JP2020143270A - Silicone rubber-based curable composition and structure comprising the same - Google Patents

Silicone rubber-based curable composition and structure comprising the same Download PDF

Info

Publication number
JP2020143270A
JP2020143270A JP2020012394A JP2020012394A JP2020143270A JP 2020143270 A JP2020143270 A JP 2020143270A JP 2020012394 A JP2020012394 A JP 2020012394A JP 2020012394 A JP2020012394 A JP 2020012394A JP 2020143270 A JP2020143270 A JP 2020143270A
Authority
JP
Japan
Prior art keywords
silicone rubber
curable composition
based curable
test piece
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020012394A
Other languages
Japanese (ja)
Other versions
JP2020143270A5 (en
Inventor
岡田 潤
Jun Okada
潤 岡田
裕美子 山野井
Yumiko Yamanoi
裕美子 山野井
基 佐藤
Motoki Sato
基 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2020012394A priority Critical patent/JP2020143270A/en
Publication of JP2020143270A publication Critical patent/JP2020143270A/en
Publication of JP2020143270A5 publication Critical patent/JP2020143270A5/ja
Priority to JP2024047884A priority patent/JP2024071514A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a silicone rubber-based curable composition capable of giving a molded body excellent in durability against repeated flexural deformation.SOLUTION: The silicon rubber-based curable composition of the present invention comprises a vinyl group-containing organopolysiloxane (A) and silica particles (C). When a test piece made of a cured product of the silicon rubber-based curable composition is subjected to a De Mattia flexural test in accordance with JIS K 6260, a change rate of a notch length in the test piece, measured based on a predetermined procedure, is 1.1 or more and 11.5 or less at 50000 times of flexing.SELECTED DRAWING: Figure 3

Description

本発明は、シリコーンゴム系硬化性組成物、およびその構造体に関する。 The present invention relates to a silicone rubber-based curable composition and a structure thereof.

これまでシリコーンゴムの耐久性において様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、耐伸長疲労性について、100%伸長操作を繰り返し行い破断するまでの伸長回数に基づいて評価できること、その伸長回数が210万回のシリコーンゴム(硬化性シリコーンゴム組成物の硬化物)が記載されている(特許文献1の実施例1)。 So far, various developments have been made in the durability of silicone rubber. As this kind of technique, for example, the technique described in Patent Document 1 is known. Patent Document 1 states that elongation fatigue resistance can be evaluated based on the number of elongations until it breaks by repeating 100% elongation operations, and that the number of elongations is 2.1 million times for silicone rubber (curing of a curable silicone rubber composition). (Things) are described (Example 1 of Patent Document 1).

特開2008−222849号公報Japanese Unexamined Patent Publication No. 2008-222849

しかしながら、本発明者が検討した結果、上記特許文献1に記載の硬化性シリコーンゴム組成物の硬化物において、繰り返しの屈曲変形に対する耐久性の点で改善の余地があることが判明した。 However, as a result of examination by the present inventor, it has been found that there is room for improvement in the cured product of the curable silicone rubber composition described in Patent Document 1 in terms of durability against repeated bending deformation.

シリコーンゴムの技術分野において、伸長時の特性についての検討が一般的に行われている。
しかしながら、繰り返し屈曲時の特性については、十分な検討がなされていなかった。
In the technical field of silicone rubber, studies on the characteristics at the time of elongation are generally performed.
However, the characteristics at the time of repeated bending have not been sufficiently studied.

本発明者が検討したところ、デマチャ式耐屈曲試験を用いることで、シリコーンゴム系硬化性組成物の成形体について、繰り返し屈曲時における耐屈曲性を評価できることを見出した。さらに検討した結果、JIS K 6260に準拠して、デマチャ式耐屈曲試験の試験条件を適切に設定した上で、切り込み付きの試験片における切り込み長さの変化率を指標とすることで、かかる耐屈曲性を制御できることが判明した。このような知見に基づきさらに鋭意研究したところ、屈曲回数が5万回のときの試験片における切り込み長さの変化率を所定範囲内とすることで、シリコーンゴム系硬化性組成物の成形体における、繰り返しの屈曲変形に対する耐久性が改善されることを見出し、本発明を完成するに至った。 As a result of the study by the present inventor, it has been found that the bending resistance of the silicone rubber-based curable composition can be evaluated during repeated bending by using the hoax-type bending resistance test. As a result of further examination, in accordance with JIS K 6260, after appropriately setting the test conditions for the hoax-type bending resistance test, the rate of change in the cut length in the test piece with a notch is used as an index to obtain such resistance. It was found that the flexibility can be controlled. Further diligent research based on these findings revealed that the rate of change in the cut length in the test piece when the number of bends was 50,000 was within a predetermined range, thereby forming a silicone rubber-based curable composition in a molded product. , It has been found that the durability against repeated bending deformation is improved, and the present invention has been completed.

本発明によれば、
ビニル基含有オルガノポリシロキサン(A)と、
シリカ粒子(C)と、を含む、シリコーンゴム系硬化性組成物であって、
当該シリコーンゴム系硬化性組成物の硬化物からなる試験片を用いて、JIS K 6260に準拠したデマチャ式耐屈曲試験を行い、下記の手順に基づいて測定される、屈曲回数が5万回のときの前記試験片における切り込み長さ変化率(L/L)が、1.1以上11.5以下である、
シリコーンゴム系硬化性組成物が提供される。
(手順)
当該シリコーンゴム系硬化性組成物を、170℃、10MPaで15分間プレスし、続いて、200℃で4時間加熱し、JIS K 6260に準拠して所定形状の試験片を作製する。
得られた試験片の中央において、幅方向に対して平行に、前記試験片を貫通する所定長さの切り込みを入れる。初期の切り込み長さをLとする。
続いて、切り込み付きの前記試験片を試験機のつかみ具間に設置し、下記の試験条件に基づいて、デマチャ式耐屈曲試験を行い、所定の屈曲回数後の前記試験片における切り込み長さ(mm)を測定する。
切り込み長さは、デマチャ式耐屈曲試験を3回行ったときの平均値とする。この切り込み長さの平均値をLとする。
切り込み長さ変化率を、式:L/Lに基づいて算出する。
(試験条件)
・試験規格:JIS K 6260準拠
・試験機:デマチャ屈曲き裂試験機
・試験温度:23±2℃
・つかみ具間最大距離:75mm
・往復運動距離:57mm
・試験速度:300±10回/分
・試験数:n=3
According to the present invention
Vinyl group-containing organopolysiloxane (A) and
A silicone rubber-based curable composition containing silica particles (C).
Using a test piece made of a cured product of the silicone rubber-based curable composition, a hoax-type bending resistance test conforming to JIS K 6260 is performed, and the number of bendings is 50,000 times, which is measured based on the following procedure. The rate of change in cut length (L 5 / L 0 ) in the test piece is 1.1 or more and 11.5 or less.
A silicone rubber-based curable composition is provided.
(procedure)
The silicone rubber-based curable composition is pressed at 170 ° C. and 10 MPa for 15 minutes, and then heated at 200 ° C. for 4 hours to prepare a test piece having a predetermined shape in accordance with JIS K 6260.
At the center of the obtained test piece, a notch having a predetermined length penetrating the test piece is made parallel to the width direction. Let L 0 be the initial cut length.
Subsequently, the test piece with a notch is installed between the gripping tools of the testing machine, a hoax-type bending resistance test is performed based on the following test conditions, and the cutting length in the test piece after a predetermined number of bendings ( mm) is measured.
The cut length shall be the average value when the hoax type bending resistance test is performed three times. Let L 5 be the average value of this cut length.
The rate of change in cut length is calculated based on the formula: L 5 / L 0 .
(Test conditions)
・ Test standard: JIS K 6260 compliant ・ Testing machine: Demacha bending crack tester ・ Test temperature: 23 ± 2 ℃
・ Maximum distance between grippers: 75 mm
・ Reciprocating distance: 57mm
・ Test speed: 300 ± 10 times / minute ・ Number of tests: n = 3

また本発明によれば、上記シリコーンゴム系硬化性組成物の硬化物を備える構造体が提供される。 Further, according to the present invention, there is provided a structure including a cured product of the silicone rubber-based curable composition.

本発明によれば、繰り返しの屈曲変形に対する耐久性に優れた成形体を実現できるシリコーンゴム系硬化性組成物、およびその構造体が提供される。 According to the present invention, there is provided a silicone rubber-based curable composition capable of realizing a molded product having excellent durability against repeated bending deformation, and a structure thereof.

金型の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of a mold. 試験片の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the test piece. デマチャ式試験機の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the hoax type tester.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all drawings, similar components are designated by the same reference numerals, and description thereof will be omitted as appropriate. Moreover, the figure is a schematic view and does not match the actual dimensional ratio.

本実施形態のシリコーンゴム系硬化性組成物の概要を説明する。 The outline of the silicone rubber-based curable composition of the present embodiment will be described.

本実施形態のシリコーンゴム系硬化性組成物は、ビニル基含有オルガノポリシロキサン(A)と、シリカ粒子(C)と、を含み、当該シリコーンゴム系硬化性組成物の硬化物からなる試験片を用いて、JIS K 6260に準拠したデマチャ式耐屈曲試験を行い、下記の手順に基づいて測定される、屈曲回数が5万回のときの前記試験片における切り込み長さ変化率(L/L)が、1.1以上11.5以下を満たすものである。 The silicone rubber-based curable composition of the present embodiment contains a vinyl group-containing organopolysiloxane (A) and silica particles (C), and a test piece composed of a cured product of the silicone rubber-based curable composition. The hoax-type bending resistance test conforming to JIS K 6260 was performed using the test piece, and the rate of change in cut length (L 5 / L) in the test piece when the number of bendings was 50,000, which was measured based on the following procedure. 0 ) satisfies 1.1 or more and 11.5 or less.

(手順)
当該シリコーンゴム系硬化性組成物を、170℃、10MPaで15分間プレスし、続いて、200℃で4時間加熱し、JIS K 6260に準拠して所定形状の溝付き試験片を作製する。
得られた試験片の溝の中央において、幅方向に対して平行に、前記試験片を貫通する所定長さ(2.03mm)の切り込みを入れる。初期の切り込み長さをLとする。
続いて、切り込み付きの前記試験片を試験機のつかみ具間に設置し、下記の試験条件に基づいて、デマチャ式耐屈曲試験を行い、所定の屈曲回数後の前記試験片における切り込み長さ(mm)を測定する。
切り込み長さは、デマチャ式耐屈曲試験を3回行ったときの平均値とする。この切り込み長さの平均値をLとする。
切り込み長さ変化率を、式:L/Lに基づいて算出する。
(試験条件)
・試験規格:JIS K 6260準拠
・試験機:デマチャ屈曲き裂試験機
・試験温度:23±2℃
・つかみ具間最大距離:75mm
・往復運動距離:57mm
・試験速度:300±10回/分
・試験数:n=3
(procedure)
The silicone rubber-based curable composition is pressed at 170 ° C. and 10 MPa for 15 minutes, and then heated at 200 ° C. for 4 hours to prepare a grooved test piece having a predetermined shape in accordance with JIS K 6260.
At the center of the groove of the obtained test piece, a notch having a predetermined length (2.03 mm) penetrating the test piece is made parallel to the width direction. Let L 0 be the initial cut length.
Subsequently, the test piece with a notch is installed between the gripping tools of the testing machine, a hoax-type bending resistance test is performed based on the following test conditions, and the cutting length in the test piece after a predetermined number of bendings ( mm) is measured.
The cut length shall be the average value when the hoax type bending resistance test is performed three times. Let L 5 be the average value of this cut length.
The rate of change in cut length is calculated based on the formula: L 5 / L 0 .
(Test conditions)
・ Test standard: JIS K 6260 compliant ・ Testing machine: Demacha bending crack tester ・ Test temperature: 23 ± 2 ℃
・ Maximum distance between grippers: 75 mm
・ Reciprocating distance: 57mm
・ Test speed: 300 ± 10 times / minute ・ Number of tests: n = 3

本発明者の知見によれば、デマチャ式耐屈曲試験を用いることで、シリコーンゴム系硬化性組成物の成形体について、繰り返し屈曲時における耐屈曲性を評価できることを見出した。
しかしながら、適当な指標を設定しないと、評価に時間がかかる上、評価にバラツキが生じる恐れがある。例えば、上記特許文献1の100%伸長疲労寿命のように、破断までの変形回数を指標とした場合、破断までの時間が長くなり、変形回数にバラツキが生じることがあった。また、試験片として切り込み無し品を使用し、破断状態を指標とした場合、破断状態に差が出るまで相当の屈曲回数が必要であり、差が出たとしても破断状態のバラツキが大きくなってしまうことが分かった。
According to the findings of the present inventor, it has been found that the bending resistance of a silicone rubber-based curable composition can be evaluated during repeated bending by using a hoax-type bending resistance test.
However, if an appropriate index is not set, the evaluation takes time and the evaluation may vary. For example, when the number of deformations until fracture is used as an index as in the 100% elongation fatigue life of Patent Document 1, the time until fracture becomes long, and the number of deformations may vary. In addition, when a non-cut product is used as the test piece and the fractured state is used as an index, a considerable number of bends are required until the fractured state is different, and even if there is a difference, the variation in the fractured state becomes large. It turned out that it would end up.

そこで、さらに検討した結果、JIS K 6260に準拠して、デマチャ式耐屈曲試験の試験条件を適切に設定した上で、切り込み付きの試験片における切り込み長さの変化率を指針とすることで、シリコーンゴム系硬化性組成物の成形体について、繰り返し屈曲時における耐屈曲性を、比較的早く、安定的に評価でき、かかる耐屈曲性を制御できることが判明した。 Therefore, as a result of further examination, in accordance with JIS K 6260, after appropriately setting the test conditions for the hoax-type bending resistance test, the rate of change in the notch length in the test piece with a notch was used as a guideline. It has been found that the bending resistance of the molded product of the silicone rubber-based curable composition at the time of repeated bending can be evaluated relatively quickly and stably, and the bending resistance can be controlled.

このような知見に基づきさらに鋭意研究したところ、屈曲回数が5万回のときの試験片における切り込み長さの変化率を指標とすることで、繰り返し屈曲時における耐屈曲性を安定的に評価することができ、さらには、この指標を上記所定範囲内とすることで、シリコーンゴム系硬化性組成物の成形体における、繰り返しの屈曲変形に対する耐久性を向上できることが見出された。 As a result of further diligent research based on these findings, the bending resistance during repeated bending is stably evaluated by using the rate of change in the incision length in the test piece when the number of bendings is 50,000 as an index. Furthermore, it has been found that by setting this index within the above-mentioned predetermined range, the durability of the silicone rubber-based curable composition in the molded product against repeated bending deformation can be improved.

詳細なメカニズムは定かでないが、上記の切り込み変化率を指標として、架橋間距離や架橋密度を適切に調整することによって、低硬度、高引裂強度、高破断伸びの特性をバランス良く向上させることにより、屈曲時の負荷が小さいシリコーンゴム構造が得られると考えられる。 Although the detailed mechanism is not clear, the characteristics of low hardness, high tear strength, and high fracture elongation can be improved in a well-balanced manner by appropriately adjusting the distance between crosslinks and the crosslink density using the above rate of change in incision as an index. It is considered that a silicone rubber structure having a small load at the time of bending can be obtained.

上記デマチャ式耐屈曲試験において、Lを、デマチャ式耐屈曲試験前の初期の切り込み長さとし、L、L、Lを、それぞれ、デマチャ式耐屈曲試験後、屈曲回数が1万回、3万回、5万回のときの切り込み長さの平均値とする。
このとき、上記屈曲回数が5万回のときの試験片における切り込み長さ変化率(L/L)の上限は、11.5以下、好ましくは10.7以下、より好ましくは8.0以下、さらに好ましくは6.0以下である。これにより、繰り返しの屈曲変形に対する耐久性に優れ、部材としての機械的強度を有する成形体を実現できる。なお、切り込み長さ変化率(L/L)の下限は、1.0以上であればよく、1.1以上としてもよい。
In the hoax-type bending resistance test, L 0 is the initial cut length before the hoax-type bending resistance test, and L 1 , L 3 , and L 5 are each bent 10,000 times after the hoax-type bending resistance test. The average value of the cut lengths when 30,000 times and 50,000 times are used.
At this time, the upper limit of the incision length change rate (L 5 / L 0 ) in the test piece when the number of times of bending is 50,000 is 11.5 or less, preferably 10.7 or less, more preferably 8.0. Hereinafter, it is more preferably 6.0 or less. As a result, it is possible to realize a molded body having excellent durability against repeated bending deformation and having mechanical strength as a member. The lower limit of the cut length change rate (L 5 / L 0 ) may be 1.0 or more, and may be 1.1 or more.

