JP2020134559A - Observation device, observation method and program - Google Patents

Observation device, observation method and program Download PDF

Info

Publication number
JP2020134559A
JP2020134559A JP2019023580A JP2019023580A JP2020134559A JP 2020134559 A JP2020134559 A JP 2020134559A JP 2019023580 A JP2019023580 A JP 2019023580A JP 2019023580 A JP2019023580 A JP 2019023580A JP 2020134559 A JP2020134559 A JP 2020134559A
Authority
JP
Japan
Prior art keywords
light
subject
light receiving
observation
observation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019023580A
Other languages
Japanese (ja)
Other versions
JP7261033B2 (en
Inventor
亮 張
Liang Zhang
亮 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2019023580A priority Critical patent/JP7261033B2/en
Publication of JP2020134559A publication Critical patent/JP2020134559A/en
Application granted granted Critical
Publication of JP7261033B2 publication Critical patent/JP7261033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Activated Sludge Processes (AREA)

Abstract

To provide an observation device capable of reliably observing a subject in a consecutive manner or at a fixed time interval.SOLUTION: An observation device 20 for observing a subject such as microorganism contained in a collected water comprises a light source 23 for irradiating the microorganism with light, and an imaging element 21 having a light receiving part 21a which receives light with which the microorganism is irradiated and converting the received light into an image signal. The light receiving part 21a of the imaging element 21 is protected by protective glass 22.SELECTED DRAWING: Figure 2

Description

本発明は微生物等の被写体を観察する観察装置、観察方法、及びプログラムに関する。 The present invention relates to an observation device, an observation method, and a program for observing a subject such as a microorganism.

従来より、下水等の排水を、有機物を酸化分解する微生物を含む活性汚泥によって処理する排水処理装置が知られている(例えば、特許文献1参照。)。特許文献1記載の排水処理装置は生物処理槽及び最終沈澱池を備える。生物処理槽では、活性汚泥によって生物処理が実行され、処理対象の排水に含まれる有機物等が除去される。次いで、生物処理が実行された後の排水(以下、「処理済水」という。)は最終沈澱池に移送される。最終沈澱池では、処理済水に含まれる活性汚泥が処理済水から沈降分離される。続いて、活性汚泥が沈降分離された処理済水(以下、「汚泥除去水」という。)は消毒されて河川等に放流されるとともに、処理済水から沈降分離された活性汚泥は生物処理槽に返送される。 Conventionally, a wastewater treatment device for treating wastewater such as sewage with activated sludge containing microorganisms that oxidatively decompose organic substances has been known (see, for example, Patent Document 1). The wastewater treatment apparatus described in Patent Document 1 includes a biological treatment tank and a final sedimentation pond. In the biological treatment tank, biological treatment is carried out by activated sludge, and organic substances and the like contained in the wastewater to be treated are removed. The wastewater after the biological treatment has been carried out (hereinafter referred to as "treated water") is then transferred to the final sedimentation pond. In the final sedimentation pond, activated sludge contained in the treated water is settled and separated from the treated water. Subsequently, the treated water in which the activated sludge is settled and separated (hereinafter referred to as "sludge removal water") is disinfected and discharged into a river or the like, and the activated sludge settled and separated from the treated water is discharged into a biological treatment tank. Will be returned to.

ところで、生物処理槽で実行される生物処理に関する運転方法を間違えると、活性汚泥に含まれる微生物の種類や分布を示す菌叢が変化し、排水処理が円滑に実行されない場合がある。具体的に、生物処理槽の運転方法を間違えると、糸状に増殖する糸状性微生物が活性汚泥に繁殖し、その結果、活性汚泥は沈降性の悪いバルキング汚泥に変化するときがある。 By the way, if the operation method regarding the biological treatment executed in the biological treatment tank is mistaken, the bacterial flora indicating the type and distribution of the microorganisms contained in the activated sludge may change, and the wastewater treatment may not be smoothly executed. Specifically, if the operation method of the biological treatment tank is mistaken, filamentous microorganisms that proliferate in the form of filaments may propagate in the activated sludge, and as a result, the activated sludge may be transformed into bulking sludge having poor sedimentation property.

活性汚泥がバルキング汚泥に変化すると、バルキング汚泥は最終沈澱池で沈降し難いため、処理済水からバルキング汚泥が沈降分離されないバルキング現象が発生し、汚泥除去水が適切に得られない。したがって、バルキング現象が発生したとき、適切な措置を施す必要があるが、バルキング現象の原因は多岐に亘るとともに、活性汚泥を構成する微生物も多種多様であるため、バルキング現象に対する措置は複数存在し、複数存在する措置の中から適切な措置を選択することは容易でない。また、バルキング現象が発生したとき、その菌叢をバルキング現象が発生する前の正常な菌叢に戻す必要があるが、菌叢の正常化には長い時間がかかるため、排水処理の機能は長期間停止する。 When the activated sludge is changed to bulking sludge, the bulking sludge is difficult to settle in the final sedimentation pond, so that a bulking phenomenon occurs in which the bulking sludge is not settled and separated from the treated water, and the sludge removal water cannot be properly obtained. Therefore, when the bulking phenomenon occurs, it is necessary to take appropriate measures. However, since the causes of the bulking phenomenon are diverse and the microorganisms that make up activated sludge are also diverse, there are multiple measures for the bulking phenomenon. , It is not easy to select an appropriate measure from multiple measures. In addition, when the bulking phenomenon occurs, it is necessary to return the flora to the normal flora before the bulking phenomenon occurred, but it takes a long time to normalize the flora, so the wastewater treatment function is long. Stop for a period.

