JP2020139751A - Vibration sensor and resonant frequency adjustment system - Google Patents

Vibration sensor and resonant frequency adjustment system Download PDF

Info

Publication number
JP2020139751A
JP2020139751A JP2019033229A JP2019033229A JP2020139751A JP 2020139751 A JP2020139751 A JP 2020139751A JP 2019033229 A JP2019033229 A JP 2019033229A JP 2019033229 A JP2019033229 A JP 2019033229A JP 2020139751 A JP2020139751 A JP 2020139751A
Authority
JP
Japan
Prior art keywords
vibration
thickness
vibration sensor
resonance
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019033229A
Other languages
Japanese (ja)
Inventor
欣也 杉本
Kinya Sugimoto
欣也 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2019033229A priority Critical patent/JP2020139751A/en
Publication of JP2020139751A publication Critical patent/JP2020139751A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

To provide a vibration sensor which allows for adjusting resonant frequency of unwanted resonance, and to provide a resonant frequency adjustment system.SOLUTION: A vibration sensor is provided, comprising: a leg 24 made of a permanent magnet to be attached to a vibrating body 1 by magnetic force and fixed to a bottom face 20B of a case body 20; a vibration measurement unit mounted on a substrate 16 housed in the case body 20 and configured to measure vibration generated by the vibrating body 1; and a computation unit configured to compute a variation in thickness of the leg, when unwanted resonance caused by the leg 24 is measured by the vibration measurement unit, from a thickness D of the leg 24 with the unwanted resonance and a variation in resonant frequency of the unwanted resonance.SELECTED DRAWING: Figure 4

Description

本発明は、振動体に取り付けられて振動体の振動を測定する振動センサ及び共振周波数調整システムに関する。 The present invention relates to a vibration sensor and a resonance frequency adjustment system that are attached to a vibrating body and measure the vibration of the vibrating body.

一般に、モータやエンジンなどの振動体に取り付けられて振動体の振動を測定する振動センサが知られている。この種の振動センサは、例えば振動体の動作時に生じる振動周波数を測定し、測定された振動周波数に基づいて振動体の動作が正常であるか否かが判定される。従来、振動を検出する振動検出素子と該振動検出素子が実装される回路基板とを有するハウジングと、ハウジングに固定される永久磁石とを備え、永久磁石の磁力によって振動体(被検出体)に取り付けられる振動検出センサが提案されている(例えば、特許文献1参照)。 Generally, a vibration sensor that is attached to a vibrating body such as a motor or an engine to measure the vibration of the vibrating body is known. This type of vibration sensor measures, for example, the vibration frequency generated during the operation of the vibrating body, and determines whether or not the operation of the vibrating body is normal based on the measured vibration frequency. Conventionally, a housing having a vibration detecting element for detecting vibration and a circuit board on which the vibration detecting element is mounted, and a permanent magnet fixed to the housing are provided, and the vibrating body (detected body) is formed by the magnetic force of the permanent magnet. An attached vibration detection sensor has been proposed (see, for example, Patent Document 1).

特開2017−116268号公報JP-A-2017-116268

ところで、永久磁石の磁力によって振動センサを振動体に取り付ける構成では、振動センサの重心に対し、永久磁石の厚みによるモーメントが働くため、永久磁石の振動に起因して特定の周波数で振動体の振動とは別の不要共振が発生することがある。不要共振が発生すると、振動センサが測定した振動が振動体の異常による波形の変化か、共振によるものかが判別できなくなるという問題があった。 By the way, in the configuration in which the vibration sensor is attached to the vibrating body by the magnetic force of the permanent magnet, a moment due to the thickness of the permanent magnet acts on the center of gravity of the vibrating sensor, so that the vibrating body vibrates at a specific frequency due to the vibration of the permanent magnet. Unwanted resonance other than the above may occur. When unnecessary resonance occurs, there is a problem that it is not possible to determine whether the vibration measured by the vibration sensor is due to a change in waveform due to an abnormality of the vibrating body or due to resonance.

本発明は、上記に鑑みてなされたものであって、不要共振の共振周波数を調整できる振動センサ及び共振周波数調整システムを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a vibration sensor and a resonance frequency adjustment system capable of adjusting the resonance frequency of unnecessary resonance.

上述した課題を解決し、目的を達成するために、本発明に係る振動センサは、筐体の底面に固定されて磁力により振動体に吸着する永久磁石と、筐体内に収容された基板に実装され、振動体が発する振動を測定する振動測定部と、振動測定部が永久磁石に起因する不要共振を測定した場合に、不要共振が生じた永久磁石の厚みと、永久磁石の厚み変化量または該不要共振の共振周波数のシフト量の一方とに基づき、該厚み変化量または該シフト量の他方を算出する算出部と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the vibration sensor according to the present invention is mounted on a permanent magnet fixed to the bottom surface of the housing and attracted to the vibrating body by magnetic force, and a substrate housed in the housing. When the vibration measuring unit that measures the vibration generated by the vibrating body and the vibration measuring unit measure the unnecessary resonance caused by the permanent magnet, the thickness of the permanent magnet in which the unnecessary resonance occurs and the amount of change in the thickness of the permanent magnet or It is characterized by including a calculation unit for calculating the thickness change amount or the other shift amount based on one of the shift amounts of the resonance frequency of the unnecessary resonance.

この構成において、算出部は、共振周波数のシフト量をF[Hz]、永久磁石の厚みD[m]、永久磁石の厚み変化量D´[m]、重力加速度g[m/S]、永久磁石の特性に基づく係数αとした場合、数式(1)に基づいて、厚み変化量またはシフト量を算出してもよい。

Figure 2020139751
In this configuration, the calculation unit sets the shift amount of the resonance frequency to F [Hz], the thickness D [m] of the permanent magnet, the thickness change amount D'[m] of the permanent magnet, the gravitational acceleration g [m / S], and the permanent magnet. When the coefficient α is based on the characteristics of the magnet, the thickness change amount or the shift amount may be calculated based on the mathematical formula (1).
Figure 2020139751

また、本発明に係る共振周波数調整システムは、筐体の底面に固定されて磁力により振動体に吸着する永久磁石と、筐体内に収容された基板に実装され、振動体が発する振動を測定する振動測定部とを備えた振動センサと、振動測定部が永久磁石に起因する不要共振を測定した場合に、不要共振が生じた永久磁石の厚みと、永久磁石の厚み変化量または該不要共振の共振周波数のシフト量の一方とに基づき、該厚み変化量または該シフト量の他方を算出する算出部を有する算出ユニットと、を備えたことを特徴とする。 Further, the resonance frequency adjustment system according to the present invention measures a permanent magnet fixed to the bottom surface of the housing and attracted to the vibrating body by magnetic force, and mounted on a substrate housed in the housing to measure the vibration generated by the vibrating body. When a vibration sensor equipped with a vibration measuring unit and the vibration measuring unit measure unnecessary resonance caused by the permanent magnet, the thickness of the permanent magnet in which the unnecessary resonance occurs, the amount of change in the thickness of the permanent magnet, or the unnecessary resonance It is characterized by including a calculation unit having a calculation unit for calculating the thickness change amount or the other of the shift amount based on one of the shift amounts of the resonance frequency.

