JP2020138875A - Method of producing ferroelectric ceramic - Google Patents

Method of producing ferroelectric ceramic Download PDF

Info

Publication number
JP2020138875A
JP2020138875A JP2019033511A JP2019033511A JP2020138875A JP 2020138875 A JP2020138875 A JP 2020138875A JP 2019033511 A JP2019033511 A JP 2019033511A JP 2019033511 A JP2019033511 A JP 2019033511A JP 2020138875 A JP2020138875 A JP 2020138875A
Authority
JP
Japan
Prior art keywords
temperature
core
relative permittivity
shell
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019033511A
Other languages
Japanese (ja)
Other versions
JP6970702B2 (en
Inventor
岩井 裕
Yutaka Iwai
裕 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019033511A priority Critical patent/JP6970702B2/en
Publication of JP2020138875A publication Critical patent/JP2020138875A/en
Application granted granted Critical
Publication of JP6970702B2 publication Critical patent/JP6970702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

To produce ferroelectric ceramic made by adding a shell material to a core material and calcining the same, the core material being a tungsten bronze type oxide, Sr2NaNb5O15, the shell material being Ta2O5, and hence having stable high-temperature range characteristics capable of maintaining the fluctuation of its relative dielectric constant within a range of ±15% under a high temperature condition of little higher than 273°C.SOLUTION: The method of producing ferroelectric ceramic G of a core-shell structure made by adding a shell material M to a core material S and calcining the same, in which the core material is a tungsten-bronze type oxide, the tungsten-bronze type oxide is Sr2NaNb5O15, and the shell material is Ta2O5.SELECTED DRAWING: Figure 2

Description

本発明は、例えば車載用や航空宇宙用等、過酷な環境下での利用を想定したキャパシタに用いられる強誘電体セラミックスの作製方法に関するものである。 The present invention relates to a method for producing a ferroelectric ceramic used for a capacitor, which is assumed to be used in a harsh environment such as an in-vehicle use or an aerospace use.

従来、この種の強誘電体セラミックスとして、図7、図8の如く、コア材にシェル材を添加し焼成してなるコアシェル構造の強誘電体セラミックスにおいて、上記コア材としてBaTiO(チタン酸バリウム)、上記シェル材としてたとえばZrO(二酸化ジルコニウム)がそれぞれ用いられ、このBaTiO粉末に少量のZrOを添加して焼成することにより作製されたものが知られている(非特許文献1)。 Conventionally, as this type of strong dielectric ceramic, as shown in FIGS. 7 and 8, in a core shell structure strong dielectric ceramic in which a shell material is added to a core material and fired, BaTIO 3 (barium titanate) is used as the core material. ), For example, ZrO 2 (zirconium dioxide) is used as the shell material, and those produced by adding a small amount of ZrO 2 to this BaTiO 3 powder and firing are known (Non-Patent Document 1). ..

すなわち、BaTiO粉末に少量の上記ZrOを添加して焼成することによりジルコニウム成分がBaTiOの周囲から拡散し、BaTi1−xZrで与えられる相がBaTiO粒子の周囲に形成され、図7の如く、BaTiO粒子をコアとし、BaTi1−xZrをシェルとするコアシェル構造の強誘電体セラミックスGが作製されることになる。 That is, by adding a small amount of the above ZrO 2 to the BaTiO 3 powder and firing it, the zirconium component diffuses from the periphery of the BaTiO 3 , and the phase given by the BaTi 1-x Zr x O 3 is formed around the BaTiO 3 particles. Then, as shown in FIG. 7, a ferroelectric ceramic G having a core-shell structure having BaTiO 3 particles as a core and BaTi 1-x Zr x O 3 as a shell is produced.

ここに、上記強誘電体セラミックスの化学組成は、表面に近づくほど、BaTi1−xZr中の変数xが高く、すなわち、Zr成分濃度が高く、中心に近づくほど純粋なBaTiOに近くなる状態となる。 Here, the chemical composition of the ferroelectric ceramic has a higher variable x in BaTi 1-x Zr x O 3 as it approaches the surface, that is, a higher Zr component concentration and a pure BaTIO 3 as it approaches the center. It will be in a close state.

一方、BaTiO粒子をコアとし、BaTi1−xZrをシェルとするコアシェル構造の強誘電体セラミックスにあっては、リラクサー誘電体としても知られ、このようなリラクサー誘電体にあっては、幅広なピークを有した比誘電率温度特性を示すと共に、化学組成BaTi1−xZr中の変数xの変化に従いピーク位置も連続的に変化する特徴を有し、比誘電率温度特性における最高温度はコア材のキュリー温度によって定まることから、約−55℃の低温度からコア材のキュリー温度をやや上回る約125℃に至る温度範囲において、比誘電率変動が25℃の比誘電率を基準として±15%以内に維持可能な安定した高温域特性が得られることが知られており、また添加酸化物もZrOに限らず各種の酸化物およびそれらを組み合わせることで、上記の比誘電率温度特性はEIA X7R規格として確立されているとともに、商品化されるに至っている。 On the other hand, a strong dielectric ceramic having a core-shell structure having a BaTiO 3 particle as a core and a BaTi 1-x Zr x O 3 as a shell is also known as a relaxer dielectric, and such a relaxer dielectric has. , together show a having a broad peak dielectric constant-temperature characteristics, has characteristics that change continuously peak position in accordance with changes in the chemical composition BaTi 1-x Zr x O 3 in variable x, relative dielectric constant Since the maximum temperature in the temperature characteristics is determined by the curry temperature of the core material, the relative permittivity fluctuation is 25 ° C. in the temperature range from a low temperature of about -55 ° C to about 125 ° C, which is slightly higher than the curry temperature of the core material. It is known that stable high-temperature characteristics that can be maintained within ± 15% based on the permittivity can be obtained, and the added oxide is not limited to ZrO 2 , but various oxides and their combination can be used as described above. Relative permittivity temperature characteristics have been established as the EIA X7R standard and have been commercialized.

その後、我々は安定した高温域特性のさらなる拡大を目指し、図7、図8の如く、コア材にシェル材を添加し焼成してなるコアシェル構造の強誘電体セラミックスにおいて、特許文献1に記すように、上記コア材としてBaTiOより高いキュリー温度を有すKSrNb15(ニオブ酸ストロンチウムカリウム)、上記シェル材としてZrO(二酸化ジルコニウム)から構成される強誘電体セラミックスを発明した。 After that, with the aim of further expanding the stable high-temperature region characteristics, as shown in FIGS. 7 and 8, a ferroelectric ceramic having a core-shell structure formed by adding a shell material to the core material and firing it is described in Patent Document 1. In addition, we invented a ferroelectric ceramic composed of KSr 2 Nb 5 O 15 (potassium niobate), which has a Curie temperature higher than that of BaTIO 3, as the core material, and ZrO 2 (zirconium dioxide) as the shell material.

