JP2020134287A - Method and device for inspecting pinhole - Google Patents

Method and device for inspecting pinhole Download PDF

Info

Publication number
JP2020134287A
JP2020134287A JP2019027201A JP2019027201A JP2020134287A JP 2020134287 A JP2020134287 A JP 2020134287A JP 2019027201 A JP2019027201 A JP 2019027201A JP 2019027201 A JP2019027201 A JP 2019027201A JP 2020134287 A JP2020134287 A JP 2020134287A
Authority
JP
Japan
Prior art keywords
inspected
container
voltage
inspection
pinhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027201A
Other languages
Japanese (ja)
Other versions
JP7215724B2 (en
Inventor
竜太郎 齋藤
Ryutaro Saito
竜太郎 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Densok Ltd
Original Assignee
Nikka Densok Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka Densok Ltd filed Critical Nikka Densok Ltd
Priority to JP2019027201A priority Critical patent/JP7215724B2/en
Publication of JP2020134287A publication Critical patent/JP2020134287A/en
Application granted granted Critical
Publication of JP7215724B2 publication Critical patent/JP7215724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for inspecting a pinhole, capable of reducing an inspection time compared with a vacuum leak type inspection, high in safety and capable of obtaining inspection accuracy equivalent to that of voltage application type inspection.SOLUTION: A method for applying voltage to a vessel 40 to be inspected to inspect a pinhole comprises: arranging the entire vessel 40 to be inspected or a portion to be inspected in the vessel 40 to be inspected in reduced pressure environment; arranging a high voltage electrode 30 in the vicinity of the portion to be inspected in the vessel 40 to be inspected positioned in the reduced pressure environment; and contacting a low voltage electrode 32 to a portion except the portion to be inspected to apply voltage between the high voltage electrode 30 and the low voltage electrode 32.SELECTED DRAWING: Figure 1

Description

本発明は、ピンホール検査方法、および装置に係り、特に、電圧を印加することでピンホールの有無を検査する方法、および装置に関する。 The present invention relates to a pinhole inspection method and an apparatus, and more particularly to a method and an apparatus for inspecting the presence or absence of pinholes by applying a voltage.

パッケージや容器に生じたピンホール等の検出方法としては、特許文献1に開示されているような真空中でのリーク検査や、特許文献2、3に開示されているような電圧印加型の検査が知られている。 As a method for detecting pinholes and the like generated in a package or container, a leak inspection in a vacuum as disclosed in Patent Document 1 and a voltage application type inspection as disclosed in Patent Documents 2 and 3 are performed. It has been known.

特許文献1に開示されている真空リーク型の検査では、チャンバ等の閉塞領域内に被検査容器を配置し、閉塞領域内を減圧して真空状態とする。この状態で所定時間経過後における閉塞領域内の圧力状態を計測し、被検査容器からのリークの有無を検出し、被検査容器の良否を判定するというものである。 In the vacuum leak type inspection disclosed in Patent Document 1, the container to be inspected is arranged in a closed region such as a chamber, and the inside of the closed region is depressurized to create a vacuum state. In this state, the pressure state in the closed region after a lapse of a predetermined time is measured, the presence or absence of a leak from the container to be inspected is detected, and the quality of the container to be inspected is judged.

一方、電圧印加型の検査では、被検査容器に高電圧電極と低電圧電極を接触させた状態で電極間に電流を流し、通電時に検出される電流値の差に基づいてピンホール(リーク)の有無を検出し、被検査容器の良否を判定するというものである。なお、電圧印加型の検査では、検査領域に液体等の導電性物質が接触している必要がある。 On the other hand, in the voltage application type inspection, a current is passed between the electrodes in a state where the high voltage electrode and the low voltage electrode are in contact with the container to be inspected, and a pinhole (leakage) is caused based on the difference in the current value detected when energized. It detects the presence or absence of the voltage and determines the quality of the container to be inspected. In the voltage application type inspection, it is necessary that the inspection area is in contact with a conductive substance such as a liquid.

特開平6−307972号公報Japanese Unexamined Patent Publication No. 6-307792 特開2003−254941号公報Japanese Unexamined Patent Publication No. 2003-254941 特開2005−331469号公報Japanese Unexamined Patent Publication No. 2005-331469

各検査技術において、真空リーク型の検査では、検査を行う際に所定の真空度の減圧空間を生じさせると共に、これを所定時間維持する必要がある。このため、検査自体に要する時間が長く効率が悪い。また、検出可能なピンホールのサイズとしては、一般的にバクテリアや細菌のサイズとして知られている大きさ(約1μm)よりも大きく、10μm〜50μmとされているといった問題がある。 In each inspection technique, in the vacuum leak type inspection, it is necessary to generate a decompression space having a predetermined degree of vacuum when performing the inspection and to maintain this for a predetermined time. Therefore, the inspection itself takes a long time and is inefficient. Further, there is a problem that the size of the pinhole that can be detected is larger than the size generally known as the size of bacteria or bacteria (about 1 μm) and is set to 10 μm to 50 μm.

