JP2020142207A - Hydrogenation device, and determination method of degree-of-wear of hydrogen permeable membrane - Google Patents

Hydrogenation device, and determination method of degree-of-wear of hydrogen permeable membrane Download PDF

Info

Publication number
JP2020142207A
JP2020142207A JP2019041496A JP2019041496A JP2020142207A JP 2020142207 A JP2020142207 A JP 2020142207A JP 2019041496 A JP2019041496 A JP 2019041496A JP 2019041496 A JP2019041496 A JP 2019041496A JP 2020142207 A JP2020142207 A JP 2020142207A
Authority
JP
Japan
Prior art keywords
chamber
hydrogen
degree
permeable membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019041496A
Other languages
Japanese (ja)
Other versions
JP7022089B2 (en
Inventor
孝士 橘
Takashi Tachibana
孝士 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Trim Co Ltd
Original Assignee
Nihon Trim Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Trim Co Ltd filed Critical Nihon Trim Co Ltd
Priority to JP2019041496A priority Critical patent/JP7022089B2/en
Priority to PCT/JP2020/004380 priority patent/WO2020179339A1/en
Priority to CN202080012870.4A priority patent/CN113396009B/en
Priority to TW109105874A priority patent/TW202100231A/en
Publication of JP2020142207A publication Critical patent/JP2020142207A/en
Application granted granted Critical
Publication of JP7022089B2 publication Critical patent/JP7022089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a hydrogenation device and a determination method of the degree-of-wear of a hydrogen permeable membrane, capable of determining accurately the degree-of-wear of a hydrogen permeable membrane module by a simple and inexpensive constitution.SOLUTION: A hydrogenation device 1 includes a first chamber 31 into which hydrogen gas is supplied, a second chamber 32 into which raw water is supplied, a hydrogen permeable membrane 33 for moving hydrogen gas from the first chamber 31 to the second chamber 32, in order to generate hydrogenated water in the second chamber 32, a pressure sensor 51 for detecting a pressure in the first chamber 31, and a control part for determining the degree-of-wear of the hydrogen permeable membrane 33 at least based on the pressure in the first chamber 31.SELECTED DRAWING: Figure 2

Description

本発明は、水に水素が付加された水素付加水を生成する装置及び水素透過膜の消耗度判定方法に関する。 The present invention relates to an apparatus for generating hydrogenated water in which hydrogen is added to water and a method for determining the degree of wear of a hydrogen permeable membrane.

水に水素を付加する方法として、水素透過膜(ガス透過膜)によって水素ガス流通部と原料水流通部とが区画されたモジュールを用い、水素ガス流通部に加圧した水素ガスを供給して、原料水流通部に供給した原料水に水素を溶解させる技術が知られている(例えば、特許文献1参照)。 As a method of adding hydrogen to water, a module in which a hydrogen gas flow section and a raw material water flow section are partitioned by a hydrogen permeation film (gas permeation film) is used, and pressurized hydrogen gas is supplied to the hydrogen gas flow section. , A technique for dissolving hydrogen in the raw material water supplied to the raw material water distribution section is known (see, for example, Patent Document 1).

特開2009−125654号公報JP-A-2009-125654

上記モジュールは、水素透過膜の消耗によって劣化するため、定期的な交換が推奨される。水素透過膜の消耗度は、例えば、上記モジュールの使用時間等によって簡易的に推定可能である。 The module deteriorates due to wear of the hydrogen permeable membrane, so regular replacement is recommended. The degree of wear of the hydrogen permeable membrane can be easily estimated from, for example, the usage time of the module.

しかしながら、水素透過膜は高価であることから、低廉なランニングコストで水素付加水を生成するためには、水素透過膜の消耗度をより正確に判定する技術の確立が求められている。 However, since hydrogen permeable membranes are expensive, it is required to establish a technique for more accurately determining the degree of consumption of hydrogen permeable membranes in order to generate hydrogenated water at a low running cost.

本発明は、以上のような実状に鑑み案出されたもので、簡素かつ安価な構成で水素透過膜の消耗度を正確に判定できる水素付加装置及び水素透過膜の消耗度判定方法を提供することを主たる目的としている。 The present invention has been devised in view of the above circumstances, and provides a hydrogenation apparatus capable of accurately determining the degree of wear of a hydrogen permeable membrane with a simple and inexpensive configuration, and a method for determining the degree of wear of a hydrogen permeable membrane. The main purpose is that.

本発明の第1発明は、水に水素を付加するための水素付加装置であって、水素ガスが供給される第1室と、原水が供給される第2室と、前記第2室で水素付加水を生成するために、前記水素ガスを前記第1室から前記第2室へと移動させる水素透過膜と、前記第1室の圧力を検出する圧力検出部と、少なくとも、前記圧力に基づいて、前記水素透過膜の消耗度を判定する判定部とを備える。 The first invention of the present invention is a hydrogenation apparatus for adding hydrogen to water, in which hydrogen is supplied in a first chamber to which hydrogen gas is supplied, a second chamber to which raw water is supplied, and hydrogen in the second chamber. A hydrogen permeable film that moves the hydrogen gas from the first chamber to the second chamber in order to generate additional water, a pressure detection unit that detects the pressure in the first chamber, and at least based on the pressure. A determination unit for determining the degree of wear of the hydrogen permeable film is provided.

本発明に係る前記水素付加装置において、前記第2室から取り出された前記水素付加水の溶存水素濃度を検出する水素濃度検出部をさらに備える、ことが望ましい。 It is desirable that the hydrogenation apparatus according to the present invention further includes a hydrogen concentration detecting unit for detecting the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber.

本発明に係る前記水素付加装置において、前記第1室に供給する前記水素ガスを生成する水素ガス生成部をさらに備える、ことが望ましい。 It is desirable that the hydrogenation apparatus according to the present invention further includes a hydrogen gas generating unit that generates the hydrogen gas supplied to the first chamber.

本発明に係る前記水素付加装置において、前記水素ガス生成部は、陽極給電体と陰極給電体とを有し、水を電気分解することにより前記水素ガスを生成し、前記第1室に供給する電解槽を有し、前記陽極給電体及び前記陰極給電体に印加する電圧を制御する制御部をさらに備え、前記制御部は、前記溶存水素濃度が一定となるように、前記電圧を制御する、ことが望ましい。 In the hydrogen addition device according to the present invention, the hydrogen gas generating unit has an anode feeding body and a cathode feeding body, generates the hydrogen gas by electrolyzing water, and supplies the hydrogen gas to the first chamber. It has an electrolytic cell, further includes a control unit that controls a voltage applied to the anode power supply body and the cathode power supply body, and the control unit controls the voltage so that the dissolved hydrogen concentration becomes constant. Is desirable.

本発明に係る前記水素付加装置において、前記判定部は、さらに、前記溶存水素濃度に基づいて、前記水素透過膜の消耗度を判定する、ことが望ましい。 In the hydrogenation apparatus according to the present invention, it is desirable that the determination unit further determines the degree of consumption of the hydrogen permeation membrane based on the dissolved hydrogen concentration.