本発明によれば、不要共振の共振周波数を容易に調整することができる。 According to the present invention, the resonance frequency of unnecessary resonance can be easily adjusted.

図1は、第1実施形態に係る振動センサを備えた振動検知システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a vibration detection system including a vibration sensor according to the first embodiment. 図2は、振動センサの機能ブロック図である。FIG. 2 is a functional block diagram of the vibration sensor. 図3は、振動センサの内部構成を示す分解斜視図である。FIG. 3 is an exploded perspective view showing the internal configuration of the vibration sensor. 図4は、振動センサの内部構成を示す側断面図である。FIG. 4 is a side sectional view showing the internal configuration of the vibration sensor. 図5は、第1の厚みの脚部を用いて振動センサを加振した場合の振動の強度と周波数との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the intensity of vibration and the frequency when the vibration sensor is vibrated by using the leg portion having the first thickness. 図6は、第1の厚みよりも薄い第2の厚みの脚部を用いて振動センサを加振した場合の振動の強度と周波数との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the intensity of vibration and the frequency when the vibration sensor is vibrated by using the leg portion having a second thickness thinner than the first thickness. 図7は、第2実施形態に係る振動センサを有する共振周波数調整システムを示す機能ブロック図である。FIG. 7 is a functional block diagram showing a resonance frequency adjustment system having a vibration sensor according to the second embodiment.

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。 The embodiment (embodiment) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the following embodiments. In addition, the components described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Further, the configurations described below can be combined as appropriate. In addition, various omissions, substitutions or changes of the configuration can be made without departing from the gist of the present invention.

[第1実施形態]
図1は、第1実施形態に係る振動センサを備えた振動検知システムの概略構成図である。図2は、振動センサの機能ブロック図である。振動検知システム100は、例えば、モータやエンジンなどの振動体1の振動の状態を監視して振動体1の動作が正常であるか否かを判定するものである。振動検知システム100は、図1に示すように、振動体1に取り付けられる複数の振動センサ10と、各振動センサ10が測定した測定データを、無線通信などを介して受信する受信部2と、受信した測定データから振動体1の動作状態を監視する遠隔監視装置(サーバ装置)3とを備える。受信部2及び遠隔監視装置3は、振動体1から物理的に離れた場所に設置される。受信部2は、受信した測定データを遠隔監視装置3に送信する。送信する手段は無線通信でも有線通信であってもよい。遠隔監視装置3は、受信した測定データをデータベース化して記憶すると共に該測定データを分析し、測定データに基づいて振動体1の動作が正常であるか否かを判定する。また、遠隔監視装置3は、振動体1の動作が異常であると判定した場合には、ユーザに対して異常が発生した旨を報知する。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a vibration detection system including a vibration sensor according to the first embodiment. FIG. 2 is a functional block diagram of the vibration sensor. The vibration detection system 100 monitors, for example, the vibration state of the vibrating body 1 such as a motor or an engine, and determines whether or not the operation of the vibrating body 1 is normal. As shown in FIG. 1, the vibration detection system 100 includes a plurality of vibration sensors 10 attached to the vibrating body 1, a receiving unit 2 that receives measurement data measured by each vibration sensor 10 via wireless communication or the like. It includes a remote monitoring device (server device) 3 that monitors the operating state of the vibrating body 1 from the received measurement data. The receiving unit 2 and the remote monitoring device 3 are installed at a location physically separated from the vibrating body 1. The receiving unit 2 transmits the received measurement data to the remote monitoring device 3. The means of transmission may be wireless communication or wired communication. The remote monitoring device 3 stores the received measurement data in a database, analyzes the measurement data, and determines whether or not the operation of the vibrating body 1 is normal based on the measurement data. Further, when the remote monitoring device 3 determines that the operation of the vibrating body 1 is abnormal, the remote monitoring device 3 notifies the user that the abnormality has occurred.

振動センサ10は、図2に示すように、通信部11と振動測定部12とフィルタ処理部13と制御部14と算出部19と電池(電源部)15とを備える。通信部11は、受信部2と無線通信する機能を有し、アンテナを含む。無線通信は、例えば、Wi−Fi(登録商標)等の無線通信方式を用いることができる。この他にも、赤外線やBluetooth(登録商標)等の近距離無線通信方式を用いてもよい。なお、振動センサ10と受信部2との間の通信は、無線に限るものではなく、有線、もしくは無線および有線の組み合わせにより行われるものとしてもよい。 As shown in FIG. 2, the vibration sensor 10 includes a communication unit 11, a vibration measurement unit 12, a filter processing unit 13, a control unit 14, a calculation unit 19, and a battery (power supply unit) 15. The communication unit 11 has a function of wirelessly communicating with the reception unit 2 and includes an antenna. For wireless communication, for example, a wireless communication method such as Wi-Fi (registered trademark) can be used. In addition to this, a short-range wireless communication method such as infrared rays or Bluetooth (registered trademark) may be used. The communication between the vibration sensor 10 and the receiving unit 2 is not limited to wireless communication, and may be performed by wire or a combination of wireless and wired communication.

振動測定部12は、多軸(3軸;X軸Y軸Z軸)の加速度測定部であり、各軸方向の振動(加速度)が生じた周波数と振動の大きさを測定する。フィルタ処理部13は、振動測定部12が測定した測定データに含まれるノイズ成分を除去する。算出部19は、後述する不要共振が発生した場合に、不要共振の共振周波数のシフト量または永久磁石からなる脚部の厚み変化量を算出する。制御部14は、例えば、CPU(Central Processing Unit)等のプロセッサを搭載したコントローラーであり、メモリに格納されたプログラムを実行することにより、各構成要素(通信部11、振動測定部12、フィルタ処理部13、算出部19)の動作を制御する。制御部14は、フィルタ処理された測定データを、通信部11を介して受信部2に送信する。本実施形態では、通信部11、振動測定部12、フィルタ処理部13、算出部19及び制御部14は基板16に実装されている。 The vibration measuring unit 12 is a multi-axis (3 axes; X-axis, Y-axis, Z-axis) acceleration measuring unit, and measures the frequency at which vibration (acceleration) occurs in each axial direction and the magnitude of the vibration. The filter processing unit 13 removes a noise component included in the measurement data measured by the vibration measuring unit 12. The calculation unit 19 calculates the shift amount of the resonance frequency of the unnecessary resonance or the thickness change amount of the leg portion made of the permanent magnet when the unnecessary resonance described later occurs. The control unit 14 is, for example, a controller equipped with a processor such as a CPU (Central Processing Unit), and by executing a program stored in the memory, each component (communication unit 11, vibration measurement unit 12, filter processing). The operation of unit 13 and calculation unit 19) is controlled. The control unit 14 transmits the filtered measurement data to the reception unit 2 via the communication unit 11. In the present embodiment, the communication unit 11, the vibration measurement unit 12, the filter processing unit 13, the calculation unit 19, and the control unit 14 are mounted on the substrate 16.