これに対応して、活性汚泥に含まれる微生物の各々の変化を連続的又は一定の時間毎に観察すれば、バルキング現象に対する適切な措置を選択するのに役立ち、また、活性汚泥中の微生物の菌叢変化が初期段階で認識されるので、生物処理槽の運転条件の調整によってバルキング現象が短期間で解消するのに役立つと期待される。 Correspondingly, observing each change of microorganisms contained in activated sludge continuously or at regular time intervals helps to select appropriate measures against the bulking phenomenon, and also helps to select appropriate measures for the microbial phenomenon. Since changes in the bacterial flora are recognized at an early stage, it is expected that adjustment of the operating conditions of the biological treatment tank will help to eliminate the bulking phenomenon in a short period of time.

特開2006−247493号公報Japanese Unexamined Patent Publication No. 2006-247943

しかしながら、現在、微生物は顕微鏡によって観察され、その微生物の観察は高い専門性を必要とするため、排水処理装置が設置されている全ての排水処理場の微生物を顕微鏡で観察することは人材を確保する観点から困難である。したがって、微生物等の被写体を連続的又は一定の時間毎に確実に観察することは事実上行われていないという実情がある。 However, at present, microorganisms are observed with a microscope, and observation of the microorganisms requires a high degree of specialization. Therefore, observing microorganisms at all wastewater treatment plants where wastewater treatment equipment is installed with a microscope secures human resources. It is difficult from the viewpoint of Therefore, there is a fact that it is practically not possible to reliably observe a subject such as a microorganism continuously or at regular intervals.

本発明の目的は、被写体を連続的又は一定の時間毎に確実に観察することができる観察装置、観察方法、及びプログラムを提供することにある。 An object of the present invention is to provide an observation device, an observation method, and a program capable of reliably observing a subject continuously or at regular time intervals.

上記目的を達成するために、本発明の観察装置は、被写体を観察する観察装置において、前記被写体に光を照射する照射手段と、前記被写体に近接するとともに、前記照射された光のうち前記被写体を通過した光を受光する受光部を有し、前記受光部によって受光された光を画像信号に変換する変換手段とを備え、前記変換手段は前記受光部を保護する保護手段を有することを特徴とする。 In order to achieve the above object, the observation device of the present invention is an observation device for observing a subject, in which the irradiation means for irradiating the subject with light and the subject in close proximity to the subject and the irradiated light. It is characterized by having a light receiving unit that receives light that has passed through the light receiving unit, a conversion means that converts the light received by the light receiving unit into an image signal, and the conversion means having a protective means that protects the light receiving unit. And.

本発明によれば、被写体を連続的又は一定の時間毎に確実に観察することができる。 According to the present invention, the subject can be reliably observed continuously or at regular time intervals.

本発明の実施の形態に係る観察装置によって観察される排水を処理するための排水処理装置を概略的に示すブロック図である。It is a block diagram which shows schematic the wastewater treatment apparatus for treating wastewater observed by the observation apparatus which concerns on embodiment of this invention. 図1における生物反応槽に含まれる活性汚泥を観察する観察装置を説明するために用いられる図である。It is a figure used for demonstrating the observation apparatus which observes activated sludge contained in a biological reaction tank in FIG. 図2の観察装置によって実行される活性汚泥の観察処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the observation processing of activated sludge executed by the observation apparatus of FIG. 図2の観察装置によって観察される微生物を含む画像示す写真である。It is a photograph showing an image containing microorganisms observed by the observation device of FIG. 図2の観察装置に接続される情報処理装置の構成を概略的に示すブロック図である。It is a block diagram which shows schematic structure of the information processing apparatus connected to the observation apparatus of FIG.

以下、本発明の実施の形態について図面を参照しながら詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態に係る観察装置20によって観察される排水を処理するための排水処理装置10を概略的に示すブロック図である。 FIG. 1 is a block diagram schematically showing a wastewater treatment device 10 for treating wastewater observed by the observation device 20 according to the embodiment of the present invention.

図1の排水処理装置10は、沈砂池11、最初沈殿池12、生物反応槽13、最終沈澱池14、及び滅菌槽15を備える。処理される排水は、まず、沈砂池11に流入し、排水中に含まれる石や木片等の比較的大きな異物が排水から除去され、比較的大きな異物が除去された排水は最初沈殿池12に流入する。最初沈殿池12では、沈砂池11で除去されなかった比較的小さな異物(以下、「初沈汚泥」という。)が除去され、初沈汚泥が除去された排水は生物反応槽13に流入する。生物反応槽13では排水中の有機物等が活性汚泥に含まれる微生物によって除去され、有機物等が除去された排水は最終沈澱池14に流入する。 The wastewater treatment device 10 of FIG. 1 includes a sand basin 11, a first settling basin 12, a biological reaction tank 13, a final settling basin 14, and a sterilization tank 15. The wastewater to be treated first flows into the sand basin 11, and relatively large foreign substances such as stones and wood fragments contained in the drainage are removed from the drainage, and the wastewater from which the relatively large foreign substances are removed is first sent to the sedimentation basin 12. Inflow. In the first settling basin 12, relatively small foreign substances (hereinafter, referred to as “primary sludge”) that were not removed in the sand basin 11 are removed, and the wastewater from which the initial sludge has been removed flows into the biological reaction tank 13. In the biological reaction tank 13, organic matter and the like in the wastewater are removed by microorganisms contained in the activated sludge, and the wastewater from which the organic matter and the like have been removed flows into the final sedimentation pond 14.

なお、生物反応槽13はポンプPを備え、活性汚泥が分散されている排水がポンプPによって生物反応槽13から採水される。最終沈澱池14では、活性汚泥が除去され、活性汚泥が除去された排水は滅菌槽15に流入し、消毒された後に河川等に放流される。また、最終沈澱池14で除去された活性汚泥の一部は返送汚泥として生物反応槽13に返送される。 The biological reaction tank 13 is provided with a pump P, and wastewater in which activated sludge is dispersed is collected from the biological reaction tank 13 by the pump P. In the final sedimentation pond 14, the activated sludge is removed, and the wastewater from which the activated sludge has been removed flows into the sterilization tank 15, is disinfected, and then discharged into a river or the like. In addition, a part of the activated sludge removed in the final settling pond 14 is returned to the biological reaction tank 13 as return sludge.