本発明に係る前記水素付加装置において、前記判定部は、前記圧力及び前記溶存水素濃度の関係に基づいて、前記水素透過膜の消耗度を判定する、ことが望ましい。 In the hydrogenation apparatus according to the present invention, it is desirable that the determination unit determines the degree of consumption of the hydrogen permeation membrane based on the relationship between the pressure and the dissolved hydrogen concentration.

本発明に係る前記水素付加装置において、前記第2室への前記原水の単位時間あたりの供給量を検出する流量検出部をさらに備え、前記判定部は、さらに、前記供給量に基づいて、前記水素透過膜の消耗度を判定する、ことが望ましい。 The hydrogenation apparatus according to the present invention further includes a flow rate detection unit that detects the supply amount of the raw water to the second chamber per unit time, and the determination unit further includes the determination unit based on the supply amount. It is desirable to determine the degree of wear of the hydrogen permeable membrane.

本発明の第2発明は、水素ガスが供給される第1室と、原水が供給される第2室と、前記水素ガスを前記第1室から前記第2室へと移動させる水素透過膜とを備えた水素透過モジュールにおいて、前記水素透過膜の消耗度を判定する消耗度判定方法であって、前記第1室の圧力を検出するステップと、少なくとも、前記圧力に基づいて、前記水素透過膜の消耗度を判定するステップとを含む。 The second invention of the present invention includes a first chamber to which hydrogen gas is supplied, a second chamber to which raw water is supplied, and a hydrogen permeable film for moving the hydrogen gas from the first chamber to the second chamber. A method for determining the degree of wear of the hydrogen permeable film, which comprises the step of detecting the pressure in the first chamber, and at least the hydrogen permeable film based on the pressure. Includes a step to determine the degree of consumption of.

本第1発明の前記水素付加装置では、前記水素ガスが前記水素透過膜を透過して前記第1室から前記第2室へと移動することにより、前記第2室で前記水素付加水が生成される。例えば、前記水素透過膜が消耗すると、前記第1室の前記圧力は予め想定されていた範囲を超えることがある。そこで、本第1発明では、前記判定部が、少なくとも、前記第1室の前記圧力に基づいて、前記水素透過膜の前記消耗度を判定することにより、簡素かつ安価な構成で前記水素透過膜モジュールの前記消耗度を正確に判定することが可能となる。 In the hydrogenation apparatus of the first invention, the hydrogen gas permeates the hydrogen permeable membrane and moves from the first chamber to the second chamber, so that the hydrogenated water is generated in the second chamber. Will be done. For example, when the hydrogen permeable membrane is exhausted, the pressure in the first chamber may exceed a previously assumed range. Therefore, in the first invention, the determination unit determines the degree of wear of the hydrogen permeable membrane based on at least the pressure in the first chamber, so that the hydrogen permeable membrane has a simple and inexpensive configuration. It is possible to accurately determine the degree of wear of the module.

本第2発明の前記水素透過膜の前記消耗度判定方法は、前記第1室の前記圧力を検出する前記ステップと、少なくとも、前記圧力に基づいて、前記水素透過膜の前記消耗度を判定する前記ステップを含むので、簡素かつ安価な構成で前記水素透過膜モジュールの前記消耗度を正確に判定することが可能となる。 The method for determining the degree of wear of the hydrogen permeable membrane of the second invention determines the degree of wear of the hydrogen permeable membrane based on the step of detecting the pressure in the first chamber and at least the pressure. Since the steps are included, it is possible to accurately determine the degree of wear of the hydrogen permeable membrane module with a simple and inexpensive configuration.

本発明の実施の一形態である水素付加装置の概略構成を示す図である。It is a figure which shows the schematic structure of the hydrogenation apparatus which is one Embodiment of this invention. 水素付加装置の主要な構成を示す図である。It is a figure which shows the main structure of a hydrogenation apparatus. 水素付加装置の電気的な構成を示すブロック図である。It is a block diagram which shows the electrical structure of a hydrogenation apparatus. 本発明の実施の一形態の消耗度判定方法の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the wear degree determination method of one Embodiment of this invention.

以下、本発明の実施の一形態が図面に基づき説明される。
図1は、本発明の水素付加装置の一実施形態の概略構成を示している。水素付加装置1は、水に水素を付加するための装置であり、水素が付加された水素付加水は、例えば、透析液調製用水として透析液の調製に用いられる(以下、水素付加水を透析液調製用水と記すこともある)。近年、透析液の調製に水素付加水を用いた血液透析は、患者の酸化ストレス低減に有効であるとして、注目されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of an embodiment of the hydrogenation apparatus of the present invention. The hydrogenation device 1 is a device for adding hydrogen to water, and the hydrogenated water to which hydrogen is added is used for preparing a dialysate as, for example, dialysate preparation water (hereinafter, hydrogenated water is dialyzed). It may also be referred to as water for liquid preparation). In recent years, hemodialysis using hydrogenated water for preparing dialysate has been attracting attention as being effective in reducing oxidative stress in patients.

水素付加装置1は、例えば、逆浸透膜処理装置200の下流側に配置される。水素付加装置1と逆浸透膜処理装置200とは、統合されて一つの装置として構成されていてもよい。水素付加装置1の下流側には、例えば、透析液調製用水を用いて液状の透析原剤を希釈する透析原剤希釈装置(図示せず)に接続されている。 The hydrogenation apparatus 1 is arranged, for example, on the downstream side of the reverse osmosis membrane treatment apparatus 200. The hydrogenation apparatus 1 and the reverse osmosis membrane treatment apparatus 200 may be integrated and configured as one apparatus. The downstream side of the hydrogenation apparatus 1 is connected to, for example, a dialysis base material diluting device (not shown) that dilutes a liquid dialysis base material with water for preparing a dialysate.

逆浸透膜処理装置200は、逆浸透膜を用いて外部から供給された水を浄化する。逆浸透膜処理装置200と、水素付加装置1とは、処理水供給路10によって接続されている。逆浸透膜処理装置200によって浄化処理された水(以下、処理水とする)は、処理水供給路10を通過して水素付加装置1に供給され、透析液調製用の水素付加水を生成するための原水(以下、原水と記す)として用いられる。 The reverse osmosis membrane treatment device 200 purifies water supplied from the outside by using the reverse osmosis membrane. The reverse osmosis membrane treatment device 200 and the hydrogenation device 1 are connected by a treated water supply path 10. The water purified by the reverse osmosis membrane treatment device 200 (hereinafter referred to as treated water) passes through the treated water supply path 10 and is supplied to the hydrogenation device 1 to generate hydrogenated water for preparing a dialysate. It is used as raw water for dialysis (hereinafter referred to as raw water).

透析液調製用水の生成に用いられる水素付加装置1は、逆浸透膜処理装置200から供給された原水に水素を付加して透析液調製用の水素付加水を生成する。水素付加装置1と、上記透析原剤希釈装置とは、水素付加水供給路20によって接続されている。水素付加装置1によって生成された水素付加水は、水素付加水供給路20を通過して、上記透析原剤希釈装置に供給され、透析液の調製に用いられる。 The hydrogenation apparatus 1 used for producing the dialysate preparation water adds hydrogen to the raw water supplied from the reverse osmosis membrane treatment apparatus 200 to generate hydrogenated water for dialysate preparation. The hydrogenation device 1 and the dialysis base material diluting device are connected by a hydrogenation water supply path 20. The hydrogenated water generated by the hydrogenation apparatus 1 passes through the hydrogenated water supply channel 20 and is supplied to the dialysate diluting apparatus and used for preparing a dialysate.

