JP2020143649A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2020143649A
JP2020143649A JP2019042657A JP2019042657A JP2020143649A JP 2020143649 A JP2020143649 A JP 2020143649A JP 2019042657 A JP2019042657 A JP 2019042657A JP 2019042657 A JP2019042657 A JP 2019042657A JP 2020143649 A JP2020143649 A JP 2020143649A
Authority
JP
Japan
Prior art keywords
base material
conductive base
exhaust
outer cylinder
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019042657A
Other languages
Japanese (ja)
Inventor
徳明 藤田
Noriaki Fujita
徳明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019042657A priority Critical patent/JP2020143649A/en
Publication of JP2020143649A publication Critical patent/JP2020143649A/en
Pending legal-status Critical Current

Links

Images

Abstract

To detect a temperature inside a base material with a temperature sensor while suppressing the same from blocking an exhaust flow passing through inside the base material.SOLUTION: A temperature sensor 60 to detect a temperature of an electric conductive base material 41 comprises: a base end section 62 which is installed on an outer cylinder 30 at a downstream side of an insulating base material 51 in an exhaust flow direction; and a temperature sensitive section 61 which is extended from the base edge section 62 into an inside of the outer cylinder 30 so as to position a tip thereof inside the electric conductive base material 41 in a manner that penetrates through the insulating base material 51 from an edge section of the insulating base material 51 at the downstream side in the exhaust flow direction and penetrates into the inside of the electric conductive base material 41 from the edge section of the electric conductive base material 41 at the downstream side in the exhaust flow direction. The temperature sensitive section 61 is arranged almost parallel to the exhaust flow direction in the electric conductive base material 41 and the insulating base material 51.SELECTED DRAWING: Figure 2

Description

本発明は内燃機関に関する。 The present invention relates to an internal combustion engine.

特許文献1には、従来の内燃機関として、導電性基材の温度を間接的に検出するための温度センサが、導電性基材の排気流れ方向下流側に配置された絶縁性基材に形成された収容穴の内部に配置されるように、当該温度センサを触媒コンバータに取り付けたものが開示されている。 In Patent Document 1, as a conventional internal combustion engine, a temperature sensor for indirectly detecting the temperature of a conductive base material is formed on an insulating base material arranged on the downstream side in the exhaust flow direction of the conductive base material. The temperature sensor attached to the catalytic converter is disclosed so as to be arranged inside the provided accommodating hole.

特開2016−200069号公報JP-A-2016-200069

しかしながら、前述した従来の内燃機関では、温度センサが導電性基材の外部に配置されていたため、導電性基材の温度の検出精度が低下するおそれがある。これに対して、温度センサを導電性基材の内部に配置することが考えられるが、前述した従来の内燃機関では、温度センサが排気の流れ方向に対して直交するように触媒コンバータに取り付けられていた。そのため、温度センサを導電性基材の内部に配置すると、温度センサが導電性基材の途中に排気の流れを遮るように配置されることになる。その結果、導電性基材の内部に排気が流れにくくなり、導電性基材が排気から受ける単位時間当たりの熱量が少なくなって導電性基材の昇温速度が低下するおそれがある。 However, in the conventional internal combustion engine described above, since the temperature sensor is arranged outside the conductive base material, the temperature detection accuracy of the conductive base material may decrease. On the other hand, it is conceivable to arrange the temperature sensor inside the conductive base material, but in the above-mentioned conventional internal combustion engine, the temperature sensor is attached to the catalytic converter so as to be orthogonal to the flow direction of the exhaust gas. Was there. Therefore, when the temperature sensor is arranged inside the conductive base material, the temperature sensor is arranged in the middle of the conductive base material so as to block the flow of exhaust gas. As a result, it becomes difficult for the exhaust to flow inside the conductive base material, the amount of heat received from the exhaust by the conductive base material per unit time is reduced, and the rate of temperature rise of the conductive base material may decrease.

本発明はこのような問題点に着目してなされたものであり、排気の流れが温度センサによって遮られるのを抑制しつつ、温度センサによって導電性基材の内部の温度を検出することを目的とする。 The present invention has been made by paying attention to such a problem, and an object of the present invention is to detect the temperature inside the conductive base material by the temperature sensor while suppressing the flow of the exhaust gas from being blocked by the temperature sensor. And.

上記課題を解決するために、本発明のある態様による内燃機関は、外筒と、外筒に対して電気的に絶縁された状態で外筒内に設けられ、通電されることによって発熱する導電性基材に触媒を担持させた第1触媒装置と、第1触媒装置の排気流れ方向下流側に第1触媒装置と一定の距離を空けて隣接するように外筒内に設けられ、絶縁性基材に触媒を担持させた第2触媒装置と、導電性基材の温度を検出するための温度センサと、を備える触媒コンバータを、排気経路に備える。温度センサは、絶縁性基材よりも排気流れ方向下流側の前記外筒に取り付けられる基端部と、基端部から外筒の内部に延びると共に、先端が導電性基材の内部に位置するように、絶縁性基材の排気流れ方向下流側の端部から絶縁性基材の内部に挿入され、絶縁性基材の内部を通って導電性基材の排気流れ方向下流側の端部から導電性基材の内部に挿入される感温部と、を備え、感温部は、導電性基材及び絶縁性基材の内部において排気流れ方向と略平行に配置されている。 In order to solve the above problems, the internal combustion engine according to a certain aspect of the present invention is provided in the outer cylinder in a state of being electrically insulated from the outer cylinder and is electrically electrically insulated to generate heat. The first catalyst device in which the catalyst is supported on the sex substrate and the first catalyst device are provided in the outer cylinder so as to be adjacent to the first catalyst device at a certain distance on the downstream side in the exhaust flow direction of the first catalyst device, and have insulating properties. The exhaust path is provided with a catalyst converter including a second catalyst device in which a catalyst is supported on the base material and a temperature sensor for detecting the temperature of the conductive base material. The temperature sensor has a base end portion attached to the outer cylinder on the downstream side in the exhaust flow direction from the insulating base material, and extends from the base end portion to the inside of the outer cylinder, and the tip is located inside the conductive base material. As such, it is inserted into the inside of the insulating base material from the end on the downstream side in the exhaust flow direction of the insulating base material, passes through the inside of the insulating base material, and from the end on the downstream side in the exhaust flow direction of the conductive base material. A temperature-sensitive portion inserted inside the conductive base material is provided, and the temperature-sensitive portion is arranged inside the conductive base material and the insulating base material substantially parallel to the exhaust flow direction.

本発明のこの態様によれば、排気の流れが温度センサによって遮られるのを抑制しつつ、温度センサによって導電性基材の内部の温度を検出することができる。 According to this aspect of the present invention, the temperature inside the conductive base material can be detected by the temperature sensor while suppressing the flow of the exhaust gas from being blocked by the temperature sensor.

図1は、本発明の一実施形態による内燃機関及び内燃機関を制御する電子制御ユニットの概略構成図である。FIG. 1 is a schematic configuration diagram of an internal combustion engine and an electronic control unit that controls an internal combustion engine according to an embodiment of the present invention. 図2は、本発明の一実施形態による触媒コンバータについて説明する図である。FIG. 2 is a diagram illustrating a catalytic converter according to an embodiment of the present invention. 図3は、図2のIII-III線に沿う触媒コンバータの概略断面図である。FIG. 3 is a schematic cross-sectional view of the catalytic converter along line III-III of FIG. 図4Aは、本発明とは異なる第1比較例による触媒コンバータについて説明する図である。FIG. 4A is a diagram illustrating a catalytic converter according to a first comparative example different from the present invention. 図4Bは、本発明とは異なる第2比較例による触媒コンバータについて説明する図である。FIG. 4B is a diagram illustrating a catalytic converter according to a second comparative example different from the present invention. 図5は、第1比較例の触媒コンバータの収容部の内部を、排気流れ方向上流側から見た図である。FIG. 5 is a view of the inside of the accommodating portion of the catalytic converter of the first comparative example as viewed from the upstream side in the exhaust flow direction. 図6は、本発明の一実施形態による触媒コンバータの内部を流れる排気の流速について説明する図である。FIG. 6 is a diagram illustrating a flow velocity of exhaust gas flowing inside the catalytic converter according to the embodiment of the present invention. 図7は、外筒を排気流れ方向下流側から見た場合に、温度センサの基端部を取り付ける最適な位置を示した図である。FIG. 7 is a diagram showing an optimum position for attaching the base end portion of the temperature sensor when the outer cylinder is viewed from the downstream side in the exhaust flow direction.