上記シリコーンゴム系硬化性組成物を用いたデマチャ式耐屈曲試験の結果、L/Lの上限は、例えば、10.0以下、好ましくは8.0以下、より好ましくは6.0以下、さらに好ましくは4.0以下である。これにより、繰り返しの屈曲変形に対する耐久性に優れた成形体を実現できる。また、より簡易な評価方法により特性を評価できるため、シリコーンゴム系硬化性組成物の生産性を向上できる。なお、L/Lの下限は、1.0以上であればよい。 As a result of a hoax-type bending resistance test using the above silicone rubber-based curable composition, the upper limit of L 1 / L 0 is, for example, 10.0 or less, preferably 8.0 or less, more preferably 6.0 or less. More preferably, it is 4.0 or less. As a result, it is possible to realize a molded product having excellent durability against repeated bending deformation. Further, since the characteristics can be evaluated by a simpler evaluation method, the productivity of the silicone rubber-based curable composition can be improved. The lower limit of L 1 / L 0 may be 1.0 or more.

また、初期の切り込み長さLが2.03mmのとき、上記屈曲回数が5万回のときの試験片における切り込み長さLは、例えば、2.2mm〜22.5mm、好ましくは2.3mm〜18.0mm、より好ましくは2.5mm〜15.0mmとしてもよい。
本明細書中、「〜」は、特に明示しない限り、上限値と下限値を含むことを表す。
Further, when the initial cut length L 0 is 2.03 mm, the cut length L 5 in the test piece when the number of times of bending is 50,000 is, for example, 2.2 mm to 22.5 mm, preferably 2. It may be 3 mm to 18.0 mm, more preferably 2.5 mm to 15.0 mm.
In the present specification, "~" means that an upper limit value and a lower limit value are included unless otherwise specified.

上記シリコーンゴム系硬化性組成物において、シリカ粒子(C)の含有量が、ビニル基含有オルガノポリシロキサン(A)の全体100重量部に対して、例えば、10重量部以上60重量部以下としてもよい。このシリカ粒子(C)の含有量の上限は、好ましくは50重量部以下、より好ましくは35重量部以下、さらに好ましくは30重量部以下である。このように、シリカ含有量を比較的低くすることで、繰り返しの屈曲変形に対する耐久性を高めることができる。シリカ粒子(C)の含有量を35重量部以下とすることにより、繰り返し屈曲耐久性を安定的に高めることができる。 In the silicone rubber-based curable composition, the content of the silica particles (C) may be, for example, 10 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the vinyl group-containing organopolysiloxane (A). Good. The upper limit of the content of the silica particles (C) is preferably 50 parts by weight or less, more preferably 35 parts by weight or less, and further preferably 30 parts by weight or less. As described above, by making the silica content relatively low, the durability against repeated bending deformation can be improved. By setting the content of the silica particles (C) to 35 parts by weight or less, the repeated bending durability can be stably increased.

本実施形態では、たとえばシリコーンゴム系硬化性組成物中に含まれる各成分の種類や配合量、シリコーンゴム系硬化性組成物の調製方法やシリコーンゴムの製造方法等を適切に選択することにより、上記の切り込み長さ変化率、切り込み長さ、下記の破断伸び、引張強度、引裂強度、硬度を制御することが可能である。これらの中でも、たとえば、ビニル基含有オルガノポリシロキサン(A)として、ビニル基が比較的小さく少なく、末端のみにビニル基を有するビニル基含有直鎖状オルガノポリシロキサン(A1−1)を使用することにより樹脂の架橋密度や架橋構造を制御すること、また、ビニル基含有オルガノポリシロキサン(A)の添加タイミングおよびその比率、シリカ粒子(C)の配合比率、シリカ粒子(C)の比表面積、シリカ粒子(C)のシランカップリング剤(D)で表面改質すること、水を添加すること等のシランカップリング剤(D)とシリカ粒子(C)との反応をより確実に進行させること等が、上記の切り込み長さ変化率、切り込み長さ、下記の破断伸び、引張強度、引裂強度、硬度を所望の数値範囲とするための要素として挙げられる。 In the present embodiment, for example, by appropriately selecting the type and blending amount of each component contained in the silicone rubber-based curable composition, the method for preparing the silicone rubber-based curable composition, the method for producing silicone rubber, and the like. It is possible to control the above-mentioned rate of change in cut length, the above-mentioned cut length, the following breaking elongation, tensile strength, tear strength, and hardness. Among these, for example, as the vinyl group-containing organopolysiloxane (A), a vinyl group-containing linear organopolysiloxane (A1-1) having a relatively small and small vinyl group and having a vinyl group only at the terminal is used. By controlling the crosslink density and crosslink structure of the resin, the timing and ratio of addition of the vinyl group-containing organopolysiloxane (A), the blending ratio of the silica particles (C), the specific surface area of the silica particles (C), and silica. Surface modification of the particles (C) with the silane coupling agent (D), addition of water, etc., for more reliable progress of the reaction between the silane coupling agent (D) and the silica particles (C), etc. However, the above-mentioned rate of change in cut length, cut length, the following breaking elongation, tensile strength, tear strength, and hardness can be mentioned as factors for setting a desired numerical range.

次に、本実施形態のシリコーンゴム系硬化性組成物の特性について説明する。 Next, the characteristics of the silicone rubber-based curable composition of the present embodiment will be described.

(引裂強度の測定条件)
上記シリコーンゴム系硬化性組成物の硬化物を用いてクレセント形試験片を作製し、得られたクレセント形試験片について、25℃、JIS K6252(2001)に準拠して、引裂強度を測定する。
(Measurement conditions for tear strength)
A crescent-shaped test piece is prepared using the cured product of the above-mentioned silicone rubber-based curable composition, and the tear strength of the obtained crescent-shaped test piece is measured at 25 ° C. in accordance with JIS K6252 (2001).

上記シリコーンゴム系硬化性組成物の硬化物の、引裂強度の下限としては、例えば、25N/mm以上、好ましくは28N/mm以上、より好ましくは30N/mm以上、さらに好ましくは33N/mm以上、一層好ましくは35N/mm以上である。これにより、シリコーンゴムの繰り返し使用時における耐久性を向上できる。また、シリコーンゴムの耐傷付き性や機械的強度を向上できる。一方、上記引裂強度の上限としては、特に限定されないが、例えば、70N/mm以下としてもよく、60N/mm以下としてもよい。これにより、シリコーンゴムの諸特性のバランスをとることができる。 The lower limit of the tear strength of the cured product of the silicone rubber-based curable composition is, for example, 25 N / mm or more, preferably 28 N / mm or more, more preferably 30 N / mm or more, still more preferably 33 N / mm or more. More preferably, it is 35 N / mm or more. As a result, the durability of the silicone rubber during repeated use can be improved. In addition, the scratch resistance and mechanical strength of the silicone rubber can be improved. On the other hand, the upper limit of the tear strength is not particularly limited, but may be, for example, 70 N / mm or less, or 60 N / mm or less. Thereby, various characteristics of the silicone rubber can be balanced.

(破断伸びの測定条件)
上記シリコーンゴム系硬化性組成物の硬化物を用いてダンベル状3号形試験片を作製し、得られたダンベル状3号形試験片について、25℃、JIS K6251(2004)に準拠して、破断伸びを測定する。
(Measurement conditions for elongation at break)
A dumbbell-shaped No. 3 test piece was prepared using the cured product of the above silicone rubber-based curable composition, and the obtained dumbbell-shaped No. 3 test piece was prepared at 25 ° C. in accordance with JIS K6251 (2004). Measure the elongation at break.

上記シリコーンゴム系硬化性組成物の硬化物の、破断伸びの下限としては、例えば、500%以上であり、好ましくは600%以上であり、より好ましくは700%以上である。これにより、シリコーンゴムの高伸縮性および耐久性を向上させることができる。一方、上記破断伸びの上限としては、特に限定されないが、例えば、2000%以下としてもよく、1800%以下としてもよく、1500%以下としてもよい。これにより、シリコーンゴムの諸特性のバランスをとることができる。 The lower limit of the elongation at break of the cured product of the silicone rubber-based curable composition is, for example, 500% or more, preferably 600% or more, and more preferably 700% or more. Thereby, the high elasticity and durability of the silicone rubber can be improved. On the other hand, the upper limit of the elongation at break is not particularly limited, but may be, for example, 2000% or less, 1800% or less, or 1500% or less. Thereby, various characteristics of the silicone rubber can be balanced.

(デュロメータ硬さAの測定条件)
上記シリコーンゴム系硬化性組成物の硬化物を用いてシート状試験片を作製し、得られたシート状試験片について、25℃、JIS K6253(1997)に準拠して、デュロメータ硬さAを測定する。
(Measurement conditions for durometer hardness A)
A sheet-shaped test piece was prepared using the cured product of the above silicone rubber-based curable composition, and the durometer hardness A of the obtained sheet-shaped test piece was measured at 25 ° C. in accordance with JIS K6253 (1997). To do.

上記シリコーンゴム系硬化性組成物の硬化物の、デュロメータ硬さAの上限は、特に限定されないが、例えば、70以下でもよく、好ましくは55以下でもよく、より好ましくは50以下でもよい。これにより、シリコーンゴムの硬化物性のバランスを図ることができる。また、変形容易性の観点から、デュロメータ硬さAの上限は、40以下でもよく、35以下でもよく、30以下でもよい。これにより、シリコーンゴムにおいて、屈曲や伸張などの変形が容易となる変形容易性を高められる。
一方、上記デュロメータ硬さAの下限は、特に限定されないが、例えば、10以上、好ましくは20以上、より好ましくは25以上でもよい。これにより、シリコーンゴムの機械的強度を高められる。
The upper limit of the durometer hardness A of the cured product of the silicone rubber-based curable composition is not particularly limited, but may be, for example, 70 or less, preferably 55 or less, and more preferably 50 or less. This makes it possible to balance the cured physical properties of the silicone rubber. Further, from the viewpoint of deformability, the upper limit of the durometer hardness A may be 40 or less, 35 or less, or 30 or less. As a result, it is possible to enhance the deformability of the silicone rubber, which facilitates deformation such as bending and stretching.
On the other hand, the lower limit of the durometer hardness A is not particularly limited, but may be, for example, 10 or more, preferably 20 or more, and more preferably 25 or more. As a result, the mechanical strength of the silicone rubber can be increased.

(引張強度の測定条件)
上記シリコーンゴム系硬化性組成物の硬化物を用いてダンベル状3号形試験片を作製し、得られたダンベル状3号形試験片について、25℃、JIS K6251(2004)に準拠して、引張強度を測定する。
(Measurement conditions for tensile strength)
A dumbbell-shaped No. 3 test piece was prepared using the cured product of the above silicone rubber-based curable composition, and the obtained dumbbell-shaped No. 3 test piece was prepared at 25 ° C. in accordance with JIS K6251 (2004). Measure the tensile strength.

上記シリコーンゴム系硬化性組成物の硬化物の、引張強度の下限としては、例えば、5.0MPa以上であり、好ましくは10.0MPa以上であり、より好ましくは12.0MPa以上である。これにより、シリコーンゴムの機械的強度を向上させることができる。また、繰り返しの変形に耐えられる耐久性に優れた構造体を実現できる。一方、上記引張強度の上限としては、特に限定されないが、例えば、25MPa以下としてもよく、20MPa以下としてもよい。これにより、シリコーンゴムの諸特性のバランスをとることができる。 The lower limit of the tensile strength of the cured product of the silicone rubber-based curable composition is, for example, 5.0 MPa or more, preferably 10.0 MPa or more, and more preferably 12.0 MPa or more. Thereby, the mechanical strength of the silicone rubber can be improved. In addition, it is possible to realize a structure having excellent durability that can withstand repeated deformation. On the other hand, the upper limit of the tensile strength is not particularly limited, but may be, for example, 25 MPa or less, or 20 MPa or less. Thereby, various characteristics of the silicone rubber can be balanced.

本実施形態のシリコーンゴム系硬化性組成物の硬化物(シリコーンゴム)は、用途に応じて様々な形態に加工成形された成形体となる。上記成形体は、シート状、筒状、袋状などの各種の形状に成形されてもよい。 The cured product (silicone rubber) of the silicone rubber-based curable composition of the present embodiment is a molded product that has been processed and molded into various forms depending on the application. The molded body may be molded into various shapes such as a sheet shape, a tubular shape, and a bag shape.

上記シリコーンゴム系硬化性組成物は、繰り返しの屈曲変性に対する耐久性に優れるため、屈曲性部材用の成形体を形成するために好適に用いることができる。屈曲性部材は、例えば、使用環境下において、繰り返し屈曲方向に応力を受ける部材を指す。この屈曲性部材は、伸縮方向に応力を受ける使用環境下で使用してもよい。 Since the silicone rubber-based curable composition is excellent in durability against repeated bending modification, it can be suitably used for forming a molded product for a flexible member. The flexible member refers to a member that is repeatedly stressed in the bending direction under a usage environment, for example. This flexible member may be used in a usage environment where stress is applied in the expansion / contraction direction.

上記屈曲性部材の一例として、例えば、ウェアラブルデバイスが挙げられる。すなわち、上記シリコーンゴム系硬化性組成は、ウェアラブルデバイス用の成形体を形成するために好適に用いることができる。 An example of the flexible member is a wearable device. That is, the silicone rubber-based curable composition can be suitably used for forming a molded product for a wearable device.

上記ウェアラブルデバイスとしては、身体や衣服に装着可能なウェアラブルデバイスであり、例えば、心拍数、心電図、血圧、体温等の生体からの現象を検出する医療用センサー、ヘルスケアデバイス、折り曲げ可能なディスプレイ、伸縮性LEDアレイ、伸縮性太陽電池、伸縮性アンテナ、伸縮性バッテリ、アクチュエーター、ウエアラブルコンピュータ等が挙げられる。これらに用いる電極や配線、基板、伸縮・屈曲可能な可動部材、外装部材等を構成するための部材として、上記成形体を用いることが可能である。 The wearable device is a wearable device that can be worn on the body or clothes, and includes, for example, a medical sensor that detects phenomena from a living body such as heart rate, electrocardiogram, blood pressure, and body temperature, a healthcare device, and a foldable display. Examples include stretchable LED arrays, stretchable solar cells, stretchable antennas, stretchable batteries, actuators, wearable computers and the like. The molded body can be used as a member for forming electrodes, wiring, a substrate, a movable member that can be expanded / contracted / bent, an exterior member, and the like used for these.

上記シリコーンゴム系硬化性組成物の硬化物(成形体)を備える構造体は、各種の用途に用いることができる。 The structure including the cured product (molded product) of the silicone rubber-based curable composition can be used for various purposes.

本実施形態のシリコーンゴム系硬化性組成物の硬化物(シリコーンゴム)を備える構造体としては、例えば、医療器具・機器用途等の医療用途;自動車用途;産業用ロボット等のロボット用途;電子機器用途;防振材、免震材、食品用ホース等の生産設備・生活用途;ローラー部材;等に用いることができる。 Examples of the structure provided with the cured product (silicone rubber) of the silicone rubber-based curable composition of the present embodiment include medical applications such as medical instruments and equipment applications; automobile applications; robot applications such as industrial robots; electronic devices. Applications: Production equipment and daily applications such as anti-vibration materials, seismic isolation materials, food hoses; roller members; etc.

本実施形態のシリコーンゴムは、医療器具・機器用途の一例として、例えば、医療用のチューブ材;シーリング材;パッキン材;コネクタ材;キーパッド材;駆動機構;センサー;等の一部を構成することができる。例えば、本実施形態の樹脂製可動部材を医療用チューブに適用することで、この医療用チューブは、耐キンク性、耐傷付き性、挿入性及び透明性に優れ、さらに復元性に優れたものとなる。また、医療用チューブとしては、例えば、医療用のカテーテル、マニュピレーターまたはリード等が挙げられる。 The silicone rubber of the present embodiment constitutes a part of, for example, a medical tube material; a sealing material; a packing material; a connector material; a keypad material; a drive mechanism; a sensor; etc., as an example of medical instruments / equipment applications. be able to. For example, by applying the resin movable member of the present embodiment to a medical tube, the medical tube is excellent in kink resistance, scratch resistance, insertability and transparency, and further excellent in resilience. Become. In addition, examples of the medical tube include a medical catheter, a manipulator, a lead, and the like.