図2は、図1における生物反応槽13に含まれる活性汚泥を観察する観察装置20を説明するために用いられる図であり、図2(A)は観察装置20の構成を説明するために用いられる図であり、図2(B)は観察装置20の外観を示す図であり、図2(C)は図2(B)の観察装置20の部分断面図である。 FIG. 2 is a diagram used to explain the observation device 20 for observing the activated sludge contained in the biological reaction tank 13 in FIG. 1, and FIG. 2 (A) is used to explain the configuration of the observation device 20. 2 (B) is a view showing the appearance of the observation device 20, and FIG. 2 (C) is a partial cross-sectional view of the observation device 20 of FIG. 2 (B).

図2(A)の観察装置20は、CCDセンサやCMOSセンサ等のイメージセンサである撮像素子21(変換手段)、撮像素子21を保護する保護ガラス22(保護手段)、及び光源23(照射手段)を備え、保護ガラス22は撮像素子21に近接して配置し、例えば、絶縁性の接着剤を用いて固定される。これにより、撮像素子21が排水に接触しないので、排水に汚染されるのを防止することができる。光源23は、例えば、LEDランプであり、光源23から照射された光は保護ガラス22を介して撮像素子21(受光部21a)に到達する。 The observation device 20 of FIG. 2A includes an image sensor 21 (conversion means) which is an image sensor such as a CCD sensor or a CMOS sensor, a protective glass 22 (protective means) for protecting the image sensor 21, and a light source 23 (irradiation means). ), And the protective glass 22 is placed close to the image sensor 21 and fixed using, for example, an insulating adhesive. As a result, since the image sensor 21 does not come into contact with the wastewater, it is possible to prevent the wastewater from being contaminated. The light source 23 is, for example, an LED lamp, and the light emitted from the light source 23 reaches the image sensor 21 (light receiving unit 21a) through the protective glass 22.

撮像素子21は受光した光をデジタル画像信号に変換する。撮像素子21は、例えば、情報処理装置50に接続され、デジタル画像信号を情報処理装置50に出力し、情報処理装置50は撮像素子21によって変換されたデジタル画像信号を受信してデジタル画像信号に基づく画像データを生成する。このとき、観察装置20はHDD等の記憶媒体(格納手段)を備えていてもよく、撮像素子21によって変換されたデジタル画像信号はその記憶媒体に格納される。生成された画像データは情報処理装置50に格納されるとともに、例えば、情報処理装置50に接続される表示装置24に表示される。なお、撮像素子21の画素数は100万画素(1MP)以上がよい。 The image sensor 21 converts the received light into a digital image signal. The image pickup device 21 is connected to, for example, the information processing device 50, outputs a digital image signal to the information processing device 50, and the information processing device 50 receives the digital image signal converted by the image pickup device 21 and converts it into a digital image signal. Generate based image data. At this time, the observation device 20 may be provided with a storage medium (storage means) such as an HDD, and the digital image signal converted by the image pickup device 21 is stored in the storage medium. The generated image data is stored in the information processing device 50 and is displayed on, for example, a display device 24 connected to the information processing device 50. The number of pixels of the image sensor 21 is preferably 1 million pixels (1MP) or more.

保護ガラス22が固定された撮像素子21及び光源23は、例えば、筺体に格納され、撮像素子21及び光源23の距離は一定に保持されている(図2(B)及び図2(C))。このとき、光源23は撮像素子21の中央に光を照射するように位置し、その光の光軸(図2(A)中の光軸L)は保護ガラス22及び撮像素子21の受光部21aにほぼ直交している。なお、光源23から照射された光が撮像素子21に集光されるようにレンズや反射鏡又は光筒(図2(C)中の光筒25)が用いられてもよい。また、微生物を含む排水を保護ガラス22上に滴下可能なように、筐体は開放可能に構成されていてもよい。 The image sensor 21 and the light source 23 to which the protective glass 22 is fixed are housed in a housing, for example, and the distance between the image sensor 21 and the light source 23 is kept constant (FIGS. 2 (B) and 2 (C)). .. At this time, the light source 23 is positioned so as to irradiate the center of the image pickup device 21 with light, and the optical axis of the light (the optical axis L in FIG. 2A) is the protective glass 22 and the light receiving portion 21a of the image pickup element 21. Is almost orthogonal to. A lens, a reflector, or a light tube (light tube 25 in FIG. 2C) may be used so that the light emitted from the light source 23 is focused on the image sensor 21. Further, the housing may be configured to be open so that the wastewater containing microorganisms can be dropped onto the protective glass 22.

図3は、図2の観察装置20によって実行される活性汚泥の観察処理の手順を示すフローチャートである。 FIG. 3 is a flowchart showing a procedure of the activated sludge observation process executed by the observation device 20 of FIG.

図3において、まず、ポンプPが生物反応槽13から、微生物を有する活性汚泥が分散されている排水(以下、「観察対象水」という。)を採水し(S301)、観察対象水は保護ガラス22の上に滴下される(S302)。次いで、光源23から保護ガラス22の上に滴下された観察対象水に対して光が照射され(S303)、撮像素子21は光源23から照射され且つ観察対象水を通過した光を受光し(S304、受光ステップ)、受光した光をデジタル画像信号に変換する(S305、変換ステップ)。 In FIG. 3, first, the pump P collects wastewater (hereinafter referred to as “observation target water”) in which activated sludge containing microorganisms is dispersed from the biological reaction tank 13 (S301), and the observation target water is protected. It is dropped onto the glass 22 (S302). Next, the observation target water dropped from the light source 23 onto the protective glass 22 is irradiated with light (S303), and the image sensor 21 receives the light emitted from the light source 23 and passed through the observation target water (S304). , Light receiving step), the received light is converted into a digital image signal (S305, conversion step).

