JP2020138114A - Liquid treatment device and liquid treatment method - Google Patents

Liquid treatment device and liquid treatment method Download PDF

Info

Publication number
JP2020138114A
JP2020138114A JP2019033911A JP2019033911A JP2020138114A JP 2020138114 A JP2020138114 A JP 2020138114A JP 2019033911 A JP2019033911 A JP 2019033911A JP 2019033911 A JP2019033911 A JP 2019033911A JP 2020138114 A JP2020138114 A JP 2020138114A
Authority
JP
Japan
Prior art keywords
chamber
liquid
treated
mpa
draw solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019033911A
Other languages
Japanese (ja)
Other versions
JP7080493B2 (en
Inventor
峰 閻
Feng Yan
峰 閻
謙一 奥田
Kenichi Okuda
謙一 奥田
平野 悟
Satoru Hirano
悟 平野
智博 元村
Tomohiro Motomura
智博 元村
幸則 紀平
Yukinori Kihira
幸則 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2019033911A priority Critical patent/JP7080493B2/en
Publication of JP2020138114A publication Critical patent/JP2020138114A/en
Application granted granted Critical
Publication of JP7080493B2 publication Critical patent/JP7080493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a liquid treatment device and a liquid treatment method using a positive permeable membrane, which can suppress solute from inversely leaking from a draw solution side toward liquid to be treated (a feed solution) side.SOLUTION: A liquid treatment device 1 comprises: a treatment part 4 having a first chamber 1 and a second chamber 2 partitioned by a positive permeable membrane 3; a first flow path L1 through which liquid to be treated is supplied to the first chamber 1; a second flow path L2 through which a draw solution higher in osmotic pressure than the liquid to be treated is supplied to the second chamber 2; a third flow path L3 through which the concentrated liquid to be treated in the first chamber 1 is discharged after some moisture of the liquid to be treated are transmitted from the first chamber 1 to the second chamber 2 through the positive permeable membrane 3; and a fourth flow path L4 through which diluted draw solution in the second chamber 2 is discharged after some moisture of the liquid to be treated is transmitted from the first chamber 1 to the second chamber 2 through the positive permeable membrane 3, where intermembrane pressure difference between the first chamber 1 and the second chamber 2 is larger than 0 MPa and is equal to 0.06 MPa or less.SELECTED DRAWING: Figure 1

Description

本発明は、正浸透膜を用いた液体の処理装置及び処理方法に関する。 The present invention relates to a liquid processing apparatus and a processing method using a forward osmosis membrane.

海水から淡水を分離して回収したりあるいは水分を含む液体を濃縮したりなどする際の技術として膜分離法が従来から行われている。膜分離法には、正浸透膜(Forward Osmosis Membrane:FO膜)を用いたFO法と、逆浸透膜(Reverse Osmosis Membrane:RO膜)を用いたRO法とが知られている。 The membrane separation method has been conventionally used as a technique for separating and recovering fresh water from seawater or concentrating a liquid containing water. As the membrane separation method, a FO method using a forward osmosis Membrane (FO membrane) and an RO method using a reverse osmosis Membrane (RO membrane) are known.

浸透圧の低い溶液と高い溶液とを半透膜で隔離することで、両溶液の間の浸透圧差により浸透圧の低い溶液側から浸透圧の高い溶液側へ水が透過する。この浸透圧差により水が透過する現象を利用したのがFO法である。 By separating the solution with low osmotic pressure and the solution with high osmotic pressure by a semipermeable membrane, water permeates from the solution side with low osmotic pressure to the solution side with high osmotic pressure due to the difference in osmotic pressure between the two solutions. The FO method utilizes the phenomenon that water permeates due to this osmotic pressure difference.

一方で、RO法は、浸透圧の低い溶液と高い溶液とを半透膜で隔離し、浸透圧が高い溶液側に、両溶液の浸透圧差を超える高い圧力を印加することで、浸透圧の高い溶液側から浸透圧の低い溶液側へ水を逆行して透過させる技術である。RO法は、浸透圧差を上回る高い圧力を印加して逆浸透を起こさせることから、非常に高いエネルギーが必要となる。そのため、水の透過のために圧力を加えることなく浸透圧差を駆動力とするFO法が着目されている。 On the other hand, in the RO method, a solution with low osmotic pressure and a solution with high osmotic pressure are separated by a semi-permeable film, and a high pressure exceeding the osmotic pressure difference between the two solutions is applied to the solution side with high osmotic pressure to increase the osmotic pressure. This is a technique for allowing water to permeate backward from the high solution side to the low osmotic solution side. Since the RO method applies a high pressure exceeding the osmotic pressure difference to cause reverse osmosis, a very high energy is required. Therefore, attention has been paid to the FO method in which the osmotic pressure difference is used as the driving force without applying pressure for the permeation of water.

しかし、FO法では、浸透圧の高い溶液(ドロー溶液)に含まれる溶質が、半透膜を介して浸透圧の低い溶液(フィード溶液)側に漏れ出す逆漏れ現象が起こる。この逆漏れ現象は、非特許文献1のP47に記載の式(3)(4)、非特許文献2のP96に記載の式(2)(3)、さらには非特許文献3のP116の左欄5−7行の記載に基づけば、フィード溶液にドロー溶液よりも高い圧力を加えるなどして正浸透膜を透過する透過水量又は水の透過流束を増加させると、溶質の逆漏れ量も増加することが当該技術分野の当業者に一般的に認識されている。逆漏れ現象が生じると、フィード溶液にドロー溶液に含まれる溶質が混入する。そのため、FO法を例えば飲料、液状の食べ物、液状化粧品などの濃縮に用いる場合には、原料溶液となるフィード溶液の品質低下を招くという問題がある。また、ドロー溶液側では溶質が流出するため、溶質の損失を招き、損失の分だけドロー溶液の補充が必要となるのでコストが上昇するという問題がある。 However, in the FO method, a reverse leakage phenomenon occurs in which a solute contained in a solution having a high osmotic pressure (draw solution) leaks to a solution having a low osmotic pressure (feed solution) via a semipermeable membrane. This reverse leakage phenomenon is caused by the formulas (3) and (4) described in P47 of Non-Patent Document 1, the formulas (2) and (3) described in P96 of Non-Patent Document 2, and further to the left of P116 of Non-Patent Document 3. Based on the description in column 5-7, if the amount of permeated water that permeates the forward osmosis membrane or the permeated flux of water is increased by applying a pressure higher than that of the draw solution to the feed solution, the amount of back leakage of the solute also increases. It is generally recognized by those skilled in the art that the increase will occur. When the back leakage phenomenon occurs, the solute contained in the draw solution is mixed in the feed solution. Therefore, when the FO method is used for concentrating, for example, beverages, liquid foods, liquid cosmetics, etc., there is a problem that the quality of the feed solution as the raw material solution is deteriorated. Further, since the solute flows out on the draw solution side, a loss of the solute is caused, and the draw solution needs to be replenished by the amount of the loss, which causes a problem that the cost increases.