一方電圧印加型の検査では、検出可能なピンホールのサイズが0.1μmまで可能とされているが、電極間に高電圧を印加すると、電極と被検査容器との間に火花放電が生じる。この際、被検査容器の素材や強度の如何によっては、この火花放電に起因して被検査容器にピンホールが形成されてしまうことがあるといった問題がある。 On the other hand, in the voltage application type inspection, the size of the pinhole that can be detected can be up to 0.1 μm, but when a high voltage is applied between the electrodes, a spark discharge occurs between the electrodes and the container to be inspected. At this time, depending on the material and strength of the container to be inspected, there is a problem that pinholes may be formed in the container to be inspected due to this spark discharge.

そこで本発明では、真空リーク型の検査よりも検査時間を短くし、かつ安全性が高く、電圧印加型の検査と同等の検査精度を得る事が可能なピンホール検査方法、およびこの方法を実施可能なピンホール検査装置を提供することを目的とする。 Therefore, in the present invention, a pinhole inspection method, which shortens the inspection time as compared with the vacuum leak type inspection, has high safety, and can obtain the inspection accuracy equivalent to the voltage application type inspection, and this method are implemented. It is an object of the present invention to provide a possible pinhole inspection apparatus.

上記目的を達成するための本発明に係るピンホール検査方法は、被検査容器に電圧を印加してピンホール検査を行う方法であって、前記被検査容器全体、または前記被検査容器における被検査部位を減圧環境下に配置し、前記減圧環境下に位置している前記被検査容器における前記被検査部位の近傍に高圧電極を配置すると共に、前記被検査部位以外の部位に低圧電極を接触させて、前記高圧電極と前記低圧電極との間に電圧を印加することを特徴とする。 The pinhole inspection method according to the present invention for achieving the above object is a method in which a voltage is applied to a container to be inspected to perform a pinhole inspection, and the entire container to be inspected or the container to be inspected is inspected. The part is arranged in a reduced pressure environment, the high voltage electrode is arranged in the vicinity of the part to be inspected in the container to be inspected located in the reduced pressure environment, and the low pressure electrode is brought into contact with a part other than the part to be inspected. Therefore, a voltage is applied between the high voltage electrode and the low voltage electrode.

また、上記のような特徴を有するピンホール検査装置では、前記減圧環境における気圧P[mmHg]と、前記高圧電極と前記被検査部位との距離L[cm]との積P・L[mmHg・cm]が、1<P・L<760の範囲内にあるようにすると良い。このような特徴を有することによれば、少なくとも常圧状態でピンホール検査を行うよりも低い電圧で火花放電を生じさせる検査を行うことができる。 Further, in the pinhole inspection apparatus having the above-mentioned characteristics, the product of the atmospheric pressure P [mmHg] in the depressurized environment and the distance L [cm] between the high-pressure electrode and the inspected portion PL [mmHg. cm] should be within the range of 1 <P · L <760. With such a feature, it is possible to perform an inspection that causes a spark discharge at a voltage lower than that at least performing a pinhole inspection under normal pressure.

また、上記目的を達成するためのピンホール検査装置は、被検査容器に電圧を印加してピンホール検査を行う装置であって、前記被検査容器の全部、あるいは前記被検査容器における被検査部位を覆う真空チャンバと、少なくとも高圧電極と低圧電極、及び高圧電源を有する電圧印加型検査手段と、を備え、前記高圧電極を前記真空チャンバ内であって、前記被検査部位の近傍に位置する所に配置すると共に、前記低圧電極を前記被検査容器における前記被検査部位以外の部位に接触可能な構成としたことを特徴とする。 Further, the pinhole inspection device for achieving the above object is a device that applies a voltage to the container to be inspected to perform a pinhole inspection, and is an entire device to be inspected or a part to be inspected in the container to be inspected. A vacuum chamber covering the above, at least a high-voltage electrode and a low-voltage electrode, and a voltage-applied inspection means having a high-voltage power supply are provided, and the high-voltage electrode is located in the vacuum chamber in the vicinity of the inspection site. The low-voltage electrode is configured to be in contact with a portion of the vessel to be inspected other than the portion to be inspected.

上記のような特徴を有するピンホール検査方法、および装置によれば、真空リーク型の検査よりも検査時間を短くし、かつ低電圧で検査できるので安全性が高く、電圧印加型の検査と同等の検査精度を得る事ができる。 According to the pinhole inspection method and device having the above characteristics, the inspection time is shorter than the vacuum leak type inspection, and the inspection can be performed at a low voltage, so the safety is high and equivalent to the voltage application type inspection. Inspection accuracy can be obtained.

第1実施形態に係るピンホール検査装置の構成例を示す図である。It is a figure which shows the structural example of the pinhole inspection apparatus which concerns on 1st Embodiment. 電圧印加型のピンホール検査において、被検査容器が良品である場合の等価回路図である。It is an equivalent circuit diagram when the container to be inspected is a good product in a voltage application type pinhole inspection. 電圧印加型のピンホール検査において、被検査容器が不良品である場合の等価回路図である。It is an equivalent circuit diagram when the container to be inspected is a defective product in a voltage application type pinhole inspection. 実施形態に係るピンホール検査装置を用いて被検査容器のピンホール検査を行う場合のフローである。This is a flow in the case of performing pinhole inspection of the container to be inspected by using the pinhole inspection apparatus according to the embodiment. 火花放電が生じる最小電圧と、気圧と電極間距離の積との関係を示すグラフである。It is a graph which shows the relationship between the minimum voltage at which a spark discharge occurs, and the product of the atmospheric pressure and the distance between electrodes. 第2実施形態に係るピンホール検査装置の構成例を示す図である。It is a figure which shows the structural example of the pinhole inspection apparatus which concerns on 2nd Embodiment. 第2実施形態に係るピンホール検査装置による検査形態を示す図である。It is a figure which shows the inspection form by the pinhole inspection apparatus which concerns on 2nd Embodiment.