すなわち、上記KSrNb15粉末に少量の上記ZrOを添加して焼成することによりジルコニウム成分がKSrNb15の周囲から拡散し、K1−xSr2+xNb5−xZr15で与えられる相がKSrNb15粒子の周囲に形成され、図7の如く、KSrNb15粒子をコアとし、K1−xSr2+xNb5−xZr15をシェルとするコアシェル構造の強誘電体セラミックスGが作製されることになる。 That is, by adding a small amount of ZrO 2 to the KSr 2 Nb 5 O 15 powder and firing, the zirconium component diffuses from the periphery of KSr 2 Nb 5 O 15 and K 1-x Sr 2 + x Nb 5-x Zr. given phase x O 15 is formed around the KSr 2 Nb 5 O 15 particles, as shown in FIG. 7, the core KSr 2 Nb 5 O 15 particles, K 1-x Sr 2 + x Nb 5-x Zr x O A strong dielectric ceramics G having a core-shell structure having 15 as a shell will be produced.

ここに、上記強誘電体セラミックスGの化学組成は、表面に近づくほど、K1−XSr2+XNb5−XZr15中の変数xが高く、すなわち、Zr成分濃度が高く、中心に近づくほど純粋なKSrNb15に近くなる状態となる。 Here, in the chemical composition of the ferroelectric ceramic G, the closer to the surface, the higher the variable x in K 1-X Sr 2 + X Nb 5-X Zr x O 15 , that is, the higher the Zr component concentration, and the center. The closer it is, the closer it becomes to pure KSr 2 Nb 5 O 15 .

KSrNb15粒子をコアとし、K1−XSr2+XNb5−XZr15をシェルとするコアシェル構造の強誘電体セラミックスGにあっては、リラクサー誘電体としても知られ、このようなリラクサー誘電体にあっては、幅広なピークを有した比誘電率温度特性を示すと共に、化学組成K1−XSr2+XNb5−XZr15中の変数xの変化に従いピーク位置も連続的に変化する特徴を有し、比誘電率温度特性における最高温度はコア材のキュリー温度156℃によって定まることから、約−55℃の低温度からコア材のキュリー温度をやや上回る約195℃に至る温度範囲において平坦な温度特性を得るに至った。 In the ferroelectric ceramics G having a core-shell structure having KSr 2 Nb 5 O 15 particles as a core and K 1-X Sr 2 + X Nb 5-X Zr x O 15 as a shell, it is also known as a relaxer dielectric. Such a relaxor dielectric exhibits a relative permittivity temperature characteristic having a wide peak, and peaks according to a change in the variable x in the chemical composition K 1-X Sr 2 + X Nb 5-X Zr x O 15. The position also has the characteristic of continuously changing, and the maximum temperature in the relative permittivity temperature characteristics is determined by the Curie temperature of the core material of 156 ° C. Therefore, the temperature is about -55 ° C, which is slightly higher than the Curie temperature of the core material. A flat temperature characteristic has been obtained in the temperature range up to 195 ° C.

なお、コアシェル構造とは、典型的なものとしては単一粒子中に一つのコアをシェルで包み込むような組成上の不均一構造を意味してきたが、近年においては、このような構造以外にも、例えば、単一粒子中において一つのシェルが複数のコアを包含する構造や、一つのコアを複数層のシェルがあたかも玉ねぎのように包み込む構造や、粒状でなく棒状あるいはワイヤ状のコアをシェルが囲む一次元的構造など、各種のコアシェル構造の存在が非特許文献2にまとめられており、本文で扱うコアシェル構造もこのような成分のナノサイズの組成の不均質性を有すセラミックスをも含むものとする。 In addition, the core-shell structure has typically meant a non-uniform structure in composition such that one core is wrapped in a shell in a single particle, but in recent years, other than such a structure has been used. For example, a structure in which one shell contains a plurality of cores in a single particle, a structure in which a multi-layer shell wraps one core like an onion, or a rod-shaped or wire-shaped core instead of granular shells. The existence of various core-shell structures such as the one-dimensional structure surrounded by is summarized in Non-Patent Document 2, and the core-shell structure dealt with in the text also includes ceramics having nano-sized composition inhomogeneity of such components. It shall include.

上記とは別に、SrNaNb15におけるNbの一部をTaにおきかえた組成SrNaNb5−xTa15のタングステンブロンズセラミックスの比誘電率温度特性の検討を行い、詳細を非特許文献3に示した。 Apart from the above, the relative permittivity temperature characteristics of the tungsten bronze ceramics of Sr 2 NaNb 5-x Ta x O 15 having a composition in which a part of Nb in Sr 2 NaNb 5 O 15 was replaced with Ta were examined, and the details are not described. It is shown in Patent Document 3.

原料酸化物SrCO、NaCO、NbおよびTaを化学量論比に秤量し、遊星ボールミルを用いて十分混合したものを1,150℃で7時間仮焼し、得られた仮焼生成物をX線回折によりタングステンブロンズ単相で同窓以外の異相の存在が認められないことを確認したのち、当該仮焼生成物を再度遊星ボールミルを用いて粉砕処理を施し、得られた粉末を円盤状に加圧成形したものを、酸素雰囲気中の電気炉に投入し1,250℃から1,350℃の温度で8時間焼成することによりセラミックス試料を作製した。 The raw material oxides SrCO 3 , Na 2 CO 3 , Nb 2 O 5 and Ta 2 O 5 were weighed to a chemical quantitative ratio, sufficiently mixed using a planetary ball mill, and calcined at 1,150 ° C. for 7 hours. After confirming by X-ray diffraction that the obtained calcined product had no different phases other than the same window in the tungsten bronze single phase, the calcined product was again pulverized using a planetary ball mill. The obtained powder was pressure-molded into a disk shape, put into an electric furnace in an oxygen atmosphere, and calcined at a temperature of 1,250 ° C. to 1,350 ° C. for 8 hours to prepare a ceramic sample.

X線回折により、該セラミックスは結晶性の良いタングステンブロンズ単相であり、その格子定数はSrNaNb5−xTa15タングステンブロンズのxの値によりほぼ直線的に変化しつつもそれぞれのxの値により一位的に定まることが認められたことから、得られたセラミックスはコアシェル構造などナノサイズの組成不均一性を有さない均一なセラミックスであることが示された。 By X-ray diffraction, the ceramic is a tungsten bronze single phase with good crystallinity, and its lattice constant changes almost linearly depending on the value of x of Sr 2 NaNb 5-x Ta x O 15 tungsten bronze. Since it was confirmed that the value of x was determined in a first place, it was shown that the obtained ceramics were uniform ceramics having no nano-sized compositional inhomogeneity such as core-shell structure.

