ° C. for 1 hour with stirring.

(3)得られた抽出液を放冷した後ろ過し、ろ液の液体をエバポレーターで留去した。
(4)留去して得られた残渣に、石油エーテル50mlを加えた後、適量の硫酸ナトリウムを加え、よく攪拌して静置した。
(3) The obtained extract was allowed to cool and then filtered, and the filtrate liquid was distilled off with an evaporator.
(4) 50 ml of petroleum ether was added to the residue obtained by distillation, an appropriate amount of sodium sulfate was added, and the mixture was stirred well and allowed to stand.

(5)上澄み液1mlを分取してネジ口試験管へ入れ、エバポレーターで乾固し、測定試料とした。
(6)測定試料について、GCMS(ガスクロマトグラフ質量分析計)を使用してω3脂肪酸の含有割合を測定した。測定の前処理として、ナカライテスク社製の脂肪酸メチル化キットを使用して測定飼料についてメチル化を行った。GCMS測定前のクリーンアップには、ナカライテスク社製のメチル化脂肪酸精製キットを使用した。
(5) 1 ml of the supernatant was separated, placed in a screw cap test tube, and dried by an evaporator to prepare a measurement sample.
(6) For the measurement sample, the content ratio of ω3 fatty acid was measured using GCMS (Gas Chromatograph Mass Spectrometer). As a pretreatment for the measurement, the measurement feed was methylated using a fatty acid methylation kit manufactured by Nacalai Tesque. For cleanup before GCMS measurement, a methylated fatty acid purification kit manufactured by Nacalai Tesque was used.

測定結果を図2に示す。図2中、縦軸の単位は、得られた測定試料に含まれる、α−リノレン酸、EPA(エイコサペンタエン酸)、DHA(ドコサヘキサエン酸)の各ω3脂肪酸、及びこれらの合計の質量割合である。図2に示すとおり、ペレット区及びゼリー区では、α−リノレン酸の含有割合が顕著に高く、ω3脂肪酸の含有割合が高いアワビが産生された。 The measurement results are shown in FIG. In FIG. 2, the unit on the vertical axis is α-linolenic acid, EPA (eicosapentaenoic acid), DHA (docosahexaenoic acid) ω3 fatty acids contained in the obtained measurement sample, and the total mass ratio of these. .. As shown in FIG. 2, abalone having a remarkably high α-linolenic acid content and a high ω3 fatty acid content was produced in the pellet group and the jelly group.

[5.アワビの味の評価]
以下の手順で、アワビの可食肉に含まれる遊離アミノ酸の含有量を測定した。
(1)所定量のアワビの可食肉のサンプルに、0.1Mの塩酸10mlを加え、ホモジナイザーでホモジナイズした。
(2)サンプルの溶液について、遠心分離を行い、静置した後、上澄み液を分取した。
(3)上澄み液にヘキサンを加え、よく攪拌してからヘキサンを取り除くことにより、脱脂を行った。この工程を3回繰り返して行った。
[5. Evaluation of abalone taste]
The content of free amino acids contained in the edible meat of abalone was measured by the following procedure.
(1) To a predetermined amount of abalone edible meat sample, 10 ml of 0.1 M hydrochloric acid was added, and homogenized with a homogenizer.
(2) The sample solution was centrifuged, allowed to stand, and then the supernatant was separated.
(3) Degreasing was performed by adding hexane to the supernatant, stirring well, and then removing hexane. This process was repeated 3 times.

(4)脱脂後の溶液200μLに600μLのアセトニトリルを加え、遠心分離を行っ
た。上澄み液を回収し、測定試料とした。なお、この工程は、タンパク質を除去するために行った。
(5)Waters社製の誘導体化試薬キット「AccQ Tag Ultra Derivatization Kit」を使用して、遊離アミノ酸のHPLC(高速液体クロマトグラフ)分析を行った。
(4) 600 μL of acetonitrile was added to 200 μL of the degreased solution, and centrifugation was performed. The supernatant was collected and used as a measurement sample. In addition, this step was performed in order to remove a protein.
(5) HPLC (High Performance Liquid Chromatography) analysis of free amino acids was performed using the Derivatization Reagent Kit "AccQ Tag Ultra Derivatization Kit" manufactured by Waters.