この場合において、微生物が観察対象水に含まれているとき、光源23から照射された光は微生物を透過するが、その透過率は100%ではない。すなわち、光源23から照射された光は観察対象水に含まれる微生物の透過率に応じて撮像素子21に到達する。したがって、撮像素子21は光源23から照射された光のうち観察対象水及び保護ガラス22を順次通過した光を受光し、受光した光をデジタル画像信号に変換する。その後、撮像素子21が変換したデジタル画像信号は、例えば、撮像素子21に接続された情報処理装置50に出力され、情報処理装置50は画像データを生成する(S306)。生成された画像データは、例えば、情報処理装置50に接続されている表示装置24に表示される。 In this case, when the microorganism is contained in the water to be observed, the light emitted from the light source 23 transmits the microorganism, but the transmittance is not 100%. That is, the light emitted from the light source 23 reaches the image sensor 21 according to the transmittance of the microorganisms contained in the water to be observed. Therefore, the image sensor 21 receives the light emitted from the light source 23 that has passed through the observation target water and the protective glass 22 in that order, and converts the received light into a digital image signal. After that, the digital image signal converted by the image sensor 21 is output to, for example, the information processing device 50 connected to the image sensor 21, and the information processing device 50 generates image data (S306). The generated image data is displayed on, for example, a display device 24 connected to the information processing device 50.

図3の観察処理によれば、光源23から照射され且つ観察対象水を通過した光はデジタル画像信号に変換されるが(S305)、微生物が観察対象水に含まれているとき、光源23から照射された光は観察対象水に含まれる微生物の透過率に応じて撮像素子21に到達する。その結果、微生物が含まれる観察対象水に基づくデジタル画像信号から生成される画像データには、光源23からの光の少なくとも一部を透過しない微生物の形状に応じた影又はその輪郭が含まれる(図4)。したがって、観察対象水に含まれる微生物の形状が目視で把握されるので、例えば、観察対象水の採水(S301)及び観察対象水の保護ガラス22への滴下(S302)が連続的又は一定の時間毎に自動的に行うように制御されるとき、微生物等の被写体を連続的又は一定の時間毎に確実に観察することができる。 According to the observation process of FIG. 3, the light emitted from the light source 23 and passed through the observation target water is converted into a digital image signal (S305), but when the microorganism is contained in the observation target water, the light is transmitted from the light source 23. The irradiated light reaches the image pickup device 21 according to the transmission rate of the microorganisms contained in the observation target water. As a result, the image data generated from the digital image signal based on the observation target water containing the microorganism includes a shadow or its outline according to the shape of the microorganism that does not transmit at least a part of the light from the light source 23 ( FIG. 4). Therefore, since the shape of the microorganisms contained in the observation target water can be visually grasped, for example, the observation target water is sampled (S301) and the observation target water is dropped onto the protective glass 22 (S302) continuously or constantly. When controlled to be performed automatically every hour, a subject such as a microorganism can be reliably observed continuously or at regular intervals.

また、観察対象水は保護ガラス22の上に滴下されることによって観察されている(S302)。保護ガラス22は撮像素子21が有する受光部21aに固定されているので、観察対象水は保護ガラス22に接触するとともに、撮像素子21に極めて近接している。したがって、観察対象水及び保護ガラス22を順次通過した光が受光部21aに受光されるまでに拡散しないので、観察対象水に含まれる微生物等の形状に応じた輪郭が不明瞭になるのを防止することができる。 Further, the water to be observed is observed by being dropped onto the protective glass 22 (S302). Since the protective glass 22 is fixed to the light receiving portion 21a of the image sensor 21, the water to be observed comes into contact with the protective glass 22 and is extremely close to the image sensor 21. Therefore, since the light that has passed through the observation target water and the protective glass 22 in sequence is not diffused until it is received by the light receiving portion 21a, it is possible to prevent the outline according to the shape of the microorganisms and the like contained in the observation target water from becoming unclear. can do.

ところで、観察対象水が保護ガラス22の上に滴下されると、所定の厚みを有する観察対象水の水滴がガラス上で形成されるため、光源23から保護ガラス22の上に滴下された観察対象水に対して光が照射されたとき、所定の厚みを有する観察対象水に対して照射された光が観察対象水中の複数の微生物や微粒子を通って撮像素子21に到達する場合がある。このとき、撮像素子21によって変換されたデジタル画像信号に基づいて生成される画像データは、複数の対象物の影が合成された陰を示し、微生物の形状に応じた影又はその輪郭は画像データから把握されない。 By the way, when the observation target water is dropped on the protective glass 22, water droplets of the observation target water having a predetermined thickness are formed on the glass, so that the observation target dropped on the protective glass 22 from the light source 23. When the water is irradiated with light, the light irradiated to the observation target water having a predetermined thickness may reach the image pickup element 21 through a plurality of microorganisms or fine particles in the observation target water. At this time, the image data generated based on the digital image signal converted by the image sensor 21 indicates a shadow in which the shadows of a plurality of objects are combined, and the shadow or its outline according to the shape of the microorganism is the image data. Not grasped from.

これに対応して、撮像素子21が水平方向に対して傾斜してもよい。具体的に、撮像素子21は水平方向に対して0.5度以上10度以下の範囲で傾斜する。これにより、保護ガラス22の上に滴下された観察対象水の重力に基づいて余分な観察対象水が撮像素子21の傾斜方向に流れ、個々の微生物を観察するのに最適な観察対象水の水滴の厚さを保護ガラス22の上に確保することができる。その結果、観察対象水に対して照射された光が保護ガラス22の上に残存した微生物による光の透過率に応じて撮像素子21に到達するので、撮像素子21が形成したデジタル画像信号に基づいて生成される画像データから微生物の形状に応じた影又はその輪郭が把握されることができる。 Correspondingly, the image sensor 21 may be tilted with respect to the horizontal direction. Specifically, the image sensor 21 is tilted in a range of 0.5 degrees or more and 10 degrees or less with respect to the horizontal direction. As a result, excess observation target water flows in the inclined direction of the image pickup element 21 based on the gravity of the observation target water dropped on the protective glass 22, and water droplets of observation target water optimal for observing individual microorganisms. The thickness of the can be secured on the protective glass 22. As a result, the light irradiated to the observation target water reaches the image pickup device 21 according to the light transmittance by the microorganisms remaining on the protective glass 22, and is based on the digital image signal formed by the image pickup device 21. The shadow or its outline according to the shape of the microorganism can be grasped from the image data generated in the above.

