JP2020138154A - Apparatus and method for manufacturing water for injection - Google Patents

Apparatus and method for manufacturing water for injection Download PDF

Info

Publication number
JP2020138154A
JP2020138154A JP2019036115A JP2019036115A JP2020138154A JP 2020138154 A JP2020138154 A JP 2020138154A JP 2019036115 A JP2019036115 A JP 2019036115A JP 2019036115 A JP2019036115 A JP 2019036115A JP 2020138154 A JP2020138154 A JP 2020138154A
Authority
JP
Japan
Prior art keywords
water
injection
module
membrane
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019036115A
Other languages
Japanese (ja)
Other versions
JP7213717B2 (en
Inventor
野村 有宏
Arihiro Nomura
有宏 野村
輝 丹治
Teru Tanji
輝 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2019036115A priority Critical patent/JP7213717B2/en
Publication of JP2020138154A publication Critical patent/JP2020138154A/en
Application granted granted Critical
Publication of JP7213717B2 publication Critical patent/JP7213717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

To provide an apparatus for producing water for injection using ultrafiltration that does not include a distillation apparatus.SOLUTION: An apparatus includes: a purified water production part that performs reverse osmosis filtration and/or ion exchange of raw water into purified water; an external pressure type UF module that performs ultra-filtration of the purified water into permeated water; and a sterilized water tank for injection that stores the permeated water of the UF module.SELECTED DRAWING: Figure 2

Description

本発明は、注射用水の製造装置及び製造方法に関し、より詳しくは、逆浸透膜ろ過及びイオン交換した精製水、限外ろ過して製造する注射用水の製造装置及び製造方法に関する。 The present invention relates to an apparatus and method for producing water for injection, and more particularly to an apparatus and method for producing water for injection produced by reverse osmosis membrane filtration, ion-exchanged purified water, and ultrafiltration.

注射薬の溶解や調整に使用する滅菌注射用水(WFIと略称することがある)は、あらゆる種類の微生物や発熱性物質(エンドトキシン)を除去しなければならない。このため、古来より、注射用の希釈液又は溶解液には精密ろ過やイオン交換した精製水を蒸留した蒸留水が使用されてきた。
この注射液用の無菌水を製造する従来の装置は、固形物質、コロイド物質を除去するために精密ろ過器と、不純物や電解質を除去するためのイオン交換器と、微生物やエンドトキシンを除去するための逆浸透膜ろ過器又は限外ろ過器と、これらの設備を通過させた精製水を貯留し、加熱蒸発させるための加熱タンクと、このタンクを加熱して蒸発させた蒸気を飛沫と分離するデミスターと、デミスターで分離された蒸気を凝縮させるコンデンサーとを備える構造となっている(例えば、特許文献1)。
Sterilized injectable water (sometimes abbreviated as WFI) used to dissolve and prepare injectables must remove all types of microorganisms and febrile substances (endotoxins). For this reason, since ancient times, distilled water obtained by distilling purified water that has undergone microfiltration or ion exchange has been used as a diluent or solution for injection.
Conventional equipment for producing purified water for injections is a microfilter for removing solid and colloidal substances, an ion exchanger for removing impurities and electrolytes, and for removing microorganisms and endotoxins. A reverse osmosis membrane filter or an ultrafiltration filter, a heating tank for storing purified water that has passed through these facilities, and heating and evaporating the tank, and the steam evaporated by heating this tank are separated from droplets. It has a structure including a demister and a condenser that condenses the vapor separated by the demister (for example, Patent Document 1).

しかしながら、このような蒸留を伴う注射液用の無菌水を製造する従来の装置は、蒸留を必須要件としているため大掛かりな装置にならざるを得ず、また、精製した水を加熱して蒸発させ、これをまた冷却して蒸気を凝縮させるなど、エネルギーの無駄が多いという問題点がある。
一方、近年、蒸留による注射液用の無菌水製造方法の代替として逆浸透ろ過や限外ろ過(ultrafiltration:以下、UFと略称することがある)の使用が各国の薬局方で承認されている。しかし、蒸留によらない注射液用の無菌液を製造するのに膜ろ過を使用するには、従来の後段に蒸留装置が設置されていた場合と違い、膜ろ過装置でのろ過水滞留による生菌およびエンドトキシン等の増加防止が必要であった。
However, the conventional device for producing sterile water for an injection solution accompanied by such distillation has to be a large-scale device because distillation is an essential requirement, and the purified water is heated and evaporated. There is a problem that there is a lot of waste of energy, such as cooling this again to condense steam.
On the other hand, in recent years, the use of reverse osmosis filtration and ultrafiltration (hereinafter, abbreviated as UF) has been approved by the pharmacopoeia of each country as an alternative to the method for producing sterile water for injections by distillation. However, in order to use membrane filtration to produce a sterile solution for injection solution that does not rely on distillation, unlike the case where a distillation device is installed in the subsequent stage of the conventional method, the raw material is produced by the retention of filtered water in the membrane filter. It was necessary to prevent the increase of bacteria and endotoxin.

特開平03−000187号公報Japanese Unexamined Patent Publication No. 03-000187

本発明は、上記の問題点を解決するためになされたものであって、その目的とするところは、蒸留装置を含まない注射用水の製造装置及び製造方法において膜ろ過装置でのろ過水滞留による不純物増加防止方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to retain filtered water in a membrane filtration device in an apparatus for producing injection water and a method for producing water that does not include a distillation apparatus. The purpose is to provide a method for preventing an increase in impurities.

上記課題を解決するためになされた本発明の注射用水の製造装置は、原水を逆浸透ろ過及び/又はイオン交換して精製水とする精製水製造部と、中空糸膜の外表面に精製水が供給され中空糸膜の内表面から透過水が取り出される外圧式により限外ろ過を行なう限外ろ過モジュールと、限外ろ過モジュールの透過水を貯留する滅菌注射用水タンクと、を備えていることを特徴とする。 The device for producing water for injection of the present invention, which has been made to solve the above problems, has a purified water production unit that reverse-permeates raw water and / or exchanges ions to obtain purified water, and purified water on the outer surface of the hollow fiber membrane. It is equipped with an ultrafiltration module that performs ultrafiltration by an external pressure type in which permeated water is taken out from the inner surface of the hollow fiber membrane, and a water tank for sterile injection that stores the permeated water of the ultrafiltration module. It is characterized by.