上記セラミックスの両面にスパッタリングにより金電極を形成し、これをLCRメータに接続し、1kHzから1MHzに至る各周波数での比誘電率を液体窒素の沸点から最大400℃の温度範囲において評価した結果、非特許文献3に記すように、概ね−100℃から0℃に至る温度範囲において出現する幅広の比誘電率ピークと、同じく概ね−150℃から300℃に至る温度範囲において出現する幅広の比誘電率ピークの二つのピークから成る概ね平坦な比誘電率温度特性が得られた。 Gold electrodes were formed on both sides of the ceramics by sputtering, connected to an LCR meter, and the relative permittivity at each frequency from 1 kHz to 1 MHz was evaluated in the temperature range of up to 400 ° C from the boiling point of liquid nitrogen. As described in Non-Patent Document 3, a wide relative permittivity peak that appears in a temperature range of approximately -100 ° C to 0 ° C and a wide relative permittivity that also appears in a temperature range of approximately -150 ° C to 300 ° C. A generally flat relative permittivity temperature characteristic consisting of two peaks of rate peak was obtained.

比誘電率ピークのピーク位置は、化学組成SrNaNb5−xTa15のxの値の増大に伴いそれぞれ連続的に低温側に遷移する特徴を有し、たとえば組成x=0において高温側に出現するピーク位置の最高点はSrNaNb15のキュリー温度に相当すると考えられる273℃にあり、組成x=0.2においては低温側に出現するピーク位置はほぼ−150℃であるなど広範な温度領域を包含しているが、各組成セラミックス個々に関しては比誘電率変動は依然として大きく、KSrNb15で実現した−55℃から195℃より広い温度領域中で比誘電率変動を25℃基準で±15%内に抑えるには至らなかった。 The peak position of the relative permittivity peak has a characteristic of continuously transitioning to the low temperature side as the value of x of the chemical composition Sr 2 NaNb 5-x Ta x O 15 increases. For example, the high temperature at the composition x = 0. The highest point of the peak position appearing on the side is at 273 ° C, which is considered to correspond to the Curie temperature of Sr 2 NaNb 5 O 15 , and at the composition x = 0.2, the peak position appearing on the low temperature side is approximately −150 ° C. Although it covers a wide temperature range such as some, the relative permittivity fluctuation is still large for each composition ceramic, and the relative permittivity is realized in a temperature range wider than -55 ° C to 195 ° C realized by KSr 2 Nb 5 O 15. The rate fluctuation could not be suppressed within ± 15% on the basis of 25 ° C.

特許第6267673号Patent No. 6267673

T.Armstrong, et al. ”Dielectric Properties of Fluxed Barium Titanate Ceramics with Zirconia Additions ”Journal of the American Ceramic Society Vol. 73 pp.700−706 (1990)T. Armstrong, et al. "Dielectric Properties of Luxed Barium Titanate Ceramics with Zirconia Additions" Journal of the American Ceramic Society Vol. 73 pp. 700-706 (1990) Matias Acosta, et al.,”Core−Shell Lead−Free Piezoelectric Ceramics: Current Status and Advanced Characterization of the Bi1/2Na1/2TiO3−SrTiO3 System” Journal of the American Ceramic Society Vol.98 pp.3405−3422 (2015)Matias Acosta, et al. , "Core-Shell Lead-Free Piezoelectric Ceramics: Currant Status and Advanced characterization of the Bi1 / 2Na1 / 2TIO3-SrTIO3 Ceramics" Journal 98 pp. 3405-3422 (2015) 岩井裕、宮島さくら、石丸紗伎: 「Sr2NaNb5−xTaxO15セラミックスの比誘電率温度特性」 第64回 応用物理学会春季学術講演会(2017) 15p−P4−6 講演予稿およびポスターHiroshi Iwai, Sakura Miyajima, Sasuke Ishimaru: "Relative Permittivity Temperature Characteristics of Sr2NaNb5-xTaxO15 Ceramics" 64th JSAP Spring Meeting (2017) 15p-P4-6 Lecture Proposal and Poster F.Lin, et al. ”Microstructure Refinement of Sintered Alumina by a Two−Step Sintering Technique” Journal of the American Ceramic Society, Vol.80 pp.2269−2277 (1997)F. Lin, et al. "Microstructure Refinement of Sintered Alumina by a Two-Step Sintering Technology" Journal of the American Ceramic Society, Vol. 80 pp. 2269-2277 (1997)

上記KSrNb15粉末に少量のZrOを添加して焼成することにより作製された従来の強誘電体セラミックスの場合、図8に示す比誘電率温度特性の如く、温度が195℃以上になると、比誘電率が著しく低下することになり、このような従来の強誘電体セラミックスを車載用や航空宇宙用のキャパシタ材においては、−55℃から195℃の温度範囲よりもより広い温度範囲において比誘電率の変動が±15%以内の特性以上の高温域特性を必要とする、より厳しい要求に応えることができないことがあるという不都合を有している。 In the case of conventional ferroelectric ceramics produced by adding a small amount of ZrO 2 to the above KSr 2 Nb 5 O 15 powder and firing, the temperature is 195 ° C. or higher as shown in the relative permittivity temperature characteristics shown in FIG. Then, the relative permittivity is remarkably lowered, and such a conventional ferroelectric ceramic is used as a capacitor material for automobiles and aerospace at a temperature wider than the temperature range of -55 ° C to 195 ° C. It has the inconvenience that it may not be possible to meet stricter requirements, which require characteristics in the high temperature range where the fluctuation of the relative permittivity is within ± 15% in the range.

本発明はこのような不都合を解決することを目的とするもので、請求項1記載の発明は、コア材にシェル材を添加し焼成してなるコアシェル構造の強誘電体セラミックスの作製方法であって、上記コア材はタングステンブロンズ型酸化物であり、該タングステンブロンズ型酸化物はSrNaNb15(ニオブ酸ストロンチウムナトリウム)であり、上記シェル材はTa(五酸化二タンタル)であることを特徴とし、ZrOを添加したKSrNb15コアシェル構造セラミックスや、非特許文献1にその一例が示されている既に実用化されたZrOその他を添加したチタン酸バリウムコアシェル構造セラミックスの比誘電率温度特性の発現と同様、SrNaNb5−xTa15組成xに依存して変化を示す比誘電率温度特性がセラミックスの中で総和されることにより、原理的には−150℃からSrNaNb15のキュリー温度に相当すると考えられる273℃をやや上回る広い温度領域において、たとえば比誘電率変動を25℃基準で±15%内に抑え得る平坦な比誘電率温度特性を有し得る強誘電体セラミックスの作製方法である。 An object of the present invention is to solve such inconvenience, and the invention according to claim 1 is a method for producing a ferroelectric ceramic having a core-shell structure, which is obtained by adding a shell material to a core material and firing it. The core material is a tungsten bronze oxide, the tungsten bronze oxide is Sr 2 NaNb 5 O 15 (strontium sodium niobate), and the shell material is Ta 2 O 5 (ditantal pentoxide). and characterized in that, and KSr 2 Nb 5 O 15 core-shell structure ceramic with the addition of ZrO 2, non one example in Patent Document 1 is shown already in practical use has been ZrO 2 Others were added barium titanate core shell Similar to the expression of the relative permittivity temperature characteristics of structural ceramics, the relative permittivity temperature characteristics that change depending on the composition x of Sr 2 NaNb 5-x Ta x O 15 composition x are summed up in the ceramics in principle. In a wide temperature range from -150 ° C to slightly above 273 ° C, which is considered to correspond to the curry temperature of Sr 2 NaNb 5 O 15 , for example, a flat ratio that can suppress the relative permittivity fluctuation within ± 15% based on 25 ° C. This is a method for producing ferroelectric ceramics that can have a permittivity temperature characteristic.