また、異なる対応として、撮像素子21が水平方向に対して傾斜していない場合であっても、観察対象水の粘性や濁度等に応じて観察対象水を水で希釈し、希釈された観察対象水を保護ガラス22の上に滴下してもよい。これにより、上記と同様の効果、すなわち、微生物の形状に応じた影又はその輪郭を把握することができる。 Further, as a different measure, even when the image pickup element 21 is not tilted with respect to the horizontal direction, the observation target water is diluted with water according to the viscosity and turbidity of the observation target water, and the diluted observation is performed. The target water may be dropped onto the protective glass 22. This makes it possible to grasp the same effect as described above, that is, the shadow or its outline according to the shape of the microorganism.

なお、観察装置20は観察対象水に含まれる微生物を観察するときに使用されることを上述したが、これに限られない。例えば、河川等の原水から飲料水を得るために原水に施される上水処理が知られている。上水処理は原水中の濁質を除去するために原水に凝集剤を添加する凝集剤添加工程を有する。凝集剤添加工程において、まず、凝集剤が原水に添加されると、原水中に原水の濁質が凝集するための凝集核が形成され、次いで、形成された凝集核に濁質が凝集してフロック(集塊)が形成され、フロックは原水中に分散される。フロックが分散される原水や凝集核を有する原水を観察対象水とした場合、観察装置20は観察対象水に含まれるフロック又は凝集核を観察するときにも使用される。すなわち、観察装置20は液体に含まれる微小な固体を被写体として観察するときに使用され、液体に含まれる被写体の形状に応じた影又はその輪郭を把握することができる。 It should be noted that the observation device 20 is used when observing the microorganisms contained in the water to be observed, but the present invention is not limited to this. For example, there is known a clean water treatment applied to raw water in order to obtain drinking water from raw water such as a river. The clean water treatment has a coagulant addition step of adding a coagulant to the raw water in order to remove turbidity in the raw water. In the flocculant addition step, when the flocculant is first added to the raw water, aggregate nuclei for agglomerating the turbidity of the raw water are formed in the raw water, and then the turbidity is aggregated in the formed aggregate nuclei. Flocks are formed and the flocs are dispersed in the raw water. When the raw water in which the flocs are dispersed or the raw water having aggregated nuclei is used as the observation target water, the observation device 20 is also used when observing the flocs or aggregated nuclei contained in the observation target water. That is, the observation device 20 is used when observing a minute solid contained in the liquid as a subject, and can grasp a shadow or its outline according to the shape of the subject contained in the liquid.

図5は、図2の観察装置20に接続される情報処理装置50の構成を概略的に示すブロック図である。 FIG. 5 is a block diagram schematically showing the configuration of the information processing device 50 connected to the observation device 20 of FIG.

図5の情報処理装置50はCPU51(抽出手段、特定手段)、RAM52、ROM53、及びHDD54を備え、これらは互いに接続されるとともに、CPU51は観察装置20に接続されている。ROM53又はHDD54はプログラム及び各種データ等を格納する。各種データは、例えば、撮像素子21が出力したデジタル画像信号及びそのデジタル画像信号に基づいて生成された画像データ、並びに、これらの画像データに各画像データに関する情報を関連付けた学習データである。 The information processing device 50 of FIG. 5 includes a CPU 51 (extraction means, identification means), a RAM 52, a ROM 53, and an HDD 54, which are connected to each other, and the CPU 51 is connected to the observation device 20. The ROM 53 or HDD 54 stores programs, various data, and the like. The various data are, for example, a digital image signal output by the image pickup device 21, image data generated based on the digital image signal, and learning data in which information related to each image data is associated with these image data.

したがって、観察対象水に含まれる微生物が観察装置20によって観察され、撮像素子21がデジタル画像信号を出力したとき、ROM53又はHDD54はそのデジタル画像信号及びこれに基づいて生成された画像データ、並びに、菌叢状態を数値化した活性汚泥性状データを関連付けた学習データを格納する。なお、当該学習データには他の情報、例えば、観察対象水の窒素の量及びリンの量等の水質データを関連付けてもよい。 Therefore, when the microorganisms contained in the water to be observed are observed by the observation device 20 and the image pickup device 21 outputs a digital image signal, the ROM 53 or HDD 54 displays the digital image signal and the image data generated based on the digital image signal, and Stores learning data associated with active sludge property data that quantifies the bacterial flora state. In addition, other information, for example, water quality data such as the amount of nitrogen and the amount of phosphorus in the observation target water may be associated with the learning data.

また、観察対象水に含まれる凝集核が観察装置20によって観察され、撮像素子21がデジタル画像信号を出力したとき、ROM53又はHDD54はそのデジタル画像信号及びこれに基づいて生成された画像データ、並びに、凝集核が成長して将来形成されるフロックの特徴や観察対象水の濁度等(以下、「凝集核関連データ」という。)を関連付けた学習データを格納する。 Further, when the aggregated nuclei contained in the water to be observed are observed by the observation device 20 and the image pickup device 21 outputs a digital image signal, the ROM 53 or HDD 54 displays the digital image signal and the image data generated based on the digital image signal, and , The learning data associated with the characteristics of flocs formed in the future when aggregated nuclei grow and the turbidity of the water to be observed (hereinafter referred to as "aggregated nucleus-related data") is stored.