以下、本発明のピンホール検査方法、およびピンホール検査装置に係る実施の形態について、図面を参照して詳細に説明する。 Hereinafter, the pinhole inspection method of the present invention and the embodiment according to the pinhole inspection apparatus will be described in detail with reference to the drawings.

[第1実施形態]
本発明に係るピンホール検査方法は、被検査容器の全部、または一部を真空中に配置した状態で電圧印加型検査を行うという事を主体としている。その具体的な方法については図1に示す第1実施形態に係るピンホール検査装置10を例に挙げ、このピンホール検査装置10による検査方法について説明する。なお、被検査容器40の形態については特に限定するものでは無い。例えばレトルト食品や、漬物などを封入している袋状のものであっても、プリンやゼリーなどを封入している容器などであっても良い。なお、内容物に関しては、導電性を有するものとする。
[First Embodiment]
The pinhole inspection method according to the present invention mainly involves performing a voltage application type inspection with all or part of the container to be inspected placed in a vacuum. As a specific method thereof, the pinhole inspection device 10 according to the first embodiment shown in FIG. 1 will be taken as an example, and the inspection method by the pinhole inspection device 10 will be described. The form of the container 40 to be inspected is not particularly limited. For example, it may be a bag-shaped product containing retort food, pickles, or the like, or a container containing pudding, jelly, or the like. The contents shall be conductive.

本実施形態に係るピンホール検査装置10は、真空チャンバ12と、電圧印加型検査手段24とを基本として構成されている。本実施形態に係る真空チャンバ12は、被検査容器40全体を収容可能な箱体である。真空チャンバ12には少なくとも、真空ポンプ14や開放弁16、及び真空計18が付帯されている。真空ポンプ14は、真空チャンバ12内を真空引きするための要素であり、真空チャンバ12と真空ポンプ14とを接続する経路には、真空弁20と圧力調整弁22が備えられている。被検査容器40全体を収容可能な真空チャンバ12は、袋状容器など、押圧等により容器自体の形態が変化するような容器を検査する場合に有効である。 The pinhole inspection device 10 according to the present embodiment is basically composed of a vacuum chamber 12 and a voltage application type inspection means 24. The vacuum chamber 12 according to the present embodiment is a box body capable of accommodating the entire container 40 to be inspected. At least the vacuum pump 14, the release valve 16, and the vacuum gauge 18 are attached to the vacuum chamber 12. The vacuum pump 14 is an element for evacuating the inside of the vacuum chamber 12, and a vacuum valve 20 and a pressure adjusting valve 22 are provided in a path connecting the vacuum chamber 12 and the vacuum pump 14. The vacuum chamber 12 capable of accommodating the entire container 40 to be inspected is effective when inspecting a container such as a bag-shaped container whose shape changes due to pressing or the like.

電圧印加型検査手段24は、少なくとも、高電圧電源26と、電流測定センサ28、高圧電極30、及び低圧電極32を有する。高電圧電源26から出力された電流を高圧電極30から被検査容器40を介して低圧電極32へ流し、電流測定センサ28で通電値を計測することで、被検査容器40におけるピンホールの有無を判定する。 The voltage application type inspection means 24 has at least a high voltage power supply 26, a current measurement sensor 28, a high voltage electrode 30, and a low voltage electrode 32. The current output from the high-voltage power supply 26 is passed from the high-voltage electrode 30 to the low-voltage electrode 32 via the container 40 to be inspected, and the current measurement sensor 28 measures the energization value to determine the presence or absence of pinholes in the container 40 to be inspected. judge.

高電圧電源26の電圧をV、回路における導電性内容物の抵抗値をR、被検査容器40の高圧電極30側の容量値をC、低圧電極32側の回路容量値をCとして定めると、図2のような電気的等価回路で示すことができる。なお、図2中のIは、被検査容器40が良品の場合(ピンホールが無い場合)に電流計測センサ28で計測される電流値である。ここで、被検査容器40にピンホールが存在する場合、被検査容器40は短絡した状態となる。このため、電気的等価回路は、図3に示すように、被検査容器40の容量値Cが無いものとして表すことができる。なお、図3中のIは、被検査容器40が不良品の場合(ピンホールが有る場合)に電流計測センサ28で計測される電流値である。 The voltage of the high voltage power supply 26 is V, the resistance value of the conductive content in the circuit is R 1 , the capacitance value of the container 40 to be inspected on the high voltage electrode 30 side is C 1 , and the circuit capacitance value on the low voltage electrode 32 side is C 2. Once determined, it can be shown by an electrical equivalent circuit as shown in FIG. Incidentally, I g in FIG. 2 is a current value measured by the current measuring sensor 28 when the inspected container 40 is non-defective (if pinholes no). Here, if a pinhole is present in the container 40 to be inspected, the container 40 to be inspected is in a short-circuited state. Therefore, as shown in FIG. 3, the electrically equivalent circuit can be represented as having no capacity value C 1 of the container 40 to be inspected. Note that Ip in FIG. 3 is a current value measured by the current measurement sensor 28 when the container 40 to be inspected is a defective product (when there is a pinhole).

