JP2020137054A - Wireless communication system, wireless communication method and terminal station device - Google Patents

Wireless communication system, wireless communication method and terminal station device Download PDF

Info

Publication number
JP2020137054A
JP2020137054A JP2019031716A JP2019031716A JP2020137054A JP 2020137054 A JP2020137054 A JP 2020137054A JP 2019031716 A JP2019031716 A JP 2019031716A JP 2019031716 A JP2019031716 A JP 2019031716A JP 2020137054 A JP2020137054 A JP 2020137054A
Authority
JP
Japan
Prior art keywords
station
relay
control signal
downlink control
terminal station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019031716A
Other languages
Japanese (ja)
Other versions
JP7011265B2 (en
Inventor
大介 五藤
Daisuke Goto
大介 五藤
山下 史洋
Fumihiro Yamashita
史洋 山下
柴山 大樹
Daiki Shibayama
大樹 柴山
山里 敬也
Takanari Yamasato
敬也 山里
椋 桶間
Ryo Okema
椋 桶間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Tokai National Higher Education and Research System NUC
Original Assignee
Nippon Telegraph and Telephone Corp
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Tokai National Higher Education and Research System NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2019031716A priority Critical patent/JP7011265B2/en
Publication of JP2020137054A publication Critical patent/JP2020137054A/en
Application granted granted Critical
Publication of JP7011265B2 publication Critical patent/JP7011265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To improve frequency use efficiency in a wireless communication system, in which a base station dynamically sets a spatial multiplex transmission band based on the number of relay stations receivable by a terminal station, by sharing an identical frequency band by a plurality of relay stations under the Doppler shift environment of the relay stations.SOLUTION: A terminal station device of the wireless communication system includes: frequency error detection means which, on receipt of a downlink control signal which is superposed to an identical frequency band and transmitted from the base station through a plurality of relay stations, detects the frequency error of the downlink control signal based on machine learning obtained by inputting the received waveform information of the control signal, the transmission signal information acquired in advance and peripheral information; and relay station selection means which performs the frequency synchronization of the downlink control signal based on the frequency error, and estimates channel information between each relay station and the terminal station from the frequency-synchronized downlink control signal, to select one or more receivable relay stations based on the channel information to notify the base station of the selected one.SELECTED DRAWING: Figure 1

Description

本発明は、1つの基地局と、移動する複数の中継局と、複数の端末局で構成され、基地局と各端末局が接続可能な1以上の中継局を介してダウンリンク多元接続を行う無線通信システム、無線通信方法および端末局装置に関する。 The present invention is composed of one base station, a plurality of moving relay stations, and a plurality of terminal stations, and performs downlink multiplex connection via one or more relay stations to which the base station and each terminal station can be connected. Related to wireless communication systems, wireless communication methods and terminal station devices.

低軌道衛星(LEO)システムは、静止衛星に比べて低軌道( 800〜2000km)の衛星を用いて通信を行うことで、静止軌道(高度約36,000km)の静止衛星(GEO)システムと比較して、通信の特徴が低遅延・低減衰量となる長所がある。また、複数のLEO衛星の信号と複数の受信アンテナを所有する端末によるMIMO(Multi-Input Multi-Output) 伝送により、単一のLEO衛星の場合に比べて通信容量を向上できる。 The low earth orbit satellite (LEO) system uses a satellite with a lower orbit (800 to 2000 km) than the geostationary satellite to communicate, and is compared with the geostationary satellite (GEO) system in the geostationary orbit (altitude of about 36,000 km). Therefore, it has the advantage that the characteristics of communication are low delay and low attenuation. In addition, MIMO (Multi-Input Multi-Output) transmission by a terminal having a plurality of LEO satellite signals and a plurality of receiving antennas can improve the communication capacity as compared with the case of a single LEO satellite.

一方、受信信号はLEO衛星の移動に伴うドップラーシフトの影響を受けるため、複数のLEO衛星を用いたMIMO伝送では、それぞれのLEO衛星のドップラーシフトを個別に推定し、それぞれ衛星固有の制御信号に互いに分離できるような固有の周波数帯域を割り当てる必要がある。そのため、システム帯域幅の減少をもたらし、LEO−MIMOシステムの通信容量の低下を招いていた。 On the other hand, since the received signal is affected by the Doppler shift due to the movement of the LEO satellite, in MIMO transmission using a plurality of LEO satellites, the Doppler shift of each LEO satellite is estimated individually, and each satellite-specific control signal It is necessary to allocate a unique frequency band that can be separated from each other. Therefore, the system bandwidth is reduced, and the communication capacity of the LEO-MIMO system is reduced.

非特許文献1では、低軌道(LEO)衛星システムの周波数利用効率向上を目的として、ドップラーシフト環境下で複数衛星からの動的なMIMO伝送および周波数割り当てを行うダウンリンク制御方式を開示している。ここでは、衛星からのダウンリンク信号の制御信号とデータ信号を異なる周波数に配置し、同サービスエリア内で受信可能な衛星の制御信号を異なる周波数帯域に割り当てるように設定する。端末は、複数の衛星からの制御信号を用いて同期を行い、受信可能な衛星とその数を把握する。さらに制御信号を用いてチャネル推定を行い、受信できる全衛星との推定情報に基づいてMIMO伝送を行うための対象の複数衛星の情報をアップリンクを経由して基地局に通知する。端末から通知を受けた基地局は、当該複数衛星を用いて当該端末にMIMO伝送を行う。基地局は、各端末局の受信可能な衛星数に基づき、固有のMIMO帯域をデータ信号帯域に設定し、それぞれ各衛星に送信を開始する。さらに、基地局は各衛星の制御信号にそれぞれの衛星のデータ信号の周波数、帯域幅、衛星情報を通知する。なお、各衛星経由で送信される制御信号とデータ信号は同じベースバンド信号から生成されたものであり、同期しているものとする。当該端末は通知を受けた情報に従ってデータ信号の受信、等化処理を行ってデータを復調する。制御信号のチャネル推定情報から、MIMO信号の等化のための重み行列を算出し、各衛星の信号を分離し、復調する。 Non-Patent Document 1 discloses a downlink control method that performs dynamic MIMO transmission and frequency allocation from a plurality of satellites in a Doppler shift environment for the purpose of improving the frequency utilization efficiency of a low earth orbit (LEO) satellite system. .. Here, the control signal of the downlink signal from the satellite and the data signal are arranged at different frequencies, and the control signal of the satellite that can be received within the service area is set to be assigned to a different frequency band. The terminal synchronizes using control signals from a plurality of satellites and grasps the satellites that can be received and the number of satellites. Furthermore, channel estimation is performed using control signals, and information on a plurality of target satellites for MIMO transmission based on estimation information with all receivable satellites is notified to the base station via an uplink. The base station that receives the notification from the terminal performs MIMO transmission to the terminal using the plurality of satellites. The base station sets a unique MIMO band as a data signal band based on the number of receivable satellites of each terminal station, and starts transmission to each satellite. Further, the base station notifies the control signal of each satellite of the frequency, bandwidth, and satellite information of the data signal of each satellite. It is assumed that the control signal and the data signal transmitted via each satellite are generated from the same baseband signal and are synchronized. The terminal receives the data signal and performs equalization processing according to the notified information to demodulate the data. From the channel estimation information of the control signal, a weight matrix for equalizing the MIMO signal is calculated, and the signals of each satellite are separated and demodulated.