上述した逆漏れ現象は、特許文献1の段落0020に記載されているように、ドロー溶液の溶質を高分子量のものにすることで生じ難くすることができる。しかし、溶質の分子量が大きくなると、ドロー溶液の粘性が高くなることでドロー溶液の送液に高圧力が必要になり、送液ポンプの負荷が増大するという問題がある。 As described in paragraph 0020 of Patent Document 1, the above-mentioned back leakage phenomenon can be made less likely to occur by making the solute of the draw solution having a high molecular weight. However, when the molecular weight of the solute becomes large, the viscosity of the draw solution becomes high, so that a high pressure is required to feed the draw solution, and there is a problem that the load of the liquid feed pump increases.

特開2018−158300号公報JP-A-2018-158300

寺嶋真伍,他5名,「中空糸型正浸透膜モジュールにおける淡水流れの浸透特性」,長崎大学工学研究科研究報告 第45巻 第84号,平成27年1月,P44−50Shingo Terashima, 5 others, "Penetration characteristics of freshwater flow in hollow fiber type forward osmosis membrane module", Nagasaki University Graduate School of Engineering Research Report Vol. 45, No. 84, January 2015, P44-50 安川政宏,他2名,「中空糸膜型正浸透膜の透水性能解析手法の開発」,Bulletin of the Society of Sea Water Science, Japan,68,94-101(2014)Masahiro Yasukawa, 2 others, "Development of water permeability analysis method for hollow fiber membrane type forward osmosis membrane", Bulletin of the Society of Sea Water Science, Japan, 68, 94-101 (2014) 高橋智輝,他2名,「正浸透法を用いたラテックス粒子の濃縮特性」,Bulletin of the Society of Sea Water Science, Japan,69,111-117(2015)Tomoki Takahashi, 2 others, "Concentration characteristics of latex particles using forward osmosis method", Bulletin of the Society of Sea Water Science, Japan, 69, 111-117 (2015)

本発明は上記課題を解決するためになされたものであり、正浸透膜を用いた液体処理装置及び液体処理方法であって、ドロー溶液側から被処理液(フィード溶液)側への溶質の逆漏れを抑制することができる液体処理装置及び液体処理方法を提供することを目的とする。 The present invention has been made to solve the above problems, and is a liquid treatment apparatus and a liquid treatment method using a forward osmosis membrane, in which the solute is reversed from the draw solution side to the liquid to be treated (feed solution) side. It is an object of the present invention to provide a liquid treatment apparatus and a liquid treatment method capable of suppressing leakage.

本発明者は、上記課題を解決すべく鋭意検討を行った結果、被処理液(フィード溶液)にドロー溶液よりも高い圧力を加えると、ドロー溶液に含まれる溶質が正浸透膜を通って被処理液側に漏れ出す逆漏れ現象が生じることが当業者に一般的に認識されていたものの、被処理液をドロー溶液よりも、透過水量が大きく変わらない範囲の若干高い圧力で連続的に加圧することで、ドロー溶液側から被処理液側に漏れ出す溶質の逆漏れ量を抑制できることを見出した。本発明は、このような知見に基づいて更に研究を重ねた結果、完成されたものである。 As a result of diligent studies to solve the above problems, the present inventor applies a pressure higher than that of the draw solution to the solution to be treated (feed solution), and the solute contained in the draw solution is covered through the forward osmosis membrane. Although it was generally recognized by those skilled in the art that a reverse leakage phenomenon that leaked to the treatment solution side occurred, the solution to be treated was continuously applied at a slightly higher pressure within a range in which the amount of permeated water did not change significantly compared to the draw solution. It has been found that the amount of back leakage of the solute leaking from the draw solution side to the object to be treated side can be suppressed by applying pressure. The present invention has been completed as a result of further research based on such findings.

すなわち、本発明は、正浸透膜によって分けられた第一室及び第二室を有する処理部と、前記第一室に被処理液を供給する第1流路と、前記第二室に前記被処理液よりも浸透圧の高いドロー溶液を供給する第2流路と、前記被処理液の水分の一部が前記第一室から前記正浸透膜を介して前記第二室に透過した後の前記第一室の濃縮された被処理液を排出する第3流路と、前記被処理液の水分の一部が前記第一室から前記正浸透膜を介して前記第二室に透過した後の前記第二室の希釈されたドロー溶液を排出する第4流路と、を備え、前記第一室内を通過する被処理液に対して前記第二室内を通過するドロー溶液よりも高い圧力が連続的に加わるように前記第一室と前記第二室との間の膜間圧力差が0MPaよりも大きく0.06MPa以下に設定されている、液体処理装置を提供する。 That is, in the present invention, the processing unit having the first chamber and the second chamber separated by the forward osmosis membrane, the first flow path for supplying the solution to be treated to the first chamber, and the subject to the second chamber. After the second flow path for supplying a draw solution having a higher osmotic pressure than the treatment liquid and a part of the water content of the liquid to be treated have permeated from the first chamber to the second chamber via the forward osmosis membrane. After the third flow path for discharging the concentrated solution to be treated in the first chamber and a part of the water content of the solution to be treated have permeated from the first chamber to the second chamber via the forward osmosis membrane. It is provided with a fourth flow path for discharging the diluted draw solution in the second chamber, and a pressure higher than that of the draw solution passing through the second chamber is applied to the liquid to be treated passing through the first chamber. Provided is a liquid processing apparatus in which the pressure difference between the membranes between the first chamber and the second chamber is set to 0.06 MPa or less, which is larger than 0 MPa so as to be continuously applied.

本発明の液体処理装置においては、前記第一室と前記第二室との間の膜間圧力差が0.01MPa以上0.03MPa以下であることが好ましい。 In the liquid processing apparatus of the present invention, the pressure difference between the membranes between the first chamber and the second chamber is preferably 0.01 MPa or more and 0.03 MPa or less.

本発明の液体処理装置においては、前記膜間圧力差を計測するための計測手段と、前記膜間圧力差を設定する設定手段と、前記計測手段及び前記設定手段に接続された制御手段と、をさらに備え、前記制御手段は、前記計測手段からの信号を受信して前記設定手段の動作を制御することで、前記膜間圧力差を調整することが好ましい。 In the liquid processing apparatus of the present invention, a measuring means for measuring the intermembrane pressure difference, a setting means for setting the intermembrane pressure difference, the measuring means, and a control means connected to the setting means. It is preferable that the control means adjusts the pressure difference between the membranes by receiving a signal from the measuring means and controlling the operation of the setting means.