電池15は、振動センサ10の基板16に接続されて基板16上の各構成要素に電力を供給する。電池15は、例えばコイン電池やボタン電池等と呼ばれる円板状(コイン型)の一次電池である。なお、電池15は、円板状(コイン型)以外の形状の一次電池でもよい。このため、振動センサ10は、電池15の電力消費を抑える観点から所定周期(例えば1日)に1回、所定時間(例えば1分)だけ定期的に動作し、振動体1の振動を間欠的に測定して測定データを受信部2に送信する。この周期、動作時間は適宜に変更が可能である。なお、振動センサ10は、振動体1の振動を連続的に測定して測定データを受信部2に送信する構成としてもよい。 The battery 15 is connected to the substrate 16 of the vibration sensor 10 to supply electric power to each component on the substrate 16. The battery 15 is a disk-shaped (coin-shaped) primary battery called, for example, a coin battery or a button battery. The battery 15 may be a primary battery having a shape other than a disk shape (coin type). Therefore, from the viewpoint of suppressing the power consumption of the battery 15, the vibration sensor 10 operates periodically once in a predetermined cycle (for example, one day) for a predetermined time (for example, one minute), and intermittently vibrates the vibrating body 1. And the measurement data is transmitted to the receiving unit 2. This cycle and operating time can be changed as appropriate. The vibration sensor 10 may be configured to continuously measure the vibration of the vibrating body 1 and transmit the measurement data to the receiving unit 2.

次に、振動センサ10の内部構成を説明する。図3は、振動センサの内部構成を示す分解斜視図である。図4は、振動センサの内部構成を示す側断面図である。振動センサ10は、図3に示すように、ケース本体20と、このケース本体20内に収容される電池15、基板16及びスペーサ17と、蓋体21とを備える。ケース本体20は、プラスチック等の合成樹脂材料を用いて、角部に丸みを帯びた略正方形状の有底箱型に形成される。ケース本体20の内部には、円板状の電池15が収容される円形空間20Aを形成する壁部22が設けられる。この壁部22はケース本体20よりも低く形成され、この壁部22の上面には、略正方形状の基板16が固定される固定部22Aが形成される。 Next, the internal configuration of the vibration sensor 10 will be described. FIG. 3 is an exploded perspective view showing the internal configuration of the vibration sensor. FIG. 4 is a side sectional view showing the internal configuration of the vibration sensor. As shown in FIG. 3, the vibration sensor 10 includes a case body 20, a battery 15, a substrate 16 and a spacer 17 housed in the case body 20, and a lid 21. The case body 20 is formed in a substantially square bottomed box shape with rounded corners using a synthetic resin material such as plastic. Inside the case body 20, a wall portion 22 forming a circular space 20A in which the disk-shaped battery 15 is housed is provided. The wall portion 22 is formed lower than the case main body 20, and a fixing portion 22A to which a substantially square substrate 16 is fixed is formed on the upper surface of the wall portion 22.

基板16の4隅には貫通孔16Aが形成されており、固定部22Aの対応箇所には、ねじ孔22Bが形成される。これにより、基板16は固定部22Aにねじ23によってねじ止めされる。電池15は、図3に示すように、円板状に形成されており、正極に接着される一対の正極端子(端子)15Aと、負極に接着される負極端子(端子)15Bとを備える。これら正極端子15A及び負極端子15Bは、例えば、半田付けなどによって電池に接着されており、電池15の軸心方向(図3及び図4中上方)に延びている。正極端子15A及び負極端子15Bは、基板16に形成された孔(例えばスルーホール)16Bに挿し込まれた後、半田付けなどによって固定される。このため、電池15は、正極端子15A及び負極端子15Bによって基板16に実装される。 Through holes 16A are formed at the four corners of the substrate 16, and screw holes 22B are formed at the corresponding portions of the fixing portion 22A. As a result, the substrate 16 is screwed to the fixing portion 22A by the screw 23. As shown in FIG. 3, the battery 15 is formed in a disk shape and includes a pair of positive electrode terminals (terminals) 15A bonded to the positive electrode and a negative electrode terminal (terminal) 15B bonded to the negative electrode. The positive electrode terminal 15A and the negative electrode terminal 15B are adhered to the battery by, for example, soldering, and extend in the axial direction of the battery 15 (upper in FIGS. 3 and 4). The positive electrode terminal 15A and the negative electrode terminal 15B are inserted into holes (for example, through holes) 16B formed in the substrate 16 and then fixed by soldering or the like. Therefore, the battery 15 is mounted on the substrate 16 by the positive electrode terminal 15A and the negative electrode terminal 15B.

スペーサ17は、図3及び図4に示すように、電池15と基板16との隙間に介挿されて該隙間を埋める。スペーサ17は、絶縁性素材(例えば発泡ウレタン等)で形成された発泡弾性部材(例えば、株式会社ロジャースイノアック製のPORON(登録商標))であり、このスペーサ17が厚み方向に圧縮されて電池15と基板16との隙間に配置される。この構成では、スペーサ17は、電池15と基板16との隙間の変動に追従して弾性変形するため、電池15と基板16との隙間を確実に埋めることができる。 As shown in FIGS. 3 and 4, the spacer 17 is inserted into the gap between the battery 15 and the substrate 16 to fill the gap. The spacer 17 is a foamed elastic member (for example, PORON (registered trademark) manufactured by Rogers INOAC Corporation) made of an insulating material (for example, urethane foam), and the spacer 17 is compressed in the thickness direction to form a battery 15. It is arranged in the gap between the substrate 16 and the substrate 16. In this configuration, the spacer 17 elastically deforms according to the fluctuation of the gap between the battery 15 and the substrate 16, so that the gap between the battery 15 and the substrate 16 can be reliably filled.