本実施形態のシリコーンゴムは、産業用ロボット等のロボット用途の一例として、例えば、関節等の駆動機構;配線ケーブル、コネクタ等の配線機構;マニュピレーター等の操作機構;などの一部を構成することができる。 The silicone rubber of the present embodiment constitutes a part of, for example, a drive mechanism such as a joint; a wiring mechanism such as a wiring cable and a connector; an operation mechanism such as a manipulator; as an example of robot use such as an industrial robot. Can be done.

本実施形態のシリコーンゴムは、電子機器用途の一例として、例えば、人間の身体等に着用可能なウェアラブルデバイスに用いられる、伸縮性を有する配線あるいは配線基板;光ファイバー、フラットケーブル、配線構造体、ケーブルガイド等のケーブル;タッチパネル、力覚センサー、MEMS、座席センサー等のセンサー;等の一部を構成することができる。 The silicone rubber of the present embodiment is an example of an electronic device application, for example, a stretchable wiring or wiring substrate used for a wearable device that can be worn on the human body or the like; an optical fiber, a flat cable, a wiring structure, a cable. A part of a cable such as a guide; a sensor such as a touch panel, a force sensor, a MEMS, a seat sensor; and the like can be configured.

その他、本実施形態のシリコーンゴムは、ガスバリアフィルム等の包装材料;調理器具;ホース;定着ベルト;スイッチ;シート材;パッキン材;等の可撓性、伸展性または折りたたみ性を有する生活品の一部を構成することができる。 In addition, the silicone rubber of the present embodiment is one of living products having flexibility, extensibility or foldability such as packaging material such as gas barrier film; cooking utensil; hose; fixing belt; switch; sheet material; packing material; The part can be composed.

本実施形態のシリコーンゴム系硬化性組成物の各成分を詳述する。 Each component of the silicone rubber-based curable composition of the present embodiment will be described in detail.

<<ビニル基含有オルガノポリシロキサン(A))>>
本実施形態のシリコーンゴム系硬化性組成物は、ビニル基含有オルガノポリシロキサン(A)を含む。上記ビニル基含有オルガノポリシロキサン(A)は、シリコーンゴム系硬化性組成物の主成分となる重合物である。
<< Vinyl group-containing organopolysiloxane (A) >>
The silicone rubber-based curable composition of the present embodiment contains a vinyl group-containing organopolysiloxane (A). The vinyl group-containing organopolysiloxane (A) is a polymer that is the main component of the silicone rubber-based curable composition.

上記ビニル基含有オルガノポリシロキサン(A)は、直鎖構造を有するビニル基含有直鎖状オルガノポリシロキサン(A1)を含むことができる。 The vinyl group-containing organopolysiloxane (A) can include a vinyl group-containing linear organopolysiloxane (A1) having a linear structure.

上記ビニル基含有直鎖状オルガノポリシロキサン(A1)は、直鎖構造を有し、かつ、ビニル基を含有しており、かかるビニル基が硬化時の架橋点となる。 The vinyl group-containing linear organopolysiloxane (A1) has a linear structure and contains a vinyl group, and the vinyl group serves as a cross-linking point at the time of curing.

ビニル基含有直鎖状オルガノポリシロキサン(A1)のビニル基の含有量は、特に限定されないが、例えば、分子内に2個以上のビニル基を有し、かつ15モル%以下であるのが好ましく、0.01〜12モル%であるのがより好ましい。これにより、ビニル基含有直鎖状オルガノポリシロキサン(A1)中におけるビニル基の量が最適化され、後述する各成分とのネットワークの形成を確実に行うことができる。 The content of the vinyl group of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably, for example, having two or more vinyl groups in the molecule and 15 mol% or less. , 0.01-12 mol%, more preferably. As a result, the amount of vinyl groups in the vinyl group-containing linear organopolysiloxane (A1) is optimized, and a network with each component described later can be reliably formed.

本明細書中、ビニル基含有量とは、ビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する全ユニットを100モル%としたときのビニル基含有シロキサンユニットのモル%である。ただし、ビニル基含有シロキサンユニット1つに対して、ビニル基1つであると考える。 In the present specification, the vinyl group content is the mol% of the vinyl group-containing siloxane unit when all the units constituting the vinyl group-containing linear organopolysiloxane (A1) are 100 mol%. However, it is considered that there is one vinyl group for each vinyl group-containing siloxane unit.

ビニル基含有直鎖状オルガノポリシロキサン(A1)の重合度は、特に限定されないが、例えば、好ましくは1000〜10000程度、より好ましくは2000〜5000程度の範囲内である。なお、重合度は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。 The degree of polymerization of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably in the range of, for example, about 1000 to 10000, and more preferably about 2000 to 5000. The degree of polymerization can be determined, for example, as the polystyrene-equivalent number average degree of polymerization (or number average molecular weight) in GPC (gel permeation chromatography) using chloroform as a developing solvent.

また、ビニル基含有直鎖状オルガノポリシロキサン(A1)の重量平均分子量Mwは、たとえば、5.0×10〜1.0×10以下、好ましくは1.0×10〜9.0×10、より好ましくは3.0×10〜8.0×10としてもよい。 The weight average molecular weight Mw of the vinyl group-containing linear organopolysiloxane (A1) is, for example, 5.0 × 10 4 ~1.0 × 10 6 or less, preferably 1.0 × 10 5 to 9.0 × 10 5, more preferably it is 3.0 × 10 5 ~8.0 × 10 5 .

ビニル基含有直鎖状オルガノポリシロキサン(A1)のMw(重量平均分子量)/Mn(数平均分子量)は、たとえば1.5以上4.0以下、好ましくは1.8以上3.5以下、より好ましくは2.0以上2.8以下としてもよい。なお、Mw/Mnは、分子量分布の幅を示す分散度である。 The Mw (weight average molecular weight) / Mn (number average molecular weight) of the vinyl group-containing linear organopolysiloxane (A1) is, for example, 1.5 or more and 4.0 or less, preferably 1.8 or more and 3.5 or less. It may be preferably 2.0 or more and 2.8 or less. Mw / Mn is a degree of dispersion indicating the width of the molecular weight distribution.

ビニル基含有直鎖状オルガノポリシロキサン(A1)の比重は、特に限定されないが、0.9〜1.1程度の範囲であるのが好ましい。 The specific gravity of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably in the range of about 0.9 to 1.1.

ビニル基含有直鎖状オルガノポリシロキサン(A1)として、上記のような範囲内の重合度および比重を有するものを用いることにより、得られるシリコーンゴムの耐熱性、難燃性、化学的安定性等の向上を図ることができる。 By using a vinyl group-containing linear organopolysiloxane (A1) having a degree of polymerization and specific gravity within the above range, the obtained silicone rubber has heat resistance, flame retardancy, chemical stability, etc. Can be improved.

ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、特に、下記式(1)で表される構造を有するものであるが好ましい。 The vinyl group-containing linear organopolysiloxane (A1) preferably has a structure represented by the following formula (1).

Figure 2020143270
Figure 2020143270

式(1)中、Rは炭素数1〜10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられ、中でも、ビニル基が好ましい。炭素数1〜10のアリール基としては、例えば、フェニル基等が挙げられる。 In formula (1), R 1 is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, or a hydrocarbon group in which these are combined. Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable. Examples of the alkenyl group having 1 to 10 carbon atoms include a vinyl group, an allyl group, a butenyl group and the like, and among them, a vinyl group is preferable. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group and the like.

式(1)中、Rは炭素数1〜10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基が挙げられる。炭素数1〜10のアリール基としては、例えば、フェニル基が挙げられる。 In formula (1), R 2 is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, or a hydrocarbon group in which these are combined. Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable. Examples of the alkenyl group having 1 to 10 carbon atoms include a vinyl group, an allyl group, and a butenyl group. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.

式(1)中、Rは炭素数1〜8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1〜8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜8のアリール基としては、例えば、フェニル基が挙げられる。 In formula (1), R 3 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group in which these are combined. Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable. Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group.

また、式(1)中のRおよびRの置換基としては、例えば、メチル基、ビニル基等が挙げられ、Rの置換基としては、例えば、メチル基等が挙げられる。 Further, examples of the substituent of R 1 and R 2 in the formula (1) include a methyl group, a vinyl group and the like, and examples of the substituent of R 3 include a methyl group and the like.

なお、式(1)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。さらに、R、およびRについても同様である。また、式(1)中、複数あるRおよびRの少なくとも1つがアルケニル基である。 In the formula (1), a plurality of R 1 is independent from each other, may be different from each other, it may be the same. The same applies to R 2 and R 3 . Further, in the formula (1), at least one of a plurality of R 1 and R 2 is an alkenyl group.

さらに、m、nは、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する繰り返し単位の数であり、mは0〜2000の整数、nは1000〜10000の整数である。mは、好ましくは0〜1000であり、nは、好ましくは2000〜5000である。 Further, m and n are the number of repeating units constituting the vinyl group-containing linear organopolysiloxane (A1) represented by the formula (1), m is an integer of 0 to 2000, and n is 1000 to 10000. Is an integer of. m is preferably 0 to 1000, and n is preferably 2000 to 5000.

また、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)の具体的構造としては、例えば下記式(1−1)で表されるものが挙げられる。 Further, as a specific structure of the vinyl group-containing linear organopolysiloxane (A1) represented by the formula (1), for example, the one represented by the following formula (1-1) can be mentioned.

Figure 2020143270
Figure 2020143270

式(1−1)中、RおよびRは、それぞれ独立して、メチル基またはビニル基であり、少なくとも一方がビニル基である。
本明細書中、式(1−1)で表わされる構造でR(末端)のみがビニル基であるビニル基含有直鎖状オルガノポリシロキサン(A1)を(A1−1)、式(1−1)で表わされる構造でR(末端)およびR(鎖内)がビニル基であるビニル基含有直鎖状オルガノポリシロキサン(A1)を(A1−2)と表記する。
In formula (1-1), R 1 and R 2 are each independently a methyl group or a vinyl group, and at least one of them is a vinyl group.
In the present specification, a vinyl group-containing linear organopolysiloxane (A1) having a structure represented by the formula (1-1) and having only R 1 (terminal) as a vinyl group is designated as (A1-1) and formula (1-). A vinyl group-containing linear organopolysiloxane (A1) having a structure represented by 1) in which R 1 (terminal) and R 2 (inside the chain) are vinyl groups is referred to as (A1-2).

上記ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、ビニル基含有量が分子内に2個以上のビニル基を有し、かつ15モル%以下であるものが好ましい。シリコーンゴムの原料である生ゴムとして、一般的なビニル基含有量を有するビニル基含有直鎖状オルガノポリシロキサン(A1)を用いることで、シリコーンゴムの架橋ネットワーク中に、より効果的に架橋密度の疎密を形成することができる。その結果、より効果的にシリコーンゴムの引裂強度を高めることができる。 The vinyl group-containing linear organopolysiloxane (A1) preferably has a vinyl group content of 2 or more vinyl groups in the molecule and is 15 mol% or less. By using a vinyl group-containing linear organopolysiloxane (A1) having a general vinyl group content as the raw rubber which is a raw material of the silicone rubber, the crosslink density of the silicone rubber can be more effectively determined in the crosslink network of the silicone rubber. Denseness can be formed. As a result, the tear strength of the silicone rubber can be increased more effectively.

上記ビニル基含有直鎖状オルガノポリシロキサン(A1)は、ビニル基含有量が分子内に2個以上のビニル基を有し、かつ0.1モル%以下である第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)を含むことが好ましい。
また上記ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、ビニル基含有量が分子内に2個以上のビニル基を有し、かつ0.1モル%以下である第1のビニル基含有直鎖状オルガノポリシロキサン(A1−1)を単独で用いてもよいが、ビニル基含有量が0.1超〜15モル%である第2のビニル基含有直鎖状オルガノポリシロキサン(A1−2)等を含む2種以上を組み合わせて用いてもよい。
The vinyl group-containing linear organopolysiloxane (A1) is a first vinyl group-containing straight chain having a vinyl group content of 2 or more in the molecule and 0.1 mol% or less. It preferably contains a state organopolysiloxane (A1-1).
The vinyl group-containing linear organopolysiloxane (A1) contains a first vinyl group having a vinyl group content of 2 or more in the molecule and 0.1 mol% or less. The linear organopolysiloxane (A1-1) may be used alone, but a second vinyl group-containing linear organopolysiloxane (A1-) having a vinyl group content of more than 0.1 to 15 mol%. 2) or more may be used in combination of two or more.

<<オルガノハイドロジェンポリシロキサン(B)>>
本実施形態のシリコーンゴム系硬化性組成物は、オルガノハイドロジェンポリシロキサン(B)を含んでもよい。
オルガノハイドロジェンポリシロキサン(B)は、直鎖構造を有する直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐構造を有する分岐状オルガノハイドロジェンポリシロキサン(B2)とに分類され、これらのうちのいずれか一方または双方を含むことができる。
<< Organohydrogen Polysiloxane (B) >>
The silicone rubber-based curable composition of the present embodiment may contain organohydrogenpolysiloxane (B).
Organohydrogenpolysiloxane (B) is classified into linear organohydrogenpolysiloxane (B1) having a linear structure and branched organohydrogenpolysiloxane (B2) having a branched structure. Either one or both can be included.

直鎖状オルガノハイドロジェンポリシロキサン(B1)は、直鎖構造を有し、かつ、Siに水素が直接結合した構造(≡Si−H)を有し、ビニル基含有オルガノポリシロキサン(A)のビニル基の他、シリコーンゴム系硬化性組成物に配合される成分が有するビニル基とヒドロシリル化反応し、これらの成分を架橋する重合体である。 The linear organohydrogenpolysiloxane (B1) has a linear structure and a structure in which hydrogen is directly bonded to Si (≡Si—H), and is a vinyl group-containing organopolysiloxane (A). In addition to the vinyl group, it is a polymer that hydrosilylates with the vinyl group of the component blended in the silicone rubber-based curable composition and crosslinks these components.

直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子量は特に限定されないが、例えば、重量平均分子量が20000以下であるのが好ましく、1000以上、10000以下であることがより好ましい。 The molecular weight of the linear organohydrogenpolysiloxane (B1) is not particularly limited, but for example, the weight average molecular weight is preferably 20000 or less, and more preferably 1000 or more and 10000 or less.

なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)の重量平均分子量は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算により測定することができる。 The weight average molecular weight of the linear organohydrogenpolysiloxane (B1) can be measured, for example, by polystyrene conversion in GPC (gel permeation chromatography) using chloroform as a developing solvent.

また、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、通常、ビニル基を有しないものであるのが好ましい。これにより、直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子内において架橋反応が進行するのを的確に防止することができる。 Further, the linear organohydrogenpolysiloxane (B1) is usually preferably one having no vinyl group. As a result, it is possible to accurately prevent the cross-linking reaction from proceeding in the molecule of the linear organohydrogenpolysiloxane (B1).

以上のような直鎖状オルガノハイドロジェンポリシロキサン(B1)としては、例えば、下記式(2)で表される構造を有するものが好ましく用いられる。 As the linear organohydrogenpolysiloxane (B1) as described above, for example, one having a structure represented by the following formula (2) is preferably used.

Figure 2020143270
Figure 2020143270

式(2)中、Rは炭素数1〜10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1〜10のアリール基としては、例えば、フェニル基が挙げられる。 In the formula (2), R 4 is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, a hydrocarbon group combining these, or a hydride group. Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable. Examples of the alkenyl group having 1 to 10 carbon atoms include a vinyl group, an allyl group, a butenyl group and the like. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.

また、Rは炭素数1〜10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基が挙げられ、中でも、メチル基が好ましい。炭素数1〜10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1〜10のアリール基としては、例えば、フェニル基が挙げられる。 Also, R 5 is a hydrocarbon group or a hydride group, in combination a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, these. Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group and a propyl group, and among them, a methyl group is preferable. Examples of the alkenyl group having 1 to 10 carbon atoms include a vinyl group, an allyl group, a butenyl group and the like. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.

なお、式(2)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。Rについても同様である。ただし、複数のRおよびRのうち、少なくとも2つ以上がヒドリド基である。 In the formula (2), a plurality of R 4 are independent from each other, may be different from each other, it may be the same. The same is true for R 5. However, of the plurality of R 4 and R 5 , at least two or more are hydride groups.