D. Goto, H. Shibayama, F. Yamashita, R. Okema and T. Yamazato,"LEO-MIMO Satellite Systems for High Capacity Transmission",IEEE GLOBECOM 2018, Dec 2018.D. Goto, H. Shibayama, F. Yamashita, R. Okema and T. Yamazato, "LEO-MIMO Satellite Systems for High Capacity Transmission", IEEE GLOBECOM 2018, Dec 2018. Tabakovic, Z.,“Doppler effect in non-GSO satellite propagation.” In Millennium conference on antennas and propagation-IEEE AP-2000. ,2000.Tabakovic, Z., “Doppler effect in non-GSO satellite propagation.” In Millennium conference on antennas and propagation-IEEE AP-2000., 2000.

非特許文献1の方式は、各衛星の異なるドップラーシフトに伴う周波数非同期の信号受信によって信号の誤検出が生じるのを防ぐため、同サービスエリア内で受信可能な衛星の制御信号を異なる周波数帯域に割り当てるように設定している。この場合、衛星数が増加する度に制御信号が増加するため、周波数利用効率が劣化することが懸念される。このため、複数衛星によるMIMO伝送を行った場合でも、制御信号の増加により、伝送容量の向上が期待できない問題が考えられる。衛星数が増加した場合でも、周波数利用効率の劣化なくMIMOのチャネル容量が向上できる方式が望ましい。 The method of Non-Patent Document 1 shifts the control signals of satellites that can be received within the same service area to different frequency bands in order to prevent false detection of signals due to frequency asynchronous signal reception due to different Doppler shifts of each satellite. It is set to be assigned. In this case, since the control signal increases as the number of satellites increases, there is a concern that the frequency utilization efficiency may deteriorate. Therefore, even when MIMO transmission by a plurality of satellites is performed, there is a problem that the transmission capacity cannot be expected to be improved due to the increase in control signals. Even if the number of satellites increases, a method that can improve the channel capacity of MIMO without deterioration of frequency utilization efficiency is desirable.

本発明は、基地局が端末局の受信可能な中継局数に基づいて空間多重伝送帯域を動的に設定する無線通信システムにおいて、中継局のドップラーシフト環境下で、複数の中継局で同一の周波数帯域をシェアし、周波数利用効率を向上させることができる無線通信システム、無線通信方法および端末局装置を提供することを目的とする。 The present invention is a wireless communication system in which a base station dynamically sets a spatial multiplex transmission band based on the number of receivable relay stations of a terminal station, and is the same for a plurality of relay stations under a Doppler shift environment of the relay stations. An object of the present invention is to provide a wireless communication system, a wireless communication method, and a terminal station device capable of sharing a frequency band and improving frequency utilization efficiency.

第1の発明は、1台の基地局と、移動する複数の中継局と、サービスエリア内の複数の端末局とを備え、基地局は、複数の中継局の位置に基づき、各中継局が送信する信号をサービスエリアで受信可能な中継局を識別し、該中継局を介して各端末局に対してそれぞれ異なる周波数帯域でデータ信号を周波数多重伝送するとともに、空間多重伝送に対応する端末局に対して特定の周波数帯域と複数の中継局を介してデータ信号を空間多重伝送するダウンリンク多元接続手段を備え、基地局から複数の中継局を介して各端末局に対してダウンリンク多元接続を行う無線通信システムにおいて、基地局のダウンリンク多元接続手段は、サービスエリアで受信可能な複数の中継局から同一の周波数帯域で中継局IDを含む下り制御信号を送信する手段を含み、端末局は、同一の周波数帯域に重畳した下り制御信号を受信し、その受信波形情報と事前に取得した送信信号情報および周辺情報を入力して機械学習した結果に基づいて下り制御信号の周波数誤差を検出し、その周波数誤差に基づいて下り制御信号の周波数同期をとり、さらに周波数同期をとった下り制御信号から中継局と端末局との間のチャネル情報を推定し、該チャネル情報に基づいて受信可能な1以上の中継局を選択して基地局に通知するダウンリンク多元接続手段を備え、基地局のダウンリンク多元接続手段は、端末局で選択された中継局を介して当該端末局宛のデータ信号を空間多重伝送する特定の周波数帯域を割り当て、その情報を下り制御信号により端末局に通知するとともに、当該端末局宛のデータ信号を空間多重伝送する手段を含む。 The first invention includes one base station, a plurality of mobile relay stations, and a plurality of terminal stations in a service area. The base stations are based on the positions of the plurality of relay stations, and each relay station has its own position. A relay station that can receive the signal to be transmitted is identified in the service area, and the data signal is frequency-multiplexed to each terminal station via the relay station in a different frequency band, and the terminal station corresponding to the spatial multiplex transmission. It is equipped with a downlink multiplex connection means for spatially multiplex transmission of data signals via a specific frequency band and multiple relay stations, and a downlink multiplex connection from a base station to each terminal station via multiple relay stations. In the wireless communication system that performs the above, the downlink multiplex connection means of the base station includes means for transmitting a downlink control signal including a relay station ID in the same frequency band from a plurality of relay stations that can be received in the service area, and includes a terminal station. Receives downlink control signals superimposed on the same frequency band, inputs the received waveform information, transmission signal information acquired in advance, and peripheral information, and detects the frequency error of the downlink control signal based on the result of machine learning. Then, frequency synchronization of the downlink control signal is performed based on the frequency error, channel information between the relay station and the terminal station is estimated from the frequency-synchronized downlink control signal, and reception is possible based on the channel information. It is provided with a downlink multiple connection means for selecting one or more relay stations and notifying the base station, and the downlink multiple connection means of the base station is data addressed to the terminal station via the relay station selected by the terminal station. It includes means for allocating a specific frequency band for spatial multiplex transmission of a signal, notifying the terminal station of the information by a downlink control signal, and spatially multiplexing a data signal addressed to the terminal station.

第1の発明の無線通信システムにおいて、端末局宛の下り制御信号とデータ信号は同じベースバンド信号から生成して同期しており、端末局のダウンリンク多元接続手段は、下り制御信号から推定したチャネル情報を用いて空間多重伝送されたデータ信号の分離および復調を行う手段を含む。 In the wireless communication system of the first invention, the downlink control signal and the data signal addressed to the terminal station are generated from the same baseband signal and synchronized, and the downlink multiplex connection means of the terminal station is estimated from the downlink control signal. Includes means for separating and demodulating spatially multiplexed data signals using channel information.

第2の発明は、1台の基地局と、移動する複数の中継局と、サービスエリア内の複数の端末局とを備え、基地局は、複数の中継局の位置に基づき、各中継局が送信する信号をサービスエリアで受信可能な中継局を識別し、該中継局を介して各端末局に対してそれぞれ異なる周波数帯域でデータ信号を周波数多重伝送するとともに、空間多重伝送に対応する端末局に対して特定の周波数帯域と複数の中継局を介してデータ信号を空間多重伝送するダウンリンク多元接続手段を備え、基地局から複数の中継局を介して各端末局に対してダウンリンク多元接続を行う無線通信方法において、基地局のダウンリンク多元接続手段は、サービスエリアで受信可能な複数の中継局から同一の周波数帯域で中継局IDを含む下り制御信号を送信する処理を行い、端末局のダウンリンク多元接続手段は、同一の周波数帯域に重畳した下り制御信号を受信し、その受信波形情報と事前に取得した送信信号情報および周辺情報を入力して機械学習した結果に基づいて下り制御信号の周波数誤差を検出し、その周波数誤差に基づいて下り制御信号の周波数同期をとり、さらに周波数同期をとった下り制御信号から中継局と端末局との間のチャネル情報を推定し、該チャネル情報に基づいて受信可能な1以上の中継局を選択して基地局に通知する処理を行い、基地局のダウンリンク多元接続手段は、端末局で選択された中継局を介して当該端末局宛のデータ信号を空間多重伝送する特定の周波数帯域を割り当て、その情報を下り制御信号により端末局に通知するとともに、当該端末局宛のデータ信号を空間多重伝送する処理を行う。 The second invention includes one base station, a plurality of moving relay stations, and a plurality of terminal stations in the service area, and the base station is based on the positions of the plurality of relay stations. A relay station that can receive the signal to be transmitted is identified in the service area, and the data signal is frequency-multiplexed to each terminal station via the relay station in a different frequency band, and the terminal station corresponding to the spatial multiplex transmission. It is equipped with a downlink multiplex connection means for spatially multiplex transmission of data signals via a specific frequency band and multiple relay stations, and a downlink multiplex connection from a base station to each terminal station via multiple relay stations. In the wireless communication method for performing the above, the downlink multiplex connection means of the base station performs a process of transmitting a downlink control signal including a relay station ID in the same frequency band from a plurality of relay stations that can be received in the service area, and the terminal station. The downlink multi-element connection means receives the downlink control signal superimposed on the same frequency band, inputs the received waveform information, the transmission signal information acquired in advance, and the peripheral information, and performs downlink control based on the result of machine learning. The frequency error of the signal is detected, the frequency of the downlink control signal is synchronized based on the frequency error, and the channel information between the relay station and the terminal station is estimated from the frequency-synchronized downlink control signal, and the channel is estimated. Based on the information, one or more receivable relay stations are selected and notified to the base station, and the downlink multiplex connection means of the base station is addressed to the terminal station via the relay station selected by the terminal station. Allocates a specific frequency band for spatial multiplex transmission of the data signal of the above, notifies the terminal station of the information by a downlink control signal, and performs a process of spatially multiplex transmission of the data signal addressed to the terminal station.