また、スペーサ17には、図3に示すように、正極端子15A及び負極端子15Bにそれぞれ接触しないように切欠き部17A、17Bが形成されている。この切欠き部17A、17Bは、正極端子15A及び負極端子15Bを避ける位置に設けられており、万一、スペーサ17に水が付着したような場合であっても、スペーサ17を通じた正極端子15Aと負極端子15Bとの短絡を防止する。また、スペーサ17は、電池15の基板16と対向する負極(対向面)に接着されている。これによれば、電池15を基板16に押し付けることにより、スペーサ17が圧縮されるため、この圧縮された状態で正極端子15A及び負極端子15Bを基板16に半田付けができ、電池15と基板16との隙間にスペーサ17を容易に挟み込むことができる。 Further, as shown in FIG. 3, the spacer 17 is formed with notches 17A and 17B so as not to come into contact with the positive electrode terminal 15A and the negative electrode terminal 15B, respectively. The notches 17A and 17B are provided at positions avoiding the positive electrode terminal 15A and the negative electrode terminal 15B, and even if water adheres to the spacer 17, the positive electrode terminal 15A passed through the spacer 17 Prevents a short circuit between the negative electrode terminal 15B and the negative electrode terminal 15B. Further, the spacer 17 is adhered to a negative electrode (opposing surface) facing the substrate 16 of the battery 15. According to this, since the spacer 17 is compressed by pressing the battery 15 against the substrate 16, the positive electrode terminal 15A and the negative electrode terminal 15B can be soldered to the substrate 16 in this compressed state, and the battery 15 and the substrate 16 can be soldered. The spacer 17 can be easily sandwiched in the gap between the two.

蓋体21は、ケース本体20と同一の素材で形成されており、ケース本体20の開口部を塞ぐ。本実施形態では、蓋体21とケース本体20とは、例えば、熱溶着や接着剤を用いて水密に固着されて筐体として機能する。 The lid 21 is made of the same material as the case body 20 and closes the opening of the case body 20. In the present embodiment, the lid 21 and the case body 20 are watertightly fixed to each other by using, for example, heat welding or an adhesive to function as a housing.

振動センサ10は、ケース本体20の底面20Bに脚部24を備える。この脚部24は、厚み方向に2極が着磁された永久磁石で形成されている。このため、脚部24(永久磁石)の磁力により、磁性体材料で形成されている振動体1の設置面1Aに容易に取り付ける(吸着させる)ことができる。脚部24は、例えば厚みD[m]の円板状に形成され、図4に示すように中央部を貫通して突出する雄ねじ25を備える。一方、ケース本体20の底面20Bには、雄ねじ25と対応する位置に雌ねじ20Cが形成されており、脚部24はケース本体20にねじ止めされる。また、本実施形態では、ケース本体20の底面20Bには、中央部及び4隅にそれぞれ雌ねじが形成されており、図3に示すように、ケース本体20の中央部に1つの脚部24、もしくは、ケース本体20の4隅にそれぞれ4つの脚部24を取り付ける構成を選択することができる。なお、脚部24の少なくとも一部の磁石が、永久磁石の規格に合わない磁石や、一時磁石などのその他の永久磁石以外の磁石からなる構成としてもよい。 The vibration sensor 10 includes legs 24 on the bottom surface 20B of the case body 20. The leg portion 24 is formed of a permanent magnet having two poles magnetized in the thickness direction. Therefore, it can be easily attached (adsorbed) to the installation surface 1A of the vibrating body 1 made of the magnetic material by the magnetic force of the leg portion 24 (permanent magnet). The leg portion 24 is formed, for example, in the shape of a disk having a thickness of D [m], and includes a male screw 25 that protrudes through the central portion as shown in FIG. On the other hand, a female screw 20C is formed on the bottom surface 20B of the case body 20 at a position corresponding to the male screw 25, and the leg portion 24 is screwed to the case body 20. Further, in the present embodiment, female threads are formed at the central portion and the four corners of the bottom surface 20B of the case main body 20, respectively, and as shown in FIG. 3, one leg portion 24 is formed at the central portion of the case main body 20. Alternatively, it is possible to select a configuration in which four legs 24 are attached to each of the four corners of the case body 20. It should be noted that at least a part of the magnets of the leg portion 24 may be composed of a magnet that does not meet the specifications of a permanent magnet or a magnet other than other permanent magnets such as a temporary magnet.

振動センサ10は、上記したように、振動体1に取り付けられて該振動体1が動作した際に生じる振動(周波数)を測定する。一方、本実施形態のように、脚部24(永久磁石)の磁力によって振動センサ10を振動体1の設置面1Aに取り付ける構成では、振動センサ10の重心に対して、脚部24の厚みによるモーメントが働くため、振動体1の振動周波数を測定するための所定の測定範囲内(例えば0〜2000Hz)に脚部24の振動に起因して特定の周波数で振動体1の振動とは別の不要共振が発生することがある。 As described above, the vibration sensor 10 measures the vibration (frequency) generated when the vibrating body 1 is attached to the vibrating body 1 and the vibrating body 1 operates. On the other hand, in the configuration in which the vibration sensor 10 is attached to the installation surface 1A of the vibrating body 1 by the magnetic force of the leg portion 24 (permanent magnet) as in the present embodiment, the thickness of the leg portion 24 depends on the center of gravity of the vibration sensor 10. Since a moment acts, it is different from the vibration of the vibrating body 1 at a specific frequency due to the vibration of the leg 24 within a predetermined measurement range (for example, 0 to 2000 Hz) for measuring the vibration frequency of the vibrating body 1. Unwanted resonance may occur.

発明者達の鋭意研究によれば、脚部24の厚みと不要共振の共振周波数とは相関関係があり、脚部24の厚みが薄くなるほど、その分、振動センサ10の重心位置が低下するため、共振周波数は高周波域に移動(シフト)することが判明した。このため、本実施形態では、脚部24の厚みを変更することにより、脚部24の振動に起因して発生する不要共振の共振周波数の調整を実現するものである。次に、脚部24(永久磁石)の厚み変更に伴い共振周波数が移動する点について説明する。脚部24は、円板状以外にも、三角柱、四角柱、その他の任意の多角柱、断面が楕円の筒状体、もしくはこれらの任意の組み合わせの形状であってよい。複数の脚部24の少なくとも一つが、他の脚部24と異なる形状であってもよい。複数の脚部24の少なくとも一つが、他の脚部24と異なる大きさであってもよい。 According to the diligent research of the inventors, there is a correlation between the thickness of the leg 24 and the resonance frequency of unnecessary resonance, and the thinner the leg 24, the lower the position of the center of gravity of the vibration sensor 10. , It was found that the resonance frequency shifts to the high frequency range. Therefore, in the present embodiment, by changing the thickness of the leg portion 24, the resonance frequency of the unnecessary resonance generated due to the vibration of the leg portion 24 can be adjusted. Next, the point that the resonance frequency moves with the change in the thickness of the leg portion 24 (permanent magnet) will be described. The leg portion 24 may have a shape of a triangular prism, a quadrangular prism, any other polygonal prism, a tubular body having an elliptical cross section, or any combination thereof, in addition to the disk shape. At least one of the plurality of legs 24 may have a shape different from that of the other legs 24. At least one of the plurality of legs 24 may have a size different from that of the other legs 24.