前記UFモジュールの上流側又は下流側で且つ滅菌注射用水タンクより上流側に熱交換器が配置されていることが好ましい。 It is preferable that the heat exchanger is arranged on the upstream side or the downstream side of the UF module and on the upstream side of the sterile injection water tank.

上記課題を解決するためになされた本発明の注射用水の製造方法は、原水を逆浸透ろ過及び/又はイオン交換して精製水とする精製水製造段階と、精製水を外圧式UFモジュールで限外ろ過して透過水とする透過水製造段階と、透過水を滅菌注射用水タンクに貯留する透過水貯留段階と、によって注射用水を製造することを特徴とする。 The method for producing water for injection of the present invention, which has been made to solve the above problems, is limited to the stage of producing purified water in which raw water is reverse osmosis filtered and / or ion-exchanged to obtain purified water, and the purified water is limited to an external pressure type UF module. It is characterized in that water for injection is produced by a permeated water production step of ultrafiltration to obtain permeated water and a permeated water storage step of storing the permeated water in a sterile injection water tank.

本発明の注射用水の製造装置によれば、蒸留装置を含まず、精製水製造部及び、限外ろ過だけで注射用水を得ることができるため、操作が簡単であり、装置を簡素化することができる。また、蒸留と異なり、精製水を一度蒸発させてからそれをまた冷却する分の熱量は不要になるため、必要なエネルギーを削減できることから製造コストを安くすることができる。
さらに、外圧式UFモジュールを用いることで、内圧式UFモジュールを用いた場合よりも透過水の滞留による不純物増加を防ぐことが可能となる。
According to the injectable water production apparatus of the present invention, the injectable water can be obtained only by the purified water production unit and the ultrafiltration without including the distillation apparatus, so that the operation is simple and the apparatus is simplified. Can be done. Further, unlike distillation, the amount of heat required to evaporate the purified water once and then cool it again becomes unnecessary, so that the required energy can be reduced and the manufacturing cost can be reduced.
Further, by using the external pressure type UF module, it is possible to prevent the increase of impurities due to the retention of permeated water as compared with the case of using the internal pressure type UF module.

本発明の注射用水の製造フロー図である。It is a production flow chart of the water for injection of this invention. 本発明の注射用水の製造装置のブロック図である。It is a block diagram of the water for injection production apparatus of this invention.

以下、添付した図面に基づき、本発明の実施形態について、詳しく説明する。なお、本発明の構成は、本実施形態に限定されない。
図1は、本発明の一実施形態の注射用水の製造フロー図であり、図2は、本発明の注射用水の製造装置のブロック図である。
図1、2に示したとおり、本実施形態の限外ろ過を用いた注射用水の製造装置は、まず、原水を逆浸透膜(Reverse Osmosis Membrane:以下、RO膜と略称することがある)によってろ過し、次に連続イオン交換(Electro Deionization:以下、EDIと略称することがある)して精製水とする精製水製造部10と、中空糸膜の外表面に精製水が供給され中空糸膜の内表面から透過水が取り出される外圧式により限外ろ過(UF)を行なう限外ろ過モジュール20と、限外ろ過モジュール20の透過水を貯留する滅菌注射用水タンク(WFITK)30と、を備える。
Hereinafter, embodiments of the present invention will be described in detail based on the attached drawings. The configuration of the present invention is not limited to the present embodiment.
FIG. 1 is a flow chart for producing water for injection according to an embodiment of the present invention, and FIG. 2 is a block diagram of the apparatus for producing water for injection according to the present invention.
As shown in FIGS. 1 and 2, the apparatus for producing water for injection using the ultrafiltration of the present embodiment first uses a reverse osmosis membrane (Reverse Osmosis Membrane: hereinafter, may be abbreviated as RO membrane) for raw water. Purified water production section 10 that is filtered and then subjected to continuous ion exchange (Electro Deionization: hereinafter abbreviated as EDI) to obtain purified water, and purified water is supplied to the outer surface of the hollow osmosis membrane to obtain purified water. It is provided with an ultrafiltration module 20 that performs ultrafiltration (UF) by an external pressure type in which permeated water is taken out from the inner surface of the surface, and a sterile injection water tank (WFITK) 30 that stores the permeated water of the ultrafiltration module 20. ..