CPU51は、ROM53又はHDD54に格納されたプログラムをRAM52に展開して実行し、また、ROM53又はHDD54に格納されたデジタル画像信号に基づいて画像データを生成する。さらに、CPU51は学習データを活用して深層学習を実行する。また、CPU51は深層学習を実行した後に、新たな画像データを取得し、その画像データに含まれる微生物から活性汚泥性状データを特定し又はその画像データに含まれる凝集核から凝集核が成長して形成されるフロックの形状等の詳細な情報を特定する。 The CPU 51 expands the program stored in the ROM 53 or the HDD 54 into the RAM 52 and executes it, and also generates image data based on the digital image signal stored in the ROM 53 or the HDD 54. Further, the CPU 51 executes deep learning by utilizing the learning data. Further, after executing deep learning, the CPU 51 acquires new image data, identifies activated sludge property data from microorganisms contained in the image data, or aggregate nuclei grow from aggregate nuclei contained in the image data. Identify detailed information such as the shape of the formed flocs.

続いて、CPU51が実行する深層学習の方法及び深層学習後に新たな画像データを取得してその画像データに含まれる被写体に関する情報を特定する方法について説明する。ここでは、CPU51が微生物を含む画像データ及びその画像データに関連付けられている活性汚泥性状データを学習し、その後、微生物が含まれる画像データから当該微生物に関する活性汚泥性状データを特定する方法について説明する。 Subsequently, a method of deep learning executed by the CPU 51 and a method of acquiring new image data after deep learning and specifying information about a subject included in the image data will be described. Here, a method will be described in which the CPU 51 learns the image data containing a microorganism and the activated sludge property data associated with the image data, and then identifies the activated sludge property data related to the microorganism from the image data containing the microorganism. ..

ROM53又はHDD54は、例えば、撮像素子21が出力したデジタル画像信号に基づいて生成された画像データ、並びに、菌叢状態を数値化した活性汚泥性状データを関連付けた学習データを格納している。ここで、学習データには、画像データに応じて算出された特徴量も付加されている。 The ROM 53 or HDD 54 stores, for example, image data generated based on the digital image signal output by the image sensor 21, and learning data associated with activated sludge property data in which the bacterial flora state is quantified. Here, the feature amount calculated according to the image data is also added to the learning data.

具体的に、CPU51は、画像データに、例えば、拡大、縮小、トリミング等の画像サイズの変更、輝度調整、又は色調整の画質の調整等の加工を施す。次いで、CPU51は、画像データの局所的な特徴量を抽出するフィルタ処理である畳み込み演算処理、畳み込み演算処理によって抽出された特徴量を残してデータを圧縮するプーリング演算処理、又は畳み込み演算処理やプーリング演算処理によって得られる全ての画像データを一つに結合し、活性化関数によって一次元データに変換して出力する全結合型演算処理を加工が施された判別対象画像データに施して特徴量を算出する。 Specifically, the CPU 51 performs processing such as changing the image size such as enlargement, reduction, and trimming, adjusting the brightness, or adjusting the image quality of the color adjustment on the image data. Next, the CPU 51 performs a convolution calculation process, which is a filter process for extracting local features of image data, a pooling calculation process for compressing data while leaving the features extracted by the convolution calculation process, or a convolution calculation process or pooling. All the image data obtained by the arithmetic processing is combined into one, and the all-combined arithmetic processing that converts it into one-dimensional data by the activation function and outputs it is applied to the processed image data to be discriminated to obtain the feature amount. calculate.

本実施の形態では、(1)畳み込み演算処理、(2)プーリング演算処理、(3)複数回(例えば、2〜9回)の畳み込み演算処理、及び(4)全結合型演算処理をこの順で施し、これにより、画像データについて最終的に0〜1の間の特定の値が特徴量として算出される。算出された特徴量は画像データに付加され、水質データが関連付けられた学習データとしてROM53又はHDD54に格納される。 In the present embodiment, (1) convolution operation processing, (2) pooling operation processing, (3) multiple times (for example, 2 to 9 times) convolution operation processing, and (4) fully connected operation processing are performed in this order. As a result, a specific value between 0 and 1 is finally calculated as the feature amount for the image data. The calculated feature amount is added to the image data and stored in the ROM 53 or HDD 54 as learning data associated with the water quality data.

一方、微生物の新たな状態が観察されるとき、撮像素子21は新たにデジタル画像信号を形成して情報処理装置50に出力する。続いて、CPU51は、撮像素子21が出力したデジタル画像信号に基づいて画像データ(以下、「判別対象画像データ」という。)を生成し、判別対象画像データに、例えば、拡大、縮小、トリミング等の画像サイズの変更、輝度調整、又は色調整の画質の調整等の加工を施す。次いで、CPU51は、畳み込み演算処理、プーリング演算処理、又は全結合型演算処理を加工が施された判別対象画像データに施す。本実施の形態では、(1)畳み込み演算処理、(2)プーリング演算処理、(3)複数回(例えば、2〜9回)の畳み込み演算処理、及び(4)全結合型演算処理をこの順で施す。これにより、判別対象画像データについて最終的に0〜1の間の特定の値が特徴量として算出される。 On the other hand, when a new state of microorganisms is observed, the image sensor 21 newly forms a digital image signal and outputs it to the information processing device 50. Subsequently, the CPU 51 generates image data (hereinafter, referred to as “discrimination target image data”) based on the digital image signal output by the image sensor 21, and the discrimination target image data is, for example, enlarged, reduced, trimmed, or the like. Perform processing such as changing the image size, adjusting the brightness, or adjusting the image quality of the color adjustment. Next, the CPU 51 applies a convolution calculation process, a pooling calculation process, or a fully coupled calculation process to the processed image data to be discriminated. In the present embodiment, (1) convolution operation processing, (2) pooling operation processing, (3) multiple times (for example, 2 to 9 times) convolution operation processing, and (4) fully connected operation processing are performed in this order. Apply with. As a result, a specific value between 0 and 1 is finally calculated as the feature amount for the image data to be discriminated.