図2は、水素付加装置1の主要な構成を示している。水素付加装置1は、水素ガス生成部2と、水素透過膜モジュール3とを含んでいる。 FIG. 2 shows the main configuration of the hydrogenation apparatus 1. The hydrogenation apparatus 1 includes a hydrogen gas generation unit 2 and a hydrogen permeation membrane module 3.

水素ガス生成部2は、水素ガスを生成し、当該水素ガスを水素透過膜モジュール3に供給する。本実施形態では、水素ガス生成部2として電解槽4が適用されている。電解槽4は、水を電気分解することにより、水素ガスを発生させる。 The hydrogen gas generation unit 2 generates hydrogen gas and supplies the hydrogen gas to the hydrogen permeation membrane module 3. In this embodiment, the electrolytic cell 4 is applied as the hydrogen gas generating unit 2. The electrolytic cell 4 generates hydrogen gas by electrolyzing water.

電解槽4は、第1給電体41が配された第1極室40aと第2給電体42が配された第2極室40bとが隔膜43によって区分されてなる。 In the electrolytic cell 4, the first pole chamber 40a in which the first feeding body 41 is arranged and the second pole chamber 40b in which the second feeding body 42 is arranged are separated by a diaphragm 43.

第1給電体41と第2給電体42とは、極性が異なる。すなわち、第1給電体41及び第2給電体42の一方は陽極給電体として適用され、他方は陰極給電体として適用される。本実施形態では、第1給電体41が陽極給電体として適用され、第2給電体42が陰極給電体として適用されている。電解室40の第1極室40a及び第2極室40bの両方に水が供給され、第1給電体41及び第2給電体42に直流電圧が印加されることにより、電解室40内で水の電気分解が生ずる。 The polarities of the first feeding body 41 and the second feeding body 42 are different. That is, one of the first feeding body 41 and the second feeding body 42 is applied as an anode feeding body, and the other is applied as a cathode feeding body. In the present embodiment, the first feeding body 41 is applied as an anode feeding body, and the second feeding body 42 is applied as a cathode feeding body. Water is supplied to both the first pole chamber 40a and the second pole chamber 40b of the electrolytic chamber 40, and a DC voltage is applied to the first feeding body 41 and the second feeding body 42, so that water is supplied in the electrolytic chamber 40. Electrolysis occurs.

図3は、水素付加装置1の電気的な構成を示すブロック図である。第1給電体41及び第2給電体42の極性及び第1給電体41及び第2給電体42に印加される電圧は、制御部9によって制御される。制御部9は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。制御部9は、第1給電体41及び第2給電体42の他、装置各部の制御を司る。 FIG. 3 is a block diagram showing an electrical configuration of the hydrogenation apparatus 1. The polarity of the first feeding body 41 and the second feeding body 42 and the voltage applied to the first feeding body 41 and the second feeding body 42 are controlled by the control unit 9. The control unit 9 has, for example, a CPU (Central Processing Unit) that executes various arithmetic processes, information processing, and the like, a program that controls the operation of the CPU, and a memory that stores various information. The control unit 9 controls each unit of the device in addition to the first power supply body 41 and the second power supply body 42.

第1給電体41と制御部9との間の電流供給ラインには、電流検出器44が設けられている。電流検出器44は、第2給電体42と制御部9との間の電流供給ラインに設けられていてもよい。電流検出器44は、第1給電体41、第2給電体42に供給する電解電流を検出し、その値に相当する電気信号を制御部9に出力する。 A current detector 44 is provided in the current supply line between the first power feeding body 41 and the control unit 9. The current detector 44 may be provided in the current supply line between the second feeding body 42 and the control unit 9. The current detector 44 detects the electrolytic current supplied to the first feeding body 41 and the second feeding body 42, and outputs an electric signal corresponding to the value to the control unit 9.

制御部9は、例えば、電流検出器44から出力された電気信号に基づいて、第1給電体41及び第2給電体42に印加する直流電圧を制御する。より具体的には、制御部9は、電流検出器44によって検出される電解電流が予め設定された所望の値となるように、第1給電体41及び第2給電体42に印加する直流電圧をフィードバック制御する。例えば、電解電流が過大である場合、制御部9は、上記電圧を減少させ、電解電流が過小である場合、制御部9は、上記電圧を増加させる。これにより、第1給電体41及び第2給電体42に供給する電解電流が適切に制御される。 The control unit 9 controls the DC voltage applied to the first feeding body 41 and the second feeding body 42, for example, based on the electric signal output from the current detector 44. More specifically, the control unit 9 applies a DC voltage to the first feeding body 41 and the second feeding body 42 so that the electrolytic current detected by the current detector 44 becomes a preset desired value. Feedback control. For example, when the electrolytic current is excessive, the control unit 9 reduces the voltage, and when the electrolytic current is too small, the control unit 9 increases the voltage. As a result, the electrolytic current supplied to the first feeding body 41 and the second feeding body 42 is appropriately controlled.

図1、2において、電解室40内で水が電気分解されることにより、水素ガス及び酸素ガスが発生する。例えば、陰極側の第2極室40bでは、水素ガスが発生し、当該水素ガスは水素透過膜モジュール3に供給される。一方、陽極側の第1極室40aでは、酸素ガスが発生する。 In FIGS. 1 and 2, hydrogen gas and oxygen gas are generated by electrolysis of water in the electrolytic chamber 40. For example, in the second electrode chamber 40b on the cathode side, hydrogen gas is generated, and the hydrogen gas is supplied to the hydrogen permeation membrane module 3. On the other hand, oxygen gas is generated in the first electrode chamber 40a on the anode side.

隔膜43には、例えば、スルホン酸基を有するフッ素系樹脂からなる固体高分子膜が適宜用いられている。固体高分子膜は、電気分解により、陽極側の第1極室40aで発生したオキソニウムイオンを陰極側の第2極室40bへと移動させて、水素ガスの生成原料とする。従って、電気分解の際に水酸化物イオンが発生することなく、第1極室40a及び第2極室40b内の電解水のpHが変化しない。 For the diaphragm 43, for example, a solid polymer membrane made of a fluorine-based resin having a sulfonic acid group is appropriately used. In the solid polymer membrane, the oxonium ion generated in the first electrode chamber 40a on the anode side is moved to the second electrode chamber 40b on the cathode side by electrolysis, and is used as a raw material for producing hydrogen gas. Therefore, the pH of the electrolyzed water in the first polar chamber 40a and the second polar chamber 40b does not change without generating hydroxide ions during electrolysis.

水素透過膜モジュール3は、第1室31と、第2室32と、水素透過膜33とを備える。第1室31と第2室32とは、水素透過膜33によって隔てられている。 The hydrogen permeable membrane module 3 includes a first chamber 31, a second chamber 32, and a hydrogen permeable membrane 33. The first chamber 31 and the second chamber 32 are separated by a hydrogen permeable membrane 33.