逆浸透膜ろ過装置12は、逆浸透膜(RO膜)を備えるろ過器であって、孔の大きさが2ナノメートル以下の逆浸透膜(RO膜)に対して水を通す一方で、イオンや塩類など水以外の不純物は透過しない性質を有した膜であり、海水から真水を得るためや、乳製品や果汁から水を除いて濃縮するために使用されている。逆浸透膜を使用して水の精製や飲料の濃縮を行う場合にはろ過する液体(原水)に圧力をかける必要があるが、その圧力はろ過する液体の塩分濃度に依存し、最低でも5気圧程度は必要となる。原水として海水を用いる場合、海水から真水を得るためには55気圧以上が必要となる。このため、逆浸透膜ろ過装置12には液体(原水)を圧送するためのポンプ14が備えられる。RO膜ろ過としては、超低圧、低圧、中圧、高圧、いずれも使用可能であるが、超低圧、低圧、中圧がランニングコストの面から好ましい。膜の素材としては、ポリアミド(PA)製、酢酸セルロースの膜等が使用可能であるが、ポリアミド製のものが処理水水質の面で好ましい。膜の形状としては、中空糸、スパイラル、プレートアンドフレーム型等が考えられるが、スパイラル式のものが濁質等による詰まりに強いため好ましい。
孔の大きさが1〜2ナノメートルのろ過膜からなるナノフィルター(NF膜)の場合、上記RO膜に代えて使用することができる。
The reverse osmosis membrane filtration device 12 is a filter provided with a reverse osmosis membrane (RO membrane), and while passing water through a reverse osmosis membrane (RO membrane) having a pore size of 2 nanometers or less, ions. It is a membrane that does not allow impurities other than water, such as salts and salts, to permeate, and is used to obtain fresh water from seawater and to remove water from dairy products and fruit juices for concentration. When purifying water or concentrating beverages using a reverse osmosis membrane, it is necessary to apply pressure to the liquid to be filtered (raw water), but the pressure depends on the salt concentration of the liquid to be filtered, and at least 5 About atmospheric pressure is required. When seawater is used as raw water, 55 atm or more is required to obtain fresh water from seawater. Therefore, the reverse osmosis membrane filtration device 12 is provided with a pump 14 for pumping a liquid (raw water). As the RO membrane filtration, any of ultra-low pressure, low pressure, medium pressure and high pressure can be used, but ultra-low pressure, low pressure and medium pressure are preferable from the viewpoint of running cost. As the material of the membrane, a membrane made of polyamide (PA), cellulose acetate or the like can be used, but a membrane made of polyamide is preferable in terms of treated water quality. As the shape of the film, a hollow fiber, a spiral, a plate and frame type or the like can be considered, but the spiral type is preferable because it is resistant to clogging due to turbidity or the like.
In the case of a nanofilter (NF membrane) composed of a filtration membrane having a pore size of 1 to 2 nanometers, it can be used in place of the RO membrane.

逆浸透膜ろ過装置12を透過した精製水はイオン交換により電解質が取り除かれる。このイオン交換には連続イオン交換装置(EDI)16が用いられる。この装置は、従来、イオン交換樹脂を一本一本設置して水を透過させていた技術を発展させ、イオン交換膜とイオン交樹樹脂とを組み合わせ、電気透析のように連続的に水を精製するものである。
連続イオン交換装置(EDI)16は陽極と陰極を備える電解槽に、通電時に陰イオンだけを陽極側に通過させる陰イオン交換膜と、通電時に陽イオンだけを陰極側に通過させる陽イオン交換膜を交互に並べ、その間にイオン交換樹脂を封入した構造で、電極に直流電流を流すと、水中の陰イオンは陽極側に、陽イオンは陰極側に泳動し、陽イオン交換膜、陰イオン交換膜の働きで、イオンが希釈される領域、濃縮される領域が現れる。イオンが希釈される領域を通過する水は純水になり、濃縮される領域を通過する濃縮水は排水される。イオン交換樹脂はイオンを一時的に保留する役割を担っている。
このような連続イオン交換装置16はEDIモジュールとして、例えばGE製の型式:MK−3 Mini HT,MK−2 Mini HTなどが市販されており、これらを好ましく使用することができる。連続イオン交換装置16に代わり、陽イオン交換樹脂、及び、または、陰イオン交換樹脂を充填した充填塔を用いることも可能である。
The electrolyte of the purified water that has passed through the reverse osmosis membrane filtration device 12 is removed by ion exchange. A continuous ion exchange device (EDI) 16 is used for this ion exchange. This device has developed a technology in which ion exchange resins are installed one by one to allow water to permeate, and by combining an ion exchange membrane and an ion exchange resin, water is continuously supplied like electrodialysis. It is to be purified.
The continuous ion exchange device (EDI) 16 has an anion exchange membrane that allows only anions to pass to the anode side when energized and a cation exchange membrane that allows only cations to pass to the cathode side when energized in an electrolytic tank provided with an anode and a cathode. When a direct current is passed through the electrodes, the anions in the water move to the anode side and the cations move to the cathode side, and the cation exchange membrane and anion exchange are exchanged. By the action of the membrane, a region where ions are diluted and a region where ions are concentrated appear. The water that passes through the region where the ions are diluted becomes pure water, and the concentrated water that passes through the region where the ions are concentrated is drained. The ion exchange resin plays a role of temporarily retaining ions.
As an EDI module for such a continuous ion exchange device 16, for example, GE models: MK-3 Mini HT, MK-2 Mini HT, and the like are commercially available, and these can be preferably used. Instead of the continuous ion exchange device 16, it is also possible to use a filling tower filled with a cation exchange resin or an anion exchange resin.

連続イオン交換装置16で生成された脱イオン水は精製水タンク18に貯留された後、ポンプ21により圧送され、限外ろ過モジュール20において限外ろ過(UF)される。限外ろ過(UF)は、飲料水の細菌やウイルスの除去、食品加工分野では蛋白質や酵素など熱に弱い物質の分離または濃縮、及び医療分野で人工透析等に使用される。この限外ろ過(UF)によって脱イオン水に含まれる微細な固形物、ウイルスを含む微生物及びエンドトキシンが除去される。
限外ろ過(UF)は、超純水製造分野で仕上げ段階の微粒子除去に使用されるろ過技術である。この実施形態では、直径0.5〜30mm程度の太さで中空上の糸状に成型した中空糸膜を用いて、クロスフローろ過を行う。クロスフローろ過とすることで、全量ろ過よりも膜閉塞による劣化や破損が抑えられるようになり、長期運転が容易となる。
The deionized water generated by the continuous ion exchange device 16 is stored in the purified water tank 18, then pumped by the pump 21 and ultrafiltered (UF) by the ultrafiltration module 20. Ultrafiltration (UF) is used for removing bacteria and viruses in drinking water, separating or concentrating heat-sensitive substances such as proteins and enzymes in the food processing field, and artificial dialysis in the medical field. This ultrafiltration (UF) removes fine solids, virus-containing microorganisms and endotoxins contained in deionized water.
Ultrafiltration (UF) is a filtration technique used in the field of ultrapure water production to remove fine particles in the finishing stage. In this embodiment, cross-flow filtration is performed using a hollow fiber membrane having a diameter of about 0.5 to 30 mm and molded into a hollow fiber. By using cross-flow filtration, deterioration and damage due to membrane blockage can be suppressed as compared with full-volume filtration, and long-term operation becomes easier.