図2に示す電気的等価回路における回路式は、数式1で示すことができる。

Figure 2020134287
The circuit equation in the electrically equivalent circuit shown in FIG. 2 can be expressed by Equation 1.
Figure 2020134287

数式1より、被検査容器40にピンホールが存在しない場合における回路式における電圧Vは、数式2で示すことができる。ここで、jは虚数単位である。

Figure 2020134287
From Equation 1, the voltage V in the circuit equation when there is no pinhole in the container 40 to be inspected can be expressed by Equation 2. Here, j is an imaginary unit.
Figure 2020134287

一方、被検査容器40にピンホールが存在する場合には、容量値Cを考慮しなくなるため、回路式における電圧Vは、数式3で示すことができる。

Figure 2020134287
On the other hand, when the pinhole is present in the container 40 to be inspected, the capacitance value C 1 is not taken into consideration, so that the voltage V in the circuit equation can be expressed by Equation 3.
Figure 2020134287

数式2、3より、高電圧電源26の出力電圧Vが共通である場合、(1/jωC+1/jωC)>(1/jωC)の関係が成り立つ。このため、IとIの関係は、数式4に示す通り、IよりIが大きくなる。よって、電流計測センサ28により電流値を計測することで、被検査容器40におけるピンホールの有無を判定することが可能となる。

Figure 2020134287
From Equations 2 and 3, when the output voltage V of the high-voltage power supply 26 is common, the relationship (1 / jωC 1 + 1 / jωC 2 )> (1 / jωC 2 ) holds. Therefore, the relationship between I g and I p, as shown in Equation 4, from the I p is I g increases. Therefore, by measuring the current value with the current measurement sensor 28, it is possible to determine the presence or absence of a pinhole in the container 40 to be inspected.
Figure 2020134287

本実施形態では図1に示すように、高圧電極30と低圧電極32をそれぞれ、真空チャンバ12の内部に引き込んでいる。高圧電極30と低圧電極32の具体的な配置位置は、被検査容器40の形態と、被検査部位の位置によって定まるが、被検査容器40を基準として、高圧電極30は、被検査部の近傍に位置するように配置し、低圧電極32は、被検査容器40における被検査部以外の部位に接触するように配置する。 In the present embodiment, as shown in FIG. 1, the high-voltage electrode 30 and the low-voltage electrode 32 are each drawn into the vacuum chamber 12. The specific arrangement positions of the high-voltage electrode 30 and the low-voltage electrode 32 are determined by the shape of the container 40 to be inspected and the position of the part to be inspected. The low-voltage electrode 32 is arranged so as to be located in contact with a portion of the container 40 to be inspected other than the portion to be inspected.

[検査方法]
上記のような構成のピンホール検査装置10を用いたピンホール検査について、図4を参照して説明する。まず、真空チャンバ12の測定物投入口(不図示)から、真空チャンバ12内に被検査容器40を搬入し、収容する。被検査容器40は、少なくともその一部が低圧電極32に接触し、被検査部位の近傍に高圧電極30が位置するように配置する(ステップ10)。
[Inspection method]
A pinhole inspection using the pinhole inspection device 10 having the above configuration will be described with reference to FIG. First, the container 40 to be inspected is carried into the vacuum chamber 12 from the object input port (not shown) of the vacuum chamber 12 and accommodated. The container 40 to be inspected is arranged so that at least a part thereof comes into contact with the low-voltage electrode 32 and the high-voltage electrode 30 is located near the site to be inspected (step 10).

被検査容器40を真空チャンバ12の内部に収容して遮蔽した後、真空ポンプ14を可動させて真空チャンバ12における内部領域の真空引きを行う。この時、圧力調整弁22により目標圧力を定めておくことで、被検査容器40のピンホール検査を繰り返し行う場合であっても、近似した条件で検査を行うことができるようになる。 After the container 40 to be inspected is housed inside the vacuum chamber 12 and shielded, the vacuum pump 14 is moved to evacuate the internal region in the vacuum chamber 12. At this time, by setting the target pressure by the pressure adjusting valve 22, even when the pinhole inspection of the container 40 to be inspected is repeatedly performed, the inspection can be performed under similar conditions.