第2の発明の無線通信方法において、端末局宛の下り制御信号とデータ信号は同じベースバンド信号から生成して同期しており、端末局のダウンリンク多元接続手段は、下り制御信号から推定したチャネル情報を用いて空間多重伝送されたデータ信号の分離および復調を行う。 In the wireless communication method of the second invention, the downlink control signal and the data signal addressed to the terminal station are generated from the same baseband signal and synchronized, and the downlink multiplex connection means of the terminal station is estimated from the downlink control signal. Separation and demodulation of spatially multiplexed data signals are performed using channel information.

第3の発明は、1台の基地局と、移動する複数の中継局と、サービスエリア内の複数の端末局とを備え、基地局は、複数の中継局の位置に基づき、各中継局が送信する信号をサービスエリアで受信可能な中継局を識別し、該中継局を介して各端末局に対してそれぞれ異なる周波数帯域でデータ信号を周波数多重伝送するとともに、空間多重伝送に対応する端末局に対して特定の周波数帯域と複数の中継局を介してデータ信号を空間多重伝送するダウンリンク多元接続手段を備え、基地局から複数の中継局を介して各端末局に対してダウンリンク多元接続を行う無線通信システムの端末局装置において、基地局から複数の中継局を介して同一の周波数帯域に重畳して送信された下り制御信号を受信し、その受信波形情報と事前に取得した送信信号情報および周辺情報を入力して機械学習した結果に基づいて該下り制御信号の周波数誤差を検出する周波数誤差検出手段と、周波数誤差に基づいて下り制御信号の周波数同期をとり、さらに周波数同期をとった下り制御信号から中継局と端末局との間のチャネル情報を推定し、該チャネル情報に基づいて受信可能な1以上の中継局を選択して基地局に通知する中継局選択手段とを備える。 The third invention includes one base station, a plurality of moving relay stations, and a plurality of terminal stations in the service area, and the base station is based on the positions of the plurality of relay stations. A relay station that can receive the signal to be transmitted is identified in the service area, and the data signal is frequency-multiplexed to each terminal station via the relay station in a different frequency band, and the terminal station corresponding to spatial multiplex transmission is supported. It is equipped with a downlink multiplex connection means for spatially multiplex transmission of data signals via a specific frequency band and multiple relay stations, and a downlink multiplex connection from a base station to each terminal station via multiple relay stations. In the terminal station device of the wireless communication system that performs the above, the downlink control signal transmitted by superimposing on the same frequency band from the base station via a plurality of relay stations is received, and the received waveform information and the transmission signal acquired in advance are received. A frequency error detecting means that detects the frequency error of the downlink control signal based on the result of machine learning by inputting information and peripheral information, and frequency synchronization of the downlink control signal based on the frequency error are performed, and further frequency synchronization is performed. It is provided with a relay station selection means that estimates channel information between a relay station and a terminal station from the downlink control signal, selects one or more receivable relay stations based on the channel information, and notifies the base station. ..

本発明は、移動する複数の中継局を含む無線通信システムにおいて、基地局が端末局の受信可能な中継局数に基づいてMIMO伝送帯域を動的に設定することで、可能な限り複数の中継局で空間多重伝送する周波数帯域をシェアすることが可能となり、周波数利用効率の向上を期待できる。特に、各中継局の制御信号を同一の周波数帯域に設定し、中継局の周波数誤差(ドップラー周波数)を検出して下り制御信号の周波数同期をとってチャネル情報を推定することにより、中継局が増加した場合でも周波数利用効率の劣化を回避することができる。 According to the present invention, in a wireless communication system including a plurality of mobile relay stations, the base station dynamically sets the MIMO transmission band based on the number of receivable relay stations of the terminal station, so that a plurality of relay stations can be relayed as much as possible. It is possible to share the frequency band for spatial multiplex transmission at stations, and improvement in frequency utilization efficiency can be expected. In particular, the relay station sets the control signal of each relay station in the same frequency band, detects the frequency error (Doppler frequency) of the relay station, synchronizes the frequency of the downlink control signal, and estimates the channel information. Even if it increases, the deterioration of frequency utilization efficiency can be avoided.

本発明の無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the wireless communication system of this invention. 基地局10の構成例を示す図である。It is a figure which shows the configuration example of a base station 10. 中継局A,B,Cの構成例を示す図である。It is a figure which shows the structural example of the relay stations A, B, and C. 端末局1,2,3の構成例を示す図である。It is a figure which shows the configuration example of the terminal stations 1, 2, and 3. 下り制御信号のフレームフォーマットを示す図である。It is a figure which shows the frame format of the downlink control signal. 上り制御信号のフレームフォーマットを示す図である。It is a figure which shows the frame format of the uplink control signal. 本発明における基地局10および端末局1,2,3の処理手順例を示すフローチャートである。It is a flowchart which shows the processing procedure example of the base station 10 and the terminal stations 1, 2, 3 in this invention.

<システム構成>
図1は、本発明の無線通信システムの構成例を示す。
図1において、本無線通信システムは、1台の基地局10と、移動する複数の中継局A,B,C,…,Xと、サービスエリアの複数(ここでは3台)の端末局1,2,3により構成され、サービスエリアの複数の端末局に対してFDMA方式で多重伝送するとともに、周波数帯域ごとに等化・分離が可能な端末局にのみMIMO(空間多重)伝送を行うダウンリンク多元接続構成である。各端末局は1〜複数のアンテナを備え、ここでは簡単のため、端末局1,2,3は、それぞれアンテナを1,2,3本備えており、2本以上のアンテナを有する端末局2,3に対してMIMO伝送が可能になっている。
<System configuration>
FIG. 1 shows a configuration example of the wireless communication system of the present invention.
In FIG. 1, the wireless communication system includes one base station 10, a plurality of mobile relay stations A, B, C, ..., X, and a plurality of terminal stations 1 (here, three) in a service area. A downlink that consists of a few and performs multiplex transmission to multiple terminal stations in the service area using the FDMA method, and MIMO (spatial multiplexing) transmission only to terminal stations that can be equalized and separated for each frequency band. It is a multiple connection configuration. Each terminal station has one or more antennas, and for the sake of simplicity, terminal stations 1, 2, and 3 each have one, two, and three antennas, and the terminal station 2 has two or more antennas. MIMO transmission is possible for, and 3.