UFモジュール20としては、中空糸膜の外表面から透過し、内表面から透過水が取り出されるように中空糸膜の外側から内側へろ過する(外圧式)と糸の内側から外側へろ過する(内圧式)が用いられるが外圧式を用いる方が次の点で好ましい。
・2次側(透過水側)の流路がシンプルであるため、少ない透過水量でも透過水側の滞留を防止でき、滞留による菌の発生やパイロジェンによる透過水の水質低下を防止できる。
・2次側がモジュールのハウジング内面と接触しないため、ハウジング内面への微生物付着、増加による透過水の水質低下を防止できる。
・均一な流路確保が難しい中空糸外表面側について、中空糸への透過流速を一定にしながら供給水量と濃縮水量を上げることにより供給水の滞留による微生物の繁殖を防止できる。
The UF module 20 permeates through the outer surface of the hollow fiber membrane, and filters from the outside to the inside of the hollow fiber membrane so that the permeated water is taken out from the inner surface (external pressure type), and filters from the inside to the outside of the yarn (external pressure type). (Internal pressure type) is used, but it is preferable to use the external pressure type in the following points.
-Since the flow path on the secondary side (permeated water side) is simple, it is possible to prevent the permeation water side from staying even with a small amount of permeated water, and it is possible to prevent the generation of bacteria due to the retention and the deterioration of the permeated water quality due to pyrogen.
-Since the secondary side does not come into contact with the inner surface of the housing of the module, it is possible to prevent deterioration of the quality of permeated water due to the adhesion and increase of microorganisms on the inner surface of the housing.
-On the outer surface side of the hollow thread, where it is difficult to secure a uniform flow path, the growth of microorganisms due to the retention of the supplied water can be prevented by increasing the amount of supplied water and the amount of concentrated water while keeping the permeation flow velocity through the hollow thread constant.

中空糸膜の素材としては、特に限定されるものではなく、ポリアクリロニトリル、ポリフェニレンスルホン、ポリフェニレンスルフィドスルホン、ポリフッ化ビニリデン、エチレン−テトラフルオロエチレン共重合体、ポリテトラフルオロエチレンポリプロピレン、ポリエチレン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリ(4−メチルペンテン)、ポリビニルアルコール共重合体、セルロース、酢酸セルロースやセラミック等の無機素材を選択できる。中でも膜強度の点からはポリフッ化ビニリデン、ポリスルホンが好ましい。
中空糸膜の細孔径については特に限定されず、0.001μm〜1μmの範囲内で便宜選択することができる。分画分子量は1000〜20000のものが好ましく、更に好ましくは3000〜10000が望ましい。その場合、限外ろ過(UF)膜の孔の大きさが10nm未満と考えられるため、現在最も小さいウイルスといわれるピコルナウイルスやバルボウイルスの除去が可能になり、同時にエンドトキシンも除去することができる。
中空糸膜への透過流速は0.1m/h〜0.3m/hが好ましく、さらに好ましくは0.15〜0.25m/hが望ましい。
The material of the hollow yarn film is not particularly limited, and is not particularly limited. Polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene polypropylene, polyethylene, polysulfone, poly. Inorganic materials such as ether sulfone, polyimide, polyetherimide, polyamide, polyetherketone, polyetheretherketone, poly (4-methylpentene), polyvinyl alcohol copolymer, cellulose, cellulose acetate and ceramic can be selected. Of these, polyvinylidene fluoride and polysulfone are preferable from the viewpoint of film strength.
The pore diameter of the hollow fiber membrane is not particularly limited, and can be conveniently selected within the range of 0.001 μm to 1 μm. The molecular weight cut-off is preferably 1000 to 20000, more preferably 3000 to 10000. In that case, since the pore size of the ultrafiltration (UF) membrane is considered to be less than 10 nm, it is possible to remove picornavirus and barbovirus, which are currently the smallest viruses, and at the same time, endotoxin can also be removed. ..
The permeation flow velocity through the hollow fiber membrane is preferably 0.1 m / h to 0.3 m / h, more preferably 0.15 to 0.25 m / h.

UF膜モジュール20としては、多数本の上記中空糸膜からなる中空糸膜束を耐圧性の筒状ケース内に装填し、膜束の両端を筒状ケースに接着固定するとともに、片端または両端の接着固定部を切断して中空糸膜の内部を開口した構造を用いることができる。また、加圧した原水をモジュール内に導入し、中空糸膜面によってろ過を行うタイプの加圧型膜モジュールなどを用いることができる。
UF膜モジュール20は、縦置き、すなわち両端の接着固定部を略鉛直方向に配置しても、横置き、すなわち両端の接着固定部を略水平方向に配置しても構わない。
As the UF membrane module 20, a hollow fiber membrane bundle composed of a large number of the above hollow fiber membranes is loaded into a pressure-resistant tubular case, both ends of the membrane bundle are adhesively fixed to the tubular case, and one end or both ends are adhered to. A structure in which the adhesive fixing portion is cut to open the inside of the hollow fiber membrane can be used. Further, a pressurized membrane module of a type in which pressurized raw water is introduced into the module and filtered by the hollow fiber membrane surface can be used.
The UF membrane module 20 may be placed vertically, that is, the adhesive fixing portions at both ends may be arranged in a substantially vertical direction, or horizontally, that is, the adhesive fixing portions at both ends may be arranged in a substantially horizontal direction.