以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, similar components are given the same reference number.

図1は、本発明の一実施形態による内燃機関100及び内燃機関100を制御する電子制御ユニット200の概略構成図である。 FIG. 1 is a schematic configuration diagram of an internal combustion engine 100 and an electronic control unit 200 that controls an internal combustion engine 100 according to an embodiment of the present invention.

内燃機関100は、内部で燃料を圧縮自己着火燃焼させて、例えば車両などを駆動するための動力を発生させる機関本体1を備える。機関本体1は、各気筒に形成される燃焼室2と、各燃焼室2内にそれぞれ燃料を噴射するための電子制御式の燃料噴射弁3と、各燃焼室2内に吸入空気を導入するための吸気マニホールド4と、各燃焼室2内から排気を排出するための排気マニホールド5と、を含む。 The internal combustion engine 100 includes an engine body 1 that internally compresses and self-ignites and burns fuel to generate power for driving a vehicle or the like. The engine body 1 introduces a combustion chamber 2 formed in each cylinder, an electronically controlled fuel injection valve 3 for injecting fuel into each combustion chamber 2, and intake air into each combustion chamber 2. Including an intake manifold 4 for discharging exhaust from each combustion chamber 2 and an exhaust manifold 5 for discharging exhaust from each combustion chamber 2.

各燃料噴射弁3は、燃料供給管15を介してコモンレール16に連結される。コモンレール16は、吐出量の変更が可能な電子制御式の燃料ポンプ17を介して燃料タンク18に連結される。燃料タンク18内に貯蔵されている燃料は、燃料ポンプ17によってコモンレール16内に供給される。コモンレール16内に供給された燃料は、各燃料供給管15を介して燃料噴射弁3に供給される。 Each fuel injection valve 3 is connected to the common rail 16 via a fuel supply pipe 15. The common rail 16 is connected to the fuel tank 18 via an electronically controlled fuel pump 17 whose discharge amount can be changed. The fuel stored in the fuel tank 18 is supplied into the common rail 16 by the fuel pump 17. The fuel supplied into the common rail 16 is supplied to the fuel injection valve 3 via each fuel supply pipe 15.

吸気マニホールド4は、吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結される。コンプレッサ7aの入口は、吸気管8を介してエアクリーナ9に連結される。吸気管8には、吸入空気量を検出するためのエアフローメータ211が設けられる。吸気ダクト6内には、ステップモータにより駆動される電気制御式のスロットル弁10が配置される。吸気ダクト6の周りには、吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。 The intake manifold 4 is connected to the outlet of the compressor 7a of the exhaust turbocharger 7 via the intake duct 6. The inlet of the compressor 7a is connected to the air cleaner 9 via the intake pipe 8. The intake pipe 8 is provided with an air flow meter 211 for detecting the amount of intake air. An electrically controlled throttle valve 10 driven by a step motor is arranged in the intake duct 6. A cooling device 11 for cooling the intake air flowing in the intake duct 6 is arranged around the intake duct 6.

排気マニホールド5は、排気ターボチャージャ7の排気タービン7bの入口に連結される。排気タービン7bの出口は、触媒コンバータ20が設けられた排気管19に連結される。排気マニホールド5と吸気マニホールド4とは、排気再循環(Exhaust Gas Recirculation;以下「EGR」という。)を行うためにEGR通路12を介して互いに連結される。EGR通路12内には、電子制御式のEGR制御弁13が配置される。EGR通路12の周りには、EGR通路12内を流れるEGRガスを冷却するためのEGRクーラ14が配置される。 The exhaust manifold 5 is connected to the inlet of the exhaust turbine 7b of the exhaust turbocharger 7. The outlet of the exhaust turbine 7b is connected to the exhaust pipe 19 provided with the catalytic converter 20. The exhaust manifold 5 and the intake manifold 4 are connected to each other via an EGR passage 12 for exhaust gas recirculation (hereinafter referred to as “EGR”). An electronically controlled EGR control valve 13 is arranged in the EGR passage 12. Around the EGR passage 12, an EGR cooler 14 for cooling the EGR gas flowing in the EGR passage 12 is arranged.

触媒コンバータ20は、機関本体1から排出される排気中の有害物質を取り除いた上で排気を外気に排出するための装置であって、外筒30と、第1触媒装置40と、第2触媒装置50と、温度センサ60と、を備える。触媒コンバータ20の各構成部品については、図2を参照して後述する。 The catalyst converter 20 is a device for removing harmful substances in the exhaust gas discharged from the engine main body 1 and then discharging the exhaust gas to the outside air. The outer cylinder 30, the first catalyst device 40, and the second catalyst are used. The device 50 and the temperature sensor 60 are provided. Each component of the catalyst converter 20 will be described later with reference to FIG.

電子制御ユニット200は、デジタルコンピュータから構成され、双方性バス201によって互いに接続されたROM(リードオンリメモリ)202、RAM(ランダムアクセスメモリ)203、CPU(マイクロプロセッサ)204、入力ポート205及び出力ポート206を備える。 The electronic control unit 200 is composed of a digital computer and is connected to each other by a bidirectional bus 201. ROM (read-only memory) 202, RAM (random access memory) 203, CPU (microprocessor) 204, input port 205, and output port. It is equipped with 206.

入力ポート205には、前述したエアフローメータ211や温度センサ60などの出力信号が、対応する各AD変換器207を介して入力される。また、入力ポート205には、アクセルペダル220の踏み込み量Lに比例した出力電圧を発生する負荷センサ212の出力電圧が、対応するAD変換器207を介して入力される。さらに入力ポート205には、機関回転速度Nを算出するための信号として、機関本体1のクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ213の出力信号が入力される。このように入力ポート205には、内燃機関100を制御するために必要な各種センサの出力信号が入力される。 Output signals from the above-mentioned air flow meter 211 and temperature sensor 60 are input to the input port 205 via the corresponding AD converters 207. Further, the output voltage of the load sensor 212 that generates an output voltage proportional to the depression amount L of the accelerator pedal 220 is input to the input port 205 via the corresponding AD converter 207. Further, as a signal for calculating the engine rotation speed N, an output signal of the crank angle sensor 213 that generates an output pulse every time the crankshaft of the engine body 1 rotates by, for example, 15 ° is input to the input port 205. In this way, the output signals of various sensors necessary for controlling the internal combustion engine 100 are input to the input port 205.

出力ポート206には、対応する駆動回路208を介して燃料噴射弁3、スロットル弁10を駆動するステップモータ、EGR制御弁13、燃料ポンプ17などの各制御部品が電気的に接続される。 Each control component such as a fuel injection valve 3, a step motor for driving the throttle valve 10, an EGR control valve 13, and a fuel pump 17 is electrically connected to the output port 206 via a corresponding drive circuit 208.