また、Rは炭素数1〜8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1〜8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜8のアリール基としては、例えば、フェニル基が挙げられる。複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。 Further, R 6 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group in which these are combined. Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable. Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group. A plurality of R 6 are independent from each other, may be different from each other, it may be the same.

なお、式(2)中のR,R,Rの置換基としては、例えば、メチル基、ビニル基等が挙げられ、分子内の架橋反応を防止する観点から、メチル基が好ましい。 Examples of the substituent of R 4 , R 5 , and R 6 in the formula (2) include a methyl group and a vinyl group, and a methyl group is preferable from the viewpoint of preventing an intramolecular cross-linking reaction.

さらに、m、nは、式(2)で表される直鎖状オルガノハイドロジェンポリシロキサン(B1)を構成する繰り返し単位の数であり、mは2〜150の整数、nは2〜150の整数である。好ましくは、mは2〜100の整数、nは2〜100の整数である。 Further, m and n are the number of repeating units constituting the linear organohydrogenpolysiloxane (B1) represented by the formula (2), m is an integer of 2 to 150, and n is 2 to 150. It is an integer. Preferably, m is an integer of 2 to 100 and n is an integer of 2 to 100.

なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the linear organohydrogenpolysiloxane (B1), only one type may be used alone, or two or more types may be used in combination.

分岐状オルガノハイドロジェンポリシロキサン(B2)は、分岐構造を有するため、架橋密度が高い領域を形成し、シリコーンゴムの系中の架橋密度の疎密構造形成に大きく寄与する成分である。また、上記直鎖状オルガノハイドロジェンポリシロキサン(B1)同様、Siに水素が直接結合した構造(≡Si−H)を有し、ビニル基含有オルガノポリシロキサン(A)のビニル基の他、シリコーンゴム系硬化性組成物に配合される成分のビニル基とヒドロシリル化反応し、これら成分を架橋する重合体である。 Since the branched organohydrogenpolysiloxane (B2) has a branched structure, it forms a region having a high crosslink density and is a component that greatly contributes to the formation of a sparsely packed structure with a crosslink density in the silicone rubber system. Further, like the linear organohydrogenpolysiloxane (B1), it has a structure (≡Si—H) in which hydrogen is directly bonded to Si, and in addition to the vinyl group of the vinyl group-containing organopolysiloxane (A), silicone. It is a polymer that hydrosilylates with the vinyl group of the component contained in the rubber-based curable composition and crosslinks these components.

また、分岐状オルガノハイドロジェンポリシロキサン(B2)の比重は、0.9〜0.95の範囲である。 The specific gravity of the branched organohydrogenpolysiloxane (B2) is in the range of 0.9 to 0.95.

さらに、分岐状オルガノハイドロジェンポリシロキサン(B2)は、通常、ビニル基を有しないものであるのが好ましい。これにより、分岐状オルガノハイドロジェンポリシロキサン(B2)の分子内において架橋反応が進行するのを的確に防止することができる。 Further, the branched organohydrogenpolysiloxane (B2) is usually preferably one having no vinyl group. As a result, it is possible to accurately prevent the cross-linking reaction from proceeding in the molecule of the branched organohydrogenpolysiloxane (B2).

また、分岐状オルガノハイドロジェンポリシロキサン(B2)としては、下記平均組成式(c)で示されるものが好ましい。 Further, as the branched organohydrogenpolysiloxane (B2), those represented by the following average composition formula (c) are preferable.

平均組成式(c)
(H(R3−aSiO1/2(SiO4/2
(式(c)において、Rは一価の有機基、aは1〜3の範囲の整数、mはH(R3−aSiO1/2単位の数、nはSiO4/2単位の数である)
Average composition formula (c)
(H a (R 7) 3 -a SiO 1/2) m (SiO 4/2) n
(In the formula (c), R 7 is a monovalent organic group, a is 1 to 3 in the range of integers, m is H a (R 7) 3- a number of SiO 1/2 units, n represents SiO 4 / It is a number of 2 units)

式(c)において、Rは一価の有機基であり、好ましくは、炭素数1〜10の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜10のアリール基としては、例えば、フェニル基が挙げられる。 In formula (c), R 7 is a monovalent organic group, preferably a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an aryl group, or a hydrocarbon group in combination thereof. Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.

式(c)において、aは、ヒドリド基(Siに直接結合する水素原子)の数であり、1〜3の範囲の整数、好ましくは1である。 In the formula (c), a is the number of hydride groups (hydrogen atoms directly bonded to Si), and is an integer in the range of 1 to 3, preferably 1.

また、式(c)において、mはH(R3−aSiO1/2単位の数、nはSiO4/2単位の数である。 Further, in the equation (c), m is H a (R 7) 3- a number of SiO 1/2 units, n is the number of SiO 4/2 units.

分岐状オルガノハイドロジェンポリシロキサン(B2)は分岐状構造を有する。直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)は、その構造が直鎖状か分岐状かという点で異なり、Siの数を1とした時のSiに結合するアルキル基Rの数(R/Si)が、直鎖状オルガノハイドロジェンポリシロキサン(B1)では1.8〜2.1、分岐状オルガノハイドロジェンポリシロキサン(B2)では0.8〜1.7の範囲となる。 The branched organohydrogenpolysiloxane (B2) has a branched structure. The linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2) differ in that their structures are linear or branched, and are different from Si when the number of Si is 1. The number of alkyl groups R to be bonded (R / Si) is 1.8 to 2.1 for the linear organohydrogenpolysiloxane (B1) and 0.8 to 1 for the branched organohydrogenpolysiloxane (B2). It is in the range of 0.7.

なお、分岐状オルガノハイドロジェンポリシロキサン(B2)は、分岐構造を有しているため、例えば、窒素雰囲気下、1000℃まで昇温速度10℃/分で加熱した際の残渣量が5%以上となる。これに対して、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、直鎖状であるため、上記条件で加熱した後の残渣量はほぼゼロとなる。 Since the branched organohydrogenpolysiloxane (B2) has a branched structure, for example, the amount of residue when heated to 1000 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere is 5% or more. It becomes. On the other hand, since the linear organohydrogenpolysiloxane (B1) is linear, the amount of residue after heating under the above conditions is almost zero.

また、分岐状オルガノハイドロジェンポリシロキサン(B2)の具体例としては、下記式(3)で表される構造を有するものが挙げられる。 Further, specific examples of the branched organohydrogenpolysiloxane (B2) include those having a structure represented by the following formula (3).

Figure 2020143270
Figure 2020143270

式(3)中、Rは炭素数1〜8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基、もしくは水素原子である。炭素数1〜8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1〜8のアリール基としては、例えば、フェニル基が挙げられる。Rの置換基としては、例えば、メチル基等が挙げられる。 In formula (3), R 7 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these, or a hydrogen atom. Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable. Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group. Examples of the substituent of R 7 include a methyl group and the like.

なお、式(3)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。 In the equation (3), the plurality of R 7s are independent of each other and may be different from each other or may be the same.

また、式(3)中、「−O−Si≡」は、Siが三次元に広がる分岐構造を有することを表している。 Further, in the equation (3), "-O-Si≡" indicates that Si has a branched structure that spreads three-dimensionally.

なお、分岐状オルガノハイドロジェンポリシロキサン(B2)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the branched organohydrogenpolysiloxane (B2), only one type may be used alone, or two or more types may be used in combination.

また、直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)において、Siに直接結合する水素原子(ヒドリド基)の量は、それぞれ、特に限定されない。ただし、シリコーンゴム系硬化性組成物において、ビニル基含有直鎖状オルガノポリシロキサン(A1)中のビニル基1モルに対し、直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)の合計のヒドリド基量が、0.5〜5モルとなる量が好ましく、1〜3.5モルとなる量がより好ましい。これにより、直鎖状オルガノハイドロジェンポリシロキサン(B1)および分岐状オルガノハイドロジェンポリシロキサン(B2)と、ビニル基含有直鎖状オルガノポリシロキサン(A1)との間で、架橋ネットワークを確実に形成させることができる。 The amount of hydrogen atoms (hydride groups) directly bonded to Si in the linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2) is not particularly limited. However, in the silicone rubber-based curable composition, the linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpoly are added to 1 mol of the vinyl group in the vinyl group-containing linear organopolysiloxane (A1). The total amount of hydride groups of siloxane (B2) is preferably 0.5 to 5 mol, more preferably 1 to 3.5 mol. This ensures that a crosslinked network is formed between the linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2) and the vinyl group-containing linear organopolysiloxane (A1). Can be made to.

<<シリカ粒子(C)>>
本実施形態のシリコーンゴム系硬化性組成物は、シリカ粒子(C)を含む。
<< Silica particles (C) >>
The silicone rubber-based curable composition of the present embodiment contains silica particles (C).

シリカ粒子(C)としては、特に限定されないが、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ等が用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。シリカ粒子(C)は、シランカップリング剤(D)で表面処理されたシリカ粒子を1種または2種以上含んでもよい。 The silica particles (C) are not particularly limited, but for example, fumed silica, calcined silica, precipitated silica and the like are used. These may be used alone or in combination of two or more. The silica particles (C) may contain one or more silica particles surface-treated with the silane coupling agent (D).

シリカ粒子(C)は、例えば、BET法による比表面積が例えば、200m/g〜500m/gであり、220m/g〜400m/gであるのが好ましく、250m/g〜400m/gであるのがより好ましい。
また、シリカ粒子(C)の平均一次粒径は、例えば1〜100nmであるのが好ましく、5〜20nm程度であるのがより好ましい。
Silica particles (C) are, for example, the specific surface area by the BET method for example, a 200m 2 / g~500m 2 / g, is preferably from 220m 2 / g~400m 2 / g, 250m 2 / g~400m More preferably, it is 2 / g.
The average primary particle size of the silica particles (C) is preferably, for example, 1 to 100 nm, and more preferably about 5 to 20 nm.

シリカ粒子(C)として、かかる比表面積および平均粒径の範囲内であるものを用いることにより、形成されるシリコーンゴムの硬さや機械的強度の向上、特に引張強度の向上をさせることができる。 By using the silica particles (C) within the range of the specific surface area and the average particle size, it is possible to improve the hardness and mechanical strength of the formed silicone rubber, particularly the tensile strength.

<<シランカップリング剤(D)>>
本実施形態のシリコーンゴム系硬化性組成物は、シランカップリング剤(D)を含んでもよい。
シランカップリング剤(D)は、加水分解性基を有することができる。加水分解基が水により加水分解されて水酸基になり、この水酸基がシリカ粒子(C)表面の水酸基と脱水縮合反応することで、シリカ粒子(C)の表面改質を行うことができる。
<< Silane Coupling Agent (D) >>
The silicone rubber-based curable composition of the present embodiment may contain a silane coupling agent (D).
The silane coupling agent (D) can have a hydrolyzable group. The hydrolyzing group is hydrolyzed by water to become a hydroxyl group, and this hydroxyl group undergoes a dehydration condensation reaction with the hydroxyl group on the surface of the silica particles (C), whereby the surface of the silica particles (C) can be modified.

シランカップリング剤(D)は、疎水性基を有するシランカップリング剤を含むことができる。疎水性基を有するシランカップリング剤として、トリメチルシリル基を有するシランカップリング剤を用いることができる。これにより、シリカ粒子(C)の表面にこの疎水性基が付与されるため、シリコーンゴム系硬化性組成物中ひいてはシリコーンゴム中において、シリカ粒子(C)の凝集力が低下(シラノール基による水素結合による凝集が少なくなる)し、その結果、シリコーンゴム系硬化性組成物中のシリカ粒子の分散性が向上すると推測される。これにより、シリカ粒子とゴムマトリックスとの界面が増加し、シリカ粒子の補強効果が増大する。さらに、ゴムのマトリックス変形の際、マトリックス内でのシリカ粒子の滑り性が向上すると推測される。そして、シリカ粒子(C)の分散性の向上及び滑り性の向上によって、シリカ粒子(C)によるシリコーンゴムの機械的強度(例えば、引張強度や引裂強度など)が向上する。 The silane coupling agent (D) can include a silane coupling agent having a hydrophobic group. As the silane coupling agent having a hydrophobic group, a silane coupling agent having a trimethylsilyl group can be used. As a result, this hydrophobic group is imparted to the surface of the silica particles (C), so that the cohesive force of the silica particles (C) is reduced in the silicone rubber-based curable composition and thus in the silicone rubber (hydrogen due to silanol groups). Aggregation due to bonding is reduced), and as a result, it is presumed that the dispersibility of silica particles in the silicone rubber-based curable composition is improved. As a result, the interface between the silica particles and the rubber matrix is increased, and the reinforcing effect of the silica particles is increased. Further, it is presumed that the slipperiness of the silica particles in the matrix is improved when the rubber matrix is deformed. Then, by improving the dispersibility and slipperiness of the silica particles (C), the mechanical strength (for example, tensile strength, tear strength, etc.) of the silicone rubber due to the silica particles (C) is improved.

また、シランカップリング剤(D)は、ビニル基を有するシランカップリング剤を含むことができる。これにより、シリカ粒子(C)の表面にビニル基が導入される。そのため、シリコーンゴム系硬化性組成物の硬化の際、ネットワーク(架橋構造)が形成される際に、シリカ粒子(C)が有するビニル基も、架橋反応に関与するため、ネットワーク中にシリカ粒子(C)も取り込まれるようになる。これにより、形成されるシリコーンゴムの低硬度化および高モジュラス化を図ることができる。 Further, the silane coupling agent (D) can include a silane coupling agent having a vinyl group. As a result, a vinyl group is introduced on the surface of the silica particles (C). Therefore, when the silicone rubber-based curable composition is cured and a network (crosslinked structure) is formed, the vinyl group of the silica particles (C) also participates in the crosslinking reaction, so that the silica particles (crosslinked structure) are contained in the network. C) will also be incorporated. As a result, it is possible to reduce the hardness and increase the modulus of the formed silicone rubber.

上記シランカップリング剤(D)としては、疎水性基を有するシランカップリング剤およびビニル基を有するシランカップリング剤を併用することができる。これにより、ゴム中におけるシリカの分散性およびゴムの架橋性のバランスを図ることができる。シランカップリング剤(D)は、これらを単独で用いても2種以上を組み合わせて用いてもよい。 As the silane coupling agent (D), a silane coupling agent having a hydrophobic group and a silane coupling agent having a vinyl group can be used in combination. Thereby, the dispersibility of silica in the rubber and the crosslinkability of the rubber can be balanced. The silane coupling agent (D) may be used alone or in combination of two or more.

シランカップリング剤(D)としては、例えば、下記式(4)で表わされるものが挙げられる。 Examples of the silane coupling agent (D) include those represented by the following formula (4).

−Si−(X)4−n・・・(4)
上記式(4)中、nは1〜3の整数を表わす。Yは、疎水性基、親水性基またはビニル基を有するもののうちのいずれかの官能基を表わし、nが1の時は疎水性基であり、nが2または3の時はその少なくとも1つが疎水性基である。Xは、加水分解性基を表わす。
Y n- Si- (X) 4-n ... (4)
In the above equation (4), n represents an integer of 1 to 3. Y represents a functional group of any of having a hydrophobic group, a hydrophilic group or a vinyl group, and when n is 1, it is a hydrophobic group, and when n is 2 or 3, at least one of them is. It is a hydrophobic group. X represents a hydrolyzable group.

疎水性基は、炭素数1〜6のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基であり、例えば、メチル基、エチル基、プロピル基、フェニル基等が挙げられ、中でも、特に、メチル基が好ましい。 The hydrophobic group is an alkyl group having 1 to 6 carbon atoms, an aryl group, or a hydrocarbon group in which these are combined, and examples thereof include a methyl group, an ethyl group, a propyl group, a phenyl group, and the like. Methyl groups are preferred.

また、親水性基は、例えば、水酸基、スルホン酸基、カルボキシル基またはカルボニル基等が挙げられ、中でも、特に、水酸基が好ましい。なお、親水性基は、官能基として含まれていてもよいが、シランカップリング剤(D)に疎水性を付与するという観点からは含まれていないのが好ましい。 Examples of the hydrophilic group include a hydroxyl group, a sulfonic acid group, a carboxyl group and a carbonyl group, and among them, a hydroxyl group is particularly preferable. The hydrophilic group may be contained as a functional group, but it is preferably not contained from the viewpoint of imparting hydrophobicity to the silane coupling agent (D).