中継局からのダウンリンクの信号は、制御信号とデータ信号を異なる周波数帯域に配置し、制御信号の周波数帯域は固定かつ端末局で既知であり、データ信号の周波数帯域W1,W2,W3は動的に変更可能とする。ここで、中継局A,B,Cと、制御信号A,B,Cおよびデータ信号A,B,Cのアルファベットは1対1で対応しており、中継局Aは制御信号Aとデータ信号Aを送信することとする。 In the downlink signal from the relay station, the control signal and the data signal are arranged in different frequency bands, the frequency band of the control signal is fixed and known to the terminal station, and the frequency bands W1, W2, and W3 of the data signal are active. Can be changed. Here, the alphabets of the relay stations A, B, C, the control signals A, B, C and the data signals A, B, C have a one-to-one correspondence, and the relay station A has the control signal A and the data signal A. Will be sent.

基地局10は、中継局A〜Xの位置情報を把握しており、各中継局の位置に基づいてサービスエリア内で受信可能な中継局を識別する。ここでは、3台の中継局A,B,Cが送信する信号がサービスエリア内で受信可能とする。なお、中継局が所定の軌道を移動する人工衛星の場合には、基地局10はその軌道情報から各中継局の現在位置を把握する。地上を移動する中継局の場合には、基地局10は各中継局がGPS等を利用して取得した位置情報を地上ネットワークを介して入手する。 The base station 10 grasps the position information of the relay stations A to X, and identifies the receivable relay station in the service area based on the position of each relay station. Here, it is assumed that the signals transmitted by the three relay stations A, B, and C can be received within the service area. When the relay station is an artificial satellite that moves in a predetermined orbit, the base station 10 grasps the current position of each relay station from the orbit information. In the case of a relay station moving on the ground, the base station 10 obtains the position information acquired by each relay station using GPS or the like via the terrestrial network.

基地局10は、サービスエリア内で受信可能な中継局A,B,Cから、同一の周波数帯域に割り当てた制御信号A,B,Cを送信する。一方、サービスエリアの端末局1,2,3は、中継局A,B,Cから送信された制御信号A,B,Cのうち受信可能な制御信号を受信して同期処理を行い、それぞれ受信可能な中継局とその数を把握する。さらに、同期をとった制御信号を用いて当該中継局と端末局との間のチャネル情報を推定し、受信可能な中継局とそのチャネル情報に基づいてMIMO伝送を要求する中継局(要求中継局)の情報を任意のアップリンクを介して基地局10に通知する。 The base station 10 transmits control signals A, B, and C assigned to the same frequency band from relay stations A, B, and C that can be received in the service area. On the other hand, the terminal stations 1, 2, and 3 in the service area receive the receivable control signals among the control signals A, B, and C transmitted from the relay stations A, B, and C, perform synchronization processing, and receive each. Know the possible relay stations and their number. Further, a relay station (request relay station) that estimates channel information between the relay station and the terminal station using a synchronized control signal and requests MIMO transmission based on the receivable relay station and the channel information. ) Is notified to the base station 10 via an arbitrary uplink.

基地局10は、各端末局の要求中継局とデータ信号の周波数帯域を割り当て、その情報を制御信号を用いて各端末局に通知するとともに、対応する中継局を介してMIMO伝送を開始する。図1の例では、端末局1宛の信号は、中継局Aから周波数帯域W1で送信される。端末局2宛の信号は、中継局A,Bから周波数帯域W2でMIMO伝送される。端末局3宛の信号は、中継局A,B,Cから周波数帯域W3でMIMO伝送される。中継局A,B,Cは、基本的に基地局10から受信した信号を周波数変換および増幅などを行うことで、端末局1,2,3に受信可能な状態で中継伝送する機能のみを有する。 The base station 10 allocates a request relay station of each terminal station and a frequency band of a data signal, notifies each terminal station of the information by using a control signal, and starts MIMO transmission via the corresponding relay station. In the example of FIG. 1, the signal addressed to the terminal station 1 is transmitted from the relay station A in the frequency band W1. The signal addressed to the terminal station 2 is transmitted from the relay stations A and B in MIMO in the frequency band W2. The signal addressed to the terminal station 3 is transmitted from the relay stations A, B, and C in MIMO in the frequency band W3. The relay stations A, B, and C basically have only a function of relay-transmitting the signal received from the base station 10 to the terminal stations 1, 2, and 3 in a receivable state by performing frequency conversion and amplification. ..

なお、制御信号とデータ信号は同じベースバンド信号から生成されるため、信号間は同期しているものとする。このため、制御信号を用いた同期によってデータ信号も同期できるものとし、端末局は通知された情報に従ってデータ信号の受信、等化処理を行ってデータを復調する。さらに、制御信号のチャネル情報からMIMO信号の等化のための重み行列を算出し、空間多重された各中継局の信号を分離し、データを復調する。また、中継局が衛星のように見通し環境での通信であり、周波数選択性が小さいチャネル特性を有する場合は、制御信号による同期・チャネル情報をデータ信号の等化に反映できるものとする。このとき、各FDMA信号間のガードバンド(図中G)は、システムで想定される最大ドップラー周波数Δfmaxの2倍の値に設定することで、キャリア間干渉を回避することが可能である。 Since the control signal and the data signal are generated from the same baseband signal, it is assumed that the signals are synchronized. Therefore, the data signal can also be synchronized by the synchronization using the control signal, and the terminal station receives and equalizes the data signal according to the notified information to demodulate the data. Further, a weight matrix for equalizing MIMO signals is calculated from the channel information of the control signal, the signals of each spatially multiplexed relay station are separated, and the data is demodulated. Further, when the relay station communicates in a line-of-sight environment like a satellite and has channel characteristics with low frequency selectivity, synchronization / channel information by the control signal can be reflected in the equalization of the data signal. At this time, the guard band between the FDMA signals (G in the figure) can be set to a value twice the maximum Doppler frequency Δfmax assumed in the system to avoid inter-carrier interference.

<基地局10の構成>
図2は、基地局10の構成例を示す。
図2において、基地局10は、中継局位置算出部11、中継局周波数帯域割当部12を備え、各中継局の位置に応じて、下り制御信号の周波数割当を行う。基地局10は、さらに、下り制御信号・データ信号生成部13、上り制御信号受信部14、端末局検出部15、要求中継局検出部16、中継局選択部17を備える。
<Configuration of base station 10>
FIG. 2 shows a configuration example of the base station 10.
In FIG. 2, the base station 10 includes a relay station position calculation unit 11 and a relay station frequency band allocation unit 12, and allocates frequencies of downlink control signals according to the positions of each relay station. The base station 10 further includes a downlink control signal / data signal generation unit 13, an uplink control signal reception unit 14, a terminal station detection unit 15, a request relay station detection unit 16, and a relay station selection unit 17.

<中継局A,B,Cの構成>
図3は、中継局A,B,Cの構成例を示す。
図3において、中継局A,B,Cは、信号受信部21、周波数変換・増幅部22、信号送信部23を備える。本無線通信システムの中継局A,B,Cは、基本的に基地局10からの信号を受信し、端末局1,2,3に送信するための周波数変換および信号増幅のみ行う機能を有する。
<Configuration of relay stations A, B, C>
FIG. 3 shows a configuration example of relay stations A, B, and C.
In FIG. 3, the relay stations A, B, and C include a signal receiving unit 21, a frequency conversion / amplification unit 22, and a signal transmitting unit 23. The relay stations A, B, and C of this wireless communication system basically have a function of receiving a signal from the base station 10 and performing only frequency conversion and signal amplification for transmitting to the terminal stations 1, 2, and 3.