本発明は上述の如く、請求項1記載の発明にあっては、コア材にシェル材を添加し焼成してなるコアシェル構造の強誘電体セラミックスの作製方法であって、シェル材Mがイオンの拡散によりコア材Sに固溶することで、コア材をタングステンブロンズ型酸化物とするコアシェル構造の強誘電体セラミックスを低コストで得ることができ、上記コア材はタングステンブロンズ型酸化物SrNaNb15であり、上記シェル材はTaであるから、その機能として、−150℃からSrNaNb15のキュリー温度に相当すると考えられる273℃をやや上回る温度条件下においても、比誘電率の変動が±15%以内に維持可能な安定した高温域特性をもつ強誘電体セラミックスを得ることができ、高温域特性が要求される車載用や航空宇宙用のキャパシタ材等に用いることができる。 As described above, in the invention according to claim 1, the present invention is a method for producing a ferroelectric ceramic having a core-shell structure in which a shell material is added to a core material and fired, wherein the shell material M is an ion. By solidifying in the core material S by diffusion, a ferroelectric ceramic having a core shell structure in which the core material is a tungsten bronze type oxide can be obtained at low cost, and the core material is a tungsten bronze type oxide Sr 2 NaNb. Since it is 5 O 15 and the shell material is Ta 2 O 5 , its function is even under temperature conditions slightly higher than 273 ° C, which is considered to correspond to the Curie temperature of Sr 2 NaNb 5 O 15 from −150 ° C. Ferroelectric ceramics with stable high-temperature characteristics that can maintain fluctuations in the relative permittivity within ± 15% can be obtained, and are used as capacitor materials for automobiles and aerospace where high-temperature characteristics are required. Can be used.

本発明の実施の第一形態例の製造工程図である。It is a manufacturing process drawing of the 1st Embodiment of this invention. 本発明の実施の第一形態例の説明正断面図である。It is explanatory forward sectional drawing of the 1st Embodiment example of embodiment of this invention. 本発明の実施の第一形態例の走査電子顕微鏡像である。It is a scanning electron microscope image of the first embodiment of the present invention. 本発明の実施の第一形態例の比誘電率温度特性図である。It is a relative permittivity temperature characteristic figure of the 1st Embodiment of this invention. 本発明の実施の第二形態例の走査電子顕微鏡像である。It is a scanning electron microscope image of the second embodiment of the present invention. 本発明の実施の第二形態例の比誘電率温度特性図である。It is a relative permittivity temperature characteristic figure of the 2nd Embodiment of this invention. 従来品の実施の形態例の説明正断面図である。It is explanatory drawing of the embodiment of the conventional product. 従来品の実施の形態例の比誘電率温度特性図である。It is a relative permittivity temperature characteristic figure of the embodiment of the conventional product.

図1乃至図6は本発明の実施の形態例を示し、図1乃至図4は第一形態例、図
5、図6は第二形態例である。
1 to 6 show examples of embodiments of the present invention, FIGS. 1 to 4 are examples of the first embodiment, and FIGS. 5 and 6 are examples of the second embodiment.

図1乃至図4の第一形態例において、タングステンブロンズ型酸化物からなるコア材Sに少量のシェル材Mを添加して焼成することによりコアシェル構造の強誘電体セラミックスGが作製される。 In the first embodiment of FIGS. 1 to 4, a ferroelectric ceramic G having a core-shell structure is produced by adding a small amount of a shell material M to a core material S made of a tungsten bronze oxide and firing it.

この場合、タングステンブロンズ型酸化物としてSrNaNb15(ニオブ酸ストロンチウムナトリウム)が用いられ、シェル材MとしてTa(五酸化二タンタル)が用いられている。 In this case, Sr 2 NaNb 5 O 15 (strontium sodium niobate) is used as the tungsten bronze type oxide, and Ta 2 O 5 (ditantalum pentoxide) is used as the shell material M.

この場合、強誘電体セラミックスGの作製に際し、図1の如く、先ず、タングステンブロンズ型酸化物の原料として、原料酸化物NaCO、SrCO、Nbを化学量論比で秤量し、これら原料を遊星ボールミルを用いて24時間混合し、1,150℃で8時間かけて仮焼して、コア材Sとしてのタングステンブロンズ型酸化物を作製することになる。 In this case, when producing the ferroelectric ceramics G, as shown in FIG. 1, first, the raw material oxides Na 2 CO 3 , SrCO 3 , and Nb 2 O 5 are weighed as raw materials for the tungsten bronze type oxide by a chemical quantitative ratio. Then, these raw materials are mixed for 24 hours using a planetary ball mill and calcined at 1,150 ° C. for 8 hours to prepare a tungsten bronze type oxide as the core material S.

そして、この作製されたタングステンブロンズ型酸化物の仮焼粉末がSrNaNb15単相であることをX線回折法で確認することになる。 Then, it will be confirmed by the X-ray diffraction method that the calcined powder of the produced tungsten bronze type oxide is Sr 2 NaNb 5 O 15 single phase.

次いで、上記コア材Sとしてのタングステンブロンズ型酸化物の仮焼粉末に上記シェル材MとしてのTaをそのまま投入し、例えば、遊星ボールミルを用いて十分に撹拌処理し、得られた混合粉末を圧力196MPa程度で加圧してペレットを形成し、このペレットを加熱炉内に投入し、加熱炉内の酸素雰囲気中で、温度1,300℃で約1分〜3分程度保持したのち1,200℃まで冷却し同温度で8時間かけて焼成する二段階焼成法により焼成し、これによりTaからイオンの拡散が起こり、図2に示す如く、上記タングステンブロンズ型酸化物をコアとし、SrNaNb5−xTa15をシェルとするコアシェル構造の強誘電体セラミックスGが作製されることになる。 Next, Ta 2 O 5 as the shell material M was directly added to the calcined powder of the tungsten bronze type oxide as the core material S, and the mixture was sufficiently stirred using, for example, a planetary ball mill, and the obtained mixture was obtained. The powder is pressurized at a pressure of about 196 MPa to form pellets, and the pellets are put into a heating furnace and held at a temperature of 1,300 ° C. for about 1 to 3 minutes in an oxygen atmosphere in the heating furnace. , Cooled to 200 ° C. and fired at the same temperature for 8 hours by a two-step firing method, which causes ion diffusion from Ta 2 O 5 , and as shown in FIG. 2, the tungsten bronze type oxide is used as the core. Then, a tungsten ceramic G having a core-shell structure having Sr 2 NaNb 5-x Ta x O 15 as a shell will be produced.