第1室31と電解槽4の第2極室40bとは、水素供給路5によって接続されている。電解槽4の第2極室40bにて生成された水素ガスは、水素供給路5を通過して、第1室31に供給される。 The first chamber 31 and the second pole chamber 40b of the electrolytic cell 4 are connected by a hydrogen supply path 5. The hydrogen gas generated in the second electrode chamber 40b of the electrolytic cell 4 passes through the hydrogen supply passage 5 and is supplied to the first chamber 31.

一方、第2室32は、処理水供給路10と接続されている。第2室32には、逆浸透膜処理装置200から原水が供給される。 On the other hand, the second chamber 32 is connected to the treated water supply path 10. Raw water is supplied to the second chamber 32 from the reverse osmosis membrane treatment device 200.

水素透過膜33は、例えば、水素ガスを透過する多孔質膜である中空糸膜によって構成されている。第1室31には、電解槽4にて生成された水素ガスが次々と供給されるので、第1室31内の圧力は高められる。中空糸膜は、水素ガスを圧力が大きい第1室31から圧力が小さい第2室32へと移動させる。水素透過膜33は、水素ガスを、高圧の流体側から低圧の流体の側に透過させる機能を有する膜であればよく、中空糸膜に限られない。 The hydrogen permeable membrane 33 is composed of, for example, a hollow fiber membrane which is a porous membrane that allows hydrogen gas to permeate. Since the hydrogen gas generated in the electrolytic cell 4 is supplied to the first chamber 31 one after another, the pressure in the first chamber 31 is increased. The hollow fiber membrane moves hydrogen gas from the high pressure first chamber 31 to the low pressure second chamber 32. The hydrogen permeable membrane 33 may be a membrane having a function of allowing hydrogen gas to permeate from the high-pressure fluid side to the low-pressure fluid side, and is not limited to the hollow fiber membrane.

本実施形態では、水素透過膜33は、第2室32で水素付加水を生成するために、電解槽4から次々と供給された水素ガスを第1室31から第2室32へと移動させる。これにより、水素ガスを加圧するためのポンプ等の構成を必要とすることなく、簡素かつ安価な構成で水素付加水を生成することが可能となる。 In the present embodiment, the hydrogen permeation membrane 33 moves hydrogen gas supplied one after another from the electrolytic cell 4 from the first chamber 31 to the second chamber 32 in order to generate hydrogenated water in the second chamber 32. .. This makes it possible to generate hydrogenated water with a simple and inexpensive configuration without the need for a configuration such as a pump for pressurizing hydrogen gas.

ところで、水素透過膜33は、使用に伴い消耗する。そして第2室32から取り出された水素付加水の溶存水素濃度は、水素透過膜33の消耗度に依存する。より具体的には、水素透過膜33が新しいとき、第2室32にて生成される水素付加水の溶存水素濃度は高く、水素透過膜33が消耗するに従い、上記溶存水素濃度は低下する。そこで、本水素付加装置1では、制御部9が、水素透過膜33の消耗度を判定する判定部として機能し、水素透過膜33の消耗度を監視する。なお、制御部9による水素透過膜33の消耗度の判定は、随時又は定期的に実行される。 By the way, the hydrogen permeable membrane 33 is consumed with use. The dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 depends on the degree of consumption of the hydrogen permeable membrane 33. More specifically, when the hydrogen permeable membrane 33 is new, the dissolved hydrogen concentration of the hydrogenated water generated in the second chamber 32 is high, and as the hydrogen permeable membrane 33 is consumed, the dissolved hydrogen concentration decreases. Therefore, in the present hydrogenation apparatus 1, the control unit 9 functions as a determination unit for determining the degree of wear of the hydrogen permeable membrane 33, and monitors the degree of wear of the hydrogen permeable membrane 33. The control unit 9 determines the degree of wear of the hydrogen permeable membrane 33 at any time or periodically.

水素供給路5には、圧力センサー(圧力検出部)51が設けられている。圧力センサー51は、水素供給路5内の圧力を検出する。水素供給路5は第1室31に連通しているので、水素供給路5内の圧力と第1室31の圧力とは実質的に等しい。従って、圧力センサー51によって第1室31内の圧力が検出される。圧力センサー51は、第1室31に設けられていてもよい。圧力センサー51は、検出した第1室31の圧力に対応する電気信号を制御部9に出力する。 A pressure sensor (pressure detection unit) 51 is provided in the hydrogen supply path 5. The pressure sensor 51 detects the pressure in the hydrogen supply path 5. Since the hydrogen supply path 5 communicates with the first chamber 31, the pressure in the hydrogen supply path 5 and the pressure in the first chamber 31 are substantially equal. Therefore, the pressure sensor 51 detects the pressure in the first chamber 31. The pressure sensor 51 may be provided in the first chamber 31. The pressure sensor 51 outputs an electric signal corresponding to the detected pressure in the first chamber 31 to the control unit 9.

例えば、前記水素透過膜が消耗すると、前記第1室の前記圧力は予め想定されていた範囲を超えることがある。従って、第1室31の圧力が予め定められた閾値を超える場合、水素透過膜33の消耗が進行していると判定できる。上記閾値は複数定められていてもよい。そこで、制御部9は、圧力センサー51から入力された電気信号、すなわち、第1室31の圧力に基づいて、水素透過膜33の消耗度を判定する。これにより、簡素かつ安価な構成で水素透過膜モジュール3の消耗度を正確に判定することが可能となる。 For example, when the hydrogen permeable membrane is exhausted, the pressure in the first chamber may exceed a previously assumed range. Therefore, when the pressure in the first chamber 31 exceeds a predetermined threshold value, it can be determined that the hydrogen permeable membrane 33 is being consumed. A plurality of the above threshold values may be set. Therefore, the control unit 9 determines the degree of wear of the hydrogen permeable membrane 33 based on the electric signal input from the pressure sensor 51, that is, the pressure in the first chamber 31. This makes it possible to accurately determine the degree of wear of the hydrogen permeable membrane module 3 with a simple and inexpensive configuration.

本水素付加装置1では、制御部9によって判定された水素透過膜33の消耗度を出力する出力部91が設けられている。出力部91は、上記消耗度を音声又は画像等によって出力する。このような出力部91は、スピーカー装置、LED(発光ダイオード)、液晶ディスプレイ(Liquid Crystal Display)等によって実現可能である。また、出力部91は、水素付加装置1を管理するコンピューター装置に、水素透過膜33の消耗度に対応する無線又は有線による信号を出力するように構成されていてもよい。このような出力部91により、水素付加装置1の管理者は、水素透過膜33の消耗度を容易に知得できる。 The hydrogenation apparatus 1 is provided with an output unit 91 that outputs the degree of wear of the hydrogen permeation membrane 33 determined by the control unit 9. The output unit 91 outputs the degree of wear by voice, an image, or the like. Such an output unit 91 can be realized by a speaker device, an LED (light emitting diode), a liquid crystal display (Liquid Crystal Display), or the like. Further, the output unit 91 may be configured to output a wireless or wired signal corresponding to the degree of wear of the hydrogen permeable membrane 33 to the computer device that manages the hydrogenation device 1. With such an output unit 91, the administrator of the hydrogenation apparatus 1 can easily know the degree of wear of the hydrogen permeation membrane 33.