さらに、加水分解性基は、メトキシ基、エトキシ基のようなアルコキシ基、クロロ基またはシラザン基等が挙げられ、中でも、シリカ粒子(C)との反応性が高いことから、シラザン基が好ましい。なお、加水分解性基としてシラザン基を有するものは、その構造上の特性から、上記式(4)中の(Y−Si−)の構造を2つ有するものとなる。 Further, examples of the hydrolyzable group include an alkoxy group such as a methoxy group and an ethoxy group, a chloro group or a silazane group, and among them, a silazane group is preferable because it has high reactivity with the silica particles (C). A hydrolyzable group having a silazane group has two structures of (Y n − Si −) in the above formula (4) due to its structural characteristics.

上記式(4)で表されるシランカップリング剤(D)の具体例は、次の通りである。
上記官能基として疎水性基を有するものとして、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシランのようなアルコキシシラン;メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシランのようなクロロシラン;ヘキサメチルジシラザンが挙げられる。この中でも、ヘキサメチルジシラザン、トリメチルクロロシラン、トリメチルメトキシシラン、及びトリメチルエトキシシランからなる群から選択される一種以上を含むトリメチルシリル基を有するシランカップリング剤が好ましい。
Specific examples of the silane coupling agent (D) represented by the above formula (4) are as follows.
Examples of the functional group having a hydrophobic group include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and n-propyltrimethoxysilane. alkoxysilanes such as n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane; hexamethyldisilazane. Can be mentioned. Among these, a silane coupling agent having a trimethylsilyl group containing at least one selected from the group consisting of hexamethyldisilazane, trimethylchlorosilane, trimethylmethoxysilane, and trimethylethoxysilane is preferable.

上記官能基としてビニル基を有するものとして、例えば、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシランのようなアルコキシシラン;ビニルトリクロロシラン、ビニルメチルジクロロシランのようなクロロシラン;ジビニルテトラメチルジシラザンが挙げられる。この中でも、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ジビニルテトラメチルジシラザン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、及びビニルメチルジメトキシシランからなる群から選択される一種以上を含むビニル基含有オルガノシリル基を有するシランカップリング剤が好ましい。 Examples of those having a vinyl group as the functional group include methaloxypropyltriethoxysilane, methaloxypropyltrimethoxysilane, methaloxypropylmethyldiethoxysilane, methaloxypropylmethyldimethoxysilane, vinyltriethoxysilane, and vinyltrimethoxy. Alkoxysilanes such as silanes and vinylmethyldimethoxysilanes; chlorosilanes such as vinyltrichlorosilanes and vinylmethyldichlorosilanes; and divinyltetramethyldisilazane. Among these, methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, divinyltetramethyldisilazane, vinyltriethoxysilane, vinyltrimethoxysilane, and vinyl. A silane coupling agent having a vinyl group-containing organosilyl group containing at least one selected from the group consisting of methyldimethoxysilane is preferable.

またシランカップリング剤(D)がトリメチルシリル基を有するシランカップリング剤およびビニル基含有オルガノシリル基を有するシランカップリング剤の2種を含む場合、疎水性基を有するものとしてはヘキサメチルジシラザン、ビニル基を有するものとしてはジビニルテトラメチルジシラザンを含むことが好ましい。 When the silane coupling agent (D) contains two types of a silane coupling agent having a trimethylsilyl group and a silane coupling agent having a vinyl group-containing organosilyl group, hexamethyldisilazane as having a hydrophobic group is used. Those having a vinyl group preferably contain divinyltetramethyldisilazane.

トリメチルシリル基を有するシランカップリング剤(D1)およびビニル基含有オルガノシリル基を有するシランカップリング剤(D2)を併用する場合、(D1)と(D2)の比率は、特に限定されないが、例えば、重量比で(D1):(D2)が、1:0.001〜1:0.35、好ましくは1:0.01〜1:0.20、より好ましくは1:0.03〜1:0.15である。このような数値範囲とすることにより、シリコーンゴム中の所望のシリコーンゴムの物性を得ることができる。具体的には、ゴム中におけるシリカの分散性およびゴムの架橋性のバランスを図ることができる。 When a silane coupling agent having a trimethylsilyl group (D1) and a silane coupling agent having a vinyl group-containing organosilyl group (D2) are used in combination, the ratio of (D1) to (D2) is not particularly limited, but for example, By weight ratio (D1): (D2) is 1: 0.001 to 1: 0.35, preferably 1: 0.01 to 1: 0.20, more preferably 1: 0.03 to 1: 0. It is .15. With such a numerical range, the desired physical properties of the silicone rubber in the silicone rubber can be obtained. Specifically, it is possible to balance the dispersibility of silica in the rubber and the crosslinkability of the rubber.

<<白金または白金化合物(E)>>
本実施形態のシリコーンゴム系硬化性組成物は、白金または白金化合物(E)を含んでもよい。
白金または白金化合物(E)は、硬化の際の触媒として作用する触媒成分である。白金または白金化合物(E)の添加量は触媒量である。
<< Platinum or platinum compound (E) >>
The silicone rubber-based curable composition of the present embodiment may contain platinum or a platinum compound (E).
Platinum or the platinum compound (E) is a catalytic component that acts as a catalyst during curing. The amount of platinum or platinum compound (E) added is the amount of catalyst.

白金または白金化合物(E)としては、公知のものを使用することができ、例えば、白金黒、白金をシリカやカーボンブラック等に担持させたもの、塩化白金酸または塩化白金酸のアルコール溶液、塩化白金酸とオレフィンの錯塩、塩化白金酸とビニルシロキサンとの錯塩等が挙げられる。 As the platinum or the platinum compound (E), known ones can be used, for example, platinum black, platinum supported on silica, carbon black or the like, platinum chloride acid or an alcohol solution of platinum chloride acid, chloride. Examples thereof include a complex salt of platinum acid and olefin, and a complex salt of platinum chloride acid and vinyl siloxane.

なお、白金または白金化合物(E)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the platinum or the platinum compound (E), only one type may be used alone, or two or more types may be used in combination.

また、本実施形態のシリコーンゴム系硬化性組成物は、有機過酸化物(H)を含んでもよい。
有機過酸化物(H)は、硬化の際の触媒として作用する成分である。有機過酸化物(H)の添加量は触媒量である。有機過酸化物(H)は、オルガノハイドロジェンポリシロキサン(B)および白金または白金化合物(E)に代えて、またはオルガノハイドロジェンポリシロキサン(B)および白金または白金化合物(E)と有機過酸化物(H)を併用して使用することができる。
Further, the silicone rubber-based curable composition of the present embodiment may contain an organic peroxide (H).
The organic peroxide (H) is a component that acts as a catalyst during curing. The amount of the organic peroxide (H) added is the amount of the catalyst. The organic peroxide (H) is an organic peroxide in place of the organohydrogenpolysiloxane (B) and the platinum or platinum compound (E), or with the organohydrogenpolysiloxane (B) and the platinum or platinum compound (E). The thing (H) can be used together.

有機過酸化物(H)としては、例えば、ケトンパーオキサイド類、ジアシルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーオキシエステル類およびパーオキシジカーボネート類が挙げられ、具体的には、例えばベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、p−メチルベンゾイルパーオキサイド、o−メチルベンゾイルパーオキサイド、ジクミルパーオキサイド、2,5−ジメチル−ビス(2,5−t−ブチルパーオキシ)ヘキサン、ジ−t−ブチルパーオキサイド、t−ブチルパーベンゾエート、1,6−ヘキサンジオール−ビス−t−ブチルパーオキシカーボネート等が挙げられる。 Examples of the organic peroxide (H) include ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peroxides, peroxyesters and peroxydi. Examples thereof include carbonates, and specific examples thereof include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, dicumyl peroxide, and 2,5-dimethyl-. Examples thereof include bis (2,5-t-butylperoxy) hexane, di-t-butyl peroxide, t-butylperbenzoate, and 1,6-hexanediol-bis-t-butylperoxycarbonate.

<<水(F)>>
また、本実施形態のシリコーンゴム系硬化性組成物には、上記成分(A)〜(E)、(H)以外に、水(F)が含まれていてもよい。
<< Water (F) >>
Further, the silicone rubber-based curable composition of the present embodiment may contain water (F) in addition to the above components (A) to (E) and (H).

水(F)は、シリコーンゴム系硬化性組成物に含まれる各成分を分散させる分散媒として機能するとともに、シリカ粒子(C)とシランカップリング剤(D)との反応に寄与する成分である。そのため、シリコーンゴム中において、シリカ粒子(C)とシランカップリング剤(D)とを、より確実に互いに連結したものとすることができ、全体として均一な特性を発揮することができる。 Water (F) functions as a dispersion medium for dispersing each component contained in the silicone rubber-based curable composition, and is a component that contributes to the reaction between the silica particles (C) and the silane coupling agent (D). .. Therefore, in the silicone rubber, the silica particles (C) and the silane coupling agent (D) can be more reliably connected to each other, and uniform characteristics can be exhibited as a whole.

さらに、本実施形態のシリコーンゴム系硬化性組成物は、上記(A)〜(F)成分の他、シリコーンゴム系硬化性組成物に配合される公知の添加成分を含有していてもよい。例えば、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム、酸化セリウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ガラスウール、マイカ等が挙げられる。その他、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤、熱伝導性向上剤等を適宜配合することができる。 Further, the silicone rubber-based curable composition of the present embodiment may contain known additive components to be blended in the silicone rubber-based curable composition in addition to the above components (A) to (F). For example, diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, cerium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, glass wool, mica and the like can be mentioned. In addition, dispersants, pigments, dyes, antistatic agents, antioxidants, flame retardants, thermal conductivity improvers and the like can be appropriately blended.

なお、シリコーンゴム系硬化性組成物において、各成分の含有割合は特に限定されないが、例えば、以下のように設定される。 In the silicone rubber-based curable composition, the content ratio of each component is not particularly limited, but is set as follows, for example.

本実施形態において、シリカ粒子(C)の含有量の上限は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対し、例えば、60重量部以下でもよく、好ましくは50重量部以下でもよく、さらに好ましくは35重量部以下でもよい。これにより、硬さや引張強度等の機械的強度のバランスを図ることができる。また、シリカ粒子(C)の含有量の下限は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対し、特に限定されないが、例えば、10重量部以上でもよい。 In the present embodiment, the upper limit of the content of the silica particles (C) may be, for example, 60 parts by weight or less, preferably 50 parts by weight or less, based on 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). However, it may be more preferably 35 parts by weight or less. As a result, it is possible to balance mechanical strength such as hardness and tensile strength. The lower limit of the content of the silica particles (C) is not particularly limited with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A), but may be, for example, 10 parts by weight or more.

シランカップリング剤(D)は、ビニル基含有オルガノポリシロキサン(A)100重量部に対し、例えば、シランカップリング剤(D)が5重量部以上100重量部以下の割合で含有するのが好ましく、5重量部以上40重量部以下の割合で含有するのがより好ましい。これにより、シリカ粒子(C)のシリコーンゴム系硬化性組成物中における分散性を確実に向上させることができる。 The silane coupling agent (D) is preferably contained in a proportion of, for example, 5 parts by weight or more and 100 parts by weight or less of the vinyl group-containing organopolysiloxane (A) with respect to 100 parts by weight. It is more preferably contained in a proportion of 5 parts by weight or more and 40 parts by weight or less. Thereby, the dispersibility of the silica particles (C) in the silicone rubber-based curable composition can be surely improved.

オルガノハイドロジェンポリシロキサン(B)の含有量は、具体的にビニル基含有オルガノポリシロキサン(A)及びシリカ粒子(C)及びシランカップリング剤(D)の合計量100重量部に対して、例えば、0.5重量部以上20重量部以下の割合で含有することが好ましく、0.8重量部以上15重量部以下の割合で含有するのがより好ましい。(B)の含有量が前記範囲内であることで、より効果的な硬化反応ができる可能性がある。 The content of the organohydrogenpolysiloxane (B) is specifically, for example, with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A), the silica particles (C) and the silane coupling agent (D). , 0.5 part by weight or more and 20 parts by weight or less is preferable, and 0.8 parts by weight or more and 15 parts by weight or less is more preferable. When the content of (B) is within the above range, a more effective curing reaction may be possible.

白金または白金化合物(E)の含有量は、触媒量を意味し、適宜設定することができるが、具体的にビニル基含有オルガノポリシロキサン(A)、シリカ粒子(C)、シランカップリング剤(D)の合計量100重量部に対して、本成分中の白金族金属が重量単位で0.01〜1000ppmとなる量であり、好ましくは、0.1〜500ppmとなる量である。白金または白金化合物(E)の含有量を上記下限以上とすることにより、得られるシリコーンゴム組成物を十分硬化させることができる。白金または白金化合物(E)の含有量を上記上限以下とすることにより、得られるシリコーンゴム組成物の硬化速度を向上させることができる。 The content of platinum or the platinum compound (E) means the amount of catalyst and can be appropriately set. Specifically, vinyl group-containing organopolysiloxane (A), silica particles (C), and silane coupling agent ( With respect to 100 parts by weight of the total amount of D), the amount of the platinum group metal in this component is 0.01 to 1000 ppm in weight units, preferably 0.1 to 500 ppm. By setting the content of platinum or the platinum compound (E) to the above lower limit or more, the obtained silicone rubber composition can be sufficiently cured. By setting the content of platinum or the platinum compound (E) to the above upper limit or less, the curing rate of the obtained silicone rubber composition can be improved.

有機過酸化物(H)の含有量は、触媒量を意味し、適宜設定することができるが、具体的にビニル基含有オルガノポリシロキサン(A)、シリカ粒子(C)、シランカップリング剤(D)の合計量100重量部に対して、例えば、0.001重量部以上、好ましくは0.005重量部以上、より好ましくは0.01重量部以上である。これにより、硬化物としての最低限の強度を担保することができる。また、有機過酸化物(H)の含有量の上限は、ビニル基含有オルガノポリシロキサン(A)、シリカ粒子(C)、シランカップリング剤(D)の合計量100重量部に対して、例えば、10重量部以下、好ましくは5重量部以下、より好ましくは3重量部以下である。これにより、副生成物による影響を抑制できる。 The content of the organic peroxide (H) means the amount of the catalyst and can be appropriately set. Specifically, the vinyl group-containing organopolysiloxane (A), the silica particles (C), and the silane coupling agent ( For example, 0.001 parts by weight or more, preferably 0.005 parts by weight or more, and more preferably 0.01 parts by weight or more with respect to 100 parts by weight of the total amount of D). Thereby, the minimum strength as a cured product can be guaranteed. The upper limit of the content of the organic peroxide (H) is, for example, with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A), the silica particles (C), and the silane coupling agent (D). It is 10 parts by weight or less, preferably 5 parts by weight or less, and more preferably 3 parts by weight or less. As a result, the influence of by-products can be suppressed.

さらに、水(F)を含有する場合、その含有量は、適宜設定することができるが、具体的には、シランカップリング剤(D)100重量部に対して、例えば、10〜100重量部の範囲であるのが好ましく、30〜70重量部の範囲であるのがより好ましい。これにより、シランカップリング剤(D)とシリカ粒子(C)との反応をより確実に進行させることができる。 Further, when water (F) is contained, the content thereof can be appropriately set, but specifically, for example, 10 to 100 parts by weight with respect to 100 parts by weight of the silane coupling agent (D). The range is preferably in the range of 30 to 70 parts by weight, and more preferably in the range of 30 to 70 parts by weight. As a result, the reaction between the silane coupling agent (D) and the silica particles (C) can proceed more reliably.

<シリコーンゴムの製造方法>
次に、本実施形態のシリコーンゴムの製造方法について説明する。
本実施形態のシリコーンゴムの製造方法としては、シリコーンゴム系硬化性組成物を調製し、このシリコーンゴム系硬化性組成物を硬化させることによりシリコーンゴムを得ることができる。
以下、詳述する。
<Manufacturing method of silicone rubber>
Next, the method for producing the silicone rubber of the present embodiment will be described.
As a method for producing a silicone rubber of the present embodiment, a silicone rubber-based curable composition is prepared, and the silicone rubber-based curable composition is cured to obtain a silicone rubber.
The details will be described below.

まず、シリコーンゴム系硬化性組成物の各成分を、任意の混練装置により、均一に混合してシリコーンゴム系硬化性組成物を調製する。 First, each component of the silicone rubber-based curable composition is uniformly mixed by an arbitrary kneading device to prepare a silicone rubber-based curable composition.