二段階焼成法は、たとえば非特許文献4に述べられているように、通常の焼成法に比して低い焼成温度条件下でも緻密なセラミックスを作製できると同時に、焼結の最終段階で生ずる粒成長を抑止できることでも知られている。 As described in Non-Patent Document 4, for example, the two-step firing method can produce dense ceramics even under low firing temperature conditions as compared with the normal firing method, and at the same time, grains produced in the final stage of sintering. It is also known to be able to curb growth.

焼結最終段階での粒成長が著しい場合、非特許文献1でも示されているように、粒成長に伴うコア−シェル間での成分の拡散が促進される結果、コアシェル構造が失われ均一化学組成のセラミックスとなり、コアシェル構造特有の比誘電率温度特性が失われ、当該セラミックス、例えばSrNaNb5−xTa15組成の場合コアシェル構造のそれでなくSrNaNb5−xTa15均一組成の比誘電率温度特性が発現し、先述したように、KSrNb15で実現した−55℃から195℃より広い温度領域中で比誘電率変動を25℃基準で±15%内に抑えるには至らないことになるが、二段階焼成を行うと通常の一段階焼成に比して容易にこの問題を解決できる。 When the grain growth at the final stage of sintering is remarkable, as shown in Non-Patent Document 1, as a result of promoting the diffusion of components between the core and the shell due to the grain growth, the core-shell structure is lost and uniform chemistry. The ceramic has a composition that loses the relative permittivity temperature characteristics peculiar to the core-shell structure, and in the case of the ceramic, for example, Sr 2 NaNb 5-x Ta x O 15 composition, instead of that of the core-shell structure, Sr 2 NaNb 5-x Ta x O 15 Relative permittivity temperature characteristics of uniform composition are exhibited, and as described above, the relative permittivity fluctuation is ± 15% based on 25 ° C. in a temperature range wider than -55 ° C. to 195 ° C. realized by KSr 2 Nb 5 O 15. Although it cannot be suppressed to the inside, this problem can be easily solved by performing the two-step firing as compared with the normal one-step firing.

このようにして作製された強誘電体セラミックスGにあっては、その表面は、図3に示す走査電子顕微鏡像となった。 The surface of the ferroelectric ceramics G thus produced was a scanning electron microscope image shown in FIG.

上記セラミックスの両面にスパッタリングにより金電極を形成し、LCRメータを用い周波数1kHzでの比誘電率を液体窒素温度から最大250℃の温度範囲においては加熱装置付き試料台に試料を固定し液体窒素で冷却しながら比誘電率測定を行い、かつ室温から最大450℃の温度の温度範囲においては大気中の加熱炉内に設置した試料固定台に試料を固定しそれぞれ比誘電率測定を行った。 Gold electrodes are formed on both sides of the ceramics by sputtering, and the relative permittivity at a frequency of 1 kHz is fixed in a sample table with a heating device in the temperature range from the liquid nitrogen temperature to a maximum of 250 ° C. using a liquid nitrogen meter. The relative permittivity was measured while cooling, and the relative permittivity was measured by fixing the sample on a sample fixing table installed in a heating furnace in the atmosphere in the temperature range from room temperature to a maximum of 450 ° C.

その結果、図4に示す横軸を温度(℃)、縦軸を比誘電率とし、周波数1kHzの条件で示す比誘電率温度特性図の如く、比誘電率は最大で1,578程度を示し、温度25℃において比誘電率は約1,531となり、温度150℃にて極小1,316を示したのち温度200℃程度まで比誘電率の値は安定し、温度230℃を超えた頃から比誘電率は再度少しの上昇を示したのち低下傾向を見せた。 As a result, the horizontal axis shown in FIG. 4 is the temperature (° C.), the vertical axis is the relative permittivity, and the relative permittivity shows a maximum of about 1,578 as shown in the relative permittivity temperature characteristic diagram shown under the condition of a frequency of 1 kHz. The relative permittivity becomes about 1,531 at a temperature of 25 ° C, and after showing a minimum of 1,316 at a temperature of 150 ° C, the value of the relative permittivity stabilizes up to a temperature of about 200 ° C, and from the time when the temperature exceeds 230 ° C. The relative permittivity showed a slight increase again and then showed a downward trend.

氷点下において、温度の上昇と共に比誘電率は上昇し、約−70℃において温度25℃の比誘電率1,531の15%減に相当する1,301に達し、温度252℃において同じく温度25℃の比誘電率1,531の15%減に相当する1,301を示したのち温度上昇に伴い比誘電率低下を示す一方、逆に温度25℃の比誘電率1,531の15%増に相当する1,760には温度−70℃から252℃全域にわたり到達せず、結果としてこの誘電体は、−70℃から252℃の広い温度範囲にわたり比誘電率変動が+25℃の比誘電率基準で±15%以内に収まることが確認された。 Below the freezing point, the relative permittivity increases with increasing temperature, reaching 1,301 at about -70 ° C, which corresponds to a 15% decrease in the relative permittivity of 1,531 at a temperature of 25 ° C, and at a temperature of 252 ° C, the temperature is also 25 ° C. After showing 1,301, which corresponds to a 15% decrease in the relative permittivity of 1,531, the relative permittivity decreases as the temperature rises, while conversely, the relative permittivity of 1,531 at a temperature of 25 ° C. increases by 15%. The corresponding 1,760 did not reach the entire temperature range of -70 ° C to 252 ° C, and as a result, this dielectric has a relative permittivity reference with a relative permittivity variation of + 25 ° C over a wide temperature range of -70 ° C to 252 ° C. It was confirmed that it was within ± 15%.