図1に示されるように、本実施形態では、電解槽4で電気分解される水は、逆浸透膜処理装置200にて逆浸透膜処理された処理水が適用される。処理水は、処理水供給路10及び処理水供給路10から分岐する処理水供給路11等を経て、電解槽4に供給される。すなわち、水素ガス生成部2の電解槽4と水素透過膜モジュール3の第2室32とは、同一の水源である逆浸透膜処理装置200から処理水の供給を受ける。このような構成により、水素付加装置1及びその周辺の配管が簡素化される。 As shown in FIG. 1, in the present embodiment, the treated water that has been subjected to the reverse osmosis membrane treatment by the reverse osmosis membrane treatment apparatus 200 is applied to the water that is electrolyzed in the electrolytic cell 4. The treated water is supplied to the electrolytic cell 4 via the treated water supply path 10 and the treated water supply path 11 branching from the treated water supply path 10. That is, the electrolytic cell 4 of the hydrogen gas generation unit 2 and the second chamber 32 of the hydrogen permeation membrane module 3 receive the treated water from the reverse osmosis membrane treatment device 200, which is the same water source. With such a configuration, the hydrogenation device 1 and the piping around it are simplified.

水素付加水供給路20には、水素濃度センサー(水素濃度検出部)21が設けられている、のが望ましい。水素濃度センサー21は、第2室32から取り出された水素付加水の溶存水素濃度を検出し、対応する電気信号を制御部9に出力する。 It is desirable that the hydrogenated water supply path 20 is provided with a hydrogen concentration sensor (hydrogen concentration detection unit) 21. The hydrogen concentration sensor 21 detects the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32, and outputs a corresponding electric signal to the control unit 9.

例えば、水素透過膜33の消耗は、水素付加水の溶存水素濃度に影響を及ぼすことがある。従って、水素付加水の溶存水素濃度が予め定められた閾値未満である場合、水素透過膜33の消耗が進行していると判定できる。そこで、制御部9は、水素濃度センサー21から入力された電気信号、すなわち、水素付加水の溶存水素濃度に基づいて、水素透過膜33の消耗度を判定する、ように構成されていてもよい。 For example, the consumption of the hydrogen permeable membrane 33 may affect the dissolved hydrogen concentration of the hydrogenated water. Therefore, when the dissolved hydrogen concentration of the hydrogenated water is less than a predetermined threshold value, it can be determined that the hydrogen permeable membrane 33 is being consumed. Therefore, the control unit 9 may be configured to determine the degree of consumption of the hydrogen permeable membrane 33 based on the electric signal input from the hydrogen concentration sensor 21, that is, the dissolved hydrogen concentration of the hydrogenated water. ..

例えば、制御部9が、水素付加水の溶存水素濃度のみに基づいて、水素透過膜33の消耗度を判定するように構成されていてもよく、第1室31の圧力及び水素付加水の溶存水素濃度に基づいて、上記消耗度を判定するように構成されていてもよい。さらに、後者の場合は、第1室31の圧力に基づいて判定された消耗度及び水素付加水の溶存水素濃度に基づいて判定された消耗度のアンド関数又はオア関数によって、上記消耗度を総合的に判定するように構成されていてもよい。さらにまた、第1室31の圧力に基づいて、水素透過膜33の消耗度を判定した後、水素付加水の溶存水素濃度に基づいて、上記消耗度を補正するように構成されていてもよく、水素付加水の溶存水素濃度に基づいて、水素透過膜33の消耗度を判定した後、第1室31の圧力に基づいて、上記消耗度を補正するように構成されていてもよい。これにより、簡素かつ安価な構成で水素透過膜モジュール3の消耗度を正確に判定することが可能となる。 For example, the control unit 9 may be configured to determine the degree of consumption of the hydrogen permeable film 33 based only on the dissolved hydrogen concentration of the hydrogenated water, and the pressure of the first chamber 31 and the dissolved hydrogenated water may be determined. It may be configured to determine the degree of consumption based on the hydrogen concentration. Further, in the latter case, the consumption degree is totaled by the AND function or the or function of the consumption degree determined based on the pressure of the first chamber 31 and the consumption degree determined based on the dissolved hydrogen concentration of the hydrogenated water. It may be configured to make a determination. Furthermore, after determining the degree of consumption of the hydrogen permeable film 33 based on the pressure of the first chamber 31, the degree of consumption may be corrected based on the dissolved hydrogen concentration of the hydrogenated water. After determining the degree of consumption of the hydrogen permeable film 33 based on the dissolved hydrogen concentration of the hydrogenated water, the degree of consumption may be corrected based on the pressure of the first chamber 31. This makes it possible to accurately determine the degree of wear of the hydrogen permeable membrane module 3 with a simple and inexpensive configuration.

本実施形態では、制御部9は、水素濃度センサー21から入力された電気信号、すなわち、水素付加水の溶存水素濃度に基づいて、第1給電体41及び第2給電体42に印加する直流電圧を制御する。例えば、水素濃度センサー21によって検出された溶存水素濃度が、目標値よりも不足している場合、第1給電体41及び第2給電体42に印加する直流電圧を高めることにより、第1室31の圧力を高め、水素付加水の溶存水素濃度を高める。一方、水素濃度センサー21によって検出された溶存水素濃度が、目標値を超えている場合、第1給電体41及び第2給電体42に印加する直流電圧を低めることにより、第1室31の圧力を抑制し、水素付加水の溶存水素濃度を低減する。このように、制御部9が溶存水素濃度が一定となるように第1給電体41及び第2給電体42に印加する直流電圧を制御することにより、所望の溶存水素濃度の水素付加水が、水素付加装置1にて生成され、透析原剤希釈装置に供給される。 In the present embodiment, the control unit 9 applies a DC voltage to the first feeding body 41 and the second feeding body 42 based on the electric signal input from the hydrogen concentration sensor 21, that is, the dissolved hydrogen concentration of the hydrogenated water. To control. For example, when the dissolved hydrogen concentration detected by the hydrogen concentration sensor 21 is less than the target value, the first chamber 31 is 31 by increasing the DC voltage applied to the first power feeding body 41 and the second feeding body 42. Increase the pressure of the hydrogenated water and increase the dissolved hydrogen concentration of the hydrogenated water. On the other hand, when the dissolved hydrogen concentration detected by the hydrogen concentration sensor 21 exceeds the target value, the pressure in the first chamber 31 is reduced by lowering the DC voltage applied to the first feeding body 41 and the second feeding body 42. And reduce the concentration of dissolved hydrogen in hydrogenated water. In this way, the control unit 9 controls the DC voltage applied to the first feeding body 41 and the second feeding body 42 so that the dissolved hydrogen concentration becomes constant, so that the hydrogenated water having a desired dissolved hydrogen concentration can be obtained. It is produced in the hydrogenation apparatus 1 and supplied to the dialysate diluting apparatus.

既に述べたように、水素透過膜33の消耗が進行すると、水素付加水の溶存水素濃度が低下する傾向にあるため、制御部9は、それを補うために、第1給電体41及び第2給電体42に印加する直流電圧を高めて、第1室31の圧力を高める。 As described above, as the depletion of the hydrogen permeation membrane 33 progresses, the concentration of dissolved hydrogen in the hydrogenated water tends to decrease. Therefore, the control unit 9 has the first feeding body 41 and the second feeding body 41 to compensate for the decrease. The DC voltage applied to the feeding body 42 is increased to increase the pressure in the first chamber 31.