ここで、被検査容器40を真空チャンバ12に収容し、真空引きを行う理由について、図5に示すグラフを参照して説明する。図5に示すグラフは、横軸が気圧P[mmHg]と電極間距離L[cm]の積を示し、縦軸が火花開始電圧[V]を示すものである。図5からは、気圧と電極間距離の積P・Lが小さいほど、火花開始電圧が低くなっている事を読み取ることができる。また、図5によれば、気圧Pと電極間距離Lとの積P・Lが0となる完全真空領域では、火花放電が生じないという事を読み取ることができる。 Here, the reason why the container 40 to be inspected is housed in the vacuum chamber 12 and evacuated will be described with reference to the graph shown in FIG. In the graph shown in FIG. 5, the horizontal axis represents the product of the atmospheric pressure P [mmHg] and the distance between the electrodes L [cm], and the vertical axis represents the spark start voltage [V]. From FIG. 5, it can be read that the smaller the product P / L of the atmospheric pressure and the distance between the electrodes, the lower the spark start voltage. Further, according to FIG. 5, it can be read that spark discharge does not occur in the complete vacuum region where the product P / L of the atmospheric pressure P and the distance L between the electrodes is 0.

図5を参酌すると、電極間距離L(本実施形態では、高圧電極30と被検査容器40との距離)が一定である場合、気圧P[mmHg]が低いほど火花放電の開始電圧が低くなることが解る(ただし、気圧P×電極間距離Lは、1[mmHg・cm]以上)。例えば、大気圧下において電極間距離Lを1[cm]とした場合、図5中にAで示す位置、すなわち気圧Pと電極間距離Lの積P・Lが760[mmHg・cm]となり、この時の火花開始電圧は、約30kVとなる。これに対し、電極間距離Lを保ったまま雰囲気気圧Pを1/10とした場合、気圧Pと電極間距離Lの積P・LはBで示す76[mmHg・cm]となり、火花開始電圧は、約5kVとなる。 Taking FIG. 5 into consideration, when the distance between the electrodes L (in this embodiment, the distance between the high-voltage electrode 30 and the container 40 to be inspected) is constant, the lower the atmospheric pressure P [mmHg], the lower the starting voltage of spark discharge. It can be seen that (however, the atmospheric pressure P × the distance L between the electrodes is 1 [mmHg · cm] or more). For example, when the distance L between the electrodes is 1 [cm] under atmospheric pressure, the position indicated by A in FIG. 5, that is, the product P / L of the pressure P and the distance L between the electrodes is 760 [mmHg · cm]. The spark starting voltage at this time is about 30 kV. On the other hand, when the atmospheric pressure P is set to 1/10 while maintaining the distance L between the electrodes, the product P · L of the barometric pressure P and the distance L between the electrodes is 76 [mmHg · cm] indicated by B, and the spark start voltage. Is about 5 kV.

このため、本実施形態では、被検査容器40を真空チャンバ12内に収容し、真空引きを行うことで、検査時における火花放電の開始電圧を低下させ、火花放電に起因した被検査容器40の損傷を防ぐようにしている(ステップ20)。 Therefore, in the present embodiment, the container 40 to be inspected is housed in the vacuum chamber 12 and vacuumed to reduce the starting voltage of the spark discharge at the time of inspection, and the container 40 to be inspected due to the spark discharge. I try to prevent damage (step 20).

真空チャンバ12における内部領域の真空引きを行った後、高圧電極30と低圧電極32との間に電圧を印加して減圧環境下において被検査容器40のピンホール検査を行う。ピンホール検査は上述したように、電圧印加時における電流値を電流測定センサ28で計測することにより行う。なお、被検査容器40におけるピンホールの有無は、良品計測時における電流値を基準として、計測された電流値が所定の閾値の範囲内にあるか否かによって判断すれば良い(ステップ30)。 After evacuating the internal region of the vacuum chamber 12, a voltage is applied between the high-voltage electrode 30 and the low-voltage electrode 32 to perform a pinhole inspection of the container 40 to be inspected in a reduced pressure environment. As described above, the pinhole inspection is performed by measuring the current value when the voltage is applied with the current measurement sensor 28. The presence or absence of a pinhole in the container 40 to be inspected may be determined based on whether or not the measured current value is within a predetermined threshold value with reference to the current value at the time of measuring a non-defective product (step 30).

ピンホール検査終了後、開放弁16を開放して、真空チャンバ12内の領域を常圧に戻し、真空チャンバ12から被検査容器40を取り出す(ステップ40)。 After the pinhole inspection is completed, the release valve 16 is opened, the region inside the vacuum chamber 12 is returned to normal pressure, and the container 40 to be inspected is taken out from the vacuum chamber 12 (step 40).

[効果]
上記のような方法によるピンホール検査では、従来に比べて低い電圧で火花放電(コロナ放電)を伴う検査を行うことができる。このため、火花放電に起因して被検査容器40が破損する事を防ぐことができる。また、上記のような方法では、真空チャンバ12を真空引きした後、被検査容器40から気体や液体が漏れ出る事を待つ必要が無い。よって、真空リーク型の検査よりも検査時間を短くすることができる。
[effect]
In the pinhole inspection by the above method, it is possible to perform an inspection accompanied by spark discharge (corona discharge) at a lower voltage than the conventional one. Therefore, it is possible to prevent the container 40 to be inspected from being damaged due to the spark discharge. Further, in the above method, it is not necessary to wait for gas or liquid to leak from the container 40 to be inspected after evacuating the vacuum chamber 12. Therefore, the inspection time can be shortened as compared with the vacuum leak type inspection.