この第一形態例にあっては、図1、図2の如く、コア材Sにシェル材Mを添加し二段階焼成してなるコアシェル構造の強誘電体セラミックスGの作製方法であって、シェル材Mがイオンの拡散によりコア材Sに固溶することで、コア材Sをタングステンブロンズ型酸化物とするコアシェル構造の強誘電体セラミックスGを低コストで得ることができるうえ、上記コア材Sはタングステンブロンズ型酸化物SrNaNb15であり、上記シェル材MはTaであるから、コア材Sの中心部から表面部に向かうほどシェル材Mの成分濃度が高くなるコアシェル構造の強誘電体セラミックスGが作製される結果、その機能としてタングステンブロンズ型酸化物はSrNaNb15であるから、原理的には−150℃から273℃をやや上回る広い温度範囲においても、比誘電率の変動が±15%以内に維持可能な安定した高温域特性をもつ強誘電体セラミックスGを得ることができる。 In this first embodiment, as shown in FIGS. 1 and 2, a method for producing a ferroelectric ceramic G having a core-shell structure, which is obtained by adding a shell material M to a core material S and firing in two steps, in which a shell is used. By solidifying the material M into the core material S by diffusion of ions, a ferroelectric ceramic G having a core shell structure in which the core material S is a tungsten bronze type oxide can be obtained at low cost, and the core material S can be obtained at low cost. Is a tungsten bronze type oxide Sr 2 NaNb 5 O 15 , and the shell material M is Ta 2 O 5. Therefore, the core shell in which the component concentration of the shell material M increases from the central portion to the surface portion of the core material S. As a result of producing the ferroelectric ceramics G having a structure, the tungsten bronze type oxide is Sr 2 NaNb 5 O 15 as its function. Therefore, in principle, even in a wide temperature range slightly higher than −150 ° C. to 273 ° C. It is possible to obtain a ferroelectric ceramic G having stable high temperature region characteristics in which the fluctuation of the relative permittivity can be maintained within ± 15%.

現実に得られた第一形態例においては−70℃から254℃に至る温度条件下においても、25℃の比誘電率に対する変動が±15%以内に維持可能な安定した高温域特性をもつ強誘電体セラミックスGを得ることができ、結果としてZrO添加KSrNb15コアシェル構造で実現した−55℃から195℃に至る温度範囲よりも広い温度範囲においても、比誘電率の変動が±15%以内に維持可能な安定した高温域特性をもつ強誘電体セラミックスGを得ることができ、高温域特性が要求される車載用や航空宇宙用のキャパシタ材等に用いることができる。 In the actually obtained first embodiment, even under the temperature condition from −70 ° C. to 254 ° C., the strength having a stable high temperature region characteristic that the fluctuation with respect to the relative permittivity of 25 ° C. can be maintained within ± 15%. Dielectric ceramics G can be obtained, and as a result, the relative permittivity fluctuates even in a temperature range wider than the temperature range from -55 ° C to 195 ° C realized by the ZrO 2 added KSr 2 Nb 5 O 15 core shell structure. It is possible to obtain a ferroelectric ceramic G having stable high temperature region characteristics that can be maintained within ± 15%, and it can be used as a capacitor material for automobiles and aerospace where high temperature region characteristics are required.

図5、図6は実施の第二形態例であって、上記第一形態例と同様に、図1、図
2の如く、上記コア材Sとしてのタングステンブロンズ型酸化物がSrNaNb15、上記シェル材MがTaであり、コア材Sにシェル材Mを添加し、1,250℃の加熱炉内に投入し、加熱炉内の酸素雰囲気中で8時間掛けて焼成する通常の一段階焼成法によって図2に示すごとくタングステンブロンズ型酸化物からなるコア材Sの中心部から表面部に向かうほどシェル材Mの成分濃度が高くなるコアシェル構造の強誘電体セラミックスGが作製されることとなる。
5 and 6 are examples of the second embodiment, and similarly to the first embodiment, as shown in FIGS. 1 and 2, the tungsten bronze type oxide as the core material S is Sr 2 NaNb 5 O. 15. The shell material M is Ta 2 O 5 , and the shell material M is added to the core material S, put into a heating furnace at 1,250 ° C., and fired in an oxygen atmosphere in the heating furnace for 8 hours. As shown in FIG. 2, the ferroelectric ceramics G having a core-shell structure in which the component concentration of the shell material M increases from the center to the surface of the core material S made of tungsten bronze oxide by the usual one-step firing method. It will be produced.

このように作成された、強誘電体セラミックスGにおいては、その表面は、図5に示す走査電子顕微鏡像となった。 In the ferroelectric ceramics G thus prepared, the surface thereof was a scanning electron microscope image shown in FIG.

上記セラミックスの両面にスパッタリングにより金電極を形成し、LCRメータを用い周波数1kHzでの比誘電率を液体窒素温度から最大250℃の温度範囲においては加熱装置付き試料台に試料を固定し液体窒素で冷却しながら比誘電率測定を行い、かつ室温から最大450℃の温度の温度範囲においては大気中の加熱炉内に設置した試料固定台に試料を固定しそれぞれ比誘電率測定を行った。 Gold electrodes are formed on both sides of the ceramics by sputtering, and the relative permittivity at a frequency of 1 kHz is fixed in a sample table with a heating device in the temperature range from the liquid nitrogen temperature to a maximum of 250 ° C. using a liquid nitrogen meter. The relative permittivity was measured while cooling, and the relative permittivity was measured by fixing the sample on a sample fixing table installed in a heating furnace in the atmosphere in the temperature range from room temperature to a maximum of 450 ° C.

その結果、図6に示す横軸を温度(℃)、縦軸を比誘電率とし、周波数1kHzの条件で示す比誘電率温度特性図の如く、比誘電率は最大で1,249程度を示し、温度25℃において比誘電率は1,216となり、温度130℃にて極小1,041を示したのち温度200℃程度まで比誘電率の値は安定して変化せず、温度220℃を超えた頃から比誘電率は少し上昇したのち低下傾向を見せた。 As a result, the horizontal axis shown in FIG. 6 is the temperature (° C.), the vertical axis is the relative permittivity, and the relative permittivity shows a maximum of about 1,249 as shown in the relative permittivity temperature characteristic diagram shown under the condition of a frequency of 1 kHz. The relative permittivity becomes 1,216 at a temperature of 25 ° C., and after showing a minimum of 1,041 at a temperature of 130 ° C., the value of the relative permittivity does not change stably until the temperature is about 200 ° C., and exceeds the temperature of 220 ° C. From around that time, the relative permittivity rose a little and then showed a downward trend.

氷点下において、温度の上昇と共に比誘電率は上昇し、約−65℃において温度25℃の比誘電率1,216の15%減に相当する1,034程度に達し、温度263℃において同じく温度25℃の比誘電率1,216の15%減に相当する1,034を示したのち、温度上昇に伴い比誘電率低下を示す一方、逆に温度25℃の比誘電率1,216の15%増に相当する1,398には温度−65℃から263℃の全域にわたり到達せず、結果としてこの強誘電体セラミックスGは、−65℃から263℃の広い温度範囲にわたり比誘電率変動が+25℃の比誘電率基準で±15%以内に収まることが確認された。 Below the freezing point, the relative permittivity rises as the temperature rises, reaching about 1,034, which corresponds to a 15% decrease in the relative permittivity of 1,216 at a temperature of 25 ° C at about -65 ° C, and the same temperature 25 at a temperature of 263 ° C. After showing 1,034, which corresponds to a 15% decrease in the relative permittivity of 1,216 at ° C, the relative permittivity decreases as the temperature rises, while conversely, 15% of the relative permittivity 1,216 at a temperature of 25 ° C. The increase of 1,398 did not reach over the entire temperature range of -65 ° C to 263 ° C, resulting in a relative permittivity variation of +25 in this strong dielectric ceramics G over a wide temperature range of -65 ° C to 263 ° C. It was confirmed that it was within ± 15% based on the relative permittivity at ° C.