電子制御ユニット200は、入力ポート205に入力された各種センサの出力信号に基づいて、各制御部品を制御するための制御信号を出力ポート206から出力する。 The electronic control unit 200 outputs a control signal for controlling each control component from the output port 206 based on the output signals of various sensors input to the input port 205.

図2は、本実施形態による触媒コンバータ20の各構成部品について説明する図である。図3は、図2のIII-III線に沿う触媒コンバータ20の概略断面図である。 FIG. 2 is a diagram illustrating each component of the catalytic converter 20 according to the present embodiment. FIG. 3 is a schematic cross-sectional view of the catalytic converter 20 along the line III-III of FIG.

外筒30は、典型的にはステンレス等の金属又はセラミック等の非金属によって構成されたケースであって、収容部30aと、収容部30aよりも排気流れ方向上流側に形成される第1接続部30bと、収容部30aよりも排気流れ方向下流側に形成される第2接続部30cと、を備える。本実施形態では外筒30は、略水平となるように排気管19に接続されている。 The outer cylinder 30 is typically a case made of a metal such as stainless steel or a non-metal such as ceramic, and is formed between the accommodating portion 30a and the first connection formed on the upstream side of the accommodating portion 30a in the exhaust flow direction. A portion 30b and a second connecting portion 30c formed on the downstream side in the exhaust flow direction with respect to the accommodating portion 30a are provided. In the present embodiment, the outer cylinder 30 is connected to the exhaust pipe 19 so as to be substantially horizontal.

収容部30aは、その内部に第1触媒装置40及び第2触媒装置50を収容するための部分であって、その内径は排気管19の内径よりも大きくされる。収容部30aの内壁面には、外筒30と後述する第1触媒装置40の導電性基材41とを電気的に絶縁するために、例えばガラス等の電気絶縁性の材料によってコーティングを施すことにより絶縁層31が形成されている。 The accommodating portion 30a is a portion for accommodating the first catalyst device 40 and the second catalyst device 50 inside, and its inner diameter is made larger than the inner diameter of the exhaust pipe 19. The inner wall surface of the accommodating portion 30a is coated with an electrically insulating material such as glass in order to electrically insulate the outer cylinder 30 and the conductive base material 41 of the first catalyst device 40 described later. The insulating layer 31 is formed by the above.

第1接続部30bは、排気流れ方向に沿って徐々にその内径が排気管19の内径から収容部30aの内径に向かって拡がるように形成された部分であって、その前端部が排気管19に接続される。 The first connection portion 30b is a portion formed so that the inner diameter thereof gradually expands from the inner diameter of the exhaust pipe 19 toward the inner diameter of the accommodating portion 30a along the exhaust flow direction, and the front end portion thereof is the exhaust pipe 19 Connected to.

第2接続部30cは、排気流れ方向に沿って徐々にその内径が収容部30aの内径から排気管19の内径に向かって狭くなるように形成された部分であって、その後端部が排気管19に接続される。本実施形態では、この第2接続部30cの重力方向上側、かつ、排気管19よりも径方向外側に位置する部位に、温度センサ60の基端部を取り付けるための挿通孔32が形成されている。この理由については後述する。 The second connection portion 30c is a portion formed so that the inner diameter thereof gradually narrows from the inner diameter of the accommodating portion 30a toward the inner diameter of the exhaust pipe 19 along the exhaust flow direction, and the rear end portion thereof is the exhaust pipe. Connected to 19. In the present embodiment, an insertion hole 32 for attaching the base end portion of the temperature sensor 60 is formed at a portion located on the upper side in the gravity direction of the second connection portion 30c and on the outer side in the radial direction with respect to the exhaust pipe 19. There is. The reason for this will be described later.

第1触媒装置40は、電気加熱式の触媒装置(EHC;Electrical Heated Catalyst)であって、導電性基材41と、第1保持マット42と、一対の電極43と、を備える。 The first catalyst device 40 is an electric heating type catalyst device (EHC; Electrical Heated Catalyst), and includes a conductive base material 41, a first holding mat 42, and a pair of electrodes 43.

導電性基材41は、例えば炭化ケイ素(SiC)や二珪化モリブデン(MoSi)などの通電されることにより発熱する材料によって形成される。図3に示すように、導電性基材41には、排気の流れ方向に沿って、断面形状が格子形状(又はハニカム形状)の複数の通路(以下「単位セル」という。)411が形成されており、各単位セル411の表面に触媒が担持されている。導電性基材41に担持させる触媒は特に限られるものではなく、種々の触媒の中から所望の排気浄化性能を得るために必要な触媒を適宜選択して導電性基材41に担持させることができる。 The conductive base material 41 is formed of a material that generates heat when energized, such as silicon carbide (SiC) or molybdenum disilicate (MoSi 2 ). As shown in FIG. 3, the conductive base material 41 is formed with a plurality of passages (hereinafter referred to as “unit cells”) 411 having a lattice shape (or honeycomb shape) in cross section along the flow direction of the exhaust gas. A catalyst is supported on the surface of each unit cell 411. The catalyst to be supported on the conductive base material 41 is not particularly limited, and a catalyst necessary for obtaining desired exhaust gas purification performance can be appropriately selected from various catalysts and supported on the conductive base material 41. it can.

第1保持マット42は、導電性基材41と収容部30aとの間の隙間を埋めるように、導電性基材41と収容部30aとの間に設けられ、導電性基材41を収容部30a内の所定位置に保持するための部品である。第1保持マット42は、例えばアルミナ(Al)などの電気絶縁性の材料によって形成されている。 The first holding mat 42 is provided between the conductive base material 41 and the accommodating portion 30a so as to fill the gap between the conductive base material 41 and the accommodating portion 30a, and accommodates the conductive base material 41 in the accommodating portion. It is a component for holding in a predetermined position within 30a. The first holding mat 42 is formed of an electrically insulating material such as alumina (Al 2 O 3 ).

一対の電極43は、導電性基材41に電圧を印加するための部品であり、それぞれ収容部30aに対して電気的に絶縁された状態で、それらの一端が導電性基材41に電気的に接続されている。一対の電極43のうちの一方の電極43aの他端は、例えばバッテリなどの電源44のプラス端子に接続され、他方の電極43bの他端は、電源44のマイナス端子に接続されている。一対の電極43を介して導電性基材41に電圧を印加することで、導電性基材41に電流が流れて導電性基材41が発熱し、導電性基材41に担持された触媒が加熱される。 The pair of electrodes 43 are components for applying a voltage to the conductive base material 41, and one end thereof is electrically insulated from the conductive base material 41 in a state of being electrically insulated from the accommodating portion 30a. It is connected to the. The other end of one electrode 43a of the pair of electrodes 43 is connected to the positive terminal of the power supply 44 such as a battery, and the other end of the other electrode 43b is connected to the negative terminal of the power supply 44. By applying a voltage to the conductive base material 41 through the pair of electrodes 43, an electric current flows through the conductive base material 41 to generate heat of the conductive base material 41, and the catalyst supported on the conductive base material 41 is generated. It is heated.

このように第1触媒装置40は、収容部30aに対して電気的に絶縁された状態で収容部30a内に設けられる。 As described above, the first catalyst device 40 is provided in the accommodating portion 30a in a state of being electrically insulated from the accommodating portion 30a.

第2触媒装置50は、第1触媒装置40の排気流れ方向下流側に第1触媒装置40と隣接するように収容部30a内に設けられる。第2触媒装置50は、絶縁性基材51と、第2保持マット52と、を備える。 The second catalyst device 50 is provided in the accommodating portion 30a so as to be adjacent to the first catalyst device 40 on the downstream side in the exhaust flow direction of the first catalyst device 40. The second catalyst device 50 includes an insulating base material 51 and a second holding mat 52.