図5は、第1の厚みの脚部を用いて振動センサを加振した場合の振動の強度と周波数との関係を示すグラフである。図6は、第1の厚みよりも薄い第2の厚みの脚部を用いて振動センサを加振した場合の振動の強度と周波数との関係を示すグラフである。これら図5及び図6において、脚部24の第1の厚みはD=8.0[mm]、第2の厚みはD=6.0[mm]である。振動センサに対する加振は振動試験装置を用いて行った。振動試験装置は、任意の力、加速度や振動数に設定した強制振動を発生させ、振動負荷による振動評価試験を行う装置である。振動評価試験における方向は、図4に示すように、脚部24とケース本体20との積層方向、すなわち脚部24の厚み方向をZ軸方向とし、このZ軸方向に直交する方向(例えば一対の正極端子15Aが横並びとなる方向)をX軸方向とし、X軸方向及びZ軸方向にそれぞれ直交する方向をY軸方向とする。なお、Z軸方向が鉛直方向となるように振動センサ10を振動評価試験に設置している。 FIG. 5 is a graph showing the relationship between the intensity of vibration and the frequency when the vibration sensor is vibrated by using the leg portion having the first thickness. FIG. 6 is a graph showing the relationship between the intensity of vibration and the frequency when the vibration sensor is vibrated by using the leg portion having a second thickness thinner than the first thickness. In FIGS. 5 and 6, the first thickness of the leg portion 24 is D = 8.0 [mm], and the second thickness is D = 6.0 [mm]. Vibration to the vibration sensor was performed using a vibration test device. The vibration test device is a device that generates a forced vibration set to an arbitrary force, acceleration, or frequency, and performs a vibration evaluation test by a vibration load. As shown in FIG. 4, the direction in the vibration evaluation test is the stacking direction of the leg 24 and the case body 20, that is, the thickness direction of the leg 24 is the Z-axis direction, and the direction orthogonal to the Z-axis direction (for example, a pair). The direction in which the positive electrode terminals 15A of the above are arranged side by side) is defined as the X-axis direction, and the directions orthogonal to the X-axis direction and the Z-axis direction are defined as the Y-axis direction. The vibration sensor 10 is installed in the vibration evaluation test so that the Z-axis direction is the vertical direction.

本実施形態における加振条件は、
鉛直方向に単一正弦波振動を付与
周波数:対数掃引(4oct/min)
振幅:10mm(0-p)
加速度:2.0G
とした。また、振動センサについては、脚部24の厚み以外はすべて同条件とした。
The vibration conditions in this embodiment are
Gives single sinusoidal vibration in the vertical direction Frequency: Logarithmic sweep (4 oct / min)
Amplitude: 10 mm (0-p)
Acceleration: 2.0G
And said. The conditions for the vibration sensor were the same except for the thickness of the leg 24.

図5及び図6において、符号Pは鉛直方向への入力(振幅)を示す。また、符号Q、R、Sは、それぞれX軸方向、Y軸方向及びZ軸方向(鉛直方向)への出力(振幅)を示す。図5に示すように、脚部24を第1の厚み(D=8.0[mm])とした構成では、周波数約750〜760Hz(符号F1で示す)にX軸方向、Y軸方向及びZ軸方向にそれぞれ出力する不要共振Q1、R1、S1が見られる。これらの不要共振Q1、R1、S1は、脚部24(永久磁石)の振動に起因する不要共振である。 In FIGS. 5 and 6, reference numeral P indicates an input (amplitude) in the vertical direction. Further, reference numerals Q, R, and S indicate outputs (amplitudes) in the X-axis direction, the Y-axis direction, and the Z-axis direction (vertical direction), respectively. As shown in FIG. 5, in the configuration in which the leg portion 24 has the first thickness (D = 8.0 [mm]), the frequency is about 750 to 760 Hz (indicated by reference numeral F1) in the X-axis direction, the Y-axis direction, and Unwanted resonances Q1, R1, and S1 that are output in the Z-axis direction can be seen. These unnecessary resonances Q1, R1, and S1 are unnecessary resonances caused by the vibration of the leg portion 24 (permanent magnet).

これに対して、脚部24を第2の厚み(D=6.0[mm])と薄くした構成では、周波数約850〜870Hz(符号F2で示す)にX軸方向、Y軸方向及びZ軸方向にそれぞれ出力する不要共振Q2、R2、S2が見られる。このように、脚部24の厚みを第1の厚みから第2の厚みに薄くすることにより、脚部24の振動に起因する不要共振Q2、R2、S2の共振周波数が不要共振Q1、R1、S1の共振周波数と比べて100Hz程度、高周波域に移動(シフト)している。また、これら不要共振Q2、R2、S2の出力(振幅)は、それぞれ不要共振Q1、R1、S1の出力(振幅)と比べて低下している。このため、脚部24(永久磁石)の厚みを変化させることにより、脚部24(永久磁石)の振動に起因する不要共振の共振周波数を容易に調整することができる。 On the other hand, in the configuration in which the leg portion 24 is thinned to a second thickness (D = 6.0 [mm]), the frequency is about 850 to 870 Hz (indicated by the reference numeral F2) in the X-axis direction, the Y-axis direction, and Z. Unwanted resonances Q2, R2, and S2 that are output in the axial direction can be seen. By reducing the thickness of the leg portion 24 from the first thickness to the second thickness in this way, the resonance frequencies of the unnecessary resonances Q2, R2, and S2 caused by the vibration of the leg portion 24 are unnecessary resonances Q1, R1, It moves (shifts) to a high frequency range by about 100 Hz with respect to the resonance frequency of S1. Further, the outputs (amplitudes) of these unnecessary resonances Q2, R2, and S2 are lower than the outputs (amplitudes) of the unnecessary resonances Q1, R1, and S1, respectively. Therefore, by changing the thickness of the leg portion 24 (permanent magnet), the resonance frequency of unnecessary resonance caused by the vibration of the leg portion 24 (permanent magnet) can be easily adjusted.