<端末局1,2,3の構成>
図4は、端末局1,2,3の構成例を示す。
図4において、端末局1,2,3は、下り制御信号受信部31、中継局周波数誤差検出部32、中継局周波数誤差学習部33、下り制御信号同期部34、中継局検出部35、ダウンリンクチャネル推定部36、チャネル相関算出部37、要求中継局選択部38、上り制御信号生成部39、対象端末局検出部40、受信等化行列生成部41、受信信号等化・復調部42を備える。
<Configuration of terminal stations 1, 2 and 3>
FIG. 4 shows a configuration example of terminal stations 1, 2, and 3.
In FIG. 4, the terminal stations 1, 2 and 3 include a downlink control signal receiving unit 31, a relay station frequency error detecting unit 32, a relay station frequency error learning unit 33, a downlink control signal synchronization unit 34, a relay station detecting unit 35, and a down. Link channel estimation unit 36, channel correlation calculation unit 37, request relay station selection unit 38, uplink control signal generation unit 39, target terminal station detection unit 40, reception equalization matrix generation unit 41, reception signal equalization / demodulation unit 42. Be prepared.

<下り制御信号、上り制御信号のフレームフォーマット>
図5は、下り制御信号のフレームフォーマットを示す。
図5において、下り制御信号は、同期・推定用既知信号、中継局ID、対象端末局ID、データ信号周波数帯域情報により構成される。ここでは、端末局から受信した上り制御信号に基づき、当該端末局への中継局の選定とデータ信号を送信する周波数帯域を割り当て、下り制御信号およびデータ信号の送信を行う。
<Frame format of downlink control signal and uplink control signal>
FIG. 5 shows the frame format of the downlink control signal.
In FIG. 5, the downlink control signal is composed of a known signal for synchronization / estimation, a relay station ID, a target terminal station ID, and data signal frequency band information. Here, based on the uplink control signal received from the terminal station, a relay station is selected for the terminal station, a frequency band for transmitting the data signal is allocated, and the downlink control signal and the data signal are transmitted.

図6は、上り制御信号のフレームフォーマットを示す。
図6において、上り制御信号は、同期用既知信号、端末局ID、要求中継局IDで構成される。
FIG. 6 shows the frame format of the uplink control signal.
In FIG. 6, the uplink control signal is composed of a known synchronization signal, a terminal station ID, and a request relay station ID.

<実施例>
図7は、本発明における基地局10および端末局1,2,3の処理手順例を示す。ここでは、図1に示すようにサービスエリア内の端末局1,2,3と通信可能な位置に中継局A,B,Cが存在するものとする。
<Example>
FIG. 7 shows an example of processing procedures of the base station 10 and the terminal stations 1, 2 and 3 in the present invention. Here, it is assumed that the relay stations A, B, and C exist at positions in the service area where they can communicate with the terminal stations 1, 2, and 3, as shown in FIG.

図1〜図4および図7において、基地局10の中継局位置算出部11は、例えば既知の軌道情報から算出された各中継局の位置に基づき、無線通信システムのサービスエリア内で受信可能な中継局A,B,Cを識別する(S1)。基地局10の中継局周波数帯域割当部12は、中継局A,B,Cから送信する下り制御信号A,B,Cを、図1に示すように同一の周波数帯域に割り当てる。基地局10の下り制御信号・データ信号生成部13は、各中継局固有の下り制御信号A,B,Cを生成し、中継局A,B,Cを介して同一の周波数帯域でサービスエリアに送信する(S2)。 In FIGS. 1 to 4 and 7, the relay station position calculation unit 11 of the base station 10 can receive in the service area of the wireless communication system based on, for example, the position of each relay station calculated from known orbit information. The relay stations A, B, and C are identified (S1). The relay station frequency band allocation unit 12 of the base station 10 allocates the downlink control signals A, B, and C transmitted from the relay stations A, B, and C to the same frequency band as shown in FIG. The downlink control signal / data signal generation unit 13 of the base station 10 generates downlink control signals A, B, and C unique to each relay station, and enters the service area in the same frequency band via the relay stations A, B, and C. Send (S2).

当該サービスエリアの端末局1,2,3は、それぞれ下り制御信号受信部31にて中継局A,B,Cから送信された同一の周波数帯域の下り制御信号A,B,Cのうち受信可能な下り制御信号を受信する(S3)。ここで、下り制御信号A,B,Cには、それぞれ異なる周波数誤差(ドップラー周波数)が発生している。 The terminal stations 1, 2 and 3 in the service area can receive the downlink control signals A, B and C of the same frequency band transmitted from the relay stations A, B and C by the downlink control signal receiving unit 31, respectively. Receives a downlink control signal (S3). Here, different frequency errors (Doppler frequencies) are generated in the downlink control signals A, B, and C.

中継局周波数誤差検出部32は、各中継局の下り制御信号が重畳した信号の受信波形情報と、事前に取得した送信信号情報と送信信号以外の情報を入力とし、中継局周波数誤差学習部33で機械学習した結果に基づいて各中継局の下り制御信号の周波数誤差(ドップラー周波数)を検出する(S4)。ここで、送信信号情報とは、例えば、送信信号の中心周波数、QPSKやQAMといったデジタル信号の一次変調方式、シングルキャリア変調はOFDM変調といった二次変調方式である。送信信号以外の情報とは、例えば、端末局の位置情報や方位角情報、速度情報、中継局の位置情報などである。なお、各中継局の下り制御信号が同じ周波数帯域に重畳されていても、中継局が衛星のようなチャネルモデルや通信状況が地上に比べてシンプルな環境では、ある程度受信パターンが制限されてくるため、例えば入力層、隠れ層、出力層で構成される階層型ニューラルネットワークを用いた機械学習によるブラインド推定でも、各中継局の下り制御信号の周波数誤差(ドップラー周波数)を検出することができる。 The relay station frequency error detection unit 32 inputs the reception waveform information of the signal on which the downlink control signal of each relay station is superimposed, the transmission signal information acquired in advance, and the information other than the transmission signal, and the relay station frequency error learning unit 33. The frequency error (Doppler frequency) of the downlink control signal of each relay station is detected based on the result of machine learning in (S4). Here, the transmission signal information is, for example, the center frequency of the transmission signal, the primary modulation method of a digital signal such as QPSK or QAM, and the single carrier modulation is a secondary modulation method such as OFDM modulation. The information other than the transmission signal is, for example, the position information of the terminal station, the azimuth angle information, the speed information, the position information of the relay station, and the like. Even if the downlink control signals of each relay station are superimposed on the same frequency band, the reception pattern is limited to some extent in an environment where the relay station has a channel model such as a satellite and the communication status is simpler than that on the ground. Therefore, for example, even in blind estimation by machine learning using a hierarchical neural network composed of an input layer, a hidden layer, and an output layer, the frequency error (Doppler frequency) of the downlink control signal of each relay station can be detected.

下り制御信号同期部34は、検出した周波数誤差情報に基づいて、受信した中継局の下り制御信号の周波数同期を行う(S5)。例えば、図1の場合は、端末局1では中継局Aの下り制御信号Aの周波数誤差ΔfA を推定して周波数同期をとり、端末局2では中継局A,Bの下り制御信号A,Bの周波数誤差ΔfA ,ΔfB を推定して周波数同期をとり、端末局3では中継局A,B,Cの下り制御信号A,B,Cの周波数誤差ΔfA ,ΔfB ,ΔfC を推定して周波数同期をとる。 The downlink control signal synchronization unit 34 performs frequency synchronization of the downlink control signal of the received relay station based on the detected frequency error information (S5). For example, in the case of FIG. 1, the terminal station 1 estimates the frequency error Δf A of the downlink control signal A of the relay station A and synchronizes the frequency, and the terminal station 2 synchronizes the downlink control signals A and B of the relay stations A and B. taking frequency synchronization frequency error Delta] f a, a Delta] f B estimates of the terminal station 3, the relay station a, B, C of the downlink control signals a, B, frequency error Delta] f a of C, Delta] f B, estimated Delta] f C And frequency synchronization.