[1]たとえば、ビニル基含有オルガノポリシロキサン(A)と、シリカ粒子(C)と、シランカップリング剤(D)とを所定量秤量し、その後、任意の混練装置により、混練することで、これら各成分(A)、(C)、(D)を含有する混練物を得る。 [1] For example, the vinyl group-containing organopolysiloxane (A), the silica particles (C), and the silane coupling agent (D) are weighed in a predetermined amount, and then kneaded by an arbitrary kneading device. A kneaded product containing each of these components (A), (C), and (D) is obtained.

なお、この混練物は、予めビニル基含有オルガノポリシロキサン(A)とシランカップリング剤(D)とを混練し、その後、シリカ粒子(C)を混練(混合)して得るのが好ましい。これにより、ビニル基含有オルガノポリシロキサン(A)中におけるシリカ粒子(C)の分散性がより向上する。 The kneaded product is preferably obtained by kneading the vinyl group-containing organopolysiloxane (A) and the silane coupling agent (D) in advance, and then kneading (mixing) the silica particles (C). As a result, the dispersibility of the silica particles (C) in the vinyl group-containing organopolysiloxane (A) is further improved.

また、この混練物を得る際には、水(F)を必要に応じて、各成分(A)、(C)、および(D)の混練物に添加するようにしてもよい。これにより、シランカップリング剤(D)とシリカ粒子(C)との反応をより確実に進行させることができる。 Further, when obtaining this kneaded product, water (F) may be added to the kneaded product of each component (A), (C), and (D), if necessary. As a result, the reaction between the silane coupling agent (D) and the silica particles (C) can proceed more reliably.

さらに、各成分(A)、(C)、(D)の混練は、第1温度で加熱する第1ステップと、第2温度で加熱する第2ステップとを経るようにするのが好ましい。これにより、第1ステップにおいて、シリカ粒子(C)の表面をカップリング剤(D)で表面処理することができるとともに、第2ステップにおいて、シリカ粒子(C)とカップリング剤(D)との反応で生成した副生成物を混練物中から確実に除去することができる。その後、必要に応じて、得られた混練物に対して、成分(A)を添加し、更に混練してもよい。これにより、混練物の成分のなじみを向上させることができる。 Further, it is preferable that the kneading of each component (A), (C), and (D) goes through a first step of heating at the first temperature and a second step of heating at the second temperature. As a result, in the first step, the surface of the silica particles (C) can be surface-treated with the coupling agent (D), and in the second step, the silica particles (C) and the coupling agent (D) are combined. By-products produced by the reaction can be reliably removed from the kneaded product. Then, if necessary, the component (A) may be added to the obtained kneaded product and further kneaded. Thereby, the familiarity of the components of the kneaded product can be improved.

第1温度は、例えば、40〜120℃程度であるのが好ましく、例えば、60〜90℃程度であるのがより好ましい。第2温度は、例えば、130〜210℃程度であるのが好ましく、例えば、160〜180℃程度であるのがより好ましい。 The first temperature is preferably, for example, about 40 to 120 ° C., and more preferably about 60 to 90 ° C., for example. The second temperature is preferably, for example, about 130 to 210 ° C., and more preferably about 160 to 180 ° C., for example.

また、第1ステップにおける雰囲気は、窒素雰囲気下のような不活性雰囲気下であるのが好ましく、第2ステップにおける雰囲気は、減圧雰囲気下であるのが好ましい。 The atmosphere in the first step is preferably an inert atmosphere such as a nitrogen atmosphere, and the atmosphere in the second step is preferably a reduced pressure atmosphere.

さらに、第1ステップの時間は、例えば、0.3〜1.5時間程度であるのが好ましく、0.5〜1.2時間程度であるのがより好ましい。第2ステップの時間は、例えば、0.7〜3.0時間程度であるのが好ましく、1.0〜2.0時間程度であるのがより好ましい。 Further, the time of the first step is preferably, for example, about 0.3 to 1.5 hours, and more preferably about 0.5 to 1.2 hours. The time of the second step is, for example, preferably about 0.7 to 3.0 hours, and more preferably about 1.0 to 2.0 hours.

第1ステップおよび第2ステップを、上記のような条件とすることで、前記効果をより顕著に得ることができる。 By setting the first step and the second step under the above-mentioned conditions, the effect can be obtained more remarkably.

[2]次に、オルガノハイドロジェンポリシロキサン(B)と、白金または白金化合物(E)とを所定量秤量し、その後、任意の混練装置を用いて、上記工程[1]で調製した混練物に、各成分(B)、(E)を混練することで、シリコーンゴム系硬化性組成物を得る。得られたシリコーンゴム系硬化性組成物は溶剤を含むペーストであってもよい。 [2] Next, the organohydrogenpolysiloxane (B) and platinum or the platinum compound (E) are weighed in a predetermined amount, and then the kneaded product prepared in the above step [1] using an arbitrary kneading device. , Each component (B) and (E) is kneaded to obtain a silicone rubber-based curable composition. The obtained silicone rubber-based curable composition may be a paste containing a solvent.

なお、この各成分(B)、(E)の混練の際には、予め上記工程[1]で調製した混練物とオルガノハイドロジェンポリシロキサン(B)とを、上記工程[1]で調製した混練物と白金または白金化合物(E)とを混練し、その後、それぞれの混練物を混練するのが好ましい。これにより、ビニル基含有オルガノポリシロキサン(A)とオルガノハイドロジェンポリシロキサン(B)との反応を進行させることなく、各成分(A)〜(E)をシリコーンゴム系硬化性組成物中に確実に分散させることができる。 When kneading the respective components (B) and (E), the kneaded product previously prepared in the above step [1] and the organohydrogenpolysiloxane (B) were prepared in the above step [1]. It is preferable to knead the kneaded product with platinum or the platinum compound (E), and then knead the respective kneaded products. As a result, each component (A) to (E) is surely contained in the silicone rubber-based curable composition without proceeding the reaction between the vinyl group-containing organopolysiloxane (A) and the organohydrogenpolysiloxane (B). Can be dispersed in.

各成分(B)、(E)を混練する際の温度は、ロール設定温度として、例えば、10〜70℃程度であるのが好ましく、25〜30℃程度であるのがより好ましい。 The temperature at which the respective components (B) and (E) are kneaded is preferably, for example, about 10 to 70 ° C., and more preferably about 25 to 30 ° C. as the roll set temperature.

さらに、混練する時間は、例えば、5分〜1時間程度であるのが好ましく、10〜40分程度であるのがより好ましい。 Further, the kneading time is preferably, for example, about 5 minutes to 1 hour, and more preferably about 10 to 40 minutes.

上記工程[1]および上記工程[2]において、温度を上記範囲内とすることにより、ビニル基含有オルガノポリシロキサン(A)とオルガノハイドロジェンポリシロキサン(B)との反応の進行をより的確に防止または抑制することができる。また、上記工程[1]および上記工程[2]において、混練時間を上記範囲内とすることにより、各成分(A)〜(E)をシリコーンゴム系硬化性組成物中により確実に分散させることができる。 By setting the temperature within the above range in the above steps [1] and [2], the progress of the reaction between the vinyl group-containing organopolysiloxane (A) and the organohydrogenpolysiloxane (B) is more accurate. Can be prevented or suppressed. Further, in the above-mentioned step [1] and the above-mentioned step [2], by setting the kneading time within the above range, each component (A) to (E) is more reliably dispersed in the silicone rubber-based curable composition. Can be done.

なお、各工程[1]、[2]において使用される混練装置としては、特に限定されないが、例えば、ニーダー、2本ロール、バンバリーミキサー(連続ニーダー)、加圧ニーダー等を用いることができる。 The kneading apparatus used in each of the steps [1] and [2] is not particularly limited, and for example, a kneader, two rolls, a Banbury mixer (continuous kneader), a pressurized kneader, or the like can be used.

また、本工程[2]において、混練物中に1−エチニルシクロヘキサノールのような反応抑制剤を添加するようにしてもよい。これにより、混練物の温度が比較的高い温度に設定されたとしても、ビニル基含有オルガノポリシロキサン(A)とオルガノハイドロジェンポリシロキサン(B)との反応の進行をより的確に防止または抑制することができる。 Further, in this step [2], a reaction inhibitor such as 1-ethynylcyclohexanol may be added to the kneaded product. As a result, even if the temperature of the kneaded product is set to a relatively high temperature, the progress of the reaction between the vinyl group-containing organopolysiloxane (A) and the organohydrogenpolysiloxane (B) is more accurately prevented or suppressed. be able to.

また、本工程[2]において、オルガノハイドロジェンポリシロキサン(B)と白金または白金化合物(E)に代えて、またはオルガノハイドロジェンポリシロキサン(B)と白金または白金化合物(E)と併用して、有機過酸化物(H)を添加してもよい。有機過酸化物(H)を混練する際の温度、時間等の好ましい条件、使用する装置については、前記オルガノハイドロジェンポリシロキサン(B)と白金または白金化合物(E)とを混練する際の条件と同様である。 Further, in this step [2], instead of the organohydrogenpolysiloxane (B) and the platinum or platinum compound (E), or in combination with the organohydrogenpolysiloxane (B) and the platinum or platinum compound (E). , Organic peroxide (H) may be added. Preferred conditions such as temperature and time for kneading the organic peroxide (H), and the conditions for kneading the organohydrogenpolysiloxane (B) and platinum or the platinum compound (E) with respect to the apparatus to be used. Is similar to.

[3]次に、シリコーンゴム系硬化性組成物を硬化させることによりシリコーンゴムを形成する。 [3] Next, a silicone rubber is formed by curing the silicone rubber-based curable composition.

本実施形態において、シリコーンゴム系硬化性組成物の硬化工程は、例えば、100〜250℃で1〜30分間加熱(1次硬化)した後、200℃で1〜4時間ポストベーク(2次硬化)することによって行われる。
以上のような工程を経ることで、本実施形態のシリコーンゴムが得られる。
In the present embodiment, the curing step of the silicone rubber-based curable composition is, for example, heating at 100 to 250 ° C. for 1 to 30 minutes (primary curing) and then post-baking (secondary curing) at 200 ° C. for 1 to 4 hours. ) Is done.
By going through the above steps, the silicone rubber of the present embodiment can be obtained.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted. Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the range in which the object of the present invention can be achieved are included in the present invention.

以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the description of these Examples.

表1に示す実施例および比較例で用いた原料成分を以下に示す。
(ビニル基含有オルガノポリシロキサン(A))
・ビニル基含有直鎖状オルガノポリシロキサン(A1−1a):合成スキーム1により合成したビニル基含有ジメチルポリシロキサン(式(1−1)で表わされる構造でR(末端)のみがビニル基である構造)
・ビニル基含有直鎖状オルガノポリシロキサン(A1−1b):合成スキーム2により合成したビニル基含有ジメチルポリシロキサン(式(1−1)で表わされる構造でR(末端)のみがビニル基である構造)
・ビニル基含有直鎖状オルガノポリシロキサン(A1−2a):合成スキーム3により合成したビニル基含有ジメチルポリシロキサン(式(1−1)で表わされる構造でR(末端)およびR(鎖内)がビニル基である構造)
・ビニル基含有直鎖状オルガノポリシロキサン(A1−2b):合成スキーム4により合成したビニル基含有ジメチルポリシロキサン(式(1−1)で表わされる構造でR(末端)およびR(鎖内)がビニル基である構造)
The raw material components used in the examples and comparative examples shown in Table 1 are shown below.
(Vinyl group-containing organopolysiloxane (A))
-Vinyl group-containing linear organopolysiloxane (A1-1a): A vinyl group-containing dimethylpolysiloxane synthesized by Synthesis Scheme 1 (a structure represented by the formula (1-1), in which only R 1 (terminal) is a vinyl group. A certain structure)
-Vinyl group-containing linear organopolysiloxane (A1-1b): A vinyl group-containing dimethylpolysiloxane synthesized by Synthesis Scheme 2 (a structure represented by the formula (1-1) in which only R 1 (terminal) is a vinyl group. A certain structure)
-Vinyl group-containing linear organopolysiloxane (A1-2a): Vinyl group-containing dimethylpolysiloxane (structure represented by the formula (1-1), R 1 (terminal) and R 2 (chain) synthesized by Synthesis Scheme 3). (Inside) is a vinyl group)
-Vinyl group-containing linear organopolysiloxane (A1-2b): Vinyl group-containing dimethylpolysiloxane (structure represented by the formula (1-1), R 1 (terminal) and R 2 (chain) synthesized by Synthesis Scheme 4. (Inside) is a vinyl group)

(オルガノハイドロジェンポリシロキサン(B))
モメンティブ社製:「TC−25D」
(Organohydrogenpolysiloxane (B))
Made by Momentive: "TC-25D"

(シリカ粒子(C))
・シリカ粒子(C−1):シリカ微粒子(粒径7nm、比表面積300m/g)、日本アエロジル社製、「AEROSIL 300」
・シリカ粒子(C−2):シリカ微粒子(粒径16nm、比表面積110m/g)、日本アエロジル社製、「AEROSIL R972」
(Silica particles (C))
-Silica particles (C-1): silica fine particles (particle size 7 nm, specific surface area 300 m 2 / g), manufactured by Nippon Aerosil Co., Ltd., "AEROSIL 300"
-Silica particles (C-2): silica fine particles (particle size 16 nm, specific surface area 110 m 2 / g), manufactured by Nippon Aerosil Co., Ltd., "AEROSIL R972"

(シランカップリング剤(D))
・シランカップリング剤(D−1):ヘキサメチルジシラザン(HMDZ)、Gelest社製、「HEXAMETHYLDISILAZANE(SIH6110.1)」
・シランカップリング剤(D−2):ジビニルテトラメチルジシラザン、Gelest社製、「1,3−DIVINYLTETRAMETHYLDISILAZANE(SID4612.0)」
(Silane Coupling Agent (D))
Silane coupling agent (D-1): Hexamethyldisilazane (HMDZ), manufactured by Gelest, "HEXAMETHYLDISILAZANE (SIH6110.1)"
-Silane coupling agent (D-2): Divinyltetramethyldisilazane, manufactured by Gelest, "1,3-DIVINYLTETRAMETHYLDISILAZANE (SID4612.0)"

(白金または白金化合物(E))
モメンティブ社製:「TC−25A」
(Platinum or platinum compound (E))
Made by Momentive: "TC-25A"

(ビニル基含有オルガノポリシロキサン(A)の合成) (Synthesis of vinyl group-containing organopolysiloxane (A))

[合成スキーム1:ビニル基含有直鎖状オルガノポリシロキサン(A1−1a)の合成]
下記式(5)にしたがって、低ビニル基含有直鎖状オルガノポリシロキサン(A1−1a)を合成した。
すなわち、Arガス置換した、冷却管および攪拌翼を有する300mLセパラブルフラスコに、オクタメチルシクロテトラシロキサン74.7g(252mmol)、カリウムシリコネート0.1gを入れ、昇温し、120℃で30分間攪拌した。なお、この際、粘度の上昇が確認できた。
その後、155℃まで昇温し、3時間攪拌を続けた。そして、3時間後、1,3−ジビニルテトラメチルジシロキサン0.1g(0.6mmol)を添加し、さらに、155℃で4時間攪拌した。
さらに、4時間後、トルエン250mLで希釈した後、水で3回洗浄した。洗浄後の有機層をメタノール1.5Lで数回洗浄することで、再沈精製し、オリゴマーとポリマーを分離した。得られたポリマーを60℃で一晩減圧乾燥し、低ビニル基含有直鎖状オルガノポリシロキサン(A1−1a)を合成した(Mn=2.2×10、Mw=4.8×10)。また、H−NMRスペクトル測定により算出したビニル基含有量は0.039モル%であった。
[Synthesis Scheme 1: Synthesis of Vinyl Group-Containing Linear Organopolysiloxane (A1-1a)]
A low vinyl group-containing linear organopolysiloxane (A1-1a) was synthesized according to the following formula (5).
That is, 74.7 g (252 mmol) of octamethylcyclotetrasiloxane and 0.1 g of potassium silicate were placed in a 300 mL separable flask having a cooling tube and a stirring blade substituted with Ar gas, and the temperature was raised at 120 ° C. for 30 minutes. Stirred. At this time, an increase in viscosity was confirmed.
Then, the temperature was raised to 155 ° C., and stirring was continued for 3 hours. Then, after 3 hours, 0.1 g (0.6 mmol) of 1,3-divinyltetramethyldisiloxane was added, and the mixture was further stirred at 155 ° C. for 4 hours.
After 4 hours, it was diluted with 250 mL of toluene and then washed 3 times with water. The organic layer after washing was washed several times with 1.5 L of methanol to reprecipitate and separate the oligomer and the polymer. The obtained polymer was dried under reduced pressure at 60 ° C. overnight to synthesize a low vinyl group-containing linear organopolysiloxane (A1-1a) (Mn = 2.2 × 10 5 and Mw = 4.8 × 10 5). ). The vinyl group content calculated by 1 H-NMR spectrum measurement was 0.039 mol%.