次に、共振周波数の調整方法について説明する。まず、初期状態の振動センサ10の脚部24の厚みD(第1の厚み)を測定する。そして、初期状態の振動センサ10を、例えば、振動評価試験に設置して、第1の厚みの脚部24の振動に起因する不要共振の共振周波数を測定する。これら脚部24の厚み(第1の厚み)及び不要共振の共振周波数のデータは、測定されると随時、算出部19に入力してもよいし、予め測定したデータを制御部14が備える記憶部(不図示)に記憶してもよい。 Next, a method of adjusting the resonance frequency will be described. First, the thickness D (first thickness) of the leg portion 24 of the vibration sensor 10 in the initial state is measured. Then, the vibration sensor 10 in the initial state is installed in, for example, a vibration evaluation test to measure the resonance frequency of unnecessary resonance caused by the vibration of the leg portion 24 having the first thickness. Data on the thickness (first thickness) of the leg portion 24 and the resonance frequency of unnecessary resonance may be input to the calculation unit 19 at any time when measured, or the data measured in advance may be stored in the control unit 14. It may be stored in a part (not shown).

続いて、振動センサ10が設置される振動体1について、該振動体1が動作する際の固有振動数の測定範囲を調査する。測定範囲は振動体1ごとに異なるため、測定範囲と共振周波数とを比較して、測定範囲内に共振周波数が含まれる場合には共振周波数を調整する必要がある。この場合、共振周波数が測定範囲外になるまでの変化量F(シフト量)を求め、この変化量Fを算出部19に入力する。一方で、初期状態で測定範囲内に共振周波数が含まれていない場合には、共振周波数の調整をせずに終了する。 Subsequently, with respect to the vibrating body 1 in which the vibrating sensor 10 is installed, the measurement range of the natural frequency when the vibrating body 1 operates is investigated. Since the measurement range differs for each vibrating body 1, it is necessary to compare the measurement range with the resonance frequency and adjust the resonance frequency when the resonance frequency is included in the measurement range. In this case, the amount of change F (shift amount) until the resonance frequency is out of the measurement range is obtained, and this amount of change F is input to the calculation unit 19. On the other hand, if the resonance frequency is not included in the measurement range in the initial state, the process ends without adjusting the resonance frequency.

続いて、算出部19は、共振周波数の変化量をF[Hz]、脚部24の厚みD[m]、重力加速度g[m/S]、永久磁石の特性に基づく係数αとし、数式(1)に基づいて、脚部24の厚み変化量D´[m]を算出する。算出された厚み変化量D´は、例えば、通信部11を介して、接続された外部機器の表示部(不図示)に表示することができる。 Subsequently, the calculation unit 19 sets the amount of change in the resonance frequency to F [Hz], the thickness D [m] of the leg portion 24, the gravitational acceleration g [m / S], and the coefficient α based on the characteristics of the permanent magnet, and sets the formula ( Based on 1), the amount of change in thickness D'[m] of the leg portion 24 is calculated. The calculated thickness change amount D'can be displayed on the display unit (not shown) of the connected external device via, for example, the communication unit 11.

Figure 2020139751
Figure 2020139751

この数式1は、振り子の等時性に基づく式から発明者達が想到したものである。この数式1に共振周波数の変化量F及び、脚部24の厚みDを入力することにより、共振周波数を変化量Fだけ変化させる脚部24の厚み変化量D´を算出することができる。これによれば、脚部24の厚みを厚み変化量D´だけ変化させた新たな厚み(第2の厚み)の脚部24に変更することにより、不要共振の共振周波数を容易に調整することができる。従って、共振周波数を振動センサ10の測定範囲の外側に調整することで振動体1の動作が正常であるか否かを正確に判定することが可能となる。すなわち、不要共振が生じた永久磁石の厚みと、永久磁石の厚み変化量または該不要共振の共振周波数のシフト量の一方とに基づき、該厚み変化量または該シフト量の他方を算出するため、永久磁石の厚みを変化させることにより不要共振の共振周波数を容易に調整することができる。従って、共振周波数を振動センサの測定範囲の外側に調整することで振動体の動作が正常であるか否かを正確に判定することが可能となる。 This formula 1 was conceived by the inventors from a formula based on the isochronism of the pendulum. By inputting the change amount F of the resonance frequency and the thickness D of the leg portion 24 into the mathematical formula 1, the thickness change amount D'of the leg portion 24 that changes the resonance frequency by the change amount F can be calculated. According to this, the resonance frequency of unnecessary resonance can be easily adjusted by changing the thickness of the leg portion 24 to the leg portion 24 having a new thickness (second thickness) in which the thickness change amount D'is changed. Can be done. Therefore, by adjusting the resonance frequency to the outside of the measurement range of the vibration sensor 10, it is possible to accurately determine whether or not the operation of the vibrating body 1 is normal. That is, in order to calculate the thickness change amount or the other of the shift amount based on the thickness of the permanent magnet in which the unnecessary resonance has occurred and one of the thickness change amount of the permanent magnet or the shift amount of the resonance frequency of the unnecessary resonance. By changing the thickness of the permanent magnet, the resonance frequency of unnecessary resonance can be easily adjusted. Therefore, by adjusting the resonance frequency to the outside of the measurement range of the vibration sensor, it is possible to accurately determine whether or not the operation of the vibrating body is normal.

特に、算出部19は、上記した数式1を利用することで脚部24の厚み変化量D´を容易に算出することができる。 In particular, the calculation unit 19 can easily calculate the thickness change amount D'of the leg portion 24 by using the above-mentioned formula 1.

また、厚み変化量D´が分かっている脚部24を利用する場合には、この厚み変化量D´及び脚部24の厚みDを数式1に入力することにより、厚み変化量D´だけ変化させた脚部24における共振周波数の変化量Fを算出することができる。このため、例えば、既存の厚みの脚部に変更した場合に、測定範囲内に共振周波数が含まれるか否かを容易に判定することができる。 Further, when the leg portion 24 whose thickness change amount D'is known is used, by inputting the thickness change amount D'and the thickness D of the leg portion 24 into the mathematical formula 1, the thickness change amount D'changes by the thickness change amount D'. The amount of change F in the resonance frequency of the legs 24 can be calculated. Therefore, for example, when the leg portion has an existing thickness, it can be easily determined whether or not the resonance frequency is included in the measurement range.

[第2実施形態]
図7は、第2実施形態に係る振動センサを有する共振周波数調整システムを示す機能ブロック図である。第1実施形態では、振動センサ10が算出部19を基板16に実装して備える構成としたが、算出部19を振動センサ10と別に設けた構成してもよい。上記した実施形態と同一の構成については同一の符号を付して説明を省略する。
[Second Embodiment]
FIG. 7 is a functional block diagram showing a resonance frequency adjustment system having a vibration sensor according to the second embodiment. In the first embodiment, the vibration sensor 10 is provided by mounting the calculation unit 19 on the substrate 16, but the calculation unit 19 may be provided separately from the vibration sensor 10. The same components as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.