[第2実施形態]
次に、図6、図7を参照して、本発明のピンホール検査装置に係る第2実施形態について説明する。本実施形態に係るピンホール検査装置10Aも、その基本的な構成は上述した第1実施形態に係るピンホール検査装置10と同様である。
[Second Embodiment]
Next, a second embodiment according to the pinhole inspection apparatus of the present invention will be described with reference to FIGS. 6 and 7. The basic configuration of the pinhole inspection device 10A according to the present embodiment is the same as that of the pinhole inspection device 10 according to the first embodiment described above.

すなわち、本実施形態に係るピンホール検査装置10Aも、真空チャンバ12と電圧印加型検査手段24とを基本として構成されている。第1実施形態に係るピンホール検査装置10との相違点としては、真空チャンバ12の形態と、低圧電極32の配置にある。 That is, the pinhole inspection device 10A according to the present embodiment is also configured based on the vacuum chamber 12 and the voltage application type inspection means 24. The difference from the pinhole inspection device 10 according to the first embodiment is the form of the vacuum chamber 12 and the arrangement of the low pressure electrode 32.

具体的には、第1実施形態に係るピンホール検査装置10における真空チャンバ12が被検査容器40全体を内部に収容可能な形態としていたのに対し、本実施形態に係る真空チャンバ12は、被検査容器40の一部であって、被検査部位の周囲を覆う形態としている。被検査容器40の一部のみを覆う形態とすることで、真空チャンバ12の内部空間の容積を小さなものとすることができる。このため、被検査容器40全体を収容するタイプの真空チャンバに比べて真空引きに要する時間を短くすることができ、検査時間を短くすることができる。 Specifically, the vacuum chamber 12 in the pinhole inspection device 10 according to the first embodiment has a form in which the entire container 40 to be inspected can be accommodated inside, whereas the vacuum chamber 12 according to the present embodiment is covered. It is a part of the inspection container 40 and covers the periphery of the inspection site. The volume of the internal space of the vacuum chamber 12 can be reduced by covering only a part of the container 40 to be inspected. Therefore, the time required for evacuation can be shortened and the inspection time can be shortened as compared with the type of vacuum chamber that accommodates the entire container 40 to be inspected.

このような構成の真空チャンバ12は基本的に、被検査容器40の形態に合わせた専用品となる。例えば図6に示すようなアンプルを被検査容器40とし、被検査部位をアンプルの先端部とする場合、真空チャンバ12は、図6に示すように、側方に開口部を有するケーシングから成るようにすると良い。ケーシングの側方に設けた開口部は、アンプルの先端部を挿入する箇所である。アンプルとの接触部には、遮蔽当接部材12aを配置することが望ましい。遮蔽当接部材12aとは、シリコンゴムやゴムなど、接触部に沿って変形し、密閉性を確保可能な柔軟性を備えた部材であれば良い。このような構成とすることで、被検査容器40へ真空チャンバ12を押し付けた際、被検査容器40の接触部を傷つける虞も無い。 The vacuum chamber 12 having such a configuration is basically a dedicated product that matches the form of the container 40 to be inspected. For example, when the ampoule as shown in FIG. 6 is the container 40 to be inspected and the part to be inspected is the tip of the ampoule, the vacuum chamber 12 is composed of a casing having an opening on the side as shown in FIG. It is good to set it to. The opening provided on the side of the casing is a place where the tip of the ampoule is inserted. It is desirable to arrange the shielding contact member 12a at the contact portion with the ampoule. The shielding contact member 12a may be any member such as silicon rubber or rubber having flexibility that can be deformed along the contact portion to ensure airtightness. With such a configuration, when the vacuum chamber 12 is pressed against the container 40 to be inspected, there is no risk of damaging the contact portion of the container 40 to be inspected.

真空チャンバ12をこのような構成とする場合、真空チャンバ12内に引き込む電極は、高圧電極30のみとすることができる。被検査容器40であるアンプルに接触することとなる低圧電極32は、真空環境下に置かなくとも良く、その分真空チャンバ12を小型化することができる。 When the vacuum chamber 12 has such a configuration, the high-voltage electrode 30 can be the only electrode that is drawn into the vacuum chamber 12. The low-pressure electrode 32 that comes into contact with the ampoule, which is the container 40 to be inspected, does not have to be placed in a vacuum environment, and the vacuum chamber 12 can be miniaturized accordingly.

このような構成のピンホール検査装置10Aでは、ピンホール検査を行う際、被検査容器40に真空チャンバ12を押し付けるという行為が必要となる。このため、真空チャンバ12と被検査容器40との少なくとも一方に移動手段を設け、両者を自動で接触させることが可能な構成とすると良い。自動の移動手段により真空チャンバ12と被検査容器40とを接触させる構成とすることで、被検査容器40に対する真空チャンバ12の押し付け度合いにバラつきが生じ難くなるからである。 In the pinhole inspection device 10A having such a configuration, when performing a pinhole inspection, it is necessary to press the vacuum chamber 12 against the container 40 to be inspected. Therefore, it is preferable to provide a moving means in at least one of the vacuum chamber 12 and the container 40 to be inspected so that the two can be automatically brought into contact with each other. This is because the vacuum chamber 12 and the container 40 to be inspected are brought into contact with each other by the automatic moving means, so that the degree of pressing of the vacuum chamber 12 against the container 40 to be inspected is less likely to vary.