また、本発明は、正浸透膜によって仕切られた第一室及び第二室を有する処理部の前記第一室に被処理液を供給する一方、前記第二室に前記被処理液よりも浸透圧の高いドロー溶液を供給することで前記被処理液の水分の一部を前記第一室から前記正浸透膜を介して前記第二室に透過させる液体処理方法において、前記第一室内を通過する被処理液に対して前記第二室内を通過するドロー溶液よりも高い圧力が連続的に加わるように前記第一室と前記第二室との間の膜間圧力差を0MPaよりも大きく0.06MPa以下に設定する、液体処理方法を提供する。 Further, in the present invention, the liquid to be treated is supplied to the first chamber of the treatment unit having the first chamber and the second chamber partitioned by the forward osmosis membrane, while the second chamber is more permeated than the liquid to be treated. In a liquid treatment method in which a part of the water content of the liquid to be treated is permeated from the first chamber to the second chamber via the forward osmosis membrane by supplying a draw solution having a high pressure, the solution passes through the first chamber. The pressure difference between the membranes between the first chamber and the second chamber is larger than 0 MPa so that a pressure higher than that of the draw solution passing through the second chamber is continuously applied to the liquid to be treated. A liquid treatment method set to .06 MPa or less is provided.

本発明の液体処理方法においては、前記第一室と前記第二室との間の膜間圧力差が0.01MPa以上0.03MPa以下であることが好ましい。 In the liquid treatment method of the present invention, the pressure difference between the membranes between the first chamber and the second chamber is preferably 0.01 MPa or more and 0.03 MPa or less.

本発明によれば、ドロー溶液側から正浸透膜を通って被処理液(フィード溶液)側へ漏れ出す溶質の逆漏れ量を抑制することができる。 According to the present invention, it is possible to suppress the amount of back leakage of the solute that leaks from the draw solution side through the forward osmosis membrane to the liquid to be treated (feed solution) side.

本発明の一実施形態の液体処理装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the liquid processing apparatus of one Embodiment of this invention. 本発明の他の実施形態の液体処理装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the liquid processing apparatus of another embodiment of this invention. 膜間圧力差と逆漏れ量及び透過水量との関係を示すグラフである。It is a graph which shows the relationship between the pressure difference between membranes and the amount of back leakage and the amount of permeated water. 膜間圧力差と逆漏れ量及び透過水量との関係を示すグラフである。It is a graph which shows the relationship between the pressure difference between membranes and the amount of back leakage and the amount of permeated water.

以下、本発明の実態形態について添付図面を参照して説明する。本発明の液体処理装置及び液体処理方法は、例えば海水から淡水を分離して回収したり、あるいは水分を含む液体から水分を分離して該液体を濃縮したりする際に用いられるものであり、正浸透膜による膜分離を用いた液体処理装置及び液体処理方法に関する。 Hereinafter, the actual form of the present invention will be described with reference to the accompanying drawings. The liquid treatment apparatus and liquid treatment method of the present invention are used, for example, when separating and recovering fresh water from seawater, or separating water from a liquid containing water and concentrating the liquid. The present invention relates to a liquid treatment apparatus and a liquid treatment method using membrane separation using a forward osmosis membrane.

水分を含む液体には、例えば経口液体や外用液体を挙げることができる。経口液体は、人又は動物が口にするものを意味しており、例えば、濃縮ジュースや清涼飲料などの飲料、麺つゆ・各種出汁・調味料・スープのような液状の食べ物、液状の健康補助食品、経口医薬品などが挙げられる。また、外用液体は、人又は動物の体に塗る液状のものを総称しており、例えば、化粧水やローション、液状ハンドクリームのような液状化粧料、皮膚や口中に塗布又は散布する液状医薬品などが挙げられる。なお、液状とは水分を含んで流動性があることを意味しており、ジェル状やシャーベット状のものも含んでいる。さらに、経口液体にしても外用液体にしても、消費者又は患者が最終的に使用するものには限らず、原料になるものも含んでいる。 Examples of the liquid containing water include an oral liquid and an external liquid. Oral liquid means something that humans or animals eat, such as beverages such as concentrated juices and soft drinks, liquid foods such as noodle soup, various soup stocks, seasonings, soups, and liquid health supplements. Examples include foods and oral medicines. In addition, external liquids are a general term for liquids that are applied to the body of humans or animals, such as lotions and lotions, liquid cosmetics such as liquid hand creams, and liquid medicines that are applied or sprayed on the skin or mouth. Can be mentioned. In addition, the liquid means that it contains water and has fluidity, and also includes gel-like and sherbet-like ones. Furthermore, whether it is an oral liquid or an external liquid, it is not limited to the final use by consumers or patients, but also includes raw materials.

図1は、本実施形態の液体処理装置10の概略構成を示す模式図である。液体処理装置10は、正浸透膜(Forward Osmosis Membrane:FO膜)3によって分けられた第一室1及び第二室2を有する処理部4と、上述した被処理液(フィード溶液)を処理部4の第一室1に供給するための第1流路L1と、処理部4の第一室1から濃縮された被処理液を排出するための第2流路L2と、ドロー溶液を処理部4の第二室2に供給するための第3流路L3と、処理部4の第二室2から希釈されたドロー溶液を排出するための第4流路L4とを少なくとも備える。 FIG. 1 is a schematic view showing a schematic configuration of the liquid processing apparatus 10 of the present embodiment. The liquid treatment apparatus 10 treats the treatment unit 4 having the first chamber 1 and the second chamber 2 separated by the forward osmosis membrane (FO membrane) 3 and the above-mentioned liquid to be treated (feed solution). The first flow path L1 for supplying to the first chamber 1 of 4 and the second flow path L2 for discharging the concentrated liquid to be treated from the first chamber 1 of the treatment unit 4, and the draw solution are processed in the processing unit. At least a third flow path L3 for supplying to the second chamber 2 of 4 and a fourth flow path L4 for discharging the diluted draw solution from the second chamber 2 of the processing unit 4 are provided.

処理部4は、閉じたタンク(又はハウジングやケーシングなど)の構造であり、金属又は合成樹脂により形成される。処理部4の内部は、正浸透膜3により第一室1と第二室2とに仕切られている。 The processing unit 4 has a closed tank (or housing, casing, etc.) structure and is made of metal or synthetic resin. The inside of the processing unit 4 is divided into a first chamber 1 and a second chamber 2 by a forward osmosis membrane 3.

正浸透膜3は、例えば酢酸セルロース、ポリアミド、ポリスルホン、アクアポリン(蛋白質)などの従来から公知の素材のものを用いることができる。また、正浸透膜3は、例えば平膜、中空糸膜などの従来から公知の構造のものを用いることができる。正浸透膜3が平膜である場合、正浸透膜3を例えば金網のような支持体によって姿勢を保持することができる。正浸透膜3が中空糸膜である場合、第一室1が中空糸膜の活性層側であり、第二室2は中空糸膜の支持層側であることが好ましい。 As the forward osmosis membrane 3, a conventionally known material such as cellulose acetate, polyamide, polysulfone, or aquaporin (protein) can be used. Further, as the forward osmosis membrane 3, a conventionally known structure such as a flat membrane or a hollow fiber membrane can be used. When the forward osmosis membrane 3 is a flat membrane, the forward osmosis membrane 3 can be held in a posture by a support such as a wire mesh. When the forward osmosis membrane 3 is a hollow fiber membrane, it is preferable that the first chamber 1 is on the active layer side of the hollow fiber membrane and the second chamber 2 is on the support layer side of the hollow fiber membrane.