そこで、本水素付加装置1の制御部9は、圧力センサー51から入力された電気信号、すなわち、第1室31の圧力に基づいて、水素透過膜33の消耗度を判定する。これにより、簡素かつ安価な構成で水素透過膜モジュール3の消耗度を正確に判定することが可能となる。 Therefore, the control unit 9 of the hydrogenation apparatus 1 determines the degree of wear of the hydrogen permeable membrane 33 based on the electric signal input from the pressure sensor 51, that is, the pressure of the first chamber 31. This makes it possible to accurately determine the degree of wear of the hydrogen permeable membrane module 3 with a simple and inexpensive configuration.

また、水素透過膜33の消耗が進行すると、第1室31の圧力を高めても、水素付加水の溶存水素濃度が十分に上昇しづらい傾向となる。従って、制御部9は、第1室31の圧力及び水素付加水の溶存水素濃度の関係に基づいて、水素透過膜33の消耗度を判定する、ように構成されていてもよい。例えば、第1室31の圧力及び水素付加水の溶存水素濃度と水素透過膜33の消耗度との相関を示す関係式を実験等により予め定め、上記関係式に上記圧力及び溶存水素濃度を代入することにより、水素透過膜33の消耗度を求めるように構成されていてもよい。 Further, as the consumption of the hydrogen permeable membrane 33 progresses, even if the pressure in the first chamber 31 is increased, the dissolved hydrogen concentration of the hydrogenated water tends to be difficult to sufficiently increase. Therefore, the control unit 9 may be configured to determine the degree of consumption of the hydrogen permeable membrane 33 based on the relationship between the pressure in the first chamber 31 and the dissolved hydrogen concentration of the hydrogenated water. For example, a relational expression showing the correlation between the pressure of the first chamber 31 and the dissolved hydrogen concentration of the hydrogenated water and the degree of consumption of the hydrogen permeable membrane 33 is determined in advance by an experiment or the like, and the pressure and the dissolved hydrogen concentration are substituted into the above relational expression. By doing so, the degree of wear of the hydrogen permeable membrane 33 may be determined.

処理水供給路10には、入水弁12及び流量計(流量検出部)13が設けられている。入水弁12は、例えば、制御部9によって制御された電磁力によって駆動され、処理水供給路10内を流れる処理水を制限する。流量計13は、処理水供給路10内を流れる処理水、すなわち、第2室32に供給される原水の単位時間あたりの流量(以下、単に流量又は供給量と記す)を検出し、制御部9に出力する。制御部9は、流量計13から入力された流量に応じて入水弁12を制御する。これにより、原水として第2室32に供給される処理水の流量が適正化される。 The treated water supply path 10 is provided with a water inlet valve 12 and a flow meter (flow rate detecting unit) 13. The water inlet valve 12 is driven by, for example, an electromagnetic force controlled by the control unit 9 to limit the treated water flowing in the treated water supply path 10. The flow meter 13 detects the flow rate per unit time of the treated water flowing in the treated water supply path 10, that is, the raw water supplied to the second chamber 32 (hereinafter, simply referred to as the flow rate or the supply amount), and is a control unit. Output to 9. The control unit 9 controls the water inlet valve 12 according to the flow rate input from the flow meter 13. As a result, the flow rate of the treated water supplied to the second chamber 32 as raw water is optimized.

処理水供給路11には、給水弁14が設けられている。給水弁14は、例えば、制御部9によって制御された電磁力によって駆動され、処理水供給路11内を流れる処理水を制限する。より具体的には、電解槽4に電気分解のための水を充填又は補充する際には、給水弁14が開かれ、その後、水素透過膜モジュール3の第2室32に原水を供給する際には、給水弁14が閉じられる。 A water supply valve 14 is provided in the treated water supply path 11. The water supply valve 14 is driven by, for example, an electromagnetic force controlled by the control unit 9 to limit the treated water flowing in the treated water supply path 11. More specifically, when the electrolytic cell 4 is filled or replenished with water for electrolysis, the water supply valve 14 is opened, and then when the raw water is supplied to the second chamber 32 of the hydrogen permeation membrane module 3. The water supply valve 14 is closed.

第2室32から取り出される水素付加水の溶存水素濃度は、第2室32への原水の供給量にも依存する。例えば、第2室32への原水の供給量が増加すると、水素付加水の溶存水素濃度は低下する傾向となる。 The dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 also depends on the amount of raw water supplied to the second chamber 32. For example, as the amount of raw water supplied to the second chamber 32 increases, the dissolved hydrogen concentration of the hydrogenated water tends to decrease.

そこで、制御部9は、上記圧力センサー51によって検出された第1室31の圧力等に加えて、流量計13によって検出された原水の供給量に基づいて、水素透過膜33の消耗度を判定するように構成されている、のが望ましい。これにより、制御部9が、水素透過膜33の消耗度をより一層正確に判定することが可能となる。 Therefore, the control unit 9 determines the degree of consumption of the hydrogen permeable membrane 33 based on the supply amount of raw water detected by the flow meter 13 in addition to the pressure of the first chamber 31 detected by the pressure sensor 51. It is desirable that it is configured to do so. As a result, the control unit 9 can more accurately determine the degree of wear of the hydrogen permeation membrane 33.

電解室40の第1極室40aから上方に延びる排気路15(図2参照)には、ガス抜き弁16が設けられている。電気分解によって第1極室40aで生成された酸素ガスは、排気路15及びガス抜き弁16から排出される。 A gas vent valve 16 is provided in an exhaust passage 15 (see FIG. 2) extending upward from the first pole chamber 40a of the electrolytic chamber 40. The oxygen gas generated in the first pole chamber 40a by electrolysis is discharged from the exhaust passage 15 and the gas vent valve 16.

図4は、水素透過膜モジュール3において、水素透過膜33の消耗度を判定する方法の処理手順を示している。水素透過膜33の消耗度判定方法は、第1室31の圧力を検出するステップS1と、溶存水素濃度を検出するステップS2と、原水の供給量を検出するステップS3と、水素透過膜33の消耗度を判定するステップS4と、判定結果を出力するステップS5とを含んでいる。 FIG. 4 shows a processing procedure of a method for determining the degree of wear of the hydrogen permeable membrane 33 in the hydrogen permeable membrane module 3. The method for determining the degree of consumption of the hydrogen permeable membrane 33 includes step S1 for detecting the pressure in the first chamber 31, step S2 for detecting the dissolved hydrogen concentration, step S3 for detecting the supply amount of raw water, and the hydrogen permeable membrane 33. It includes a step S4 for determining the degree of wear and a step S5 for outputting the determination result.