共振周波数調整システム50は、図7に示すように、振動センサ10Aと算出ユニット40とを備える。振動センサ10Aは、上記した算出部19を備えていない点が異なり、他の構成は振動センサ10と同等である。 As shown in FIG. 7, the resonance frequency adjustment system 50 includes a vibration sensor 10A and a calculation unit 40. The vibration sensor 10A is different in that it does not include the calculation unit 19 described above, and has the same other configurations as the vibration sensor 10.

算出ユニット40は、通信部41と上記した算出部19と制御部42と表示部43とを備える。この算出ユニット40は単体として設けてもよいし、上記した遠隔監視装置3のような外部装置に一体に設けてもよい。 The calculation unit 40 includes a communication unit 41, the above-mentioned calculation unit 19, a control unit 42, and a display unit 43. The calculation unit 40 may be provided as a single unit, or may be integrally provided with an external device such as the remote monitoring device 3 described above.

通信部41は、振動センサ10Aの通信部11と無線通信する機能を有し、アンテナを含む。無線通信は、振動センサ10Aと直接でもよいし、受信部などの中継器を介在してもよい。また、振動センサ10Aと有線で通信可能に構成してもよい。また、算出ユニット40は、複数の振動センサ10Aを通信可能に接続することができる。これによれば、複数の振動センサ10Aにおける各厚み変化量D´を容易に算出することができる。制御部42は、例えば、CPU(Central Processing Unit)等のプロセッサを搭載したコントローラーであり、メモリに格納されたプログラムを実行することにより、各構成要素(通信部41、算出部19、表示部43)の動作を制御する。表示部43は、各種情報出力画面を表示する液晶表示装置などによって構成されており、算出部19が算出した脚部24の厚み変化量D´または、共振周波数の変化量Fを表示する。また、表示部43にタッチパネルを設けて脚部24の厚みDなどの情報を入力できる構成としてもよい。 The communication unit 41 has a function of wirelessly communicating with the communication unit 11 of the vibration sensor 10A, and includes an antenna. The wireless communication may be directly performed with the vibration sensor 10A, or may be performed via a repeater such as a receiving unit. Further, it may be configured so that it can communicate with the vibration sensor 10A by wire. Further, the calculation unit 40 can connect a plurality of vibration sensors 10A in a communicable manner. According to this, each thickness change amount D'in the plurality of vibration sensors 10A can be easily calculated. The control unit 42 is, for example, a controller equipped with a processor such as a CPU (Central Processing Unit), and by executing a program stored in the memory, each component (communication unit 41, calculation unit 19, display unit 43). ) Controls the operation. The display unit 43 is composed of a liquid crystal display device or the like that displays various information output screens, and displays the thickness change amount D'of the leg portion 24 or the resonance frequency change amount F calculated by the calculation unit 19. Further, a touch panel may be provided on the display unit 43 so that information such as the thickness D of the leg portion 24 can be input.

以上のように、本実施形態によれば、振動測定部12が脚部24(永久磁石)に起因する不要共振を測定した場合に、不要共振が生じた脚部24の厚みDと、不要共振の共振周波数の変化量Fとに基づき、脚部24の厚み変化量D´を算出する算出部19を備えるため、脚部24(永久磁石)の厚みを変化させることにより、不要共振の共振周波数を容易に調整することができる。従って、共振周波数を振動センサ10、10Aの測定範囲の外側に調整することで振動体1の動作が正常であるか否かを正確に判定することが可能となる。 As described above, according to the present embodiment, when the vibration measuring unit 12 measures the unnecessary resonance caused by the leg portion 24 (permanent magnet), the thickness D of the leg portion 24 in which the unnecessary resonance occurs and the unnecessary resonance occur. Since the calculation unit 19 for calculating the thickness change amount D'of the leg portion 24 based on the change amount F of the resonance frequency of the above is provided, the resonance frequency of unnecessary resonance is generated by changing the thickness of the leg portion 24 (permanent magnet). Can be easily adjusted. Therefore, by adjusting the resonance frequency to the outside of the measurement range of the vibration sensors 10 and 10A, it is possible to accurately determine whether or not the operation of the vibrating body 1 is normal.

なお、本発明は、上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。例えば、上記実施形態では、脚部24の厚みDと、不要共振の共振周波数の変化量Fまたは脚部24の厚み変化量D´の一方とに基づき、不要共振の共振周波数の変化量Fまたは脚部24の厚み変化量D´の他方を算出する算出部19を備える構成としたが、不要共振の共振周波数の変化量Fまたは脚部24の厚み変化量D´の算出を人手で行い、脚部24(永久磁石)の厚みを変化させることにより、脚部24(永久磁石)の振動に起因する不要共振の共振周波数を調整する共振周波数の調整方法の発明を構成することもできる。 The present invention is not limited to the above embodiment. That is, it can be modified in various ways without departing from the gist of the present invention. For example, in the above embodiment, the change amount F of the resonance frequency of unnecessary resonance or the change amount F of the resonance frequency of unnecessary resonance is based on one of the thickness D of the leg portion 24 and the change amount F of the resonance frequency of unnecessary resonance or the thickness change amount D'of the leg portion 24. Although the configuration is provided with a calculation unit 19 for calculating the other of the thickness change amount D'of the leg portion 24, the change amount F of the resonance frequency of unnecessary resonance or the thickness change amount D'of the leg portion 24 is manually calculated. By changing the thickness of the leg portion 24 (permanent magnet), it is possible to construct an invention of a resonance frequency adjusting method for adjusting the resonance frequency of unnecessary resonance caused by the vibration of the leg portion 24 (permanent magnet).

本開示の内容は、当業者であれば本開示に基づき種々の変形および修正を行うことができる。したがって、これらの変形および修正は本開示の範囲に含まれる。例えば、各実施形態において、各機能部、各手段、各ステップなどは論理的に矛盾しないように他の実施形態に追加し、若しくは、他の実施形態の各機能部、各手段、各ステップなどと置き換えることが可能である。また、各実施形態において、複数の各機能部、各手段、各ステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本開示の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。 The contents of the present disclosure may be modified and modified by those skilled in the art based on the present disclosure. Therefore, these modifications and modifications are within the scope of this disclosure. For example, in each embodiment, each functional unit, each means, each step, etc. are added to other embodiments so as not to be logically inconsistent, or each functional unit, each means, each step, etc. of other embodiments. Can be replaced with. Further, in each embodiment, it is possible to combine or divide a plurality of each functional unit, each means, each step, and the like into one. Further, each of the above-described embodiments of the present disclosure is not limited to faithful implementation of each of the embodiments described above, and each of the features may be combined or a part thereof may be omitted as appropriate. You can also do it.