第一室1には被処理液が導入され、第二室2には被処理液よりも浸透圧の高いドロー溶液が導入される。ドロー溶液としては、従来から公知のものを用いることができ、例えば塩化ナトリウムを溶質とする溶液(食塩水)の他、硝酸カリウム、塩化カルシウム、炭酸水素ナトリウムと水酸化アンモニウムとの混合物を溶質とする溶液、感温性物質を溶質とする溶液、あるいは、被処理液と同じ成分で濃度が被処理液よりも高い溶液を用いることができる。 The liquid to be treated is introduced into the first chamber 1, and a draw solution having a higher osmotic pressure than the liquid to be treated is introduced into the second chamber 2. As the draw solution, a conventionally known solution can be used. For example, in addition to a solution containing sodium chloride as a solute (saline solution), a mixture of potassium nitrate, calcium chloride, sodium hydrogen carbonate and ammonium hydroxide is used as the solute. A solution, a solution containing a temperature-sensitive substance as a solute, or a solution having the same components as the solution to be treated and having a higher concentration than the solution to be treated can be used.

処理部4では、第一室1に供給される被処理液と第二室2に供給されるドロー溶液との浸透圧の違いにより、被処理液中の水分の一部が、第一室1から正浸透膜3を透過して第二室2に移動する。これにより、第一室1の被処理液は濃縮され、第二室2のドロー溶液は希釈される。なお、処理部4は、図示では横置き方式になっており、第一室1が上で第二室2が下になっているが、第一室1が下で第二室2が上になっていてもよい。また、処理部4は縦向きの姿勢で配置してもよい。 In the treatment unit 4, part of the water in the liquid to be treated is removed from the first chamber 1 due to the difference in osmotic pressure between the liquid to be treated supplied to the first chamber 1 and the draw solution supplied to the second chamber 2. It penetrates through the forward osmosis membrane 3 and moves to the second chamber 2. As a result, the solution to be treated in the first chamber 1 is concentrated, and the draw solution in the second chamber 2 is diluted. In the figure, the processing unit 4 is placed horizontally, and the first room 1 is on the top and the second room 2 is on the bottom, but the first room 1 is on the bottom and the second room 2 is on the top. It may be. Further, the processing unit 4 may be arranged in a vertically oriented posture.

第1流路L1は、第一室1の一端部(図示では左端部)に接続され、第2流路L2は、第一室1の他端部(図示では右端部)に接続されている。第1流路L1にはポンプP1が設けられ、ポンプP1の駆動により、被処理液の貯留タンク5から被処理液が第1流路L1を通して第一室1内に供給され、濃縮された被処理液が第2流路L2を通して第一室1外に排出される。 The first flow path L1 is connected to one end of the first chamber 1 (the left end in the figure), and the second flow path L2 is connected to the other end of the first chamber 1 (the right end in the figure). .. A pump P1 is provided in the first flow path L1, and by driving the pump P1, the liquid to be treated is supplied from the storage tank 5 of the liquid to be treated into the first chamber 1 through the first flow path L1 and is concentrated. The treatment liquid is discharged to the outside of the first chamber 1 through the second flow path L2.

第3流路L3は、第二室2の一端部(図示では右端部)に接続され、第4流路L4は、第二室2の他端部(図示では左端部)に接続されている。第3流路L3及び/又は第4流路L4にはポンプP2が設けられ、ポンプP2の駆動により、ドロー溶液が第3流路L3を通して第二室2内に供給され、希釈されたドロー溶液が第4流路L4を通して第二室2外に排出される。 The third flow path L3 is connected to one end of the second chamber 2 (the right end in the figure), and the fourth flow path L4 is connected to the other end of the second chamber 2 (the left end in the figure). .. A pump P2 is provided in the third flow path L3 and / or the fourth flow path L4, and the draw solution is supplied into the second chamber 2 through the third flow path L3 by driving the pump P2, and the diluted draw solution is supplied. Is discharged to the outside of the second chamber 2 through the fourth flow path L4.

本実施形態では、第3流路L3と第4流路L4との間にドロー溶液の再生部6が設けられている。再生部6は、処理部4の第二室2から排出される希釈されたドロー溶液を濃縮し、ドロー溶液の濃度を高めて再び第二室2に供給する。再生部6は、図示では逆浸透膜(Reverse Osmosis Membrane:RO膜)を有する逆浸透膜装置で構成されている。希釈されたドロー溶液は、第4流路L4に設けられたポンプP2により昇圧された状態で再生部6である逆浸透膜装置に導入され、希釈されたドロー溶液中に含まれる水分が圧力によってRO膜を介して分離されることで濃縮され、高濃度のドロー溶液が生成される。そして、高濃度のドロー溶液が第3流路L3を通して処理部4の第二室2内に供給される。 In the present embodiment, a draw solution regeneration unit 6 is provided between the third flow path L3 and the fourth flow path L4. The regenerating unit 6 concentrates the diluted draw solution discharged from the second chamber 2 of the processing unit 4, increases the concentration of the draw solution, and supplies it to the second chamber 2 again. In the figure, the regenerating unit 6 is composed of a reverse osmosis membrane device having a reverse osmosis membrane (RO membrane). The diluted draw solution is introduced into the reverse osmosis membrane device, which is the regeneration unit 6, in a state of being pressurized by the pump P2 provided in the fourth flow path L4, and the water content in the diluted draw solution is pressurized by pressure. It is concentrated by being separated through the RO membrane, and a high-concentration draw solution is produced. Then, a high-concentration draw solution is supplied into the second chamber 2 of the processing unit 4 through the third flow path L3.

再生部6には、例えば蒸発装置を用いることもできる。再生部6を蒸発装置で構成する場合には、図示は省略するが、第3流路L3にポンプP2が設けられ、ポンプP2の駆動により、ドロー溶液が第3流路L3を通して処理部4の第二室2内に供給され、希釈されたドロー溶液が第4流路L4を通して第二室2外に排出されて再生部6である蒸発装置に導入される。蒸発装置において希釈されたドロー溶液が蒸発濃縮されることで、高濃度のドロー溶液が生成され、高濃度のドロー溶液が第3流路L3を通して処理部4の第二室2内に再び供給される。 For example, an evaporation device can be used for the reproduction unit 6. When the regeneration unit 6 is composed of an evaporator, although not shown, a pump P2 is provided in the third flow path L3, and the draw solution is driven by the pump P2 to pass through the third flow path L3 to the processing unit 4. The diluted draw solution supplied into the second chamber 2 is discharged to the outside of the second chamber 2 through the fourth flow path L4 and introduced into the evaporator which is the regeneration unit 6. By evaporating and concentrating the diluted draw solution in the evaporator, a high-concentration draw solution is generated, and the high-concentration draw solution is supplied again into the second chamber 2 of the processing unit 4 through the third flow path L3. To.