端末局1,2,3の中継局検出部35は、受信および同期処理ができた下り制御信号の中継局IDに基づいて中継局を検出し、ダウンリンクチャネル推定部36で下り制御信号の既知信号を用いて、検出した各中継局と端末局との間のダウンリンクのチャネル情報を推定する(S6)。チャネル相関算出部37は、各中継局のチャネル情報から相関を計算し、要求中継局選択部38にてチャネル相関が低くMIMO伝送を要求する中継局を選択する(S7)。例えば、中継局A,B,Cと端末局3の3アンテナ間のチャネル情報で生成される3×3のチャネル行列をHとすると、行列式 det|H|が大きいほどチャネル相関が低くなり、伝送容量が大きくなる傾向があるため、端末局3でチャネル情報を推定して生成される行列H’の行列式 det|H’|の値に基づいてMIMO伝送の有無を設定してもよい。 The relay station detection unit 35 of the terminal stations 1, 2 and 3 detects the relay station based on the relay station ID of the downlink control signal that has been received and synchronized, and the downlink channel estimation unit 36 knows the downlink control signal. Using the signal, the downlink channel information between each detected relay station and terminal station is estimated (S6). The channel correlation calculation unit 37 calculates the correlation from the channel information of each relay station, and the request relay station selection unit 38 selects a relay station that has a low channel correlation and requires MIMO transmission (S7). For example, assuming that the 3 × 3 channel matrix generated by the channel information between the three antennas of the relay stations A, B, C and the terminal station 3 is H, the larger the determinant det | H |, the lower the channel correlation. Since the transmission capacity tends to be large, the presence or absence of MIMO transmission may be set based on the value of the determinant det | H'| of the matrix H'generated by estimating the channel information at the terminal station 3.

また、必ずしも受信可能な中継局の全てを選択する必要はない。例えば、図1の端末局2において中継局A,B,Cから送信された下り制御信号A,B,Cが受信可能であるが、中継局BとCの相関が高くなる場合は、中継局AとB(図1の例)、または中継局AとCの組み合わせを選択してMIMO伝送を要求することも可能である。また、端末局1,2は所有するアンテナ数が中継局数を下回っているため、端末局のアンテナ数以下の中継局の選択は必須となる。 Also, it is not always necessary to select all receivable relay stations. For example, if the terminal station 2 in FIG. 1 can receive the downlink control signals A, B, and C transmitted from the relay stations A, B, and C, but the correlation between the relay stations B and C is high, the relay station It is also possible to request MIMO transmission by selecting A and B (example of FIG. 1) or a combination of relay stations A and C. Further, since the number of antennas owned by the terminal stations 1 and 2 is less than the number of relay stations, it is essential to select a relay station having a number of antennas or less of the terminal station.

端末局1,2,3の上り制御信号生成部39は、要求する中継局情報を上り制御信号の要求中継局IDに付与して基地局10に通知する(S8)。この時の通知方法は任意の方法でよく、任意の当該中継局を経由しても、別の送信手段を経由してもよい。 The uplink control signal generation unit 39 of the terminal stations 1, 2 and 3 adds the requested relay station information to the request relay station ID of the uplink control signal and notifies the base station 10 (S8). The notification method at this time may be any method, and may be via an arbitrary relay station or another transmission means.

基地局10の上り制御信号受信部14は、各端末局1,2,3からの上り制御信号を受信し、端末局検出部15で端末局IDを検出し、要求中継局検出部16で当該端末局がMIMO伝送を要求している要求中継局を検出する(S9)。中継局選択部17は、各端末局1,2,3から収集した要求中継局に基づき、各端末局1,2,3宛のデータ信号を送信する中継局と周波数帯域を割り当てる(S10)。 The uplink control signal receiving unit 14 of the base station 10 receives the uplink control signals from the terminal stations 1, 2 and 3, the terminal station detection unit 15 detects the terminal station ID, and the request relay station detection unit 16 determines the uplink control signal. The terminal station detects a request relay station requesting MIMO transmission (S9). The relay station selection unit 17 allocates a relay station and a frequency band for transmitting a data signal addressed to each terminal station 1, 2, 3 based on the request relay station collected from each terminal station 1, 2, 3 (S10).

基地局10の下り制御信号・データ信号生成部13は、中継局選択部17で選択した中継局A,B,Cの周波数帯域で送信する端末局1,2,3宛のデータ信号を生成し、さらに端末局1,2,3宛のデータ信号と周波数帯域の対応を示す下り制御信号を生成し、それぞれ対応する中継局を介して各端末局1,2,3に送信する(S11)。 The downlink control signal / data signal generation unit 13 of the base station 10 generates data signals addressed to the terminal stations 1, 2 and 3 to be transmitted in the frequency bands of the relay stations A, B and C selected by the relay station selection unit 17. Further, a downlink control signal indicating the correspondence between the data signal addressed to the terminal stations 1, 2 and 3 and the frequency band is generated and transmitted to the terminal stations 1, 2 and 3 via the corresponding relay stations (S11).

図1の例では、端末局1宛のデータ信号は、中継局Aから送信するデータ信号Aを周波数帯域W1に割り当てる。端末局2宛のデータ信号は、中継局A,Bから送信するデータ信号A,Bを周波数帯域W2に多重し、MIMO送信する。端末局3宛のデータ信号は、中継局A,B,Cから送信するデータ信号A,B,Cを周波数帯域W3に多重し、MIMO伝送する。 In the example of FIG. 1, the data signal addressed to the terminal station 1 allocates the data signal A transmitted from the relay station A to the frequency band W1. For the data signal addressed to the terminal station 2, the data signals A and B transmitted from the relay stations A and B are multiplexed in the frequency band W2 and transmitted in MIMO. For the data signal addressed to the terminal station 3, the data signals A, B, and C transmitted from the relay stations A, B, and C are multiplexed in the frequency band W3 and transmitted by MIMO.

端末局1,2,3の対象端末局検出部40は、下り制御信号A,B,Cから自局向けの下り制御信号を検出し、受信等化行列生成部41でダウンリンクチャネル推定部36が推定したチャネル情報を用いて受信重み行列を生成し、受信信号等化・復調部42でその受信重み行列を用いて自局宛のデータ信号の受信等化を行い、復調する(S12)。 The target terminal station detection unit 40 of the terminal stations 1, 2, and 3 detects the downlink control signal for its own station from the downlink control signals A, B, and C, and the reception equalization matrix generation unit 41 detects the downlink channel estimation unit 36. Generates a reception weight matrix using the channel information estimated by, and the reception signal equalization / demodulation unit 42 uses the reception weight matrix to perform reception equalization of a data signal addressed to its own station and demodulate it (S12).

さらに、端末局1,2,3は、ステップS3と同様に、逐次基地局10の下り制御信号をモニタリングし、中継局や端末局の移動などに伴って受信可能な要求中継局を変更する場合は、ステップS6に戻って再度要求を行う(S13)。 Further, the terminal stations 1, 2, and 3 sequentially monitor the downlink control signal of the base station 10 and change the receivable request relay station as the relay station or the terminal station moves, as in step S3. Returns to step S6 and makes a request again (S13).

なお、サービスエリア内の端末局は、下り制御信号の中心周波数を既知とするが、当該下り制御信号を送信する中継局は、図5に記載の下り制御信号の中継局IDを受信することで把握する。 The terminal station in the service area knows the center frequency of the downlink control signal, but the relay station that transmits the downlink control signal receives the relay station ID of the downlink control signal shown in FIG. Grasp.