ステップS1では、第1室31の圧力が、圧力センサー51によって検出される。ステップS2では、第2室32から取り出された水素付加水の溶存水素濃度が、水素濃度センサー21によって検出される。ステップS3では、第2室32への原水の供給量が流量計13によって検出される。ステップS1乃至ステップS3の順序は、問われない。すなわち、例えば、先にステップS3が実行され、その後ステップS1、S2が実行されてもよい。 In step S1, the pressure in the first chamber 31 is detected by the pressure sensor 51. In step S2, the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 is detected by the hydrogen concentration sensor 21. In step S3, the amount of raw water supplied to the second chamber 32 is detected by the flow meter 13. The order of steps S1 to S3 does not matter. That is, for example, steps S3 may be executed first, and then steps S1 and S2 may be executed.

ステップS4では、ステップS1で検出された第1室31の圧力、ステップS2で検出された水素付加水の溶存水素濃度及びステップS3で検出された原水の供給量に基づいて、制御部9が水素透過膜33の消耗度を判定する。そして、ステップS4では、ステップS3の判定結果が、出力部91によって出力される。 In step S4, the control unit 9 makes hydrogen based on the pressure of the first chamber 31 detected in step S1, the dissolved hydrogen concentration of the hydrogenated water detected in step S2, and the supply amount of raw water detected in step S3. The degree of wear of the permeable membrane 33 is determined. Then, in step S4, the determination result of step S3 is output by the output unit 91.

本消耗度判定方法によれば、簡素かつ安価な構成で水素透過膜33の消耗度を正確に判定することが可能となる。 According to this consumption degree determination method, it is possible to accurately determine the consumption degree of the hydrogen permeable membrane 33 with a simple and inexpensive configuration.

以上、本発明の水素付加装置1等が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、水素付加装置1は、少なくとも、水素ガスが供給される第1室31と、原水が供給される第2室32と、第2室32で水素付加水を生成するために、水素ガスを第1室31から第2室32へと移動させる水素透過膜33と、第1室31の圧力を検出する圧力センサー51と、少なくとも、第1室31の圧力に基づいて、水素透過膜33の消耗度を判定する制御部9とを備えていればよい。 Although the hydrogenation apparatus 1 and the like of the present invention have been described in detail above, the present invention is not limited to the specific embodiment described above, and is modified to various embodiments. That is, the hydrogen addition device 1 generates hydrogen gas at least in order to generate hydrogen addition water in the first chamber 31 to which the hydrogen gas is supplied, the second chamber 32 to which the raw water is supplied, and the second chamber 32. The hydrogen permeable film 33 that moves from the first chamber 31 to the second chamber 32, the pressure sensor 51 that detects the pressure of the first chamber 31, and at least the hydrogen permeable film 33 based on the pressure of the first chamber 31. It suffices to include a control unit 9 for determining the degree of wear.

また、図1に示される水素付加装置1において、第1室31に供給するための水素ガスを生成する水素ガス生成部2は、水を電気分解する電解槽4に限られない。例えば、水とマグネシウムとの化学反応等により水素ガスを発生させる装置、又は、水素ガスが充填されたボンベであってもよい。 Further, in the hydrogenation apparatus 1 shown in FIG. 1, the hydrogen gas generation unit 2 that generates hydrogen gas to be supplied to the first chamber 31 is not limited to the electrolytic cell 4 that electrolyzes water. For example, it may be a device that generates hydrogen gas by a chemical reaction between water and magnesium, or a cylinder filled with hydrogen gas.

また、第1室31の圧力を検出する圧力検出部として、圧力センサー51に替えて、制御部9が、例えば、電解電流の積算値に基づいて、第1室31の圧力を推定するように構成されていてもよい。 Further, as a pressure detecting unit for detecting the pressure in the first chamber 31, the control unit 9 estimates the pressure in the first chamber 31 based on, for example, the integrated value of the electrolytic current, instead of the pressure sensor 51. It may be configured.

水素付加装置1は、透析液調製用の水素付加水の生成の他、種々の用途に適用可能である。例えば、飲用、料理用又は農業用の水素付加水の生成等にも広く適用可能である。 The hydrogenation apparatus 1 can be applied to various uses other than the generation of hydrogenated water for preparing a dialysate. For example, it can be widely applied to the generation of hydrogenated water for drinking, cooking or agriculture.

また、消耗度判定方法は、少なくとも、水素透過膜33の消耗度判定方法は、第1室31の圧力を検出するステップS1と、水素透過膜33の消耗度を判定するステップS4とを含んでいればよい。例えば、溶存水素濃度を検出するステップS2又は原水の供給量を検出するステップS3が省略されてもよい。この場合、ステップS4では、ステップS1で検出された透析液調製用水の溶存水素濃度に基づいて、制御部9が水素透過膜33の消耗度を判定する。 Further, the consumption degree determination method includes at least a step S1 for detecting the pressure of the first chamber 31 and a step S4 for determining the consumption degree of the hydrogen permeation membrane 33. I just need to be there. For example, step S2 for detecting the dissolved hydrogen concentration or step S3 for detecting the supply amount of raw water may be omitted. In this case, in step S4, the control unit 9 determines the degree of consumption of the hydrogen permeable membrane 33 based on the dissolved hydrogen concentration of the dialysate preparation water detected in step S1.

1 :水素付加装置
2 :水素ガス生成部
3 :水素透過膜モジュール
4 :電解槽
9 :制御部(判定部)
13 :流量計(流量検出部)
21 :水素濃度センサー(水素濃度検出部)
31 :第1室
32 :第2室
33 :水素透過膜
41 :第1給電体(陽極給電体)
42 :第2給電体(陰極給電体)
1: Hydrogen addition device 2: Hydrogen gas generation unit 3: Hydrogen permeation membrane module 4: Electrolytic cell 9: Control unit (judgment unit)
13: Flow meter (flow rate detector)
21: Hydrogen concentration sensor (hydrogen concentration detector)
31: First chamber 32: Second chamber 33: Hydrogen permeable membrane 41: First feeding body (anode feeding body)
42: Second power feeding body (cathode feeding body)

Claims (8)