再生部6としては、希釈されたドロー溶液中の水分を分離して該ドロー溶液を濃縮できるものであれば、逆浸透膜装置や蒸発装置に限定されるものではなく、その他の装置を用いることもできる。 The regenerating unit 6 is not limited to a reverse osmosis membrane device or an evaporation device as long as it can separate the water content in the diluted draw solution and concentrate the draw solution, and other devices may be used. You can also.

なお、再生部6は必ずしも第3流路L3と第4流路L4との間に設ける必要はなく、第3流路L3に設けられたポンプP2の駆動により、ドロー溶液の貯留タンク(図示せず)からドロー溶液を第3流路L3を通して第二室2内に供給し、希釈されたドロー溶液を第4流路L4を通して第二室2外に排出して回収タンク(図示せず)で回収してもよい。 The regeneration unit 6 does not necessarily have to be provided between the third flow path L3 and the fourth flow path L4, and is driven by the pump P2 provided in the third flow path L3 to store the draw solution (shown in the figure). The draw solution is supplied into the second chamber 2 through the third flow path L3, and the diluted draw solution is discharged to the outside of the second chamber 2 through the fourth flow path L4 in a recovery tank (not shown). You may collect it.

上述した構成の液体処理装置1において、処理部4では、第一室1内を通過する被処理液に対して第二室2内を通過するドロー溶液よりも、透過水量が大きく変わらない範囲の若干高い圧力が連続的に加わるようにすることで、第一室1と第二室2との間に膜間圧力差(正浸透膜3における被処理液側とドロー溶液側の物理的圧力差)を生じさせている。 In the liquid treatment apparatus 1 having the above-described configuration, in the treatment unit 4, the amount of permeated water does not change significantly with respect to the liquid to be treated passing through the first chamber 1 as compared with the draw solution passing through the second chamber 2. By continuously applying a slightly higher pressure, the pressure difference between the membranes between the first chamber 1 and the second chamber 2 (the physical pressure difference between the liquid to be treated and the draw solution in the forward osmosis membrane 3). ) Is caused.

処理部4の第一室1と第二室2との間に膜間圧力差を生じさせる方法としては、例えば、(1)ポンプP1により第一室1内に被処理液を送る圧力を、ポンプP2により第二室2内にドロー溶液を送る圧力よりも高い圧力にする(ポンプP2よりもポンプP1を高圧力とする)、(2)ポンプP1と処理部4の第一室1との間に被処理液を加圧するブースターポンプなどの加圧手段を設ける、(3)ポンプP2と処理部4の第二室2との間にドロー溶液の圧力を低下させる自動調節バルブなどの降圧手段を設ける、(4)第一室1内を第二室2内よりも高圧下にする又は第二室2内を第一室1内よりも減圧下にすることで、正浸透膜3を介して第一室1側を第二室2側よりも常時、加圧状態とする、ことなどを挙げることができる。 As a method of creating an intermembrane pressure difference between the first chamber 1 and the second chamber 2 of the processing unit 4, for example, (1) the pressure of sending the liquid to be processed into the first chamber 1 by the pump P1 is used. The pressure is set higher than the pressure at which the draw solution is sent into the second chamber 2 by the pump P2 (the pressure is higher than the pump P2), and (2) the pump P1 and the first chamber 1 of the processing unit 4 are connected. A pressurizing means such as a booster pump for pressurizing the liquid to be treated is provided between them. (3) A step-down means such as an automatic adjustment valve for reducing the pressure of the draw solution between the pump P2 and the second chamber 2 of the processing unit 4. (4) By making the inside of the first chamber 1 under a higher pressure than the inside of the second chamber 2 or the inside of the second chamber 2 under a lower pressure than the inside of the first chamber 1, through the forward osmosis membrane 3. It can be mentioned that the first chamber 1 side is always pressurized more than the second chamber 2 side.

処理部4の第一室1と第二室2との間の膜間圧力差は、0MPaよりも大きく0.06MPa以下である。正浸透膜3を用いた膜分離法(FO法)では、浸透圧差により浸透圧の低い第一室1側から水が正浸透膜3を透過して浸透圧の高い第二室2側へ移動するが、同時に第二室2のドロー溶液に含まれる溶質が正浸透膜3を通って被処理液のある第一室1側に漏れ出す逆漏れ現象が生じる。しかしながら、本実施形態の液体処理装置1では、第一室1内を通過する被処理液に第二室2内を通過するドロー溶液よりも、透過水量が大きく変わらない範囲の若干高い圧力を加えることで、この逆漏れ現象を抑制することができる。 The pressure difference between the films of the first chamber 1 and the second chamber 2 of the processing unit 4 is larger than 0 MPa and 0.06 MPa or less. In the membrane separation method (FO method) using the forward osmosis membrane 3, water permeates the forward osmosis membrane 3 from the side of the first chamber 1 having a low osmotic pressure due to the difference in osmotic pressure and moves to the side of the second chamber 2 having a high osmotic pressure. However, at the same time, a reverse leakage phenomenon occurs in which the solute contained in the draw solution of the second chamber 2 leaks to the first chamber 1 side where the liquid to be treated is located through the forward osmosis membrane 3. However, in the liquid treatment apparatus 1 of the present embodiment, a slightly higher pressure is applied to the liquid to be treated passing through the first chamber 1 than in the draw solution passing through the second chamber 2 in a range in which the amount of permeated water does not change significantly. Therefore, this reverse leakage phenomenon can be suppressed.

これにより、被処理液にドロー溶液に含まれる溶質が混入することを抑制できる。そのため、被処理液が特に飲料、液状の食べ物、液状化粧品などの場合に、原料溶液となる被処理液の品質低下を防ぐことができる。また、ドロー溶液側においても溶質の流出を抑制することができるため、溶質の損失に伴うドロー溶液の補充量を減らすことができ、コストダウンを図ることができる。 As a result, it is possible to prevent the solute contained in the draw solution from being mixed into the liquid to be treated. Therefore, when the liquid to be treated is a beverage, liquid food, liquid cosmetics, or the like, it is possible to prevent deterioration of the quality of the liquid to be treated as a raw material solution. Further, since the outflow of the solute can be suppressed on the draw solution side as well, the amount of replenishment of the draw solution due to the loss of the solute can be reduced, and the cost can be reduced.

なお、処理部4の第一室1と第二室2との間の膜間圧力差は、特に限定されるわけではないが、0.01MPa以上0.06MPa以下であることが好ましく、0.01MPa以上0.03MPa以下である又は0.03MPa以上0.06MPa以下であることがより好ましい。 The pressure difference between the films of the first chamber 1 and the second chamber 2 of the processing unit 4 is not particularly limited, but is preferably 0.01 MPa or more and 0.06 MPa or less, and 0. It is more preferably 01 MPa or more and 0.03 MPa or less, or 0.03 MPa or more and 0.06 MPa or less.