絶縁性基材51は、例えばコージェライトなどの電気絶縁性の材料によって形成される。絶縁性基材51にも、導電性基材41と同様に断面形状が格子形状(又はハニカム形状)の単位セル(図示せず)が排気の流れ方向に沿って複数形成されており、各単位セルの表面に触媒が担持されている。絶縁性基材51に担持させる触媒も特に限られるものではなく、種々の触媒の中から所望の排気浄化性能を得るために必要な触媒を適宜選択して絶縁性基材51に担持させることができる。絶縁性基材51に担持させる触媒は、導電性基材41に担持させる触媒と同じものでも良く、異なるものでも良い。 The insulating base material 51 is formed of an electrically insulating material such as cordierite. Similar to the conductive base material 41, the insulating base material 51 is also formed with a plurality of unit cells (not shown) having a lattice shape (or honeycomb shape) in cross section along the exhaust flow direction, and each unit is formed. A catalyst is supported on the surface of the cell. The catalyst to be supported on the insulating base material 51 is not particularly limited, and a catalyst necessary for obtaining desired exhaust gas purification performance can be appropriately selected from various catalysts and supported on the insulating base material 51. it can. The catalyst supported on the insulating base material 51 may be the same as or different from the catalyst supported on the conductive base material 41.

第2保持マット52は、絶縁性基材51と収容部30aとの間の隙間を埋めるように、絶縁性基材51と収容部30aとの間に設けられ、絶縁性基材51を収容部30a内の所定位置に保持するための部品である。第2保持マット52も、例えばアルミナ(Al)などの電気絶縁性の材料によって形成されている。 The second holding mat 52 is provided between the insulating base material 51 and the accommodating portion 30a so as to fill the gap between the insulating base material 51 and the accommodating portion 30a, and accommodates the insulating base material 51 in the accommodating portion. It is a component for holding in a predetermined position in 30a. The second holding mat 52 is also made of an electrically insulating material such as alumina (Al 2 O 3 ).

温度センサ60は、熱電対61によって導電性基材41の温度を直接的に検出するためのセンサである。この温度センサ60で検出された温度に基づいて、導電性基材41に対する通電制御や、第1触媒装置40の故障判定などが電子制御ユニット200によって行われている。 The temperature sensor 60 is a sensor for directly detecting the temperature of the conductive base material 41 by the thermocouple 61. Based on the temperature detected by the temperature sensor 60, the electronic control unit 200 performs energization control on the conductive base material 41, failure determination of the first catalyst device 40, and the like.

図2示すように、本実施形態による温度センサ60は、その基端部62が、外筒30の第2接続部30cに対して電気的に絶縁された状態で第2接続部30cに取り付けられている。具体的には本実施形態では、温度センサ60の基端部62が、外周面に雄ネジを有する絶縁性のニップルとなっており、このニップルを、雌ネジを有する第2接続部30cの挿通孔32に螺合させることで、第2接続部30cに対して電気的に絶縁された状態で温度センサ60の基端部62が第2接続部30cに取り付けられている。 As shown in FIG. 2, the temperature sensor 60 according to the present embodiment is attached to the second connection portion 30c in a state where the base end portion 62 thereof is electrically insulated from the second connection portion 30c of the outer cylinder 30. ing. Specifically, in the present embodiment, the base end portion 62 of the temperature sensor 60 is an insulating nipple having a male screw on the outer peripheral surface, and this nipple is inserted into a second connecting portion 30c having a female screw. By screwing into the hole 32, the base end portion 62 of the temperature sensor 60 is attached to the second connecting portion 30c in a state of being electrically insulated from the second connecting portion 30c.

そして本実施形態では、このように温度センサ60の基端部62を外筒30の第2接続部30cに取り付けて、熱電対61を導電性基材41及び絶縁性基材51よりも排気流れ方向下流側から外筒30の内部に挿入するようにして、熱電対61を基端部62から排気流れ方向上流側に向かって導電性基材41の内部まで延ばすようにしている。具体的には、熱電対61を絶縁性基材51の排気流れ方向下流側の端部から絶縁性基材51の単位セルに挿入して絶縁性基材51の内部を通した後、その熱電対61をさらに導電性基材41の排気流れ方向下流側の端部から導電性基材41の単位セル411に挿入して(図3参照)、熱電対61の先端61aを導電性基材41の内部の中央部まで延ばすようにしている。そして、熱電対61が排気の流れを阻害することがないように、導電性基材41及び絶縁性基材51の内部において、熱電対61を排気流れ方向と略平行となるように配置している。 Then, in the present embodiment, the base end portion 62 of the temperature sensor 60 is attached to the second connecting portion 30c of the outer cylinder 30 in this way, and the thermocouple 61 is exhausted from the conductive base material 41 and the insulating base material 51. The thermocouple 61 is inserted from the downstream side in the direction into the inside of the outer cylinder 30 so as to extend from the base end portion 62 toward the upstream side in the exhaust flow direction to the inside of the conductive base material 41. Specifically, the thermocouple 61 is inserted into the unit cell of the insulating base material 51 from the downstream end of the insulating base material 51 in the exhaust flow direction, passed through the inside of the insulating base material 51, and then the thermocouple is subjected to the thermocouple. The pair 61 is further inserted into the unit cell 411 of the conductive base material 41 from the downstream end of the conductive base material 41 in the exhaust flow direction (see FIG. 3), and the tip 61a of the thermocouple 61 is inserted into the conductive base material 41. I try to extend it to the center of the inside of. Then, the thermocouple 61 is arranged inside the conductive base material 41 and the insulating base material 51 so as to be substantially parallel to the exhaust flow direction so that the thermocouple 61 does not obstruct the flow of the exhaust. There is.

このように本実施形態では、熱電対61を導電性基材41及び絶縁性基材51よりも排気流れ方向下流側から外筒30の内部に挿入するようにしている。以下、その理由について説明する。 As described above, in the present embodiment, the thermocouple 61 is inserted into the outer cylinder 30 from the downstream side in the exhaust flow direction with respect to the conductive base material 41 and the insulating base material 51. The reason will be described below.

外筒30に温度センサ60の基端部62を取り付けて基端部62から熱電対61を導電性基材41の内部まで延ばす場合、本実施形態のように第2接続部30cに温度センサ60の基端部62を取り付けて、熱電対61を基端部62から排気流れ方向上流側に向かって導電性基材41の内部まで延ばすようにする方法の他にも、例えば図4Aに示す第1比較例のように、第1接続部30bに温度センサ60の基端部62を取り付け、熱電対61を導電性基材41よりも排気流れ方向上流側から外筒30の内部に挿入するようにして、熱電対61を基端部62から排気流れ方向下流側に向かって導電性基材41の内部まで延ばすようにする方法が考えられる。また図4Bに示す第2比較例のように、収容部30aに温度センサ60の基端部62を取り付け、熱電対61を導電性基材41と絶縁性基材51との間から外筒30の内部に挿入するようにして、熱電対61を基端部62から排気流れ方向上流側に向かって導電性基材41の内部まで延ばすようにする方法が考えられる。 When the base end portion 62 of the temperature sensor 60 is attached to the outer cylinder 30 and the thermocouple 61 is extended from the base end portion 62 to the inside of the conductive base material 41, the temperature sensor 60 is attached to the second connection portion 30c as in the present embodiment. In addition to the method of attaching the base end portion 62 of the above to extend the thermocouple 61 from the base end portion 62 toward the upstream side in the exhaust flow direction to the inside of the conductive base material 41, for example, the third shown in FIG. 4A. 1 As in the comparative example, the base end portion 62 of the temperature sensor 60 is attached to the first connection portion 30b, and the thermocouple 61 is inserted into the outer cylinder 30 from the upstream side in the exhaust flow direction of the conductive base material 41. Then, a method is conceivable in which the thermocouple 61 is extended from the base end portion 62 toward the downstream side in the exhaust flow direction to the inside of the conductive base material 41. Further, as in the second comparative example shown in FIG. 4B, the base end portion 62 of the temperature sensor 60 is attached to the accommodating portion 30a, and the thermocouple 61 is inserted between the conductive base material 41 and the insulating base material 51 to form the outer cylinder 30. A method is conceivable in which the thermocouple 61 is inserted into the inside of the conductive base material 41 from the base end portion 62 toward the upstream side in the exhaust flow direction.