1,2,3 端末局
10 基地局
A,B,C 中継局
11 中継局位置算出部
12 中継局周波数帯域割当部
13 下り制御信号・データ信号生成部
14 上り制御信号受信部
15 端末局検出部
16 要求中継局検出部
17 中継局選択部
21 信号受信部
22 周波数変換・増幅部
23 信号送信部
31 下り制御信号受信部
32 中継局周波数誤差検出部
33 中継局周波数誤差学習部
34 下り制御信号同期部
35 中継局検出部
36 ダウンリンクチャネル推定部
37 チャネル相関算出部
38 要求中継局選択部
39 上り制御信号生成部
40 対象端末局検出部
41 受信等化行列生成部
42 受信信号等化・復調部
1, 2, 3 Terminal stations 10 Base stations A, B, C Relay stations 11 Relay station position calculation unit 12 Relay station frequency band allocation unit 13 Downstream control signal / data signal generation unit 14 Upstream control signal reception unit 15 Terminal station detection unit 16 Request relay station detection unit 17 Relay station selection unit 21 Signal reception unit 22 Frequency conversion / amplification unit 23 Signal transmission unit 31 Downstream control signal reception unit 32 Relay station frequency error detection unit 33 Relay station frequency error learning unit 34 Downstream control signal synchronization Part 35 Relay station detection unit 36 Downlink channel estimation unit 37 Channel correlation calculation unit 38 Request relay station selection unit 39 Uplink control signal generation unit 40 Target terminal station detection unit 41 Reception equalization matrix generation unit 42 Reception signal equalization / demodulation unit

Claims (5)

1台の基地局と、移動する複数の中継局と、サービスエリア内の複数の端末局とを備え、
前記基地局は、前記複数の中継局の位置に基づき、各中継局が送信する信号を前記サービスエリアで受信可能な中継局を識別し、該中継局を介して各端末局に対してそれぞれ異なる周波数帯域でデータ信号を周波数多重伝送するとともに、空間多重伝送に対応する端末局に対して特定の周波数帯域と複数の中継局を介してデータ信号を空間多重伝送するダウンリンク多元接続手段を備え、
基地局から複数の中継局を介して各端末局に対してダウンリンク多元接続を行う無線通信システムにおいて、
前記基地局のダウンリンク多元接続手段は、前記サービスエリアで受信可能な複数の中継局から同一の周波数帯域で中継局IDを含む下り制御信号を送信する手段を含み、
前記端末局は、前記同一の周波数帯域に重畳した前記下り制御信号を受信し、その受信波形情報と事前に取得した送信信号情報および周辺情報を入力して機械学習した結果に基づいて前記下り制御信号の周波数誤差を検出し、その周波数誤差に基づいて前記下り制御信号の周波数同期をとり、さらに周波数同期をとった下り制御信号から中継局と端末局との間のチャネル情報を推定し、該チャネル情報に基づいて受信可能な1以上の中継局を選択して前記基地局に通知するダウンリンク多元接続手段を備え、
前記基地局のダウンリンク多元接続手段は、前記端末局で選択された中継局を介して当該端末局宛のデータ信号を空間多重伝送する前記特定の周波数帯域を割り当て、その情報を前記下り制御信号により前記端末局に通知するとともに、当該端末局宛のデータ信号を空間多重伝送する手段を含む
ことを特徴とする無線通信システム。
It is equipped with one base station, a plurality of moving relay stations, and a plurality of terminal stations in the service area.
The base station identifies a relay station that can receive a signal transmitted by each relay station in the service area based on the positions of the plurality of relay stations, and is different for each terminal station via the relay station. In addition to frequency-multiplexing data signals in the frequency band, it is equipped with a downlink multi-dimensional connection means that spatially multiplex-transmits data signals via a specific frequency band and multiple relay stations to a terminal station that supports spatial multiplex transmission.
In a wireless communication system that performs downlink multiple access from a base station to each terminal station via multiple relay stations.
The downlink multiple access means of the base station includes means for transmitting a downlink control signal including a relay station ID in the same frequency band from a plurality of relay stations that can be received in the service area.
The terminal station receives the downlink control signal superimposed on the same frequency band, inputs the received waveform information, the transmission signal information acquired in advance, and peripheral information, and performs machine learning based on the result of the downlink control. The frequency error of the signal is detected, the frequency synchronization of the downlink control signal is performed based on the frequency error, and the channel information between the relay station and the terminal station is estimated from the frequency-synchronized downlink control signal. A downlink multi-dimensional connection means for selecting one or more receivable relay stations based on channel information and notifying the base station is provided.
The downlink multiplex connection means of the base station allocates the specific frequency band for spatially multiplexing the data signal addressed to the terminal station via the relay station selected by the terminal station, and transfers the information to the downlink control signal. A wireless communication system including a means for spatially multiplexing a data signal addressed to the terminal station while notifying the terminal station.
請求項1に記載の無線通信システムにおいて、
前記端末局宛の下り制御信号とデータ信号は同じベースバンド信号から生成して同期しており、
前記端末局のダウンリンク多元接続手段は、前記下り制御信号から推定したチャネル情報を用いて前記空間多重伝送されたデータ信号の分離および復調を行う手段を含む
ことを特徴とする無線通信システム。
In the wireless communication system according to claim 1,
The downlink control signal and the data signal addressed to the terminal station are generated from the same baseband signal and synchronized with each other.
A wireless communication system characterized in that the downlink multiple access means of the terminal station includes means for separating and demodulating the spatially multiplexed data signal using channel information estimated from the downlink control signal.
1台の基地局と、移動する複数の中継局と、サービスエリア内の複数の端末局とを備え、
前記基地局は、前記複数の中継局の位置に基づき、各中継局が送信する信号を前記サービスエリアで受信可能な中継局を識別し、該中継局を介して各端末局に対してそれぞれ異なる周波数帯域でデータ信号を周波数多重伝送するとともに、空間多重伝送に対応する端末局に対して特定の周波数帯域と複数の中継局を介してデータ信号を空間多重伝送するダウンリンク多元接続手段を備え、
基地局から複数の中継局を介して各端末局に対してダウンリンク多元接続を行う無線通信方法において、
前記基地局のダウンリンク多元接続手段は、前記サービスエリアで受信可能な複数の中継局から同一の周波数帯域で中継局IDを含む下り制御信号を送信する処理を行い、
前記端末局のダウンリンク多元接続手段は、前記同一の周波数帯域に重畳した前記下り制御信号を受信し、その受信波形情報と事前に取得した送信信号情報および周辺情報を入力して機械学習した結果に基づいて前記下り制御信号の周波数誤差を検出し、その周波数誤差に基づいて前記下り制御信号の周波数同期をとり、さらに周波数同期をとった下り制御信号から中継局と端末局との間のチャネル情報を推定し、該チャネル情報に基づいて受信可能な1以上の中継局を選択して前記基地局に通知する処理を行い、
前記基地局のダウンリンク多元接続手段は、前記端末局で選択された中継局を介して当該端末局宛のデータ信号を空間多重伝送する前記特定の周波数帯域を割り当て、その情報を前記下り制御信号により前記端末局に通知するとともに、当該端末局宛のデータ信号を空間多重伝送する処理を行う
ことを特徴とする無線通信方法。
It is equipped with one base station, a plurality of moving relay stations, and a plurality of terminal stations in the service area.
The base station identifies a relay station that can receive a signal transmitted by each relay station in the service area based on the positions of the plurality of relay stations, and is different for each terminal station via the relay station. In addition to frequency-multiplexing data signals in the frequency band, it is equipped with a downlink multi-dimensional connection means that spatially multiplex-transmits data signals via a specific frequency band and multiple relay stations to a terminal station that supports spatial multiplex transmission.
In a wireless communication method in which a downlink multiple access is performed from a base station to each terminal station via a plurality of relay stations.
The downlink multiple access means of the base station performs a process of transmitting a downlink control signal including a relay station ID in the same frequency band from a plurality of relay stations that can be received in the service area.
The downlink multi-dimensional connection means of the terminal station receives the downlink control signal superimposed on the same frequency band, inputs the received waveform information, the transmission signal information acquired in advance, and peripheral information, and performs machine learning. The frequency error of the downlink control signal is detected based on the above, the frequency synchronization of the downlink control signal is performed based on the frequency error, and the channel between the relay station and the terminal station from the frequency-synchronized downlink control signal. A process of estimating information, selecting one or more receivable relay stations based on the channel information, and notifying the base station is performed.
The downlink multiplex connection means of the base station allocates the specific frequency band for spatially multiplexing the data signal addressed to the terminal station via the relay station selected by the terminal station, and transfers the information to the downlink control signal. A wireless communication method characterized by notifying the terminal station of the above-mentioned system and performing a process of spatially multiplexing the data signal addressed to the terminal station.
請求項3に記載の無線通信方法において、
前記端末局宛の下り制御信号とデータ信号は同じベースバンド信号から生成して同期しており、
前記端末局のダウンリンク多元接続手段は、前記下り制御信号から推定したチャネル情報を用いて前記空間多重伝送されたデータ信号の分離および復調を行う
ことを特徴とする無線通信方法。
In the wireless communication method according to claim 3,
The downlink control signal and the data signal addressed to the terminal station are generated from the same baseband signal and synchronized with each other.
A wireless communication method characterized in that the downlink multiple access means of the terminal station separates and demodulates the spatially multiplexed data signal using channel information estimated from the downlink control signal.
1台の基地局と、移動する複数の中継局と、サービスエリア内の複数の端末局とを備え、
前記基地局は、前記複数の中継局の位置に基づき、各中継局が送信する信号を前記サービスエリアで受信可能な中継局を識別し、該中継局を介して各端末局に対してそれぞれ異なる周波数帯域でデータ信号を周波数多重伝送するとともに、空間多重伝送に対応する端末局に対して特定の周波数帯域と複数の中継局を介してデータ信号を空間多重伝送するダウンリンク多元接続手段を備え、
基地局から複数の中継局を介して各端末局に対してダウンリンク多元接続を行う無線通信システムの端末局装置において、
前記基地局から前記複数の中継局を介して同一の周波数帯域に重畳して送信された下り制御信号を受信し、その受信波形情報と事前に取得した送信信号情報および周辺情報を入力して機械学習した結果に基づいて該下り制御信号の周波数誤差を検出する周波数誤差検出手段と、
前記周波数誤差に基づいて前記下り制御信号の周波数同期をとり、さらに周波数同期をとった下り制御信号から中継局と端末局との間のチャネル情報を推定し、該チャネル情報に基づいて受信可能な1以上の中継局を選択して前記基地局に通知する中継局選択手段と を備えたことを特徴とする端末局装置。
It is equipped with one base station, a plurality of moving relay stations, and a plurality of terminal stations in the service area.
The base station identifies a relay station that can receive a signal transmitted by each relay station in the service area based on the positions of the plurality of relay stations, and is different for each terminal station via the relay station. In addition to frequency-multiplexing data signals in the frequency band, it is equipped with a downlink multi-dimensional connection means that spatially multiplex-transmits data signals via a specific frequency band and multiple relay stations to a terminal station that supports spatial multiplex transmission.
In a terminal station device of a wireless communication system that performs downlink multiple access from a base station to each terminal station via a plurality of relay stations.
A machine that receives downlink control signals transmitted from the base station via the plurality of relay stations superimposed on the same frequency band, and inputs the received waveform information, transmission signal information acquired in advance, and peripheral information. A frequency error detecting means for detecting the frequency error of the downlink control signal based on the learned result, and
The frequency synchronization of the downlink control signal is performed based on the frequency error, the channel information between the relay station and the terminal station is estimated from the frequency-synchronized downlink control signal, and reception is possible based on the channel information. A terminal station apparatus including a relay station selection means for selecting one or more relay stations and notifying the base station.
JP2019031716A 2019-02-25 2019-02-25 Wireless communication system, wireless communication method and terminal station equipment Active JP7011265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019031716A JP7011265B2 (en) 2019-02-25 2019-02-25 Wireless communication system, wireless communication method and terminal station equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031716A JP7011265B2 (en) 2019-02-25 2019-02-25 Wireless communication system, wireless communication method and terminal station equipment