Figure 2020143270
Figure 2020143270

[合成スキーム2:ビニル基含有直鎖状オルガノポリシロキサン(A1−1b)の合成]
上記(A1−1a)の合成工程において、155℃まで昇温した後の反応時間を3.5時間に変えたこと以外は、(A1−1a)の合成工程と同様にすることで低ビニル基含有直鎖状オルガノポリシロキサン(A1−1b)を合成した(Mn=2.7×10、Mw=5.2×10)。また、H−NMRスペクトル測定により算出したビニル基含有量は0.031モル%であった。
[Synthesis scheme 2: Synthesis of vinyl group-containing linear organopolysiloxane (A1-1b)]
The low vinyl group was obtained in the same manner as in the synthesis step of (A1-1a) except that the reaction time after raising the temperature to 155 ° C. was changed to 3.5 hours in the synthesis step of (A1-1a). containing was synthesized linear organopolysiloxanes (A1-1b) (Mn = 2.7 × 10 5, Mw = 5.2 × 10 5). The vinyl group content calculated by 1 H-NMR spectrum measurement was 0.031 mol%.

[合成スキーム3:ビニル基含有直鎖状オルガノポリシロキサン(A1−2a)の合成]
上記(A1−1a)の合成工程において、オクタメチルシクロテトラシロキサン75.3g(254mmol)に加えて2,4,6,8−テトラメチル2,4,6,8−テトラビニルシクロテトラシロキサン0.12g(0.35mmol)を用いたこと以外は、(A1−1a)の合成工程と同様にすることで、下記式(6)のように、ビニル基含有直鎖状オルガノポリシロキサン(A1−2a)を合成した(Mn=2.5×10、Mw=5.0×10)。また、H−NMRスペクトル測定により算出したビニル基含有量は0.130モル%であった。
[Synthesis scheme 3: Synthesis of vinyl group-containing linear organopolysiloxane (A1-2a)]
In the synthesis step of (A1-1a) above, in addition to 75.3 g (254 mmol) of octamethylcyclotetrasiloxane, 2,4,6,8-tetramethyl 2,4,6,8-tetravinylcyclotetrasiloxane 0. By repeating the same procedure as the synthesis step of (A1-1a) except that 12 g (0.35 mmol) was used, a vinyl group-containing linear organopolysiloxane (A1-2a) was used as shown in the following formula (6). ) was synthesized (Mn = 2.5 × 10 5, Mw = 5.0 × 10 5). The vinyl group content calculated by 1 H-NMR spectrum measurement was 0.130 mol%.

Figure 2020143270
Figure 2020143270

[合成スキーム4:ビニル基含有直鎖状オルガノポリシロキサン(A1−2b)の合成]
上記(A1−2a)の合成工程において、オクタメチルシクロテトラシロキサンの添加量を73.2g(247mmol)、2,4,6,8−テトラメチル2,4,6,8−テトラビニルシクロテトラシロキサンの添加量を2.61g(7.6mmol)に変えたこと以外は、(A1−2a)の合成工程と同様にすることで、高ビニル基含有直鎖状オルガノポリシロキサン(A1−2b)を合成した(Mn=2.5×10、Mw=5.4×10)。また、H−NMRスペクトル測定により算出したビニル基含有量は2.826モル%であった。
[Synthesis Scheme 4: Synthesis of Vinyl Group-Containing Linear Organopolysiloxane (A1-2b)]
In the above synthesis step (A1-2a), the amount of octamethylcyclotetrasiloxane added was 73.2 g (247 mmol), 2,4,6,8-tetramethyl 2,4,6,8-tetravinylcyclotetrasiloxane. A high vinyl group-containing linear organopolysiloxane (A1-2b) was obtained in the same manner as in the synthesis step of (A1-2a) except that the amount of the above was changed to 2.61 g (7.6 mmol). synthesized (Mn = 2.5 × 10 5, Mw = 5.4 × 10 5). The vinyl group content calculated by 1 H-NMR spectrum measurement was 2.826 mol%.

<シリコーンゴム系硬化性組成物の調製>
(試験例1〜5)
下記の表1に示す割合で、ビニル基含有オルガノポリシロキサン(A)、シランカップリング剤(D)および水(F)の混合物を予め混練し、その後、混合物にシリカ粒子(C)を加えてさらに混練し、混練物(シリコーンゴムコンパウンド)を得た。
ここで、シリカ粒子(C)添加後の混練は、カップリング反応のために窒素雰囲気下、60〜90℃の条件下で1時間混練する第1ステップと、副生成物(アンモニア)の除去のために減圧雰囲気下、160〜180℃の条件下で2時間混練する第2ステップとを経ることで行い、その後、冷却し、20分間混練した。
続いて、得られた混練物(シリコーンゴムコンパウンド)100重量部に、下記の表1に示す割合で、オルガノハイドロジェンポリシロキサン(B)(TC−25D)および白金または白金化合物(E)(TC−25A)を加えて、ロールで混練し、シリコーンゴム系硬化性組成物を得た。
<Preparation of silicone rubber-based curable composition>
(Test Examples 1 to 5)
A mixture of vinyl group-containing organopolysiloxane (A), silane coupling agent (D) and water (F) is kneaded in advance at the ratio shown in Table 1 below, and then silica particles (C) are added to the mixture. Further kneading was performed to obtain a kneaded product (silicone rubber compound).
Here, the kneading after the addition of the silica particles (C) is carried out in the first step of kneading for 1 hour under the condition of 60 to 90 ° C. under a nitrogen atmosphere for the coupling reaction, and the removal of the by-product (ammonia). Therefore, the mixture was kneaded under a reduced pressure atmosphere at 160 to 180 ° C. for 2 hours through the second step, then cooled and kneaded for 20 minutes.
Subsequently, 100 parts by weight of the obtained kneaded product (silicone rubber compound) was added with organohydrogenpolysiloxane (B) (TC-25D) and platinum or platinum compound (E) (TC) in the proportions shown in Table 1 below. -25A) was added and kneaded with a roll to obtain a silicone rubber-based curable composition.

Figure 2020143270
Figure 2020143270

<デマチャ式耐屈曲試験>
得られたシリコーンゴム系硬化性組成物について、下記の手順で測定されるデマチャ式耐屈曲試験を行い、屈曲回数が1万回、3万回、5万回のときの試験片における切り込み長さを測定した。評価結果を表2に示す。
<Hoax type bending resistance test>
The obtained silicone rubber-based curable composition was subjected to a hoax-type bending resistance test measured by the following procedure, and the cut length in the test piece when the number of bendings was 10,000, 30,000, and 50,000. Was measured. The evaluation results are shown in Table 2.

(試験片の作成)
JIS K 6260に準拠して、得られたシリコーンゴム系硬化性組成物を図1に示す金型10の成形空間30中に入れ、170℃、10MPaで15分間プレスし、続いて、200℃で4時間加熱して、溝60付きの短冊状の試験片50(幅:25mm、長さ:150mm、厚み:6.3mm)を作製した。得られた試験片50の溝60の中央において、幅方向に対して平行に、刃を用いて、長さ:2.03mmの切り込み70を入れ、切り込み付きの試験片50を得た(図2)。切り込み70は、試験片50を厚み方向に貫通するものであった。
(Creation of test piece)
According to JIS K 6260, the obtained silicone rubber-based curable composition was placed in the molding space 30 of the mold 10 shown in FIG. 1, pressed at 170 ° C. and 10 MPa for 15 minutes, and subsequently at 200 ° C. By heating for 4 hours, a strip-shaped test piece 50 (width: 25 mm, length: 150 mm, thickness: 6.3 mm) with a groove 60 was prepared. A notch 70 having a length of 2.03 mm was made in the center of the groove 60 of the obtained test piece 50 in parallel with the width direction using a blade to obtain a test piece 50 with a notch (FIG. 2). ). The notch 70 penetrated the test piece 50 in the thickness direction.

図1(a)は、金型10の上面図、図1(b)は、金型10のA−A矢視の側面断面図を表す。金型10は、成形空間30の底面に曲面状の凸部20を備える。
また、図2(a)は、切り込み70が形成された溝60付きの試験片50の上面図、図2(b)は、試験片50のB−B矢視の側面断面図を表す。
FIG. 1 (a) shows a top view of the mold 10, and FIG. 1 (b) shows a side sectional view of the mold 10 as viewed by arrows AA. The mold 10 is provided with a curved convex portion 20 on the bottom surface of the molding space 30.
Further, FIG. 2A shows a top view of the test piece 50 having a groove 60 in which the notch 70 is formed, and FIG. 2B shows a side sectional view of the test piece 50 as viewed from the arrow BB.

(手順)
図3に示すように、試験機100(デマチャ屈曲き裂試験機)の固定つかみ具102と可動つかみ具104との間に、上記(試験片の作成)で得られた試験片50を保持させた。
具体的には、2つのつかみ具間距離を最大にし、つかみ具間の中心に試験片50の溝60の中心が位置するように、試験片50をつかみ具に取り付けた。このとき、試験片50を、余分なひずみを与えないように平面状に保持させた。
続いて、下記の試験条件に基づいて、固定つかみ具102を基準に、可動つかみ具104を上下方向に往復運動させた。可動つかみ具104が、最大距離から往復運動距離まで固定つかみ具102に近づき(試験片50が屈曲し)、その後、可動つかみ具104が最大距離まで離れる(試験片50が平面状)まで、を1往復運動(1サイクル)とし、そのサイクルの回数(回)を屈曲回数とした。
屈曲回数が1万回、3万回、5万回のときの試験片50における切り込み70の長さ(mm)を、デジタルノギス(ミツトヨ社製)を用いて測定した。
なお、切り込み70の長さは、上記デマチャ式耐屈曲試験を3回行って測定された、3つの測定値の平均値とした。結果を表2に示す。
切り込み長さ変化率を式:L/Lに基づいて算出した。
は、デマチャ式耐屈曲試験前の初期の切り込み長さとし、L、L、Lは、それぞれ、デマチャ式耐屈曲試験後、屈曲回数が1万回、3万回、5万回のときの切り込み長さの平均値とした。
(procedure)
As shown in FIG. 3, the test piece 50 obtained in the above (preparation of the test piece) is held between the fixed gripping tool 102 and the movable gripping tool 104 of the testing machine 100 (demacha bending crack tester). It was.
Specifically, the test piece 50 was attached to the grip so that the distance between the two grips was maximized and the center of the groove 60 of the test piece 50 was located at the center between the grips. At this time, the test piece 50 was held flat so as not to give an extra strain.
Subsequently, based on the following test conditions, the movable gripping tool 104 was reciprocated in the vertical direction with reference to the fixed gripping tool 102. The movable gripper 104 approaches the fixed gripper 102 from the maximum distance to the reciprocating motion distance (the test piece 50 is bent), and then the movable gripper 104 is separated to the maximum distance (the test piece 50 is flat). One reciprocating motion (one cycle) was defined, and the number of cycles (times) was defined as the number of bends.
The length (mm) of the notch 70 in the test piece 50 when the number of bendings was 10,000, 30,000, and 50,000 was measured using a digital caliper (manufactured by Mitutoyo).
The length of the notch 70 was taken as the average value of the three measured values measured by performing the hoax-type bending resistance test three times. The results are shown in Table 2.
The rate of change in cut length was calculated based on the formula: L 5 / L 0 .
L 0 is the initial cut length before the hoax-type bending resistance test, and L 1 , L 3 , and L 5 are the bending times of 10,000 times, 30,000 times, and 50,000 times after the hoax-type bending resistance test, respectively. The average value of the cut length at the time of.

(試験条件)
・試験規格:JIS K 6260(2017)準拠
・試験機:低温槽付きデマチャ屈曲き裂試験機(安田製作所製)
・試験温度:23±2℃
・つかみ具間最大距離:75mm(図3中のDmax
・往復運動距離:57mm(図3中のDmv
・状態調節:1回目の試験開始前、23℃10分静置した。2回目、3回目の試験開始前、同じ条件の環境中に5分間静置した。
・試験速度:300±10回/分
・試験数:n=3
(Test conditions)
・ Test standard: JIS K 6260 (2017) compliant ・ Testing machine: Demacha bending crack testing machine with low temperature tank (manufactured by Yasuda Seisakusho)
-Test temperature: 23 ± 2 ° C
-Maximum distance between grippers: 75 mm (D max in Fig. 3)
-Reciprocating distance: 57 mm (D mv in Fig. 3)
-Condition adjustment: Before the start of the first test, the mixture was allowed to stand at 23 ° C for 10 minutes. Before the start of the second and third tests, the test was allowed to stand in the same environment for 5 minutes.
・ Test speed: 300 ± 10 times / minute ・ Number of tests: n = 3

上記<デマチャ式耐屈曲試験>において、屈曲回数が1万回、3万回、5万回のときの試験片が破断した場合は25.0mmとした。 In the above <hoax-type bending resistance test>, when the test piece was broken when the number of times of bending was 10,000 times, 30,000 times, and 50,000 times, it was set to 25.0 mm.

Figure 2020143270
Figure 2020143270

得られた切り込み長さの結果を踏まえ、試験例1,2,3を実施例1,2,3とし、試験例4,5を比較例1,2とした。 Based on the results of the obtained cut length, Test Examples 1, 2 and 3 were designated as Examples 1, 2 and 3, and Test Examples 4 and 5 were designated as Comparative Examples 1 and 5.

得られた各実施例・各比較例のシリコーンゴム系硬化性組成物について、以下の評価項目に基づいて評価を行った。 The obtained silicone rubber-based curable compositions of Examples and Comparative Examples were evaluated based on the following evaluation items.

<シリコーンゴムの作製>
得られたシリコーンゴム系硬化性組成物を、170℃、10MPaで15分間プレスし、厚さ1mmのシート状に成形すると共に、1次硬化した。続いて、200℃で4時間加熱し、2次硬化した。
以上により、シート状シリコーンゴム(シリコーンゴム系硬化性組成物の硬化物)を得た。
<Making silicone rubber>
The obtained silicone rubber-based curable composition was pressed at 170 ° C. and 10 MPa for 15 minutes to form a sheet having a thickness of 1 mm, and was first cured. Subsequently, it was heated at 200 ° C. for 4 hours and secondarily cured.
From the above, a sheet-shaped silicone rubber (a cured product of a silicone rubber-based curable composition) was obtained.

硬度については、2つのサンプルを用いて、各サンプルでn=5で測定を行い、計10個の測定の平均値を測定値とした。引張応力、破断伸びについては、3つのサンプルで行い、3つの平均値を測定値とした。引裂強度については、5つのサンプルで行い、5つの平均値を測定値とした。
それぞれの平均値を表2に示す。
The hardness was measured at n = 5 in each sample using two samples, and the average value of a total of 10 measurements was taken as the measured value. Tensile stress and elongation at break were measured with three samples, and the average value of the three was used as the measured value. The tear strength was measured with 5 samples, and the average value of 5 was used as the measured value.
The average value of each is shown in Table 2.

(硬度)
得られた厚さ1mmのシート状シリコーンゴムを6枚積層し、6mmの試験片を作製した。得られた試験片に対して、25℃において、JIS K6253(1997)に準拠してタイプAデュロメータ硬さを測定した。
(hardness)
Six sheets of the obtained sheet-shaped silicone rubber having a thickness of 1 mm were laminated to prepare a test piece having a thickness of 6 mm. The hardness of the obtained test piece was measured at 25 ° C. according to JIS K6253 (1997) with a Type A durometer.

(引裂強度)
得られた厚さ1mmのシート状シリコーンゴムを用いて、JIS K6252(2001)に準拠して、クレセント形試験片を作製し、25℃で、得られたクレセント形試験片の引裂強度を測定した。単位は、N/mmである。
(Tear strength)
Using the obtained sheet-shaped silicone rubber having a thickness of 1 mm, a crescent-shaped test piece was prepared in accordance with JIS K6252 (2001), and the tear strength of the obtained crescent-shaped test piece was measured at 25 ° C. .. The unit is N / mm.