測定結果を図3に示す。図3(a)は、測定された遊離アミノ酸のうち、アワビにおける旨味成分に該当する、グルタミン酸、アスパラギン酸、アルギニン、及びロイシンの合計含有量である。図3(b)は、測定された遊離アミノ酸のうち、アワビにおける甘味成分に該当する、アルギニン、グリシン、タウリン、アラニン、セリン、及びグルタミンの合計含有量である。図3(c)は、測定された遊離アミノ酸のうち、アワビにおける苦味成分に該当する、リジン、チロシン、メチオニン、バリン、イソロイシン、及びフェニルアラニンの合計含有量である。 The measurement results are shown in FIG. FIG. 3A shows the total content of glutamic acid, aspartic acid, arginine, and leucine, which correspond to the umami component in abalone, among the measured free amino acids. FIG. 3B shows the total content of arginine, glycine, taurine, alanine, serine, and glutamine, which correspond to the sweetening component in abalone, among the measured free amino acids. FIG. 3C shows the total content of lysine, tyrosine, methionine, valine, isoleucine, and phenylalanine, which correspond to the bitterness component in abalone, among the measured free amino acids.

図3に示すとおり、ペレット区及びゼリー区では、旨味成分及び甘味成分が対照区の海藻区及び配合飼料区よりも多く、苦味成分は配合飼料区よりも少なかった。 As shown in FIG. 3, in the pellet group and the jelly group, the umami component and the sweet component were more than those in the seaweed group and the compound feed group in the control group, and the bitterness component was less than in the compound feed group.

[6.総合評価]
図4に、機能性成分、旨味成分、甘味成分、及び苦味成分の含有量について、対照区の海藻区を基準として、ペレット区、ゼリー区及び配合飼料区の各区がどの程度含有しているかを表すレーダーチャートを示す。なお、機能性成分とは、上記項目4のアワビのω脂肪酸の測定で得られたω3脂肪酸の含有量と、上記項目5の遊離アミノ酸の測定で得られた、GABA(γ−アミノ酪酸)及びタウリンの含有量との合計含有量である。なお、ω3脂肪酸及びGABAは血圧低下等の健康効果が期待される機能性成分であり、タウリンは疲労回復等の健康効果が期待される機能性成分である。
[6. Comprehensive evaluation]
FIG. 4 shows the content of the functional component, the umami component, the sweet component, and the bitter component in each of the pellet group, the jelly group, and the compound feed group based on the seaweed group of the control group. The radar chart to be represented is shown. The functional components include the content of ω3 fatty acids obtained by measuring the ω fatty acids of abalone in item 4 above, and GABA (γ-aminobutyric acid) and GABA (γ-aminobutyric acid) obtained by measuring free amino acids in item 5 above. It is the total content with the content of taurine. In addition, ω3 fatty acid and GABA are functional components expected to have health effects such as lowering blood pressure, and taurine is a functional component expected to have health effects such as recovery from fatigue.

図4に示すとおり、ペレット区及びゼリー区は、旨味成分、甘味成分及び機能性成分が、対照区の海藻区及び配合飼料区と比べて多かった。 As shown in FIG. 4, the pellet group and the jelly group contained more umami components, sweet components and functional components than the seaweed group and the mixed feed group of the control group.

Claims (5)

コッコミクサ属に属する微細藻類を含有するアワビ類用餌料。 A diet for abalone containing microalgae belonging to the genus Kokkomixa. 前記微細藻類は、乾燥させた状態で2質量%以上5質量%以下のα−リノレン酸を含有する、請求項1に記載のアワビ類用餌料。 The abalone feed according to claim 1, wherein the microalgae contain 2% by mass or more and 5% by mass or less of α-linolenic acid in a dried state. 固体状である、請求項1又は請求項2に記載のアワビ類用餌料。 The abalone feed according to claim 1 or 2, which is in a solid state. コッコミクサ属に属する微細藻類を培養し、
培養した前記微細藻類を含有させたアワビ類用餌料を製造する、アワビ類用餌料の製造方法。
Cultivate microalgae belonging to the genus Kokkomixa
A method for producing an abalone feed, which comprises producing the abalone feed containing the cultured microalgae.
前記微細藻類を、培地中の窒素が欠乏しない状態で培養する、請求項4に記載のアワビ類用餌料の製造方法。 The method for producing abalone feed according to claim 4, wherein the microalgae are cultured in a state where the medium is not deficient in nitrogen.
JP2019047055A 2019-03-14 2019-03-14 Abalone feed and method for producing abalone feed Active JP7107259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019047055A JP7107259B2 (en) 2019-03-14 2019-03-14 Abalone feed and method for producing abalone feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047055A JP7107259B2 (en) 2019-03-14 2019-03-14 Abalone feed and method for producing abalone feed