しかしながら、図4Aに示す第1比較例の場合、本実施形態と比較として以下のような問題が生じる。 However, in the case of the first comparative example shown in FIG. 4A, the following problems occur as a comparison with the present embodiment.

すなわち、図4Aに示す第1比較例の場合、熱電対61に、導電性基材41及び絶縁性基材51に流入する前の排気が当たるため、本実施形態と比較して排気脈動の影響を強く受けて熱電対61が振動しやすい。 That is, in the case of the first comparative example shown in FIG. 4A, since the thermocouple 61 is exposed to the exhaust gas before flowing into the conductive base material 41 and the insulating base material 51, the influence of the exhaust pulsation as compared with the present embodiment. The thermocouple 61 is likely to vibrate due to the strong reception.

そのため、熱電対61を劣化させて温度センサ60を故障させるおそれがある。すなわち、温度センサ60の耐久性を悪化させるおそれがある。また、熱電対61が振動することによって熱電対61の位置(測温部位)が変化し、導電性基材41の温度(触媒床温)の検出精度が悪化するおそれがある。またさらに、熱電対61が振動することによって、熱電対61が第1接続部30bの内壁面に接触すると共に、導電性基材41の内部において導電性基材41と接触するおそれがあり、その結果、導電性基材41と外筒30との絶縁性が悪化するおそれがある。 Therefore, the thermocouple 61 may be deteriorated and the temperature sensor 60 may be damaged. That is, the durability of the temperature sensor 60 may be deteriorated. Further, the vibration of the thermocouple 61 may change the position of the thermocouple 61 (temperature measurement site), which may deteriorate the detection accuracy of the temperature (catalyst bed temperature) of the conductive base material 41. Furthermore, when the thermocouple 61 vibrates, the thermocouple 61 may come into contact with the inner wall surface of the first connecting portion 30b and also come into contact with the conductive base material 41 inside the conductive base material 41. As a result, the insulating property between the conductive base material 41 and the outer cylinder 30 may deteriorate.

また、熱電対61に、導電性基材41及び絶縁性基材51に流入する前の排気が当たるため、本実施形態と比較して排気の熱が熱電対61に奪われやすく、導電性基材41及び絶縁性基材51に流入する排気の温度が低下するおそれがある。そのため、導電性基材41及び絶縁性基材51の温度の昇温速度が低下して触媒が活性するまでの時間が長くなり、排気エミッションが悪化するおそれがある。 Further, since the thermocouple 61 is hit by the exhaust before flowing into the conductive base material 41 and the insulating base material 51, the heat of the exhaust is easily taken away by the thermocouple 61 as compared with the present embodiment, and the conductive group. The temperature of the exhaust flowing into the material 41 and the insulating base material 51 may decrease. Therefore, the rate of temperature rise of the conductive base material 41 and the insulating base material 51 decreases, the time until the catalyst activates becomes long, and the exhaust emission may deteriorate.

また図5に示すように、排気流れ方向上流側から収容部30aの内部を見た場合、図4Aに示す第1比較例においては、熱電対61によって導電性基材41に流入する排気の流れが遮られるため、熱電対61の後方(排気流れ方向下流側)に位置する導電性基材41の一部の単位セル411に排気が流入しにくくなる。そうすると、導電性基材41が排気から受ける単位時間当たりの熱量が少なくなるので、導電性基材41の昇温速度が低下して導電性基材41に担持された触媒が活性するまでの時間が長くなり、排気エミッションが悪化するおそれがある。 Further, as shown in FIG. 5, when the inside of the accommodating portion 30a is viewed from the upstream side in the exhaust flow direction, in the first comparative example shown in FIG. 4A, the flow of exhaust gas flowing into the conductive base material 41 by the thermocouple 61. Is blocked, so that it becomes difficult for exhaust gas to flow into a part of the unit cells 411 of the conductive base material 41 located behind the thermocouple 61 (downstream side in the exhaust flow direction). Then, since the amount of heat received from the exhaust by the conductive base material 41 per unit time is reduced, the time until the heating rate of the conductive base material 41 decreases and the catalyst supported on the conductive base material 41 is activated. May become longer and exhaust emissions may worsen.

また、図4Bに示す第2比較例の場合も、本実施形態と比較として以下のような問題が生じる。 Further, also in the case of the second comparative example shown in FIG. 4B, the following problems occur as a comparison with the present embodiment.

すなわち、図4Bに示す第2比較例の場合も、排気流れ方向上流側から収容部30aの内部を見た場合には、熱電対61によって絶縁性基材51に流入する排気の流れが遮られるため、熱電対61の後方に位置する絶縁性基材51の一部の単位セルに排気が流入しにくくなる。その結果、第1比較例と同様に、絶縁性基材51が排気から受ける単位時間当たりの熱量が少なくなるので、絶縁性基材51の昇温速度が低下して絶縁性基材51に担持された触媒が活性するまでの時間が長くなり、排気エミッションが悪化するおそれがある。 That is, also in the case of the second comparative example shown in FIG. 4B, when the inside of the accommodating portion 30a is viewed from the upstream side in the exhaust flow direction, the flow of the exhaust gas flowing into the insulating base material 51 is blocked by the thermocouple 61. Therefore, it becomes difficult for the exhaust gas to flow into some unit cells of the insulating base material 51 located behind the thermocouple 61. As a result, as in the first comparative example, the amount of heat received from the exhaust by the insulating base material 51 per unit time is reduced, so that the rate of temperature rise of the insulating base material 51 is reduced and the insulating base material 51 is supported on the insulating base material 51. It takes a long time for the catalyst to be activated, which may worsen the exhaust emission.

また、図4Bに示す第2比較例の場合、温度センサ60の基端部62を取り付けるための挿通孔32を、収容部30aの内壁面に形成された絶縁層31にも形成する必要がある。すなわち、温度センサ60の基端部62を、絶縁層31を貫通させて収容部30aに取り付ける必要がある。 Further, in the case of the second comparative example shown in FIG. 4B, it is necessary to form the insertion hole 32 for attaching the base end portion 62 of the temperature sensor 60 to the insulating layer 31 formed on the inner wall surface of the accommodating portion 30a. .. That is, it is necessary to attach the base end portion 62 of the temperature sensor 60 to the accommodating portion 30a through the insulating layer 31.

そのため、仮にシール等を施したとしても、排気中に含まれる導電性カーボンが、温度センサ60の基端部62と絶縁層31との隙間(すなわち挿通孔32)に侵入、堆積し、導電性カーボンによって導電性基材41と外筒30とを電気的に接続する電流パスが形成されるおそれがある。その結果、導電性基材41と外筒30との絶縁性が悪化するおそれがある。 Therefore, even if a seal or the like is applied, the conductive carbon contained in the exhaust penetrates and accumulates in the gap (that is, the insertion hole 32) between the base end portion 62 of the temperature sensor 60 and the insulating layer 31, and is conductive. The carbon may form a current path that electrically connects the conductive base material 41 and the outer cylinder 30. As a result, the insulating property between the conductive base material 41 and the outer cylinder 30 may deteriorate.