1 振動体
2 受信部
3 遠隔監視装置
10、10A 振動センサ
11 通信部
12 振動測定部
13 フィルタ処理部
14 制御部
15 電池
19 算出部
20 ケース本体(筐体)
21 蓋体(筐体)
24 脚部(永久磁石)
40 算出ユニット
41 通信部
42 制御部
43 表示部
50 共振周波数調整システム
100 振動検知システム
D 脚部の厚み
D´ 脚部の厚み変化量
F 共振周波数の変化量(シフト量)
g 重力加速度
1 Vibrator 2 Receiver 3 Remote monitoring device 10, 10A Vibration sensor 11 Communication unit 12 Vibration measurement unit 13 Filter processing unit 14 Control unit 15 Battery 19 Calculation unit 20 Case body (housing)
21 Lid (housing)
24 legs (permanent magnet)
40 Calculation unit 41 Communication unit 42 Control unit 43 Display unit 50 Resonance frequency adjustment system 100 Vibration detection system D Leg thickness D'Leg thickness change amount F Resonance frequency change amount (shift amount)
g Gravitational acceleration

Claims (3)

筐体の底面に固定されて磁力により振動体に吸着する磁石と、
前記筐体内に収容された基板に実装され、前記振動体が発する振動を測定する振動測定部と、
前記振動測定部が前記磁石に起因する不要共振を測定した場合に、前記不要共振が生じた前記磁石の厚みと、前記磁石の厚み変化量または該不要共振の共振周波数のシフト量の一方とに基づき、該厚み変化量または該シフト量の他方を算出する算出部と、を備えることを特徴とする振動センサ。
A magnet that is fixed to the bottom of the housing and attracts to the vibrating body by magnetic force,
A vibration measuring unit mounted on a substrate housed in the housing and measuring the vibration generated by the vibrating body,
When the vibration measuring unit measures the unwanted resonance caused by the magnet, the thickness of the magnet in which the unwanted resonance occurs and the thickness change amount of the magnet or the shift amount of the resonance frequency of the unwanted resonance Based on this, a vibration sensor including a calculation unit that calculates the thickness change amount or the other of the shift amount.
前記算出部は、
前記共振周波数のシフト量をF[Hz]、
前記磁石の厚みD[m]、
前記磁石の厚み変化量D´[m]、
重力加速度g[m/S]、
前記磁石の特性に基づく係数αとした場合、
数式(1)に基づいて、前記厚み変化量または前記シフト量を算出することを特徴とする請求項1に記載の振動センサ。
Figure 2020139751
The calculation unit
The shift amount of the resonance frequency is F [Hz],
The thickness D [m] of the magnet,
Amount of change in thickness of the magnet D'[m],
Gravitational acceleration g [m / S],
When the coefficient α is based on the characteristics of the magnet,
The vibration sensor according to claim 1, wherein the thickness change amount or the shift amount is calculated based on the mathematical formula (1).
Figure 2020139751
筐体の底面に固定されて磁力により振動体に吸着する磁石と、前記筐体内に収容された基板に実装され、前記振動体が発する振動を測定する振動測定部とを備えた振動センサと、
前記振動測定部が前記磁石に起因する不要共振を測定した場合に、前記不要共振が生じた前記磁石の厚みと、前記磁石の厚み変化量または該不要共振の共振周波数のシフト量の一方とに基づき、該厚み変化量または該シフト量の他方を算出する算出部を有する算出ユニットと、を備えたことを特徴とする共振周波数調整システム。
A vibration sensor including a magnet fixed to the bottom surface of the housing and attracted to the vibrating body by magnetic force, and a vibration measuring unit mounted on a substrate housed in the housing and measuring the vibration generated by the vibrating body.
When the vibration measuring unit measures unnecessary resonance caused by the magnet, the thickness of the magnet in which the unnecessary resonance occurs and the thickness change amount of the magnet or the shift amount of the resonance frequency of the unnecessary resonance Based on this, a resonance frequency adjustment system including a calculation unit having a calculation unit for calculating the thickness change amount or the other of the shift amount.
JP2019033229A 2019-02-26 2019-02-26 Vibration sensor and resonant frequency adjustment system Pending JP2020139751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033229A JP2020139751A (en) 2019-02-26 2019-02-26 Vibration sensor and resonant frequency adjustment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033229A JP2020139751A (en) 2019-02-26 2019-02-26 Vibration sensor and resonant frequency adjustment system

Publications (1)

Publication Number Publication Date
JP2020139751A true JP2020139751A (en) 2020-09-03

Family

ID=72280215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033229A Pending JP2020139751A (en) 2019-02-26 2019-02-26 Vibration sensor and resonant frequency adjustment system

Country Status (1)

Country Link
JP (1) JP2020139751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL442509A1 (en) * 2022-10-12 2024-04-15 Uniwersytet Wrocławski Method of determining the safe speed of a truck for a building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL442509A1 (en) * 2022-10-12 2024-04-15 Uniwersytet Wrocławski Method of determining the safe speed of a truck for a building

Similar Documents

Publication Publication Date Title
US8912693B2 (en) Broadband linear vibrator and mobile terminal
CA1234705A (en) Angular velocity sensor
US3220258A (en) Sensing the presence or absence of material
US20130201127A1 (en) Input device
KR101564210B1 (en) Headset oscilator detection device, system and method
US9228930B2 (en) Oscillating type physical property measuring apparatus and method
WO2012067534A1 (en) Axially symmetrical coriolis vibratory gyroscope (variants)
US20150033858A1 (en) Inertial force sensor
JP2020139751A (en) Vibration sensor and resonant frequency adjustment system
JP2021170019A (en) Display device, display method, and program
TWI429884B (en) Vibration detecting device
JP2013171041A (en) Apparatus, system, and method for monitoring earthquake
JP2020139756A (en) Vibration sensor
KR20110118681A (en) Membrane tension measuring apparatus
RU2383025C1 (en) Three-component detector of mechanical oscillations
JP2020139752A (en) Vibration sensor
JP2017058216A (en) Electronic apparatus
JP2020139753A (en) Vibration sensor
JP2005063288A (en) Step number measuring device, step number measuring method and program
US11274924B1 (en) Electronic vibrating plumb bob for the detection of differing fluids in tanks and vessels
US11371904B2 (en) Sensor module and sensor system with improved abnormality detection and abnormality determination method for an inertial sensor
CN105917193B (en) Inertial sensor with nested excitor mass and the method for manufacturing such sensor
WO2016035707A1 (en) Piezoelectric vibration unit-driving device and -driving method
JP2013205265A (en) Measuring instrument
JP2646628B2 (en) Vibration sense vibrator