その後、CPU51は判別対象画像データ及び判別対象画像データに基づいて算出された特徴量と、ROM53又はHDD54に格納された学習データとから、判別対象画像データに対応する活性汚泥性状データを特定する。特定された活性汚泥性状データは、判別対象画像データ及び特徴量と関連付けられてログデータとしてROM53に記録されるとともに、学習データとしてROM53又はHDD54に格納される。 After that, the CPU 51 identifies the activated sludge property data corresponding to the discrimination target image data from the discrimination target image data, the feature amount calculated based on the discrimination target image data, and the learning data stored in the ROM 53 or the HDD 54. The identified activated sludge property data is recorded in ROM 53 as log data in association with the image data to be discriminated and the feature amount, and is stored in ROM 53 or HDD 54 as learning data.

図5の情報処理装置50によれば、深層学習を実行したCPU51が判別対象画像データ及び判別対象画像データに基づいて算出された特徴量と、ROM53又はHDD54に格納された学習データとから、判別対象画像データに対応する活性汚泥性状データを特定する。判別対象画像データに対応する活性汚泥性状データが特定されると、その判別対象画像データから微生物の菌叢状態が把握される。これにより、高い専門性を必要とする顕微鏡を使用した微生物の観察が困難な場合であっても微生物は連続的又は一定の時間毎に自動的に観察されるので、活性汚泥中の微生物についての菌叢変化を容易に把握することができる。 According to the information processing device 50 of FIG. 5, the CPU 51 that has executed the deep learning discriminates from the feature amount calculated based on the discrimination target image data and the discrimination target image data and the learning data stored in the ROM 53 or the HDD 54. Identify the active sludge property data corresponding to the target image data. When the activated sludge property data corresponding to the discrimination target image data is specified, the bacterial flora state of the microorganism is grasped from the discrimination target image data. As a result, even when it is difficult to observe microorganisms using a microscope that requires a high degree of specialization, the microorganisms are automatically observed continuously or at regular intervals, so that the microorganisms in activated sludge can be observed. Changes in the bacterial flora can be easily grasped.

また、情報処理装置50は凝集核を含む画像データと、凝集核関連データとを関連付けた学習データを学習し、その後、凝集核を含む新たな判別対象画像データを取得したとき、微生物を含む画像データから当該微生物に関する活性汚泥性状データを特定するのと同様に、その判別対象画像データに対応する凝集核関連データを特定することができる。すなわち、情報処理装置50は画像データに含まれる被写体及びその被写体に関連付けられている情報を学習した後に、新たな画像データを取得した場合、新たな画像データに含まれる被写体に関連付けられるべき情報を特定することができる。 Further, when the information processing apparatus 50 learns learning data in which image data including aggregate nuclei and data related to aggregate nuclei are associated with each other, and then acquires new discriminant target image data including aggregate nuclei, an image containing microorganisms. In the same way as specifying the active sludge property data related to the microorganism from the data, it is possible to specify the aggregated nucleus-related data corresponding to the image data to be discriminated. That is, when the information processing device 50 acquires new image data after learning the subject included in the image data and the information associated with the subject, the information processing device 50 obtains the information to be associated with the subject included in the new image data. Can be identified.

以上、本発明の実施の形態について説明したが、本発明はこれらの実施の形態に何ら限定されるものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments.

本発明は上述の実施の形態の1以上の機能を実現するプログラムをネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1以上のプロセッサーがプログラムを読み出して実行する処理でも実現可能であり、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 The present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by processing, and can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

20 観察装置
21 撮像素子
22 保護ガラス
23 光源
24 表示装置
50 情報処理装置
51 CPU
20 Observation device 21 Image sensor 22 Protective glass 23 Light source 24 Display device 50 Information processing device 51 CPU

Claims (8)

被写体を観察する観察装置において、
前記被写体に光を照射する照射手段と、
前記被写体に近接するとともに、前記照射された光のうち前記被写体を通過した光を受光する受光部を有し、前記受光部によって受光された光を画像信号に変換する変換手段とを備え、
前記変換手段は前記受光部を保護する保護手段を有することを特徴とする観察装置。
In an observation device for observing a subject
An irradiation means for irradiating the subject with light,
It is provided with a light receiving unit that is close to the subject and receives the light that has passed through the subject among the irradiated light, and includes a conversion means that converts the light received by the light receiving unit into an image signal.
An observation device, wherein the conversion means has a protective means for protecting the light receiving portion.
前記被写体は採水された水に含まれる微生物又は水中の濁質を除去する際に生成されるフロックであることを特徴とする請求項1記載の観察装置。 The observation device according to claim 1, wherein the subject is a floc generated when removing microorganisms or turbid substances in the collected water. 前記受光部は水平方向に対して傾斜していることを特徴とする請求項1又は2記載の観察装置。 The observation device according to claim 1 or 2, wherein the light receiving portion is inclined with respect to the horizontal direction. 前記受光部は水平方向に対して0.5度以上10度以下の範囲で傾斜していることを特徴とする請求項1乃至3のいずれか1項に記載の観察装置。 The observation device according to any one of claims 1 to 3, wherein the light receiving portion is inclined in a range of 0.5 degrees or more and 10 degrees or less with respect to the horizontal direction. 前記変換手段は前記画像信号を格納する格納手段を有することを特徴とする請求項1乃至4のいずれか1項に記載の観察装置。 The observation device according to any one of claims 1 to 4, wherein the conversion means includes a storage means for storing the image signal. 前記変換手段に接続され、前記変換手段から前記画像信号を受信する情報処理装置を備え、
前記情報処理装置は、
前記画像信号を受信して画像データを生成するとともに、前記画像データの特徴量を抽出する抽出手段と、
前記特徴量に基づいて前記被写体を含む水の情報を特定する特定手段と、を有することを特徴とする請求項1乃至5のいずれか1項に記載の観察装置。
An information processing device connected to the conversion means and receiving the image signal from the conversion means is provided.
The information processing device
An extraction means that receives the image signal to generate image data and extracts a feature amount of the image data.
The observation device according to any one of claims 1 to 5, further comprising a specific means for specifying information on water including the subject based on the feature amount.
被写体に光を照射する照射手段及び前記被写体に近接する受光部を備える観察装置を用いて前記被写体を観察する観察方法において、
前記被写体に照射された光のうち前記被写体を通過した光を前記受光部が受光する受光ステップと、
前記受光部が受光した光を画像信号に変換する変換ステップとを有することを特徴とする観察方法。
In an observation method for observing the subject using an irradiation means for irradiating the subject with light and an observation device including a light receiving unit close to the subject.
A light receiving step in which the light receiving unit receives the light that has passed through the subject among the light irradiated to the subject.
An observation method characterized by having a conversion step of converting the light received by the light receiving unit into an image signal.
被写体に光を照射する照射手段及び前記被写体に近接する受光部を備える観察装置を用いて前記被写体を観察する観察方法をコンピュータに実行させるプログラムであって、
前記観察方法は、
前記被写体に照射された光のうち前記被写体を通過した光を前記受光部が受光する受光ステップと、
前記受光部が受光した光を画像信号に変換する変換ステップとを有することを特徴とするプログラム。
A program that causes a computer to execute an observation method for observing the subject by using an irradiation means for irradiating the subject with light and an observation device provided with a light receiving unit close to the subject.
The observation method is
A light receiving step in which the light receiving unit receives the light that has passed through the subject among the light irradiated to the subject.
A program characterized by having a conversion step of converting the light received by the light receiving unit into an image signal.
JP2019023580A 2019-02-13 2019-02-13 Observation device, observation method, and program Active JP7261033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019023580A JP7261033B2 (en) 2019-02-13 2019-02-13 Observation device, observation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019023580A JP7261033B2 (en) 2019-02-13 2019-02-13 Observation device, observation method, and program