これに対し、本実施形態のように、第2接続部30cに温度センサ60の基端部62を取り付けて、熱電対61を基端部62から排気流れ方向上流側に向かって導電性基材41の内部まで延ばすようにすることで、熱電対61に、導電性基材41及び絶縁性基材51に流入する前の排気が当たることがない。そのため、排気脈動によって熱電対61が振動するのを抑制できると共に、熱電対61に熱が奪われるのを抑制できる。 On the other hand, as in the present embodiment, the base end portion 62 of the temperature sensor 60 is attached to the second connection portion 30c, and the thermocouple 61 is a conductive base material from the base end portion 62 toward the upstream side in the exhaust flow direction. By extending to the inside of the 41, the thermocouple 61 is not exposed to the exhaust before flowing into the conductive base material 41 and the insulating base material 51. Therefore, it is possible to suppress the vibration of the thermocouple 61 due to the exhaust pulsation, and it is possible to suppress the heat being taken away by the thermocouple 61.

したがって、熱電対61が振動することに起因する温度センサ60の耐久性の悪化、導電性基材41の温度の検出精度の悪化、及び導電性基材41と外筒30との絶縁性の悪化を抑制できる。また、熱電対61に熱が奪われることに起因する排気エミッションの悪化を抑制できる。 Therefore, the durability of the temperature sensor 60 deteriorates due to the vibration of the thermocouple 61, the temperature detection accuracy of the conductive base material 41 deteriorates, and the insulation property between the conductive base material 41 and the outer cylinder 30 deteriorates. Can be suppressed. In addition, deterioration of exhaust emissions due to heat being taken away by the thermocouple 61 can be suppressed.

また、熱電対61によって導電性基材41や絶縁性基材51に流入する排気の流れが遮られることもないので、導電性基材41や絶縁性基材51に排気が流入しにくくなって導電性基材41や絶縁性基材51の昇温速度が低下するのを抑制できる。したがって、熱電対61によって導電性基材41や絶縁性基材51に流入する排気の流れが遮られることに起因する排気エミッションの悪化を抑制できる。 Further, since the thermocouple 61 does not block the flow of the exhaust flowing into the conductive base material 41 and the insulating base material 51, it becomes difficult for the exhaust to flow into the conductive base material 41 and the insulating base material 51. It is possible to suppress a decrease in the rate of temperature rise of the conductive base material 41 and the insulating base material 51. Therefore, it is possible to suppress deterioration of exhaust emissions due to the thermocouple 61 blocking the flow of exhaust gas flowing into the conductive base material 41 and the insulating base material 51.

また、温度センサ60の基端部62を、絶縁層31を貫通させて収容部30aに取り付ける必要がないので、温度センサ60の基端部62と絶縁層31との隙間(すなわち挿通孔32)に導電性カーボンが侵入、堆積することに起因する導電性基材41と外筒30との絶縁性の悪化を抑制できる。 Further, since it is not necessary to attach the base end portion 62 of the temperature sensor 60 to the accommodating portion 30a through the insulating layer 31, there is a gap between the base end portion 62 of the temperature sensor 60 and the insulating layer 31 (that is, the insertion hole 32). It is possible to suppress deterioration of the insulating property between the conductive base material 41 and the outer cylinder 30 due to the intrusion and accumulation of conductive carbon in the outer cylinder 30.

続いて、第2接続部30cの重力方向上側、かつ、排気管19よりも径方向外側に位置する部位に、温度センサ60の基端部62を取り付けた理由について説明する。 Next, the reason why the base end portion 62 of the temperature sensor 60 is attached to the portion located on the upper side in the gravity direction of the second connecting portion 30c and on the radial side outside the exhaust pipe 19 will be described.

外筒30の内壁面には、排気中の水蒸気が凝縮した液水が溜まる場合がある。液水は、基本的に外筒30の重力方向下側の内壁面に溜まることになる。したがって、温度センサ60の基端部62を、第2接続部30cの重力方向下側に取り付けた場合には、本実施形態のように重力方向上側に取り付けた場合と比較して、液水が挿通孔32に侵入しやすくなる。その結果、外筒30の重力方向下側の内壁面に溜まった液水及び挿通孔32に侵入した液水によって、導電性基材41と外筒30とを電気的に接続する電流パスが形成されるおそれがあり、導電性基材41と外筒30との絶縁性が悪化するおそれがある。 Liquid water in which water vapor in the exhaust is condensed may collect on the inner wall surface of the outer cylinder 30. The liquid water basically collects on the inner wall surface of the outer cylinder 30 on the lower side in the direction of gravity. Therefore, when the base end portion 62 of the temperature sensor 60 is attached to the lower side in the gravity direction of the second connecting portion 30c, the liquid water is less than the case where the base end portion 62 is attached to the upper side in the gravity direction as in the present embodiment. It becomes easy to enter the insertion hole 32. As a result, a current path that electrically connects the conductive base material 41 and the outer cylinder 30 is formed by the liquid water accumulated on the inner wall surface on the lower side in the direction of gravity of the outer cylinder 30 and the liquid water that has entered the insertion hole 32. There is a risk that the insulation between the conductive base material 41 and the outer cylinder 30 will deteriorate.

したがって、温度センサ60の基端部62を、第2接続部30cの重力方向上側に取り付けことによって、このような液水に起因する導電性基材41と外筒30との絶縁性の悪化を抑制できる。 Therefore, by attaching the base end portion 62 of the temperature sensor 60 to the upper side in the gravity direction of the second connecting portion 30c, the deterioration of the insulating property between the conductive base material 41 and the outer cylinder 30 due to such liquid water is deteriorated. Can be suppressed.

また、図6に示すように、外筒30の内部において、排気管19よりも径方向外側に位置する部位を流れる排気の流速は、その内側を流れる排気の主流の流速と比較して、低下する傾向にある。そのため、温度センサ60の基端部62を、外筒30の、排気管19よりも径方向外側に位置する部位に設けることで、温度センサ60の基端部62が排気の主流に曝されるのを抑制して、基端部62の温度が上昇するのを抑制できる。したがって、例えば外筒30と温度センサ60の基端部62との熱膨張差など起因する温度センサ60の基端部62の劣化を抑制し、温度センサ60の耐久性の悪化を抑制することができる。 Further, as shown in FIG. 6, the flow velocity of the exhaust gas flowing through the portion of the outer cylinder 30 located radially outside the exhaust pipe 19 is lower than the flow velocity of the mainstream exhaust gas flowing inside the exhaust pipe 19. Tend to do. Therefore, by providing the base end portion 62 of the temperature sensor 60 at a portion of the outer cylinder 30 located radially outside the exhaust pipe 19, the base end portion 62 of the temperature sensor 60 is exposed to the mainstream of exhaust gas. It is possible to suppress an increase in the temperature of the base end portion 62. Therefore, for example, deterioration of the base end portion 62 of the temperature sensor 60 due to a difference in thermal expansion between the outer cylinder 30 and the base end portion 62 of the temperature sensor 60 can be suppressed, and deterioration of the durability of the temperature sensor 60 can be suppressed. it can.

したがって、外筒30を排気流れ方向下流側から見た場合には、図7に示すような、第2接続部30cの重力方向上側、かつ、排気管19よりも径方向外側に位置する部位が、温度センサ60の基端部62を取り付ける最適な位置といえる。 Therefore, when the outer cylinder 30 is viewed from the downstream side in the exhaust flow direction, the portion located on the upper side in the gravity direction of the second connecting portion 30c and on the radial side in the exhaust pipe 19 as shown in FIG. 7 is located. It can be said that this is the optimum position for mounting the base end portion 62 of the temperature sensor 60.