(引張強度)
得られた厚さ1mmのシート状シリコーンゴムを用いて、JIS K6251(2004)に準拠して、ダンベル状3号形試験片を作製し、25℃で、得られたダンベル状3号形試験片の引張強度を測定した。単位はMPaである。
(Tensile strength)
Using the obtained sheet-shaped silicone rubber having a thickness of 1 mm, a dumbbell-shaped No. 3 test piece was prepared in accordance with JIS K6251 (2004), and the obtained dumbbell-shaped No. 3 test piece was prepared at 25 ° C. The tensile strength of the material was measured. The unit is MPa.

(破断伸び)
得られた厚さ1mmのシート状シリコーンゴムを用いて、JIS K6251(2004)に準拠して、ダンベル状3号形試験片を作製し、25℃で、得られたダンベル状3号形試験片の破断伸びを測定した。破断伸びは、[チャック間移動距離(mm)]÷[初期チャック間距離(60mm)]×100で計算した。単位は%である。
(Breaking elongation)
Using the obtained sheet-shaped silicone rubber having a thickness of 1 mm, a dumbbell-shaped No. 3 test piece was prepared in accordance with JIS K6251 (2004), and the obtained dumbbell-shaped No. 3 test piece was prepared at 25 ° C. The breaking elongation of was measured. The breaking elongation was calculated by [moving distance between chucks (mm)] ÷ [initial distance between chucks (60 mm)] × 100. The unit is%.

(耐久性の評価)
各実施例および各比較例で得られたシリコーンゴム系硬化性組成を用いて、170℃で5分、200℃で4時間の条件で硬化し、厚み:1mm×内径:2mmを有する筒状部材(チューブ)を作成した。得られた筒状部材にスチール針金(TRUSCO製 スチール針金 小巻タイプ 線径1.6mm×15m)を挿入した耐久性試験サンプルを準備して、耐久試験を行った。具体的には、耐久性試験サンプルの90°曲げ試験を100回繰り返して実施し、耐久性を判断した。試験後に外観異常がなかった筒状部材を○、試験後に亀裂や破損があるものを×とした。
(Evaluation of durability)
Using the silicone rubber-based curable composition obtained in each Example and each Comparative Example, it was cured under the conditions of 170 ° C. for 5 minutes and 200 ° C. for 4 hours, and a tubular member having a thickness of 1 mm × an inner diameter: 2 mm. (Tube) was created. A durability test sample in which a steel wire (TRUSCO steel wire small winding type wire diameter 1.6 mm × 15 m) was inserted into the obtained tubular member was prepared and a durability test was performed. Specifically, the 90 ° bending test of the durability test sample was repeated 100 times to determine the durability. Cylindrical members with no abnormal appearance after the test were marked with ◯, and those with cracks or breakage after the test were marked with x.

実施例1〜3のシリコーンゴム系硬化性組成物は、比較例1、2と比べて、その硬化物が繰り返し屈曲変形に対する耐久性に優れることが分かった。このような実施例1〜3のシリコーンゴム系硬化性組成物の成形体は、屈曲性部材、好ましくはウェアラブルデバイス、より好ましくはウェアラブルデバイスの基板に好適に用いることができる。 It was found that the silicone rubber-based curable compositions of Examples 1 to 3 were superior in durability to repeated bending deformation as compared with Comparative Examples 1 and 2. The molded product of the silicone rubber-based curable composition of Examples 1 to 3 can be suitably used for a flexible member, preferably a wearable device, and more preferably a substrate for a wearable device.

10 金型
20 凸部
30 成形空間
50 試験片
60 溝
70 切り込み
100 試験機
102 固定つかみ具
104 可動つかみ具
10 Mold 20 Convex part 30 Molding space 50 Test piece 60 Groove 70 Notch 100 Testing machine 102 Fixed gripper 104 Movable gripper

Claims (11)

ビニル基含有オルガノポリシロキサン(A)と、
シリカ粒子(C)と、を含む、シリコーンゴム系硬化性組成物であって、
当該シリコーンゴム系硬化性組成物の硬化物からなる試験片を用いて、JIS K 6260に準拠したデマチャ式耐屈曲試験を行い、下記の手順に基づいて測定される、屈曲回数が5万回のときの前記試験片における切り込み長さ変化率(L/L)が、1.1以上11.5以下である、
シリコーンゴム系硬化性組成物。
(手順)
当該シリコーンゴム系硬化性組成物を、170℃、10MPaで15分間プレスし、続いて、200℃で4時間加熱し、JIS K 6260に準拠して所定形状の試験片を作製する。
得られた試験片の中央において、幅方向に対して平行に、前記試験片を貫通する所定長さの切り込みを入れる。初期の切り込み長さをLとする。
続いて、切り込み付きの前記試験片を試験機のつかみ具間に設置し、下記の試験条件に基づいて、デマチャ式耐屈曲試験を行い、所定の屈曲回数後の前記試験片における切り込み長さ(mm)を測定する。
切り込み長さは、デマチャ式耐屈曲試験を3回行ったときの平均値とする。この切り込み長さの平均値をLとする。
切り込み長さ変化率を、式:L/Lに基づいて算出する。
(試験条件)
・試験規格:JIS K 6260準拠
・試験機:デマチャ屈曲き裂試験機
・試験温度:23±2℃
・つかみ具間最大距離:75mm
・往復運動距離:57mm
・試験速度:300±10回/分
・試験数:n=3
Vinyl group-containing organopolysiloxane (A) and
A silicone rubber-based curable composition containing silica particles (C).
Using a test piece made of a cured product of the silicone rubber-based curable composition, a hoax-type bending resistance test conforming to JIS K 6260 is performed, and the number of bendings is 50,000 times, which is measured based on the following procedure. The rate of change in cut length (L 5 / L 0 ) in the test piece is 1.1 or more and 11.5 or less.
Silicone rubber-based curable composition.
(procedure)
The silicone rubber-based curable composition is pressed at 170 ° C. and 10 MPa for 15 minutes, and then heated at 200 ° C. for 4 hours to prepare a test piece having a predetermined shape in accordance with JIS K 6260.
At the center of the obtained test piece, a notch having a predetermined length penetrating the test piece is made parallel to the width direction. Let L 0 be the initial cut length.
Subsequently, the test piece with a notch is installed between the gripping tools of the testing machine, a hoax-type bending resistance test is performed based on the following test conditions, and the cutting length in the test piece after a predetermined number of bendings ( mm) is measured.
The cut length shall be the average value when the hoax type bending resistance test is performed three times. Let L 5 be the average value of this cut length.
The rate of change in cut length is calculated based on the formula: L 5 / L 0 .
(Test conditions)
・ Test standard: JIS K 6260 compliant ・ Testing machine: Demacha bending crack tester ・ Test temperature: 23 ± 2 ℃
・ Maximum distance between grippers: 75 mm
・ Reciprocating distance: 57mm
・ Test speed: 300 ± 10 times / minute ・ Number of tests: n = 3
請求項1に記載のシリコーンゴム系硬化性組成物であって、
上記の手順に基づいたデマチャ式耐屈曲試験を行い、屈曲回数が1万回のときの前記試験片における切り込み長さをLとしたとき、L/Lが、1.0以上10.0以下を満たす、
シリコーンゴム系硬化性組成物。
The silicone rubber-based curable composition according to claim 1.
When a hoax-type bending resistance test based on the above procedure is performed and the cutting length in the test piece when the number of bendings is 10,000 is L 1 , L 1 / L 0 is 1.0 or more. Satisfy 0 or less,
Silicone rubber-based curable composition.
請求項1または2に記載のシリコーンゴム系硬化性組成物であって、
前記シリカ粒子(C)の含有量が、前記ビニル基含有オルガノポリシロキサン(A)の全体100重量部に対して、10重量部以上35重量部以下である、シリコーンゴム系硬化性組成物。
The silicone rubber-based curable composition according to claim 1 or 2.
A silicone rubber-based curable composition in which the content of the silica particles (C) is 10 parts by weight or more and 35 parts by weight or less with respect to 100 parts by weight of the vinyl group-containing organopolysiloxane (A).
請求項1〜3のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
下記の条件で測定される、当該シリコーンゴム系硬化性組成物の引裂強度が、25N/mm以上である、シリコーンゴム系硬化性組成物。
(引裂強度の測定条件)
当該シリコーンゴム系硬化性組成物の硬化物を用いてクレセント形試験片を作製し、得られたクレセント形試験片について、25℃、JIS K6252(2001)に準拠して、引裂強度を測定する。
The silicone rubber-based curable composition according to any one of claims 1 to 3.
A silicone rubber-based curable composition having a tear strength of 25 N / mm or more, which is measured under the following conditions.
(Measurement conditions for tear strength)
A crescent-shaped test piece is prepared using the cured product of the silicone rubber-based curable composition, and the tear strength of the obtained crescent-shaped test piece is measured at 25 ° C. in accordance with JIS K6252 (2001).
請求項1〜4のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
下記の条件で測定される、当該シリコーンゴム系硬化性組成物の硬化物の破断伸びが、500%以上であるシリコーンゴム系硬化性組成物。
(破断伸びの測定条件)
当該シリコーンゴム系硬化性組成物の硬化物を用いてJIS K6251(2004)に準拠してダンベル状3号形試験片を作製し、25℃における、得られたダンベル状3号形試験片の破断伸びを測定する。破断伸びは、[チャック間移動距離(mm)]÷[初期チャック間距離(60mm)]×100で計算する。単位は%である。
The silicone rubber-based curable composition according to any one of claims 1 to 4.
A silicone rubber-based curable composition having a breaking elongation of a cured product of the silicone rubber-based curable composition measured under the following conditions of 500% or more.
(Measurement conditions for elongation at break)
A dumbbell-shaped No. 3 test piece was prepared in accordance with JIS K6251 (2004) using the cured product of the silicone rubber-based curable composition, and the obtained dumbbell-shaped No. 3 test piece was broken at 25 ° C. Measure the elongation. The breaking elongation is calculated by [moving distance between chucks (mm)] ÷ [initial distance between chucks (60 mm)] × 100. The unit is%.
請求項1〜5のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
下記の条件で測定される、当該シリコーンゴム系硬化性組成物の硬化物の、デュロメータ硬さAが、10以上70以下である、シリコーンゴム系硬化性組成物。
(デュロメータ硬さAの測定条件)
当該シリコーンゴム系硬化性組成物の硬化物を用いてシート状試験片を作製し、得られたシート状試験片について、25℃、JIS K6253(1997)に準拠して、デュロメータ硬さAを測定する。
The silicone rubber-based curable composition according to any one of claims 1 to 5.
A silicone rubber-based curable composition having a durometer hardness A of 10 or more and 70 or less, which is a cured product of the silicone rubber-based curable composition measured under the following conditions.
(Measurement conditions for durometer hardness A)
A sheet-shaped test piece was prepared using the cured product of the silicone rubber-based curable composition, and the durometer hardness A of the obtained sheet-shaped test piece was measured at 25 ° C. in accordance with JIS K6253 (1997). To do.
請求項1〜6のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
下記の条件で測定される、当該シリコーンゴム系硬化性組成物の硬化物の引張強度が、5.0MPa以上である、シリコーンゴム系硬化性組成物。
(引張強度の測定条件)
当該シリコーンゴム系硬化性組成物の硬化物を用いてダンベル状3号形試験片を作製し、得られたダンベル状3号形試験片について、25℃、JIS K6251(2004)に準拠して、引張強度を測定する。
The silicone rubber-based curable composition according to any one of claims 1 to 6.
A silicone rubber-based curable composition in which the tensile strength of the cured product of the silicone rubber-based curable composition measured under the following conditions is 5.0 MPa or more.
(Measurement conditions for tensile strength)
A dumbbell-shaped No. 3 test piece was prepared using the cured product of the silicone rubber-based curable composition, and the obtained dumbbell-shaped No. 3 test piece was prepared at 25 ° C. in accordance with JIS K6251 (2004). Measure the tensile strength.
請求項1〜7のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
BET法で測定された前記シリカ粒子(C)比表面積は、200m/g以上500m/g以下である、シリコーンゴム系硬化性組成物。
The silicone rubber-based curable composition according to any one of claims 1 to 7.
A silicone rubber-based curable composition having a specific surface area of silica particles (C) measured by the BET method of 200 m 2 / g or more and 500 m 2 / g or less.
請求項1〜8のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
屈曲性部材用の成形体を形成するために用いる、シリコーンゴム系硬化性組成物。
The silicone rubber-based curable composition according to any one of claims 1 to 8.
A silicone rubber-based curable composition used for forming a molded product for a flexible member.
請求項1〜9のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
ウェアラブルデバイス用の成形体を形成するために用いる、シリコーンゴム系硬化性組成物。
The silicone rubber-based curable composition according to any one of claims 1 to 9.
A silicone rubber-based curable composition used to form a molded product for a wearable device.
請求項1〜10のいずれか一項に記載のシリコーンゴム系硬化性組成物の硬化物を備える構造体。 A structure comprising a cured product of the silicone rubber-based curable composition according to any one of claims 1 to 10.
JP2020012394A 2020-01-29 2020-01-29 Silicone rubber-based curable composition and structure comprising the same Pending JP2020143270A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020012394A JP2020143270A (en) 2020-01-29 2020-01-29 Silicone rubber-based curable composition and structure comprising the same
JP2024047884A JP2024071514A (en) 2020-01-29 2024-03-25 Silicone rubber-based hardening composition and structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012394A JP2020143270A (en) 2020-01-29 2020-01-29 Silicone rubber-based curable composition and structure comprising the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019043023A Division JP2020143259A (en) 2019-03-08 2019-03-08 Silicone rubber-based curable composition and wearable device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024047884A Division JP2024071514A (en) 2020-01-29 2024-03-25 Silicone rubber-based hardening composition and structure thereof

Publications (2)

Publication Number Publication Date
JP2020143270A true JP2020143270A (en) 2020-09-10
JP2020143270A5 JP2020143270A5 (en) 2022-03-10

Family

ID=72355471

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020012394A Pending JP2020143270A (en) 2020-01-29 2020-01-29 Silicone rubber-based curable composition and structure comprising the same
JP2024047884A Pending JP2024071514A (en) 2020-01-29 2024-03-25 Silicone rubber-based hardening composition and structure thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024047884A Pending JP2024071514A (en) 2020-01-29 2024-03-25 Silicone rubber-based hardening composition and structure thereof

Country Status (1)

Country Link
JP (2) JP2020143270A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090774A (en) * 2016-11-30 2018-06-14 住友ベークライト株式会社 Movable resin member and structure
JP6468392B1 (en) * 2018-06-08 2019-02-13 住友ベークライト株式会社 Elastomers and molded bodies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090774A (en) * 2016-11-30 2018-06-14 住友ベークライト株式会社 Movable resin member and structure
JP6468392B1 (en) * 2018-06-08 2019-02-13 住友ベークライト株式会社 Elastomers and molded bodies

Also Published As

Publication number Publication date
JP2024071514A (en) 2024-05-24

Similar Documents

Publication Publication Date Title
JP6881478B2 (en) Resin movable members and structures
JP7230326B2 (en) Plastic movable parts and structures
JP7289609B2 (en) Resin movable parts and medical equipment
JP7102763B2 (en) Elastomers and moldings
WO2020183969A1 (en) Silicone-rubber-based curable composition, structure, wearable device, and method for manufacturing structure
JP2020143270A (en) Silicone rubber-based curable composition and structure comprising the same
JP6844637B2 (en) Silicone rubber-based curable composition and its structure
JP2021116362A (en) Silicone rubber-based curable composition and actuator
JP2021088688A (en) Silicone rubber, and structure
JP6468392B1 (en) Elastomers and molded bodies
JP7275473B2 (en) Elastomers and moldings
KR20240103065A (en) Silicone-rubber-based curable composition, structure, wearable device, and method for manufacturing structure
JP7043867B2 (en) Resin movable members and robots
JP2023085568A (en) Elastomer and wearable device therewith
JP2021081029A (en) Silicone rubber-based curable composition and fluid-driven actuator including the same
JP2021138895A (en) Elastomer and wearable device
JP7434827B2 (en) Silicone rubber-based curable composition and fluid-driven actuator using the same
JP2021080397A (en) Silicone rubber-based curable composition and fluid-driven actuator using the same
JP7467938B2 (en) Silicone rubber-based hardening composition and fluid-driven actuator
JP7124534B2 (en) Silicone rubber-based curable composition and structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240401

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240510