図6に示す例では、真空チャンバ12の上部に移動レール34を設け、移動レール34と真空チャンバ12との間に移動レール34に沿って移動可能な移動支柱36を設けることで、図7に示すように、移動レール34に沿って真空チャンバ12を移動させることを可能な構成としている。また、被検査容器40を載置する載置台38には、搬送機能を設け、例えば図中手前側から奥側へ向けて被検査容器40を搬送可能な構成とすると良い。 In the example shown in FIG. 6, a moving rail 34 is provided above the vacuum chamber 12, and a moving column 36 that can move along the moving rail 34 is provided between the moving rail 34 and the vacuum chamber 12, so that FIG. 7 shows. As shown, the vacuum chamber 12 can be moved along the moving rail 34. Further, the mounting table 38 on which the container 40 to be inspected is placed may be provided with a transport function so that the container 40 to be inspected can be transported from the front side to the back side in the drawing, for example.

このような構成とすることで、載置台38に乗せられた被検査容器40が真空チャンバ12の配置位置に搬送された後、真空チャンバ12を移動レール34に沿って移動させ、被検査容器40に押し付けることができる。 With such a configuration, after the container 40 to be inspected placed on the mounting table 38 is conveyed to the arrangement position of the vacuum chamber 12, the vacuum chamber 12 is moved along the moving rail 34, and the container 40 to be inspected is moved. Can be pressed against.

[検査方法]
このような構成のピンホール検査装置10Aを用いたピンホール検査も、その基本的な方法は、上述した第1実施形態に係るピンホール検査装置10を用いたピンホール検査と同様である。相違点としては、第1実施形態に係るピンホール検査装置10では、被検査容器40全体を真空チャンバ12内に収容していたのに対し、本実施形態に係るピンホール検査装置10Aでは、被検査容器40の一部に真空チャンバ12を押し付けて真空領域を生じさせる点にある。
[Inspection method]
The basic method of the pinhole inspection using the pinhole inspection device 10A having such a configuration is the same as the pinhole inspection using the pinhole inspection device 10 according to the first embodiment described above. The difference is that the pinhole inspection device 10 according to the first embodiment accommodates the entire container 40 to be inspected in the vacuum chamber 12, whereas the pinhole inspection device 10A according to the present embodiment is subject to inspection. The point is that the vacuum chamber 12 is pressed against a part of the inspection container 40 to create a vacuum region.

これにより、真空引きに要する時間を短縮することができ、ピンホール検査に要する時間を短縮することができる。その他の方法に関しては、上述した第1実施形態に係るピンホール検査装置10による検査と同様である。 As a result, the time required for evacuation can be shortened, and the time required for pinhole inspection can be shortened. Other methods are the same as the inspection by the pinhole inspection device 10 according to the first embodiment described above.

10,10A………ピンホール検査装置、12………真空チャンバ、12a………遮蔽当接部材、14………真空ポンプ、16………開放弁、18………真空計、20………真空弁、22………圧力調整弁、24………電圧印加型検査手段、26………高電圧電源、28………電流測定センサ、30………高圧電極、32………低圧電極、34………移動レール、36………移動支柱、38………載置台、40………被検査容器。 10, 10A ……… Pinhole inspection device, 12 ……… Vacuum chamber, 12a ……… Shielding contact member, 14 ……… Vacuum pump, 16 ……… Open valve, 18 ……… Vacuum gauge, 20… …… Vacuum valve, 22 ………… Pressure control valve, 24 ………… Voltage application type inspection means, 26 ………… High voltage power supply, 28 ………… Current measurement sensor, 30 ………… High voltage electrode, 32 ………… Low-voltage electrode, 34 ……… Moving rail, 36 ……… Moving support, 38 ……… Mounting stand, 40 ……… Container to be inspected.

Claims (3)

被検査容器に電圧を印加してピンホール検査を行う方法であって、
前記被検査容器全体、または前記被検査容器における被検査部位を減圧環境下に配置し、
前記減圧環境下に位置している前記被検査容器における前記被検査部位の近傍に高圧電極を配置すると共に、前記被検査部位以外の部位に低圧電極を接触させて、
前記高圧電極と前記低圧電極との間に電圧を印加することを特徴とするピンホール検査方法。
It is a method of applying a voltage to the container to be inspected to perform a pinhole inspection.
The entire container to be inspected or the part to be inspected in the container to be inspected is placed in a reduced pressure environment.
A high-voltage electrode is placed in the vicinity of the inspected portion of the container to be inspected located under the reduced pressure environment, and the low-voltage electrode is brought into contact with a portion other than the inspected portion.
A pinhole inspection method comprising applying a voltage between the high voltage electrode and the low voltage electrode.
前記減圧環境における気圧P[mmHg]と、前記高圧電極と前記被検査部位との距離L[cm]との積P・L[mmHg・cm]が、
1<P・L<760
の範囲内にあることを特徴とする請求項1に記載のピンホール検査方法。
The product PL [mmHg · cm] of the atmospheric pressure P [mmHg] in the depressurized environment and the distance L [cm] between the high pressure electrode and the site to be inspected is
1 <PL <760
The pinhole inspection method according to claim 1, wherein the pinhole inspection method is within the range of.
被検査容器に電圧を印加してピンホール検査を行う装置であって、
前記被検査容器の全部、あるいは前記被検査容器における被検査部位を覆う真空チャンバと、
少なくとも高圧電極と低圧電極、及び高圧電源を有する電圧印加型検査手段と、を備え、
前記高圧電極を前記真空チャンバ内であって、前記被検査部位の近傍に位置する位置に配置すると共に、前記低圧電極を前記被検査容器における前記被検査部位以外の部位に接触可能な構成としたことを特徴とするピンホール検査装置。
A device that applies a voltage to the container to be inspected to perform pinhole inspection.
A vacuum chamber that covers the entire container to be inspected or the part to be inspected in the container to be inspected.
It is provided with at least a high voltage electrode, a low voltage electrode, and a voltage application type inspection means having a high voltage power supply.
The high-voltage electrode is arranged in the vacuum chamber at a position located near the site to be inspected, and the low-voltage electrode is configured to be able to contact a site other than the site to be inspected in the container to be inspected. A pinhole inspection device characterized by this.
JP2019027201A 2019-02-19 2019-02-19 Pinhole inspection method and pinhole inspection device Active JP7215724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027201A JP7215724B2 (en) 2019-02-19 2019-02-19 Pinhole inspection method and pinhole inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027201A JP7215724B2 (en) 2019-02-19 2019-02-19 Pinhole inspection method and pinhole inspection device