以上説明した本実施形態による内燃機関100は、外筒30と、外筒30に対して電気的に絶縁された状態で外筒30内に設けられ、通電されることによって発熱する導電性基材41に触媒を担持させた第1触媒装置40と、第1触媒装置40の排気流れ方向下流側に第1触媒装置40と一定の距離を空けて隣接するように外筒30内に設けられ、絶縁性基材51に触媒を担持させた第2触媒装置50と、導電性基材41の温度を検出するための温度センサ60と、を備える触媒コンバータ20を、排気経路に備える。温度センサ60は、絶縁性基材51よりも排気流れ方向下流側の外筒30に取り付けられる基端部62と、基端部62から外筒30の内部に延びると共に、先端が導電性基材41の内部に位置するように、絶縁性基材51の排気流れ方向下流側の端部から絶縁性基材51の内部に挿入され、絶縁性基材51の内部を通って導電性基材41の排気流れ方向下流側の端部から導電性基材41の内部に挿入される熱電対61(感温部)と、を備え、熱電対61は、導電性基材41及び絶縁性基材51の内部において排気流れ方向と略平行に配置されている。 The internal combustion engine 100 according to the present embodiment described above is provided in the outer cylinder 30 in a state of being electrically insulated from the outer cylinder 30, and is a conductive base material that generates heat when energized. The first catalyst device 40 in which the catalyst is carried on the 41 and the first catalyst device 40 are provided in the outer cylinder 30 so as to be adjacent to the first catalyst device 40 at a certain distance on the downstream side in the exhaust flow direction. The exhaust path is provided with a catalyst converter 20 including a second catalyst device 50 in which a catalyst is supported on an insulating base material 51 and a temperature sensor 60 for detecting the temperature of the conductive base material 41. The temperature sensor 60 has a base end portion 62 attached to the outer cylinder 30 on the downstream side in the exhaust flow direction from the insulating base material 51, and extends from the base end portion 62 to the inside of the outer cylinder 30, and the tip thereof is a conductive base material. The conductive base material 41 is inserted into the inside of the insulating base material 51 from the downstream end of the insulating base material 51 in the exhaust flow direction so as to be located inside the insulating base material 51, and passes through the inside of the insulating base material 51. The thermocouple 61 (temperature-sensitive portion) inserted into the conductive base material 41 from the end on the downstream side in the exhaust flow direction of the thermocouple 61 includes the conductive base material 41 and the insulating base material 51. It is arranged substantially parallel to the exhaust flow direction inside the.

これにより、導電性基材41及び絶縁性基材51に流入する前の排気が熱電対61に当たることがなく、また熱電対61が排気流れ方向と略平行にされた状態で導電性基材41及び絶縁性基材51の内部に配置されているため、導電性基材41及び絶縁性基材51に流入する前の排気の流れや、導電性基材41及び絶縁性基材51の内部を通過している途中の排気の流れが、熱電対61によって遮られるのを抑制できる。したがって、導電性基材41及び絶縁性基材51の内部に排気が流入しにくくなって導電性基材41及び絶縁性基材51の昇温速度が低下してしまうのを抑制できるので、熱電対61によって排気の流れが遮られることに起因する排気エミッションの悪化を抑制できる。 As a result, the exhaust before flowing into the conductive base material 41 and the insulating base material 51 does not hit the thermocouple 61, and the thermocouple 61 is substantially parallel to the exhaust flow direction. And because it is arranged inside the insulating base material 51, the flow of exhaust before flowing into the conductive base material 41 and the insulating base material 51 and the inside of the conductive base material 41 and the insulating base material 51 can be seen. It is possible to prevent the flow of exhaust while passing through from being blocked by the thermocouple 61. Therefore, it is possible to prevent the exhaust gas from flowing into the conductive base material 41 and the insulating base material 51 and the rate of temperature rise of the conductive base material 41 and the insulating base material 51 from decreasing. Deterioration of exhaust emissions due to the obstruction of the exhaust flow by the thermocouple can be suppressed.

また、導電性基材41及び絶縁性基材51に流入する前の排気が熱電対61に当たることがないので、排気脈動によって熱電対61が振動するのを抑制できると共に、熱電対61に熱が奪われるのを抑制できる。したがって、熱電対61が振動することに起因する温度センサ60の耐久性の悪化、導電性基材41と外筒30との絶縁性の悪化、及び導電性基材41の温度の検出精度の悪化を抑制できる。また、熱電対61に熱が奪われることに起因する排気エミッションの悪化を抑制できる。 Further, since the exhaust before flowing into the conductive base material 41 and the insulating base material 51 does not hit the thermocouple 61, it is possible to suppress the thermocouple 61 from vibrating due to the exhaust pulsation, and heat is applied to the thermocouple 61. It can be suppressed from being robbed. Therefore, the durability of the temperature sensor 60 deteriorates due to the vibration of the thermocouple 61, the insulation between the conductive base material 41 and the outer cylinder 30 deteriorates, and the temperature detection accuracy of the conductive base material 41 deteriorates. Can be suppressed. In addition, deterioration of exhaust emissions due to heat being taken away by the thermocouple 61 can be suppressed.

また、温度センサ60の基端部62を、絶縁層31を貫通させて外筒30に取り付ける必要がないので、温度センサ60の基端部62と絶縁層31との隙間(すなわち挿通孔32)に導電性カーボンが侵入、堆積することに起因する導電性基材41と外筒30との絶縁性の悪化を抑制できる。 Further, since it is not necessary to attach the base end portion 62 of the temperature sensor 60 to the outer cylinder 30 through the insulating layer 31, there is a gap between the base end portion 62 of the temperature sensor 60 and the insulating layer 31 (that is, the insertion hole 32). It is possible to suppress deterioration of the insulating property between the conductive base material 41 and the outer cylinder 30 due to the intrusion and accumulation of conductive carbon in the outer cylinder 30.

さらに、熱電対61が導電性基材41の内部に配置されているため、導電性基材41及び絶縁性基材51の温度を精度良く検出することができる。 Further, since the thermocouple 61 is arranged inside the conductive base material 41, the temperatures of the conductive base material 41 and the insulating base material 51 can be detected with high accuracy.

また本実施形態では、外筒30は、略水平となるように排気管19(排気通路)に設けられており、温度センサ60の基端部62は、外筒30の重力方向上側の部位に取り付けられている。そのため、温度センサ60の基端部62を外筒30に取り付けるための挿通孔32に、排気中の水蒸気が凝縮した液水が侵入するのを抑制できる。したがって、液水によって導電性基材41と外筒30とを電気的に接続する電流パスが形成されるのを抑制でき、導電性基材41と外筒30との絶縁性が悪化するのを抑制できる。 Further, in the present embodiment, the outer cylinder 30 is provided in the exhaust pipe 19 (exhaust passage) so as to be substantially horizontal, and the base end portion 62 of the temperature sensor 60 is located on the upper portion of the outer cylinder 30 in the gravity direction. It is attached. Therefore, it is possible to prevent liquid water in which water vapor in the exhaust gas is condensed from entering the insertion hole 32 for attaching the base end portion 62 of the temperature sensor 60 to the outer cylinder 30. Therefore, it is possible to suppress the formation of a current path that electrically connects the conductive base material 41 and the outer cylinder 30 by the liquid water, and the insulation between the conductive base material 41 and the outer cylinder 30 is deteriorated. Can be suppressed.

また本実施形態では、外筒は、その内径が排気管19(排気通路)の内径よりも大きい部位を有し、温度センサ60の基端部62は、外筒30の、排気管19よりも径方向外側に位置する、排気管19の内径よりも大きい部位に取り付けられている。 Further, in the present embodiment, the outer cylinder has a portion whose inner diameter is larger than the inner diameter of the exhaust pipe 19 (exhaust passage), and the base end portion 62 of the temperature sensor 60 is larger than the exhaust pipe 19 of the outer cylinder 30. It is attached to a portion larger than the inner diameter of the exhaust pipe 19 located on the outer side in the radial direction.