Publications (2)

Publication Number Publication Date
JP2020145984A true JP2020145984A (en) 2020-09-17
JP7107259B2 JP7107259B2 (en) 2022-07-27

Family

ID=72429462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047055A Active JP7107259B2 (en) 2019-03-14 2019-03-14 Abalone feed and method for producing abalone feed

Country Status (1)

Country Link
JP (1) JP7107259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113331111A (en) * 2021-04-19 2021-09-03 天津农学院 Ecological economic abalone culture system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963146A (en) * 1982-10-01 1984-04-10 Tadashi Matsunaga Feed for cultivation of fish and shellfish
JP2018157791A (en) * 2017-03-23 2018-10-11 株式会社デンソー Feed for rotifer and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963146B2 (en) 2013-05-25 2016-08-03 吉二 玉津 Vertical axis water turbine generator using wind face opening and closing blade system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963146A (en) * 1982-10-01 1984-04-10 Tadashi Matsunaga Feed for cultivation of fish and shellfish
JP2018157791A (en) * 2017-03-23 2018-10-11 株式会社デンソー Feed for rotifer and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113331111A (en) * 2021-04-19 2021-09-03 天津农学院 Ecological economic abalone culture system

Also Published As

Publication number Publication date
JP7107259B2 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
Peña-Rodríguez et al. Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh
CA2958460C (en) Process for producing a pufa-containing feedstuff by extruding a pufa-containing biomass
Zhang et al. Microalgae nourished by mariculture wastewater aids aquaculture self-reliance with desirable biochemical composition
Dinesh Kumar et al. Evaluation of suitability of wastewater-grown microalgae (Picochlorum maculatum) and copepod (Oithona rigida) as live feed for white leg shrimp Litopenaeus vannamei post-larvae
Yin et al. Population dynamics, protein content, and lipid composition of Brachionus plicatilis fed artificial macroalgal detritus and Nannochloropsis sp. diets
DK201770207A1 (en) Method for raising animals
BR112017006833B1 (en) FOOD FOR ANIMALS CONTAINING POLY-UNSATURATED FATTY ACID AND A PROCESS TO PRODUCE THE SAME
CA3118657A1 (en) Method for producing a biomass which can be easily broken down and which has an increased content of polyunsaturated fatty acids
WO2012168663A1 (en) Novel strain of microalgae of the odontella genus for the production of epa and dha in mixotrophic cultivation mode
JP7107259B2 (en) Abalone feed and method for producing abalone feed
Katayama et al. Bioprospecting of tropical microalgae for high-value products: n-3 polyunsaturated fatty acids and carotenoids
NL2002937C2 (en) METHOD AND DEVICE FOR GROWING BIOMASS ON SLUDGE.
Sun et al. FA composition of the oil extracted from farmed Atlantic salmon (Salmo salar L.) viscera
WO2012175866A1 (en) Novel strains of microalgae of the isochrysis genus for producing epa and dha in a mixotrophic mode
JP5838552B2 (en) Novel microorganism and carotenoid production method using the same
Fakhrulddin et al. Effect of salinity, light and fertilizer on Caulerpa lentillifera under culture conditions
JP7274851B2 (en) Method for producing glutamic acid
Bae et al. A comparative of heavy metal contents and biochemical characteristics of Japanese (Haliotis discus) and Korean abalone (Haliotis discus hannai)
JP5090611B2 (en) Production of carotenoids by fermentation
Bansode et al. Soil and water quality parameters of brackish water shrimp farms of Raigad district of Maharashtra.
Noor et al. Growth of Gracilaria manilaensis Yamamoto et Trono (Rhodophyta) under different light intensities, salinities and pH
Maart The biotechnology of effluent-grown Spirulina, and application in aquaculture nutrition
Briceño García et al. Feasibility of Litopenaeus vannamei (Crustaceae, Decapoda: Penaeidae) in areas from groundwater. Miranda Municipality, Zulia State, Venezuela
BORA BIOCHEMICAL ANALYSIS OF COMMON MACROPHYTES AND THEIR POTENTIAL USES
Metwaly et al. Chemical and Biochemical Properties of Marine Algae Ulva lactuca and Nannocholoropsis oculata.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R151 Written notification of patent or utility model registration

Ref document number: 7107259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151