なお、図6の比誘電率温度特性図では、約50℃において比誘電率の不連続的変化が認められるが、これは、液体窒素温度から50℃においては加熱装置付き試料台に試料を固定し液体窒素で冷却しながら比誘電率測定を行ったのに対し、50℃以上の温度領域では加熱炉中に設置した試料固定台に試料を固定し比誘電率測定を行った結果、装置の浮遊誘電率の変化などが原因となり誤差として生じたものであるが、この誤差がなければ比誘電率の変動はむしろ小さくなるが、全体の結論に影響を及ぼすものではない。 In the relative permittivity temperature characteristic diagram of FIG. 6, a discontinuous change in the relative permittivity is observed at about 50 ° C., which means that the sample is fixed on a sample table with a heating device from the liquid nitrogen temperature to 50 ° C. Relative permittivity was measured while cooling with liquid nitrogen, whereas in the temperature range of 50 ° C or higher, the sample was fixed on a sample fixation table installed in a heating furnace and the relative permittivity was measured. It was caused as an error due to a change in the suspended permittivity, but without this error, the fluctuation in the relative permittivity would be rather small, but it would not affect the overall conclusion.

この第二形態例にあっては、上記第一形態例と同様に、コア材Sにシェル材Mを添加し一段階焼成してなるコアシェル構造の強誘電体セラミックスGの作製方法であって、上記コア材Sはタングステンブロンズ型酸化物SrNaNb15であり、上記シェル材MはTaであるから、シェル材Mがイオンの拡散によりコア材Sに固溶することで、コア材Sをタングステンブロンズ型酸化物とするコアシェル構造の強誘電体セラミックスGを低コストで得ることができるうえ、その機能としてタングステンブロンズ型酸化物はSrNaNb15であるから、原理的には−150℃から273℃をやや上回る広い温度範囲においても、比誘電率の変動が±15%以内に維持可能な安定した高温域特性をもつ強誘電体セラミックスGを得ることができる。 The second embodiment is a method for producing a ferroelectric ceramic G having a core-shell structure, which is obtained by adding a shell material M to the core material S and firing it in one step, as in the first embodiment. Since the core material S is a tungsten bronze type oxide Sr 2 NaNb 5 O 15 and the shell material M is Ta 2 O 5 , the shell material M is dissolved in the core material S by the diffusion of ions. Ferroelectric ceramics G having a core-shell structure in which the core material S is a tungsten bronze type oxide can be obtained at low cost, and the tungsten bronze type oxide is Sr 2 NaNb 5 O 15 as its function. It is possible to obtain a ferroelectric ceramic G having a stable high temperature range characteristic in which the fluctuation of the relative permittivity can be maintained within ± 15% even in a wide temperature range slightly over −150 ° C. to 273 ° C.

図6に示すように、現実に得られた第二形態例においても−65℃から263℃に至る温度条件下においても、25℃の比誘電率に対する変動が±15%以内に維持可能な安定した高温域特性をもつ強誘電体セラミックスGを得ることができ、高温域特性が要求される車載用や航空宇宙用のキャパシタ材等に用いることができ、図8の従来例であるZrO添加KSrNb15コアシェル構造で実現した−55℃から195℃に至る温度範囲よりも広い温度範囲においても、比誘電率の変動が±15%以内に維持可能な安定した高温域特性をもつ強誘電体セラミックスGを得ることができ、高温域特性が要求される車載用や航空宇宙用のキャパシタ材等に用いることができる。 As shown in FIG. 6, even in the actually obtained second embodiment, the fluctuation with respect to the relative permittivity of 25 ° C. can be maintained within ± 15% under the temperature conditions from −65 ° C. to 263 ° C. It is possible to obtain a ferroelectric ceramic G having high temperature region characteristics, and it can be used as a capacitor material for automobiles and aerospace where high temperature region characteristics are required. ZrO 2 addition, which is a conventional example of FIG. It has stable high temperature characteristics that can maintain the fluctuation of the relative permittivity within ± 15% even in a temperature range wider than the temperature range from -55 ° C to 195 ° C realized by the KSr 2 Nb 5 O 15 core shell structure. Ferroelectric ceramics G can be obtained, and can be used as a capacitor material for automobiles and aerospace where high temperature region characteristics are required.

第二形態例で採用された熱処理形態としての一段階焼成法は、二段階焼成法に比して焼成パラメータが少なく操作性が容易となる一方、持続的焼成温度が相対的に高くなるため、粒成長が起こりやすくコアシェル構造の破壊につながりやすい欠点も有するが、焼成パラメータを適切に選べば、本例に示すように十分安定した比誘電率温度特性を得ることができる。 The one-step firing method as the heat treatment form adopted in the second embodiment has fewer firing parameters and is easier to operate than the two-step firing method, but the continuous firing temperature is relatively high. Although it has a drawback that grain growth is likely to occur and the core-shell structure is likely to be destroyed, a sufficiently stable relative permittivity temperature characteristic can be obtained as shown in this example by appropriately selecting the firing parameters.

なお、コア材Sとしてのタングステンブロンズ型酸化物の仮焼粉末に上記シェル材MとしてのTaの添加に際し、上記の実施の第一形態例および第二形態例においてはいずれもTa粉末添加からの固相反応法によったが、次に述べる液相法、すなわちタンタルペンタプロポキシド、その他のタンタルの可溶性化合物を例えばエタノールやイソプロピルアルコール等の溶剤に溶解し、その溶解液中にタングステンブロンズ型酸化物としてのSrNaNb15の仮焼粉末を投入し、粉末粒子表面に上記タンタル化合物を塗布したのち、これを600℃以上で約10分〜30分程度空気中に加熱することにより当該粒子表面にシェル材MとしてのTaの層を形成してもよい。 Incidentally, upon the addition of of Ta 2 O 5 which has a as the shell material M into a calcined powder of a tungsten bronze-type oxide as the core material S, both in the first embodiment and the second embodiment of the above-described embodiments Ta 2 Although by the solid phase reaction method from O 5 powder addition, described below liquid phase method, namely by dissolving tantalum penta propoxide, a soluble compound of other tantalum solvent such as, for example, ethanol or isopropyl alcohol, the solution A calcined powder of Sr 2 NaNb 5 O 15 as a tungsten bronze type oxide is put therein, and after applying the above tantalum compound to the surface of the powder particles, this is applied in the air at 600 ° C. or higher for about 10 to 30 minutes. A layer of Ta 2 O 5 as a shell material M may be formed on the surface of the particles by heating to.