Publications (2)

Publication Number Publication Date
JP2020134559A true JP2020134559A (en) 2020-08-31
JP7261033B2 JP7261033B2 (en) 2023-04-19

Family

ID=72278535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019023580A Active JP7261033B2 (en) 2019-02-13 2019-02-13 Observation device, observation method, and program

Country Status (1)

Country Link
JP (1) JP7261033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062264A (en) * 2021-10-22 2022-02-18 哈尔滨工业大学(深圳) Three-dimensional multispectral online microscopic image acquisition system and method
DE112021002794T5 (en) 2020-08-07 2023-03-09 Komatsu Ltd. Excavation information processing device, work machine, excavation support device, and excavation information processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080236A (en) * 2001-09-14 2003-03-18 Toshiba Corp Water quality measuring instrument for stored water
US20100201792A1 (en) * 2007-01-29 2010-08-12 Thomas Brinz Device for optical characterization
JP2010190912A (en) * 2010-05-27 2010-09-02 Kurita Water Ind Ltd Sludge property diagnostic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080236A (en) * 2001-09-14 2003-03-18 Toshiba Corp Water quality measuring instrument for stored water
US20100201792A1 (en) * 2007-01-29 2010-08-12 Thomas Brinz Device for optical characterization
JP2010190912A (en) * 2010-05-27 2010-09-02 Kurita Water Ind Ltd Sludge property diagnostic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021002794T5 (en) 2020-08-07 2023-03-09 Komatsu Ltd. Excavation information processing device, work machine, excavation support device, and excavation information processing method
CN114062264A (en) * 2021-10-22 2022-02-18 哈尔滨工业大学(深圳) Three-dimensional multispectral online microscopic image acquisition system and method
CN114062264B (en) * 2021-10-22 2023-10-10 哈尔滨工业大学(深圳) Three-dimensional multispectral online microscopic image acquisition system and method

Also Published As

Publication number Publication date
JP7261033B2 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
Amaral et al. Activated sludge monitoring of a wastewater treatment plant using image analysis and partial least squares regression
Bina et al. Effectiveness of chitosan as natural coagulant aid in treating turbid waters
JP2020134559A (en) Observation device, observation method and program
Koivuranta et al. Optical monitoring of activated sludge flocs in bulking and non-bulking conditions
JP2020025943A (en) Water treatment method and water treatment system
KR101999696B1 (en) Method for controlling water purification using real-time image analysis
Liwarska-Bizukojc et al. Variations of morphology of activated sludge flocs studied at full-scale wastewater treatment plants
JP2019181318A (en) Control method of water treatment plant accompanied by coagulation and control device
Santos et al. Dissolved air flotation as a potential treatment process to remove Giardia cysts from anaerobically treated sewage
Yu et al. Applying Online Image Analysis to Simultaneously Evaluate the Removals of Suspended Solids and Color from Textile Wastewater in Chemical Flocculated Sedimentation.
JPH0790234B2 (en) Sewage treatment method and device with activated sludge
JPH0636188B2 (en) Image measuring device
Yong et al. An approach for the segmentation and quantification of activated sludge floc blobs
JP7086658B2 (en) Water treatment system and water treatment method
JP2001029938A (en) Water treatment state monitoring device
Flores-Morales et al. Removal of nutrients from Organic Liquid Agricultural Waste using filamentous algae.
Silva et al. Risk to human health from protozoan (oo) cysts in water treatment plants
JPH0636187B2 (en) Image processing device
JP2009236831A (en) Monitoring method and device for dissolved pollutant
JPS63269043A (en) Apparatus for confirming image of flocculated substance
CN108298665B (en) Method for improving sewage purification reliability
JP7496786B2 (en) Water purification method and water purification device
CN114956287B (en) Sewage dephosphorization method
CN108318434B (en) Sewage purification monitoring method
CN114445699B (en) Water landscape water changing management method, management device and management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230407

R150 Certificate of patent or registration of utility model

Ref document number: 7261033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150