詳細は後述するが、該膜間圧力差を0.01MPa以上とすることで、上述した溶質の逆漏れ量を効果的に低減することができる。また、詳細は後述するが、ドロー溶液中の溶質が無機塩などの低分子量の場合には、該膜間圧力差が0.03MPa以上では、上述した溶質の逆漏れ量が大きくは変わらない傾向となる一方で、該膜間圧力差を大きくして正浸透膜3に高い圧力が付与されると、正浸透膜3が破損するおそれがあるため、該膜間圧力差は0.06MPa以下とすることが好ましく、0.03MPa以下とすることがより好ましい。一方で、ドロー溶液中の溶質が感温性物質などの高分子量の場合には、該膜間圧力差は0.03MPa以上0.06MPa以下であることが好ましい。 Although the details will be described later, by setting the pressure difference between the membranes to 0.01 MPa or more, the amount of back leakage of the above-mentioned solute can be effectively reduced. Further, as will be described in detail later, when the solute in the draw solution has a low molecular weight such as an inorganic salt, the amount of back leakage of the above-mentioned solute does not change significantly when the pressure difference between the membranes is 0.03 MPa or more. On the other hand, if the pressure difference between the membranes is increased and a high pressure is applied to the forward osmosis membrane 3, the forward osmosis membrane 3 may be damaged. Therefore, the pressure difference between the membranes is 0.06 MPa or less. It is preferably 0.03 MPa or less, and more preferably 0.03 MPa or less. On the other hand, when the solute in the draw solution has a high molecular weight such as a temperature-sensitive substance, the pressure difference between the films is preferably 0.03 MPa or more and 0.06 MPa or less.

上述した膜間圧力差は、例えば処理部4の第一室1及び第二室2に対して液体の入口側となる第1流路L1及び第3流路L3にそれぞれ圧力計7A,7Bを設置し、圧力計7A,7Bの計測値を用いることで測定することができる。なお、上述した膜間圧力差を計測する計測手段は、圧力計7A,7Bに限定されるものではなく、その他にも種々の機器を用いることができる。 For the above-mentioned pressure difference between membranes, for example, pressure gauges 7A and 7B are provided in the first flow path L1 and the third flow path L3 on the liquid inlet side with respect to the first chamber 1 and the second chamber 2 of the processing unit 4, respectively. It can be measured by installing it and using the measured values of the pressure gauges 7A and 7B. The measuring means for measuring the pressure difference between the membranes described above is not limited to the pressure gauges 7A and 7B, and various other devices can be used.

以上の通り、本実施形態の液体処理装置10及び液体処理方法によると、被処理液(フィード溶液)にドロー溶液よりも高い圧力を加えると、ドロー溶液に含まれる溶質が正浸透膜を通って被処理液側に漏れ出す逆漏れ現象が生じるとのこれまでの当該技術分野の一般的認識に反して、被処理液をドロー溶液よりも、透過水量が大きく変わらない範囲の0.06MPa以下という若干高い圧力で連続的に加圧することで、ドロー溶液側から正浸透膜を通って被処理液側に漏れ出す溶質の逆漏れ量を抑制することが可能となった。 As described above, according to the liquid treatment apparatus 10 and the liquid treatment method of the present embodiment, when a pressure higher than that of the draw solution is applied to the liquid to be treated (feed solution), the solute contained in the draw solution passes through the forward osmosis membrane. Contrary to the general recognition in the art that a reverse leakage phenomenon occurs that leaks to the liquid to be treated, the liquid to be treated is 0.06 MPa or less, which is within the range where the amount of permeated water does not change significantly compared to the draw solution. By continuously pressurizing with a slightly higher pressure, it became possible to suppress the amount of back leakage of the solute leaking from the draw solution side through the forward osmosis membrane to the liquid to be treated side.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば上記実施形態の液体処理装置10において、図2に示すように、処理部4の第一室1と第二室2との間の膜間圧力差を制御手段8が常時監視し、当該膜間圧力差が所定の範囲内となるようにポンプP1,P2や加圧手段、降圧手段などを制御するように構成してもよい。 For example, in the liquid processing apparatus 10 of the above embodiment, as shown in FIG. 2, the control means 8 constantly monitors the pressure difference between the membranes between the first chamber 1 and the second chamber 2 of the processing unit 4, and the membrane is concerned. The pumps P1 and P2, the pressurizing means, the step-down means, and the like may be controlled so that the pressure difference between them is within a predetermined range.

制御手段8は、マイコンやメモリ、HDDなどを備えたコンピュータで構成されていてもよいし、電子回路で構成されていてもよい。制御手段8には、上述した膜間圧力差を計測するための計測手段、例えば圧力計7A,7Bが接続され、制御手段8が計測手段からの信号を受信することで、制御手段8により上述した膜間圧力差が監視される。また、制御手段8には、ポンプP1,P2や加圧手段、降圧手段などの上述した膜間圧力差を設定する設定手段が接続され、制御手段8が計測手段から受信する信号に基づき設定手段の動作を制御することで、制御手段8により上述した膜間圧力差が所定の範囲内となるように調整される。 The control means 8 may be composed of a computer including a microcomputer, a memory, an HDD, or the like, or may be composed of an electronic circuit. Measuring means for measuring the above-mentioned intermembrane pressure difference, for example, pressure gauges 7A and 7B are connected to the control means 8, and the control means 8 receives a signal from the measuring means, so that the control means 8 describes the above. The pressure difference between the membranes is monitored. Further, the control means 8 is connected to the setting means for setting the above-mentioned intermembrane pressure difference such as the pumps P1 and P2, the pressurizing means, and the step-down means, and the setting means is set based on the signal received from the measuring means by the control means 8. By controlling the operation of, the control means 8 adjusts the pressure difference between the films described above to be within a predetermined range.

以下に本発明の実施例を示し、本発明をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Examples of the present invention will be shown below, and the present invention will be described in more detail, but the present invention is not limited to the following examples.

実施例1,2として、図1と同様の構成を示す液体処理装置1を使用して、純水からなる被処理液の処理を行った。ドロー溶液には1mol/Lの食塩水(実施例1)及び平均分子量400のポリプロピレングリコールの40%水溶液(実施例2)の2種類を使用した。処理部4の正浸透膜3には、ポリアミドを素材とする平膜(アクアポリン社製FO膜、型番FO08/02B2)を使用した。 As Examples 1 and 2, a liquid treatment apparatus 1 having the same configuration as that in FIG. 1 was used to treat a liquid to be treated made of pure water. Two types of draw solutions were used: 1 mol / L saline solution (Example 1) and a 40% aqueous solution of polypropylene glycol having an average molecular weight of 400 (Example 2). For the forward osmosis membrane 3 of the treatment unit 4, a flat membrane made of polyamide (FO membrane manufactured by Aquaporin, model number FO08 / 02B2) was used.