この粉末を圧力196MPa程度で加圧してペレットを作り、このペレットを焼成温度としての炉内温度1,200℃〜1,300℃の加熱炉内に投入し、加熱炉内の酸素雰囲気中で7時間保持するか、その他所定の熱処理条件に従って焼成し、これによりTaからイオンの拡散が起こり、図2に示す如く、上記タングステンブロンズ型酸化物をコアとし、SrNaNb5−XTa15をシェルとするコアシェル構造の強誘電体セラミックスGが得られる。 This powder is pressurized at a pressure of about 196 MPa to form pellets, and the pellets are put into a heating furnace having a furnace temperature of 1,200 ° C to 1,300 ° C as the firing temperature, and in an oxygen atmosphere in the heating furnace 7 It is kept for a long time or fired according to other predetermined heat treatment conditions, which causes diffusion of ions from Ta 2 O 5 , and as shown in FIG. 2, the above tungsten bronze type oxide is used as a core, and Sr 2 NaNb 5-X Ta. A tungsten ceramic G having a core-shell structure having x O 15 as a shell can be obtained.

なお、本発明は上記実施の形態例に限られるものではなく、コア材S及びシェル材Mの内容により強誘電体セラミックスGの作製条件は適宜変更して設計されるものである。 The present invention is not limited to the above embodiment, and is designed by appropriately changing the manufacturing conditions of the ferroelectric ceramic G depending on the contents of the core material S and the shell material M.

以上の如く、所期の目的を充分達成することができる。 As described above, the intended purpose can be sufficiently achieved.

S コア材
G 強誘電体セラミックス
M シェル材
S core material G ferroelectric ceramics M shell material

Claims (1)

コア材にシェル材を添加し焼成してなるコアシェル構造の強誘電体セラミックスの作製方法であって、上記コア材はタングステンブロンズ型酸化物であり、該タングステンブロンズ型酸化物はSrNaNb15であり、上記シェル材はTaであることを特徴とする強誘電体セラミックスの作製方法。 A method for producing a ferroelectric ceramic having a core-shell structure obtained by adding a shell material to a core material and firing the core material. The core material is a tungsten bronze oxide, and the tungsten bronze oxide is Sr 2 NaNb 5 O. 15. A method for producing a ferroelectric ceramic, wherein the shell material is Ta 2 O 5 .
JP2019033511A 2019-02-27 2019-02-27 Method for manufacturing ferroelectric ceramics Active JP6970702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033511A JP6970702B2 (en) 2019-02-27 2019-02-27 Method for manufacturing ferroelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033511A JP6970702B2 (en) 2019-02-27 2019-02-27 Method for manufacturing ferroelectric ceramics

Publications (2)

Publication Number Publication Date
JP2020138875A true JP2020138875A (en) 2020-09-03
JP6970702B2 JP6970702B2 (en) 2021-11-24

Family

ID=72264470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033511A Active JP6970702B2 (en) 2019-02-27 2019-02-27 Method for manufacturing ferroelectric ceramics

Country Status (1)

Country Link
JP (1) JP6970702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023809A (en) * 2023-01-10 2023-04-28 江苏集萃功能材料研究所有限公司 Light-absorbing, heating and heat-accumulating water-based slurry and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035746A (en) * 2011-07-29 2013-02-21 Taiyo Yuden Co Ltd Ceramic composition and laminated ceramic electronic component including the same
US20130214523A1 (en) * 2010-07-09 2013-08-22 Johann Kecht Alkali metal and alkaline earth metal niobates and tantalates as security feature substances
JP2017178744A (en) * 2016-03-31 2017-10-05 旭化成株式会社 Ferroelectric ceramic and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130214523A1 (en) * 2010-07-09 2013-08-22 Johann Kecht Alkali metal and alkaline earth metal niobates and tantalates as security feature substances
JP2013035746A (en) * 2011-07-29 2013-02-21 Taiyo Yuden Co Ltd Ceramic composition and laminated ceramic electronic component including the same
JP2017178744A (en) * 2016-03-31 2017-10-05 旭化成株式会社 Ferroelectric ceramic and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023809A (en) * 2023-01-10 2023-04-28 江苏集萃功能材料研究所有限公司 Light-absorbing, heating and heat-accumulating water-based slurry and preparation method thereof
CN116023809B (en) * 2023-01-10 2024-04-19 苏州中萃纳米新材料科技有限公司 Light-absorbing, heating and heat-accumulating water-based slurry and preparation method thereof

Also Published As

Publication number Publication date
JP6970702B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
Mudinepalli et al. Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba 0.8 Sr 0.2 TiO 3 ceramics
Wang et al. (Bi1/2Na1/2) TiO3–Ba (Cu1/2W1/2) O3 Lead‐Free Piezoelectric Ceramics
Wang et al. Dielectric properties of fine‐grained barium titanate based X7R materials
Shende et al. Strontium zirconate and strontium titanate ceramics for high‐voltage applications: synthesis, processing, and dielectric properties
WO2017057745A1 (en) Dielectric thin film, capacitor element, and electronic component
Banerjee et al. Influence of La2O3, SrO, and ZnO addition on PZT
Chen et al. Effects of BiAlO3 dopant and sintering method on microstructure, dielectric relaxation characteristic and ferroelectric properties of BaTiO3-based ceramics
JP6541822B2 (en) Non-ferroelectric high dielectric material and method of manufacturing the same
JP2007084408A (en) Piezoelectric ceramic
JP6970702B2 (en) Method for manufacturing ferroelectric ceramics
Parkash et al. Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic
KR20100094388A (en) Precursor powder for sintering used for preparing dielectric material and process for preparing the same
JP2007001840A (en) Dielectric ceramic and its manufacturing method
JP2014529902A (en) Piezoelectric device and method for manufacturing piezoelectric device
JP5873641B2 (en) Method for producing BaTi2O5 composite oxide
Kong et al. Reaction sintering of partially reacted system for PZT ceramics via a high-energy ball milling
JP6267673B2 (en) Method for producing ferroelectric ceramics
Liou et al. Synthesis and diffused phase transition of Ba0. 7Sr0. 3TiO3 ceramics by a reaction-sintering process
CN109095920A (en) A kind of high-permitivity ceramics capacitor material of bismuth-sodium titanate base high-temperature stable and preparation method thereof
JP2020152630A (en) Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
Kumari et al. Preparation and Characterization of Ca+ 2 modified PbTi03 ceramics by HEBM technique
JP2010076958A (en) Piezoelectric ceramic and method for producing the same
JP2002167281A (en) Dielectric powder, its manufacturing method, sintered compact and capacitor using it
JP2006176388A (en) Dielectric ceramic and method of manufacturing the same
JP3595146B2 (en) Dielectric porcelain

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211029

R150 Certificate of patent or registration of utility model

Ref document number: 6970702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150