外圧式の中空糸膜を備えるUF膜モジュール20としては、例えば、旭化成株式会社製の商品名「マイクローザUF(OLT6036H)」等を好ましく使用できる。また、内圧式中空糸を備えるUF膜モジュールとしては、例えば、旭化成株式会社製の商品名「マイクローザUF(SIP−3023)」があるが、これを外圧式として使用することも可能である。
外圧式の場合、UFモジュール内の供給水側は、入口ノズルの内径に対してUF膜モジュールのハウジングを一つの配管と考えると、内径が大きいため、UF膜モジュール内の流速が遅くなる。流速が遅くなると、UF膜モジュール内で滞留が生じ、ハウジング内面への微生物付着や滞留による水質低下が懸念される。
As the UF membrane module 20 provided with the external pressure type hollow fiber membrane, for example, the trade name “Microza UF (OLT6036H)” manufactured by Asahi Kasei Corporation can be preferably used. Further, as a UF membrane module provided with an internal pressure type hollow fiber, for example, there is a trade name "Microza UF (SIP-3023)" manufactured by Asahi Kasei Corporation, which can also be used as an external pressure type.
In the case of the external pressure type, on the supply water side in the UF module, if the housing of the UF membrane module is considered as one pipe with respect to the inner diameter of the inlet nozzle, the inner diameter is large, so that the flow velocity in the UF membrane module becomes slow. When the flow velocity becomes slow, retention occurs in the UF membrane module, and there is a concern that microbial adhesion to the inner surface of the housing and deterioration of water quality due to retention may occur.

これを防ぐためには、供給水の流量を上げて流速を上げればよく、そのためには濃縮水の流量を上げればよい。すなわち、UF膜モジュール径をL1、中空糸膜外径をL2、中空糸膜本数をn、処理水の動粘性係数[温度により決定]をνとした場合に、供給水の流量がSとなるよう適宜調整して、下記レイノルズ数が、1000〜10000となるように運転することが好ましく、2500〜5000がより好ましい。

Figure 2020138154
ここで、Dは代表径、Vは代表流速を表しており、
Figure 2020138154
レイノルズ数が過剰に大きくなると、供給水がUF膜に与える衝撃が大きくなり、膜が折れる可能性があるため好ましくない。
なお、濃縮水流量を上記範囲にするために、濃縮水の一部をポンプのサクション側に戻すことにより循環運転することも有効である。 In order to prevent this, the flow rate of the supplied water may be increased to increase the flow velocity, and for that purpose, the flow rate of the concentrated water may be increased. That is, when the UF membrane module diameter is L1, the hollow fiber membrane outer diameter is L2, the number of hollow fiber membranes is n, and the kinematic viscosity coefficient [determined by temperature] of the treated water is ν, the flow rate of the supply water is S. It is preferable to operate so that the following Reynolds number is 1000 to 10000, and more preferably 2500 to 5000.
Figure 2020138154
Here, D represents a representative diameter and V represents a representative flow velocity.
Figure 2020138154
If the Reynolds number is excessively large, the impact of the supplied water on the UF membrane is large, and the membrane may be broken, which is not preferable.
In addition, in order to keep the flow rate of concentrated water within the above range, it is also effective to carry out circulation operation by returning a part of concentrated water to the suction side of the pump.

限外ろ過モジュール20を透過した水は、まず滅菌注射用水タンク(WFITK)に貯留される。滅菌注射用水タンク(WFITK)は、外部から不純物や微生物が入り込まないように隔離された貯蔵容器であればその形状に制限はない。また、タンクの材質についても特に制限はないが、容器から成分が溶出したり、錆の発生がないものを選定することがよい。例えば、SUS316Lの電解研磨品が好ましく使われる。
滅菌注射用水タンク(WFITK)に貯留された水は、使用時になると液送ラインを通じて使用場所(point of use:POU)に送られる。液送ラインは、無菌かつ清浄な状態で生産ラインの次工程又は小分け充填工程に滅菌注射用水を提供できる構造であることが好ましい。例えば、液送ラインに注射用水タンク(WFITK)に戻す循環ラインを備え、POUで使用されなかった滅菌注射用水が滅菌注射用水タンク(WFITK)に常時循環される構造とすると、滞留による汚染を抑えられて好ましい。
The water that has passed through the ultrafiltration module 20 is first stored in a sterile injection water tank (WFITK). The shape of the sterile injection water tank (WFITK) is not limited as long as it is a storage container isolated so that impurities and microorganisms do not enter from the outside. The material of the tank is not particularly limited, but it is preferable to select a tank material in which no component elutes or rust is generated from the container. For example, an electropolished product of SUS316L is preferably used.
The water stored in the sterile injection water tank (WFITK) is sent to the place of use (point of use: POU) through the liquid feeding line at the time of use. The liquid feeding line preferably has a structure capable of providing sterile injection water to the next step or subdivision filling step of the production line in a sterile and clean state. For example, if the liquid feeding line is equipped with a circulation line for returning to the injection water tank (WFITK) and the structure is such that the sterile injection water not used in the POU is constantly circulated to the sterile injection water tank (WFITK), contamination due to retention is suppressed. Is preferable.

タンクの容量についても特に制約はなく、必要量に合わせて適宜設定することができる。
限外ろ過(UF)モジュール20の上流側又は下流側で且つ滅菌注射用水タンク(WFITK)より上流側には熱交換器40を配置してもよい。熱交換器40は、精製した注射用水を加熱殺菌して滅菌注射用水(WFI)を製造するための設備であって、精製水を50〜90℃(好ましくは70〜80℃)に加熱して殺菌を行う。この加熱殺菌により製造される注射用水は殺菌され、滅菌注射用水(WFI)として使用することができる。
The capacity of the tank is not particularly limited and can be appropriately set according to the required amount.
The heat exchanger 40 may be arranged on the upstream side or the downstream side of the ultrafiltration (UF) module 20 and on the upstream side of the sterile injection water tank (WFITK). The heat exchanger 40 is a facility for sterilizing purified water for injection by heating to produce sterilized water for injection (WFI), and heats purified water to 50 to 90 ° C (preferably 70 to 80 ° C). Sterilize. The water for injection produced by this heat sterilization is sterilized and can be used as sterilized water for injection (WFI).