実施例1,2それぞれについて、処理部4の第一室1と第二室2との間の膜間圧力差を、0.01MPa、0.03MPa、0.06MPaとして1.5時間処理を行った場合の第二室2側から正浸透膜3を通って第一室1側に漏れ出す溶質の逆漏れ量、及び、第一室1側から正浸透膜3を透過して第二室2側に移動する水の透過水量を計測した。さらに比較例として、処理部4の第一室1と第二室2との間の膜間圧力差を0MPaとした場合の溶質の逆漏れ量及び水の透過水量を計測した。膜間圧力差は圧力計によって測定し、逆漏れ量は実施例1では導電率計(島津製作所製)によって測定した一方で実施例2では全有機体炭素計(島津製作所社製)によって測定し、透過水量は天秤によって測定した。測定結果を図3及び図4に示す。 For each of Examples 1 and 2, the treatment was performed for 1.5 hours with the intermembrane pressure difference between the first chamber 1 and the second chamber 2 of the processing unit 4 being 0.01 MPa, 0.03 MPa, and 0.06 MPa. In this case, the amount of reverse leakage of the solute leaking from the second chamber 2 side through the forward osmosis membrane 3 to the first chamber 1 side, and the amount of solute permeating through the forward osmosis membrane 3 from the first chamber 1 side to the second chamber 2 The amount of permeated water moving to the side was measured. Further, as a comparative example, the amount of reverse leakage of the solute and the amount of permeated water were measured when the pressure difference between the membranes between the first chamber 1 and the second chamber 2 of the treatment unit 4 was 0 MPa. The intermembrane pressure difference was measured with a pressure gauge, and the amount of back leakage was measured with a conductivity meter (manufactured by Shimadzu Corporation) in Example 1 while it was measured with an all-organic carbon meter (manufactured by Shimadzu Corporation) in Example 2. , The amount of permeated water was measured by a balance. The measurement results are shown in FIGS. 3 and 4.

図3及び図4によると、被処理液にドロー溶液よりも0.06MPa以下という若干高い圧力を加えることで、溶質の逆漏れを抑制できることが確認された。また、膜間圧力差を0.01MPa以上とすることで溶質の逆漏れ量を効果的に低減できることが確認された。さらに、ドロー溶液中の溶質が感温性物質などの高分子量の場合(実施例2)では、膜間圧力差を0.03MPa以上とすることで溶質の逆漏れ量をさらに効果的に低減できる一方で、ドロー溶液中の溶質が無機塩などの低分子量の場合(実施例1)では膜間圧力差が0.03MPa以上としても溶質の逆漏れ量が大きくは変わらないことが確認された。そのため、ドロー溶液中の溶質が無機塩などの低分子量の場合(実施例1)には、膜間圧力差が0.01MPa以上0.03MPa以下であることが好ましく、ドロー溶液中の溶質が感温性物質などの高分子量の場合(実施例2)には、膜間圧力差が0.03MPa以上0.06MPa以下であることが好ましいことが確認された。一方で、実施例1及び実施例2ともに、透過水量は圧力を加えない場合(0MPa)と比べて大きく変わらないことが確認された。そのため、被処理液に対してドロー溶液よりも、圧力を加えない場合(0MPa)との比較で透過水量が大きく変わらない範囲の若干の圧力を加えることで溶質の逆漏れを抑制可能であることが分かる。 According to FIGS. 3 and 4, it was confirmed that the back leakage of the solute can be suppressed by applying a slightly higher pressure of 0.06 MPa or less than the draw solution to the liquid to be treated. It was also confirmed that the amount of back leakage of the solute can be effectively reduced by setting the pressure difference between the membranes to 0.01 MPa or more. Further, when the solute in the draw solution has a high molecular weight such as a temperature-sensitive substance (Example 2), the amount of back leakage of the solute can be more effectively reduced by setting the pressure difference between the membranes to 0.03 MPa or more. On the other hand, when the solute in the draw solution has a low molecular weight such as an inorganic salt (Example 1), it was confirmed that the amount of back leakage of the solute does not change significantly even if the pressure difference between the membranes is 0.03 MPa or more. Therefore, when the solute in the draw solution has a low molecular weight such as an inorganic salt (Example 1), the pressure difference between the membranes is preferably 0.01 MPa or more and 0.03 MPa or less, and the solute in the draw solution is felt. In the case of a high molecular weight such as a warm substance (Example 2), it was confirmed that the pressure difference between the films is preferably 0.03 MPa or more and 0.06 MPa or less. On the other hand, in both Example 1 and Example 2, it was confirmed that the amount of permeated water did not change significantly as compared with the case where no pressure was applied (0 MPa). Therefore, it is possible to suppress the back leakage of the solute by applying a slight pressure within the range in which the amount of permeated water does not change significantly compared to the case where no pressure is applied to the solution to be treated (0 MPa). I understand.

1 第一室
2 第二室
3 正浸透膜
4 処理部
7A,7B 圧力計(計測手段)
8 制御手段
P1,P2 ポンプ(設定手段)
L1 第1流路
L2 第2流路
L3 第3流路
L4 第4流路
1 Room 1 2 Room 2 3 Forward osmosis membrane 4 Processing unit 7A, 7B Pressure gauge (measuring means)
8 Control means P1, P2 pump (setting means)
L1 1st flow path L2 2nd flow path L3 3rd flow path L4 4th flow path

Claims (5)