水に水素を付加するための装置であって、
水素ガスが供給される第1室と、
原水が供給される第2室と、
前記第2室で水素付加水を生成するために、前記水素ガスを前記第1室から前記第2室へと移動させる水素透過膜と、
前記第1室の圧力を検出する圧力検出部と、
少なくとも、前記圧力に基づいて、前記水素透過膜の消耗度を判定する判定部とを備える、
水素付加装置。
A device for adding hydrogen to water
The first room where hydrogen gas is supplied and
The second room where raw water is supplied and
A hydrogen permeable membrane that moves the hydrogen gas from the first chamber to the second chamber in order to generate hydrogenated water in the second chamber.
A pressure detection unit that detects the pressure in the first chamber and
At least, a determination unit for determining the degree of wear of the hydrogen permeable membrane based on the pressure is provided.
Hydrogenation equipment.
前記第2室から取り出された前記水素付加水の溶存水素濃度を検出する水素濃度検出部をさらに備える、請求項1記載の水素付加装置。 The hydrogenation apparatus according to claim 1, further comprising a hydrogen concentration detecting unit for detecting the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber. 前記第1室に供給する前記水素ガスを生成する水素ガス生成部をさらに備える、請求項2記載の水素付加装置。 The hydrogenation apparatus according to claim 2, further comprising a hydrogen gas generating unit for generating the hydrogen gas supplied to the first chamber. 前記水素ガス生成部は、陽極給電体と陰極給電体とを有し、水を電気分解することにより前記水素ガスを生成し、前記第1室に供給する電解槽を有し、
前記陽極給電体及び前記陰極給電体に印加する電圧を制御する制御部をさらに備え、
前記制御部は、前記溶存水素濃度が一定となるように、前記電圧を制御する、請求項3記載の水素付加装置。
The hydrogen gas generating unit has an anode feeding body and a cathode feeding body, and has an electrolytic cell that generates the hydrogen gas by electrolyzing water and supplies it to the first chamber.
Further, a control unit for controlling the voltage applied to the anode feeding body and the cathode feeding body is provided.
The hydrogenation apparatus according to claim 3, wherein the control unit controls the voltage so that the dissolved hydrogen concentration becomes constant.
前記判定部は、さらに、前記溶存水素濃度に基づいて、前記水素透過膜の消耗度を判定する、請求項2乃至4のいずれかに記載の水素付加装置。 The hydrogenation apparatus according to any one of claims 2 to 4, wherein the determination unit further determines the degree of consumption of the hydrogen permeation membrane based on the dissolved hydrogen concentration. 前記判定部は、前記圧力及び前記溶存水素濃度の関係に基づいて、前記水素透過膜の消耗度を判定する、請求項5記載の水素付加装置。 The hydrogenation apparatus according to claim 5, wherein the determination unit determines the degree of wear of the hydrogen permeation membrane based on the relationship between the pressure and the dissolved hydrogen concentration. 前記第2室への前記原水の単位時間あたりの供給量を検出する流量検出部をさらに備え、
前記判定部は、さらに、前記供給量に基づいて、前記水素透過膜の消耗度を判定する、請求項1乃至6のいずれかに記載の水素付加装置。
A flow rate detection unit for detecting the amount of the raw water supplied to the second chamber per unit time is further provided.
The hydrogenation apparatus according to any one of claims 1 to 6, wherein the determination unit further determines the degree of consumption of the hydrogen permeable membrane based on the supply amount.
水素ガスが供給される第1室と、原水が供給される第2室と、前記水素ガスを前記第1室から前記第2室へと移動させる水素透過膜とを備えた水素透過モジュールにおいて、前記水素透過膜の消耗度を判定する方法であって、
前記第1室の圧力を検出するステップと、
少なくとも、前記圧力に基づいて、前記水素透過膜の消耗度を判定するステップとを含む、
水素透過膜の消耗度判定方法。
In a hydrogen permeation module including a first chamber to which hydrogen gas is supplied, a second chamber to which raw water is supplied, and a hydrogen permeation membrane for moving the hydrogen gas from the first chamber to the second chamber. A method for determining the degree of wear of the hydrogen permeable membrane.
The step of detecting the pressure in the first chamber and
At least, it includes a step of determining the degree of wear of the hydrogen permeable membrane based on the pressure.
A method for determining the degree of wear of a hydrogen permeable membrane.
JP2019041496A 2019-03-07 2019-03-07 Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane Active JP7022089B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019041496A JP7022089B2 (en) 2019-03-07 2019-03-07 Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane
PCT/JP2020/004380 WO2020179339A1 (en) 2019-03-07 2020-02-05 Hydrogen addition device, and method for assessing degree consumption of hydrogen permeable film
CN202080012870.4A CN113396009B (en) 2019-03-07 2020-02-05 Hydrogenation apparatus and method for determining consumption of hydrogen permeable membrane
TW109105874A TW202100231A (en) 2019-03-07 2020-02-24 Hydrogenation device and method for determining degree of consumption of hydrogen-permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019041496A JP7022089B2 (en) 2019-03-07 2019-03-07 Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane

Publications (2)

Publication Number Publication Date
JP2020142207A true JP2020142207A (en) 2020-09-10
JP7022089B2 JP7022089B2 (en) 2022-02-17

Family

ID=72337370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041496A Active JP7022089B2 (en) 2019-03-07 2019-03-07 Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane

Country Status (3)

Country Link
JP (1) JP7022089B2 (en)
TW (1) TW202100231A (en)
WO (1) WO2020179339A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892223B (en) * 2021-01-19 2021-11-30 同济大学 Reverse osmosis membrane damage detects disinfection system that disinfects in step

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122040A (en) * 2002-10-04 2004-04-22 National Institute Of Advanced Industrial & Technology Gas-permeable membrane-used apparatus
JP2009125654A (en) * 2007-11-22 2009-06-11 Bio Research Inc Method of producing hydrogen-containing drinking water
JP2016093767A (en) * 2014-11-12 2016-05-26 三菱重工業株式会社 Apparatus for separating co2 in gas and membrane separation method therefor, and membrane separation management method of apparatus for separating co2 in gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122040A (en) * 2002-10-04 2004-04-22 National Institute Of Advanced Industrial & Technology Gas-permeable membrane-used apparatus
JP2009125654A (en) * 2007-11-22 2009-06-11 Bio Research Inc Method of producing hydrogen-containing drinking water
JP2016093767A (en) * 2014-11-12 2016-05-26 三菱重工業株式会社 Apparatus for separating co2 in gas and membrane separation method therefor, and membrane separation management method of apparatus for separating co2 in gas

Also Published As

Publication number Publication date
CN113396009A (en) 2021-09-14
TW202100231A (en) 2021-01-01
JP7022089B2 (en) 2022-02-17
WO2020179339A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2020179340A1 (en) Hydrogen adding device and method for determining degree of wear in hydrogen-permeable membrane
CN105948176B (en) Electrolyzed water generation device
CN108633269B (en) Water treatment device, device for producing water for dialysate preparation, and hydrogen-rich water supply device
WO2020179341A1 (en) Hydrogenation method and hydrogenation apparatus
JP2015003313A (en) Manufacturing apparatus of water for preparing dialysate
JP7022089B2 (en) Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane
CN112203751A (en) Hydrogen dissolving device
US20200361795A1 (en) Electrolytic Water Production Device and a Method of Producing Electrolytic Water
CN113396009B (en) Hydrogenation apparatus and method for determining consumption of hydrogen permeable membrane
CN108474123B (en) Hydrogen peroxide generator
JP6810112B2 (en) Electrolyzed water generator and electrolyzed water generation method
WO2020179338A1 (en) Hydrogen supplementation device and hydrogen supplementation method
JP2014015646A (en) Electrolytic treatment water generator and method for generating electrolytic treatment water
WO2017135207A1 (en) Electrolyzed water generation device and production device for water for dialysate preparation and method for electrolyzed water generation that use same
JP2021159886A (en) Electrolyzed water generator and cleaning water generator
JP7348988B1 (en) Electrolyzed water generation equipment and water treatment equipment
JP7373023B1 (en) Electrolyzed water generation equipment and water treatment equipment
WO2023281815A1 (en) Method for measuring dissolved gas concentration, apparatus for measuring dissolved hydrogen concentration, and apparatus for producing water for preparation of dialysate
JP6885776B2 (en) Electrolyzed water generator
JP2018183738A (en) Electrolytic water generator
JPH09108674A (en) Electrolytic water generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220204

R150 Certificate of patent or registration of utility model

Ref document number: 7022089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150