熱交換器40における加熱方法に特に制限はなく、例えば、蒸気配管した加熱タンクで行うこともでき、また、二重管による対流式の熱交換器を使用して加熱殺菌することもできる。熱交換器40が設置される位置は、滅菌注射用水タンク(WFITK)より上流側であれば、限外ろ過(UF)モジュール20の上流側及び下流側の何れであってもよい。熱交換器40が限外ろ過(UF)モジュール20の上流側に設置される場合、限外ろ過(UF)モジュール20に送り込まれる水の温度は、50〜90℃以下であり、この温度領域で使用できる限外ろ過(UF)モジュールを選択する必要がある。例えば、クラレアクア株式会社製の商品名「C−02−HR」、旭化成株式会社製の商品名「マイクローザUF(OLT6036H)」「マイクローザUF(SIP−3023)」等を好ましく使用できる。一方、熱交換器40が限外ろ過(UF)モジュール20の下流側に設置される場合、限外ろ過(UF)モジュール20に送り込まれる水は、常温であり、問題なく限外ろ過(UF)することができる。
更に限外ろ過モジュール20に熱交換器40を設置し、限外ろ過を行いながら殺菌することもできる。
The heating method in the heat exchanger 40 is not particularly limited, and for example, it can be carried out in a heating tank with steam piping, or it can be sterilized by heating using a convection type heat exchanger using a double pipe. The position where the heat exchanger 40 is installed may be either the upstream side or the downstream side of the ultrafiltration (UF) module 20 as long as it is on the upstream side of the sterile injection water tank (WFITK). When the heat exchanger 40 is installed on the upstream side of the ultrafiltration (UF) module 20, the temperature of the water sent to the ultrafiltration (UF) module 20 is 50 to 90 ° C. or less, and in this temperature range. It is necessary to select an ultrafiltration (UF) module that can be used. For example, the product name "C-02-HR" manufactured by Kuraray Aqua Co., Ltd., the product name "Microza UF (OLT6036H)" and "Microza UF (SIP-3023)" manufactured by Asahi Kasei Corporation can be preferably used. On the other hand, when the heat exchanger 40 is installed on the downstream side of the ultrafiltration (UF) module 20, the water sent to the ultrafiltration (UF) module 20 is at room temperature, and there is no problem with the ultrafiltration (UF). can do.
Further, a heat exchanger 40 can be installed in the ultrafiltration module 20 to sterilize while performing ultrafiltration.

以下に、限外ろ過を用いた注射用水の製造装置の使用法について説明する。
図1に示すように、原水をポンプ14により逆浸透膜(RO膜)ろ過装置12に送り、ろ過された精製水を連続イオン交換装置16で電解質を除去する。連続イオン交換装置16を通過した脱イオン水は、精製水タンク18に貯留される。その後、貯留された精製水は、ポンプ21により圧送され、限外ろ過モジュール20より上流側に配置された熱交換器(HEX)40により50〜90℃(好ましくは70〜80℃)に加熱されてから、限外ろ過モジュール20に送られ、限外ろ過される。限外ろ過モジュール20で仕上げられた精製水は、滅菌注射用水として滅菌注射用水タンク30に貯留される。
限外ろ過により滅菌注射用水から分離された濃縮水は、濃縮水ラインから廃棄及び/もしくは精製水製造ラインの任意の場所に戻される。UFモジュール内のレイノルズ数を最適にするため、必要に応じて、濃縮水の一部をポンプのサクション側に戻すと良い。
The usage of the injectable water production apparatus using ultrafiltration will be described below.
As shown in FIG. 1, the raw water is sent to the reverse osmosis membrane (RO membrane) filtration device 12 by the pump 14, and the filtered purified water is removed from the electrolyte by the continuous ion exchange device 16. The deionized water that has passed through the continuous ion exchange device 16 is stored in the purified water tank 18. After that, the stored purified water is pumped by the pump 21 and heated to 50 to 90 ° C. (preferably 70 to 80 ° C.) by the heat exchanger (HEX) 40 arranged on the upstream side of the ultrafiltration module 20. After that, it is sent to the ultrafiltration module 20 for ultrafiltration. The purified water finished by the ultrafiltration module 20 is stored in the sterilized injection water tank 30 as sterilized injection water.
The concentrated water separated from the sterile injection water by ultrafiltration is discarded from the concentrated water line and / or returned to any location on the purified water production line. In order to optimize the Reynolds number in the UF module, it is advisable to return a part of the concentrated water to the suction side of the pump if necessary.

[実施例1]
図2に示した製造装置を使用し、次の条件で通水を実施した。
限外ろ過モジュール20は、旭化成株式会社製の商品名「マイクローザUF(OLT6036H)」を使用した。この限外ろ過モジュール20はクロスフローろ過、有効膜面積が34m、分画分子量が6000、中空糸材質はポリスルホンであり、このモジュール20を1本使用した。透過水流量8.0m/h、温度80℃で運転した。また、濃縮水の一部はポンプのサクション側に戻すことにより、UFモジュール内のレイノルズ数が3000となるようにした。
[水質検査]
実施例1で製造した注射用水の品質を検査するために、限外ろ過モジュール20を通過した注射用水をサンプリングして、エンドトキシン濃度を測定した。
エンドトキシン濃度測定は、日本薬局方におけるエンドトキシン試験法のうち、比濁法(光学的測定法)を用いた。この測定は、エンドトキシンによるライセート試液のゲル化に伴う濁度の変化を光学的に測定する方法である。
比較例1として、実施例1のUFを自社製の蒸留器に入れ替え運転を行った。処理流量は、実施例1よりも少ない2.0m/hとした。実施例1と同様に蒸留器を通過した注射用水をサンプリングして、比濁法によりエンドトキシンを測定した。
[試験結果]
実施例1で得られた注射用水に含まれるエンドトキシンの濃度は、検出限界の0.005EU/mL以下であり、比較例1より2桁以上優れた結果であった。
以上のことから、本発明の注射用水の製造装置は、注射用水の製造装置として好ましく使用できることが示されている。
[Example 1]
Water was passed under the following conditions using the manufacturing apparatus shown in FIG.
For the ultrafiltration module 20, the trade name "Microza UF (OLT6036H)" manufactured by Asahi Kasei Corporation was used. This ultrafiltration module 20 was cross-flow filtration, had an effective membrane area of 34 m 2 , a molecular weight cut-off of 6000, and the hollow fiber material was polysulfone, and one module 20 was used. It was operated at a permeated water flow rate of 8.0 m 3 / h and a temperature of 80 ° C. In addition, a part of the concentrated water was returned to the suction side of the pump so that the Reynolds number in the UF module became 3000.
[Water quality inspection]
In order to inspect the quality of the injection water produced in Example 1, the injection water that passed through the ultrafiltration module 20 was sampled and the endotoxin concentration was measured.
The endotoxin concentration was measured by using the turbidimetric method (optical measurement method) among the endotoxin test methods in the Japanese Pharmacopoeia. This measurement is a method of optically measuring the change in turbidity associated with the gelation of the lysate test solution by endotoxin.
As Comparative Example 1, the UF of Example 1 was replaced with a distiller manufactured in-house and operated. The treatment flow rate was 2.0 m 3 / h, which is less than that of Example 1. Water for injection that passed through the distiller was sampled in the same manner as in Example 1, and endotoxin was measured by the turbidimetric method.
[Test results]
The concentration of endotoxin contained in the water for injection obtained in Example 1 was 0.005 EU / mL or less, which is the detection limit, which was more than two orders of magnitude better than that of Comparative Example 1.
From the above, it is shown that the injectable water producing apparatus of the present invention can be preferably used as an injectable water producing apparatus.