Publications (2)

Publication Number Publication Date
JP2020137054A true JP2020137054A (en) 2020-08-31
JP7011265B2 JP7011265B2 (en) 2022-01-26

Family

ID=72263838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031716A Active JP7011265B2 (en) 2019-02-25 2019-02-25 Wireless communication system, wireless communication method and terminal station equipment

Country Status (1)

Country Link
JP (1) JP7011265B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030124976A1 (en) * 2001-12-28 2003-07-03 Tsuyoshi Tamaki Multi point wireless transmission repeater system and wireless equipments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030124976A1 (en) * 2001-12-28 2003-07-03 Tsuyoshi Tamaki Multi point wireless transmission repeater system and wireless equipments
JP2003198442A (en) * 2001-12-28 2003-07-11 Hitachi Ltd Radio transmission system for performing multi-spot relay and radio equipment to be used therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAISUKE GOTO ET AL.: "LEO-MIMO Satellite Systems for High Capacity Transmission", 2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE(GLOBECOM), JPN6021051397, 13 December 2018 (2018-12-13), ISSN: 0004672664 *

Also Published As

Publication number Publication date
JP7011265B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP7107022B2 (en) Wireless communication system, wireless communication method and base station device
US11233560B2 (en) Terrestrial based air-to-ground communications system and related methods
AU2016347539B2 (en) Mobile satellite communication system
CA2125571C (en) Spatial division multiple access wireless communication systems
CN103004269B (en) Inter-Cell Interference Coordination is used to carry out the method and system of subscriber equipment location
Kodheli et al. Resource allocation approach for differential doppler reduction in NB-IoT over LEO satellite
EP2282574B1 (en) Arrangement and method for estimating network traffic based on angle of arrival determination in a cellular network
WO1993012590A9 (en) Spatial division multiple access wireless communication systems
CN113228533B (en) Communication network and method for connecting
TW201521502A (en) A large scale antenna system with overlaying small cells
CA3127655C (en) Systems and methods of adaptive beamforming for mobile satellite systems based on user locations and co-channel waveforms
CN113228534A (en) Communication network and method for maintaining connection
CN113261214A (en) Communication network and wireless communication method
EP2862289B1 (en) System and method of wireless fixed access using a multiple antenna array
US7328034B2 (en) Method for synchronizing a radio communication system divided into radio cells, a base station and mobile station in such a system
JP7011265B2 (en) Wireless communication system, wireless communication method and terminal station equipment
JP4567680B2 (en) Synchronizing method of wireless communication system divided into a plurality of wireless cells
JP7410509B2 (en) Receiving station, wireless communication system, and wireless communication method
JP2023001699A (en) Reception station, radio communication system, and radio communication method
JP4538485B2 (en) Wireless communication apparatus, wireless communication system, and wireless communication method
US20240137920A1 (en) Systems and methods for a wireless broadband access system
Mody et al. CLAIRE: Enabling Heterogeneous Communication Network Optimization for Robust and Resilient Operations
JP7311021B2 (en) Receiving method, wireless communication method, receiving station, wireless communication system, and receiving program
EP4362405A1 (en) Ship-centric direct communication system and operation method thereof
JP6595413B2 (en) Base station apparatus and transmission / reception method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7011265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150