Publications (2)

Publication Number Publication Date
JP2020134287A true JP2020134287A (en) 2020-08-31
JP7215724B2 JP7215724B2 (en) 2023-01-31

Family

ID=72262881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027201A Active JP7215724B2 (en) 2019-02-19 2019-02-19 Pinhole inspection method and pinhole inspection device

Country Status (1)

Country Link
JP (1) JP7215724B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104846A (en) * 1977-02-24 1978-09-12 Fujitsu Ltd Leakage check method for reed switch
JPS62115383A (en) * 1985-11-14 1987-05-27 Shinko Electric Co Ltd Method of testing insulation defect
JPH08159912A (en) * 1994-12-05 1996-06-21 Fuji Electric Co Ltd Airtightness test method
US20020193951A1 (en) * 2001-06-15 2002-12-19 Tomoyuki Maruyama Leakage inspection method for sealed container and apparatus for carrying out the method
JP2004184079A (en) * 2002-11-29 2004-07-02 Gunze Ltd Pin hole inspection device and pin hole inspection method
JP2012026801A (en) * 2010-07-21 2012-02-09 Jiyooben Denki Kk Inspection apparatus and inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104846A (en) * 1977-02-24 1978-09-12 Fujitsu Ltd Leakage check method for reed switch
JPS62115383A (en) * 1985-11-14 1987-05-27 Shinko Electric Co Ltd Method of testing insulation defect
JPH08159912A (en) * 1994-12-05 1996-06-21 Fuji Electric Co Ltd Airtightness test method
US20020193951A1 (en) * 2001-06-15 2002-12-19 Tomoyuki Maruyama Leakage inspection method for sealed container and apparatus for carrying out the method
JP2004184079A (en) * 2002-11-29 2004-07-02 Gunze Ltd Pin hole inspection device and pin hole inspection method
JP2012026801A (en) * 2010-07-21 2012-02-09 Jiyooben Denki Kk Inspection apparatus and inspection method

Also Published As

Publication number Publication date
JP7215724B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
JP5375745B2 (en) Test apparatus and test method
US6635379B2 (en) Battery sealing inspection method
US9841345B2 (en) Detection method and facility for checking sealed products for leaks
CN103998910B (en) Method for carrying out leak detection on non-rigid sample to be tested
EP2603783B1 (en) Method and apparatus for leak testing containers
JP3688083B2 (en) Seal inspection method and apparatus
JP6556226B2 (en) Apparatus and method for calibrating a leak detection film chamber
JP2018520363A (en) Method for controlling leakage resistance of sealed product and leakage detection device
US20220065936A1 (en) Battery leak test device and methods
GB2194640A (en) Hermetically sealed package tester
JP4167900B2 (en) Multilayer composite and test method and apparatus for containers made therefrom
JPS60259923A (en) Method of measuring pressure during vacuum packaging
JP2020134287A (en) Method and device for inspecting pinhole
JP2010237045A (en) Airtightness inspection method of gas sensor
JP2015132566A (en) Airtightness inspection apparatus for thin secondary battery, and airtightness inspection method
JP4402427B2 (en) Helium gas leak detector
US11867743B2 (en) Test device for electrical lines
JPH03150440A (en) Inspection method for hermetically sealed container
CN113324709A (en) Leak inspection method and leak inspection apparatus
CN108931343A (en) A kind of method of inspection of products air tightness
JP4002148B2 (en) Heat pipe leak inspection method and inspection apparatus therefor
JP2794986B2 (en) Fuel tank airtightness inspection method
RU2772763C1 (en) Method for conducting thermal vacuum tests during ground testing of spacecraft for operability
SU905684A1 (en) Method of checking article closed housing fluid tightness
GB1598426A (en) Leaktesting sealed containers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230112

R150 Certificate of patent or registration of utility model

Ref document number: 7215724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150