正浸透膜によって分けられた第一室及び第二室を有する処理部と、
前記第一室に被処理液を供給する第1流路と、
前記第二室に前記被処理液よりも浸透圧の高いドロー溶液を供給する第2流路と、
前記被処理液の水分の一部が前記第一室から前記正浸透膜を介して前記第二室に透過した後の前記第一室の濃縮された被処理液を排出する第3流路と、
前記被処理液の水分の一部が前記第一室から前記正浸透膜を介して前記第二室に透過した後の前記第二室の希釈されたドロー溶液を排出する第4流路と、を備え、
前記第一室内を通過する被処理液に対して前記第二室内を通過するドロー溶液よりも高い圧力が連続的に加わるように前記第一室と前記第二室との間の膜間圧力差が0MPaよりも大きく0.06MPa以下に設定されている、液体処理装置。
A processing unit having a first chamber and a second chamber separated by a forward osmosis membrane,
A first flow path for supplying the liquid to be treated to the first chamber,
A second flow path for supplying a draw solution having a higher osmotic pressure than the liquid to be treated to the second chamber,
A third flow path for discharging the concentrated liquid to be treated in the first chamber after a part of the water content of the liquid to be treated has permeated from the first chamber to the second chamber via the forward osmosis membrane. ,
A fourth flow path for discharging the diluted draw solution of the second chamber after a part of the water content of the liquid to be treated has permeated from the first chamber to the second chamber through the forward osmosis membrane. With
Intermembrane pressure difference between the first chamber and the second chamber so that a pressure higher than that of the draw solution passing through the second chamber is continuously applied to the liquid to be treated passing through the first chamber. Is set to 0.06 MPa or less, which is larger than 0 MPa, and is a liquid processing apparatus.
前記第一室と前記第二室との間の膜間圧力差が0.01MPa以上0.03MPa以下である、請求項1に記載の液体処理装置。 The liquid processing apparatus according to claim 1, wherein the pressure difference between the membranes between the first chamber and the second chamber is 0.01 MPa or more and 0.03 MPa or less. 前記膜間圧力差を計測するための計測手段と、前記膜間圧力差を設定する設定手段と、前記計測手段及び前記設定手段に接続された制御手段と、をさらに備え、
前記制御手段は、前記計測手段からの信号を受信して前記設定手段の動作を制御することで、前記膜間圧力差を調整する、請求項1又は2に記載の液体処理装置。
A measuring means for measuring the intermembrane pressure difference, a setting means for setting the intermembrane pressure difference, and a measuring means and a control means connected to the setting means are further provided.
The liquid processing apparatus according to claim 1 or 2, wherein the control means adjusts the pressure difference between the membranes by receiving a signal from the measuring means and controlling the operation of the setting means.
正浸透膜によって仕切られた第一室及び第二室を有する処理部の前記第一室に被処理液を供給する一方、前記第二室に前記被処理液よりも浸透圧の高いドロー溶液を供給することで前記被処理液の水分の一部を前記第一室から前記正浸透膜を介して前記第二室に透過させる液体処理方法において、
前記第一室内を通過する被処理液に対して前記第二室内を通過するドロー溶液よりも高い圧力が連続的に加わるように前記第一室と前記第二室との間の膜間圧力差を0MPaよりも大きく0.06MPa以下に設定する、液体処理方法。
The liquid to be treated is supplied to the first chamber of the treatment unit having the first chamber and the second chamber partitioned by the forward osmosis membrane, while the draw solution having a higher osmotic pressure than the liquid to be treated is supplied to the second chamber. In a liquid treatment method in which a part of the water content of the liquid to be treated is permeated from the first chamber to the second chamber via the forward osmosis membrane by supplying the liquid.
Intermembrane pressure difference between the first chamber and the second chamber so that a pressure higher than that of the draw solution passing through the second chamber is continuously applied to the liquid to be treated passing through the first chamber. Is a liquid treatment method in which is set to 0.06 MPa or less, which is larger than 0 MPa.
前記第一室と前記第二室との間の膜間圧力差が0.01MPa以上0.03MPa以下である、請求項4に記載の液体処理方法。 The liquid treatment method according to claim 4, wherein the pressure difference between the membranes between the first chamber and the second chamber is 0.01 MPa or more and 0.03 MPa or less.
JP2019033911A 2019-02-27 2019-02-27 Liquid processing equipment and liquid processing method Active JP7080493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033911A JP7080493B2 (en) 2019-02-27 2019-02-27 Liquid processing equipment and liquid processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033911A JP7080493B2 (en) 2019-02-27 2019-02-27 Liquid processing equipment and liquid processing method

Publications (2)

Publication Number Publication Date
JP2020138114A true JP2020138114A (en) 2020-09-03
JP7080493B2 JP7080493B2 (en) 2022-06-06

Family

ID=72279575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033911A Active JP7080493B2 (en) 2019-02-27 2019-02-27 Liquid processing equipment and liquid processing method

Country Status (1)

Country Link
JP (1) JP7080493B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190752A (en) * 1975-02-07 1976-08-09
JP2011255312A (en) * 2010-06-09 2011-12-22 Fujifilm Corp Forward osmosis device and forward osmosis method
JP2014184403A (en) * 2013-03-25 2014-10-02 Jfe Engineering Corp Water treatment apparatus
JP2018192430A (en) * 2017-05-18 2018-12-06 三菱重工環境・化学エンジニアリング株式会社 Biological treatment apparatus, biological treatment method, and program
WO2019189548A1 (en) * 2018-03-29 2019-10-03 三井化学株式会社 Method for producing solution having reduced solute concentration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190752A (en) * 1975-02-07 1976-08-09
JP2011255312A (en) * 2010-06-09 2011-12-22 Fujifilm Corp Forward osmosis device and forward osmosis method
JP2014184403A (en) * 2013-03-25 2014-10-02 Jfe Engineering Corp Water treatment apparatus
JP2018192430A (en) * 2017-05-18 2018-12-06 三菱重工環境・化学エンジニアリング株式会社 Biological treatment apparatus, biological treatment method, and program
WO2019189548A1 (en) * 2018-03-29 2019-10-03 三井化学株式会社 Method for producing solution having reduced solute concentration

Also Published As

Publication number Publication date
JP7080493B2 (en) 2022-06-06

Similar Documents

Publication Publication Date Title
US7368058B2 (en) Method of generating fresh water and fresh-water generator
Rastogi Opportunities and challenges in application of forward osmosis in food processing
McCutcheon et al. A novel ammonia—carbon dioxide forward (direct) osmosis desalination process
JP5929195B2 (en) Fresh water production apparatus and operation method thereof
JP6977247B2 (en) Concentration method and concentrator
KR102531484B1 (en) Dehydration method and related system of alcoholic solution through forward osmosis
JP2016016384A (en) Evaluation device and evaluation method for osmosis membrane module
JP2018001111A (en) Processing method of desalinating salt water and processing system of desalinating salt water
Kertész et al. Dairy wastewater purification by vibratory shear enhanced processing
KR101184650B1 (en) Forward osmotic desalination device for using osmotic membrane submerged in osmosis driving solution and nanofilter and the method thereof
Rastogi et al. Membranes for forward osmosis in industrial applications
Rastogi et al. Water treatment by reverse and forward osmosis
JPH0427485A (en) Method for defoaming pure water and reverse osmosis method for production of pure water
JP7080493B2 (en) Liquid processing equipment and liquid processing method
KR101971383B1 (en) Water treatment assembly including hyperfiltration module and cation exchange resin
JP2001300271A (en) Fluid separation element
US20180264410A1 (en) Method for improving inhibition performance of semipermeable membrane, semipermeable membrane, and semipermeable membrane water production device
JP5966639B2 (en) Salt water desalination apparatus and fresh water generation method
RU2006121054A (en) METHOD FOR CONCENTRATION OF AQUEOUS SOLUTIONS OF BIOLOGICALLY ACTIVE SUBSTANCES AND INSTALLATION FOR ITS IMPLEMENTATION
JP6040830B2 (en) Membrane separator
JPS58122084A (en) Water producing method by desalting of sea water
JP2020199430A (en) Concentration system
JP2018118186A (en) Forward osmosis membrane and water treatment system
DasGupta et al. Membrane applications in fruit processing technologies
JP2020175319A (en) Concentration system and concentration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7080493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150