[実施例2及び比較例2]
実施例2では、実施例1と同様のUFモジュールを用い、同様の条件で通水を実施した。
比較例2では、実施例2の外圧式のUFモジュールに対し、中空糸膜の内側から外側にろ過する内圧式に変更した。比較例2のUFモジュールは、旭化成株式会社製の型式SIP−3023(有効膜面積:7.2m、分画分子量:6000)とし、有効膜面積を合わせるため5本とした。
これらの実施例では、WFI製造時にUFモジュールの処理水をサンプリングしてエンドトキシン濃度を測定した。エンドトキシン濃度測定は日本薬局方におけるエンドトキシン試験法の内、比濁法を用いた。表1は、エンドトキシン濃度の測定結果を示す。
実施例2では、エンドトキシン濃度測定値の増加が1600日後から始まり、比較例2では、エンドトキシン濃度測定値の増加が1100日後から始まっている。すなわち、エンドトキシン濃度の増加は外圧式UFの方が遅く、外圧式UFの方が長期運転に好ましいことが確認された。
[Example 2 and Comparative Example 2]
In Example 2, the same UF module as in Example 1 was used, and water was passed under the same conditions.
In Comparative Example 2, the external pressure type UF module of Example 2 was changed to an internal pressure type that filters from the inside to the outside of the hollow fiber membrane. The UF module of Comparative Example 2 was model SIP-3023 (effective film area: 7.2 m 2 , fractional molecular weight: 6000) manufactured by Asahi Kasei Corporation, and five modules were used to match the effective film area.
In these examples, the treated water of the UF module was sampled during WFI production to measure the endotoxin concentration. For the endotoxin concentration measurement, the turbidimetric method was used among the endotoxin test methods in the Japanese Pharmacopoeia. Table 1 shows the measurement results of endotoxin concentration.
In Example 2, the increase in the endotoxin concentration measurement value started after 1600 days, and in Comparative Example 2, the increase in the endotoxin concentration measurement value started after 1100 days. That is, it was confirmed that the increase in endotoxin concentration was slower in the external pressure type UF, and that the external pressure type UF was preferable for long-term operation.

Figure 2020138154
Figure 2020138154

10:精製水製造部
12:逆浸透膜ろ過装置
14、21:ポンプ
16:連続イオン交換装置(EDI)
18:精製水タンク
20:限外ろ過モジュール
30:滅菌注射用水タンク(WFITK)
40:熱交換器
EDI:連続イオン交換
HEX:熱交換器
POU:使用場所
RO:逆浸透
TK:タンク
UF:限外ろ過
WFI:滅菌注射用水
10: Purified water production unit 12: Reverse osmosis membrane filtration device 14, 21: Pump 16: Continuous ion exchange device (EDI)
18: Purified water tank 20: Ultrafiltration module 30: Sterilized water tank for injection (WFITK)
40: Heat exchanger EDI: Continuous ion exchange HEX: Heat exchanger POU: Place of use RO: Reverse osmosis TK: Tank UF: Ultrafiltration WFI: Sterilized injection water

Claims (5)