外筒30の内部において、排気管19よりも径方向外側に位置する部位を流れる排気の流速は、その内側を流れる排気の主流と比較して、排気の流速が低下する傾向にある。そのため、温度センサ60の基端部62を、外筒30の、排気管19よりも径方向外側に位置する部位に設けることで、温度センサ60の基端部62の温度上昇を抑制することができる。したがって、例えば外筒30と温度センサ60の基端部62との熱膨張差など起因する温度センサ60の基端部62の劣化を抑制し、温度センサ60の耐久性の悪化を抑制することができる。 Inside the outer cylinder 30, the flow velocity of the exhaust gas flowing through the portion located radially outside the exhaust pipe 19 tends to be lower than the mainstream of the exhaust gas flowing inside the outer cylinder 30. Therefore, by providing the base end portion 62 of the temperature sensor 60 at a portion of the outer cylinder 30 located radially outside the exhaust pipe 19, it is possible to suppress the temperature rise of the base end portion 62 of the temperature sensor 60. it can. Therefore, for example, deterioration of the base end portion 62 of the temperature sensor 60 due to a difference in thermal expansion between the outer cylinder 30 and the base end portion 62 of the temperature sensor 60 can be suppressed, and deterioration of the durability of the temperature sensor 60 can be suppressed. it can.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments are only a part of the application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiments. Absent.

例えば、上記の実施形態では、機関本体1で燃料を圧縮自己着火燃焼させるように内燃機関100を構成していたが、機関本体1で燃料を火花点火燃焼させるように内燃機関100を構成しても良い。また、排気管19に触媒コンバータ20以外の排気浄化装置、例えばパティキュレートフィルタや他の触媒装置などを設けても良い。 For example, in the above embodiment, the internal combustion engine 100 is configured so that the fuel is compressed and self-ignited and burned by the engine body 1, but the internal combustion engine 100 is configured so that the fuel is spark-ignited and burned by the engine body 1. Is also good. Further, the exhaust pipe 19 may be provided with an exhaust purification device other than the catalyst converter 20, such as a particulate filter or another catalyst device.

30 外筒
40 第1触媒装置
41 導電性基材
50 第2触媒装置
51 絶縁性基材
60 温度センサ
61 熱電対(感温部)
62 基端部
30 Outer cylinder 40 1st catalyst device 41 Conductive base material 50 2nd catalyst device 51 Insulation base material 60 Temperature sensor 61 Thermocouple (temperature sensitive part)
62 base end

Claims (1)

外筒と、
前記外筒に対して電気的に絶縁された状態で当該外筒内に設けられ、通電されることによって発熱する導電性基材に触媒を担持させた第1触媒装置と、
前記第1触媒装置の排気流れ方向下流側に当該第1触媒装置と一定の距離を空けて隣接するように前記外筒内に設けられ、絶縁性基材に触媒を担持させた第2触媒装置と、
前記導電性基材の温度を検出するための温度センサと、
を備える触媒コンバータを、排気経路に備える内燃機関であって、
前記温度センサは、
前記絶縁性基材よりも排気流れ方向下流側の前記外筒に取り付けられる基端部と、
前記基端部から前記外筒の内部に延びると共に、先端が前記導電性基材の内部に位置するように、前記絶縁性基材の排気流れ方向下流側の端部から前記絶縁性基材の内部に挿入され、前記絶縁性基材の内部を通って前記導電性基材の排気流れ方向下流側の端部から前記導電性基材の内部に挿入される感温部と、
を備え、
前記感温部は、前記導電性基材及び前記絶縁性基材の内部において排気流れ方向と略平行に配置されている、
内燃機関。
With the outer cylinder
A first catalyst device provided in the outer cylinder in a state of being electrically insulated from the outer cylinder, and a catalyst is supported on a conductive base material that generates heat when energized.
A second catalyst device provided in the outer cylinder so as to be adjacent to the first catalyst device at a certain distance on the downstream side in the exhaust flow direction of the first catalyst device, and the catalyst is supported on an insulating base material. When,
A temperature sensor for detecting the temperature of the conductive substrate and
An internal combustion engine equipped with a catalytic converter in the exhaust path.
The temperature sensor
A base end portion attached to the outer cylinder on the downstream side in the exhaust flow direction from the insulating base material, and
The insulating base material extends from the base end portion to the inside of the outer cylinder and the end portion of the insulating base material downstream from the end portion in the exhaust flow direction of the insulating base material so that the tip is located inside the conductive base material. A temperature-sensitive portion that is inserted inside, passes through the inside of the insulating base material, and is inserted into the inside of the conductive base material from an end portion on the downstream side in the exhaust flow direction of the conductive base material.
With
The temperature-sensitive portion is arranged inside the conductive base material and the insulating base material substantially parallel to the exhaust flow direction.
Internal combustion engine.
JP2019042657A 2019-03-08 2019-03-08 Internal combustion engine Pending JP2020143649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019042657A JP2020143649A (en) 2019-03-08 2019-03-08 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019042657A JP2020143649A (en) 2019-03-08 2019-03-08 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2020143649A true JP2020143649A (en) 2020-09-10

Family

ID=72353877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019042657A Pending JP2020143649A (en) 2019-03-08 2019-03-08 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2020143649A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626331A (en) * 1990-10-31 1994-02-01 W R Grace & Co Composite catalytic converter
JPH084521A (en) * 1994-06-16 1996-01-09 Ngk Insulators Ltd Heater unit and catalytic converter
JP2019000799A (en) * 2017-06-14 2019-01-10 株式会社Soken Catalyst device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626331A (en) * 1990-10-31 1994-02-01 W R Grace & Co Composite catalytic converter
JPH084521A (en) * 1994-06-16 1996-01-09 Ngk Insulators Ltd Heater unit and catalytic converter
JP2019000799A (en) * 2017-06-14 2019-01-10 株式会社Soken Catalyst device

Similar Documents

Publication Publication Date Title
US8091347B2 (en) Exhaust gas purification apparatus, internal combustion engine comprising the same, and particulate filter restoring method
JP6493281B2 (en) Exhaust sensor control device
US20070204597A1 (en) Exhaust sensor mounting structure
US7396389B2 (en) Abnormality detection apparatus for exhaust gas purification apparatus for internal combustion engine
US7610749B2 (en) Exhaust gas cleaning apparatus having particulate collector for use in automotive vehicle
JP5429368B2 (en) PM amount detection device
JP2011080439A (en) Device for detecting abnormality of particulate filter
JP2012047722A (en) Particulate matter detection sensor and method for determining abnormality of the sensor
US10273859B2 (en) Control device of exhaust sensor
JP2010071257A (en) Engine control device
US10753297B2 (en) Control device of exhaust sensor
JP2009228564A (en) Control device for exhaust gas sensor
JP5201187B2 (en) Air flow measurement device
JP2006307701A (en) Exhaust emission control device having particulate filter, and internal combustion engine having the exhaust emission control device
JP4240056B2 (en) Exhaust gas purification device
JP2020143649A (en) Internal combustion engine
KR100992305B1 (en) Exhaust gas purification device
JP7172860B2 (en) Exhaust gas sensor
JP7183875B2 (en) internal combustion engine
JP4888426B2 (en) Exhaust gas sensor control device
JP4730351B2 (en) Exhaust gas purification device for internal combustion engine
JP3646635B2 (en) Exhaust gas purification device for internal combustion engine
JP6458613B2 (en) Internal combustion engine
JP2015007386A (en) Abnormality detection device
JP2007332905A (en) Temperature measuring device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221011