原水を逆浸透ろ過及び/又はイオン交換して精製水とする精製水製造部と、
中空糸膜の外表面に前記精製水が供給され中空糸膜の内表面から透過水が取り出される外圧式により限外ろ過を行うUFモジュールと、
前記UFモジュールの透過水を貯留する滅菌注射用水タンクと、を備えていることを特徴とする注射用水の製造装置。
Purified water production department that reverse osmosis filtration and / or ion exchanges raw water into purified water
An UF module that performs ultrafiltration by an external pressure system in which the purified water is supplied to the outer surface of the hollow fiber membrane and permeated water is taken out from the inner surface of the hollow fiber membrane.
An injectable water producing apparatus comprising: a sterile injectable water tank for storing the permeated water of the UF module.
前記UFモジュールの上流側又は下流側で且つ前記滅菌注射用水タンクより上流側に熱交換器が配置されていることを特徴とする請求項1記載の注射用水の製造装置。 The apparatus for producing water for injection according to claim 1, wherein the heat exchanger is arranged on the upstream side or the downstream side of the UF module and on the upstream side of the water tank for sterile injection. 前記UFモジュールの後段には、膜処理装置と蒸留装置のいずれも設置されてないことを特徴とする請求項1記載の注射用水の製造装置。 The device for producing water for injection according to claim 1, wherein neither a membrane treatment device nor a distillation device is installed in the subsequent stage of the UF module. 前記滅菌注射用水タンクには、50〜90℃の注射用水が貯留され、かつ使用場所(POU)への循環ラインが備えられていること特徴とする請求項1記載の注射用水の製造装置。 The apparatus for producing injectable water according to claim 1, wherein the sterile injectable water tank is provided with an injectable water at 50 to 90 ° C. and a circulation line to a place of use (POU). 原水を逆浸透ろ過及び/又はイオン交換して精製水とする精製水製造段階と、
中空糸膜の外表面に前記精製水が供給され中空糸膜の内表面から透過水が取り出される外圧式により限外ろ過を行うUFモジュールによって前記精製水を限外ろ過して透過水とする透過水製造段階と、
前記透過水を滅菌注射用水タンクに貯留する透過水貯留段階と、によって注射用水を製造することを特徴とする注射用水の製造方法。
Purified water production stage in which raw water is reverse osmosis filtered and / or ion exchanged to obtain purified water.
The purified water is supplied to the outer surface of the hollow fiber membrane and the permeated water is taken out from the inner surface of the hollow fiber membrane. Permeation that ultrafilters the purified water into permeated water by an external pressure type UF module. Water production stage and
A method for producing water for injection, which comprises producing water for injection by a permeation water storage step of storing the permeated water in a sterilized water tank for injection.
JP2019036115A 2019-02-28 2019-02-28 Water for injection manufacturing device and manufacturing method Active JP7213717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019036115A JP7213717B2 (en) 2019-02-28 2019-02-28 Water for injection manufacturing device and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036115A JP7213717B2 (en) 2019-02-28 2019-02-28 Water for injection manufacturing device and manufacturing method

Publications (2)

Publication Number Publication Date
JP2020138154A true JP2020138154A (en) 2020-09-03
JP7213717B2 JP7213717B2 (en) 2023-01-27

Family

ID=72279756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036115A Active JP7213717B2 (en) 2019-02-28 2019-02-28 Water for injection manufacturing device and manufacturing method

Country Status (1)

Country Link
JP (1) JP7213717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186388A1 (en) * 2021-03-05 2022-09-09 野村マイクロ・サイエンス株式会社 Test substance detection method, detection agent composition, detection apparatus, purified water production facility, injection water production facility, purified water production method and injection water production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799995B2 (en) * 1989-05-29 1998-09-21 日東電工株式会社 Aseptic water production equipment
JP2001172202A (en) * 1999-12-16 2001-06-26 Takeda Chem Ind Ltd Injection composition including pyrogen-free branched cyclodextrin-carboxylic acid and method for removing pyrogen
JP2002532220A (en) * 1998-12-17 2002-10-02 ミリポア・コーポレイション Hollow fiber separation module and method of manufacturing the same
JP2018144014A (en) * 2017-03-09 2018-09-20 オルガノ株式会社 Method for cleaning hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production device, and device for cleaning hollow fiber membrane device
JP2019025456A (en) * 2017-08-02 2019-02-21 野村マイクロ・サイエンス株式会社 Method and device for producing injection water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799995B2 (en) * 1989-05-29 1998-09-21 日東電工株式会社 Aseptic water production equipment
JP2002532220A (en) * 1998-12-17 2002-10-02 ミリポア・コーポレイション Hollow fiber separation module and method of manufacturing the same
JP2001172202A (en) * 1999-12-16 2001-06-26 Takeda Chem Ind Ltd Injection composition including pyrogen-free branched cyclodextrin-carboxylic acid and method for removing pyrogen
JP2018144014A (en) * 2017-03-09 2018-09-20 オルガノ株式会社 Method for cleaning hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production device, and device for cleaning hollow fiber membrane device
JP2019025456A (en) * 2017-08-02 2019-02-21 野村マイクロ・サイエンス株式会社 Method and device for producing injection water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186388A1 (en) * 2021-03-05 2022-09-09 野村マイクロ・サイエンス株式会社 Test substance detection method, detection agent composition, detection apparatus, purified water production facility, injection water production facility, purified water production method and injection water production method

Also Published As

Publication number Publication date
JP7213717B2 (en) 2023-01-27

Similar Documents

Publication Publication Date Title
EP3137201B1 (en) Porous asymmetric polyphenylene ether membranes and associated separation modules and methods
Johnson et al. Understanding membrane distillation and osmotic distillation
Cardew Membrane processes: a technology guide
US20170043297A1 (en) Asymmetric poly(phenylene ether) co-polymer membrane, separation module thereof; and methods of making
US20110028759A1 (en) Process for the Purification of Organic Acids
WO2017045983A1 (en) Process for making membranes
JP2001047054A (en) Sterilizing method of deionized water making apparatus and deionized water making method
US20230054094A1 (en) Method and system for preparing dialysis fluid from raw water
US20170282131A1 (en) Porous membranes and associated separation modules and methods
JP6858516B2 (en) Liquid food concentration method
US10357745B2 (en) Membrane distillation system which is capable of real-time monitoring on membrane wetting
Gullinkala et al. Desalination: reverse osmosis and membrane distillation
JP7213717B2 (en) Water for injection manufacturing device and manufacturing method
JP2019025456A (en) Method and device for producing injection water
JP2010269235A (en) Method of producing refined water and apparatus for producing the refined water
KR101799578B1 (en) Membrane cleaning method for the membrane distillation
JPWO2020241795A1 (en) Raw material liquid concentration system
JP2020131093A (en) Device for producing injection water and method for producing the same
Czermak et al. New generation ceramic membranes have the potential of removing endotoxins from dialysis water and dialysate
Abdullah et al. Membrane processing in the food industry
JP4475568B2 (en) Bacteria generation suppression method in electric demineralized water production equipment
Younas et al. Introduction to Membrane Technology
JP2799995B2 (en) Aseptic water production equipment
Humudat et al. Membrane filtration enhanced by ultrasound for reducing endotoxin in dialysis water
JP2020203231A (en) Membrane penetration water production apparatus and injection service water production system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7213717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150