JP2020131481A - Method for manufacturing reinforced band material of spiral tube band member - Google Patents

Method for manufacturing reinforced band material of spiral tube band member Download PDF

Info

Publication number
JP2020131481A
JP2020131481A JP2019025051A JP2019025051A JP2020131481A JP 2020131481 A JP2020131481 A JP 2020131481A JP 2019025051 A JP2019025051 A JP 2019025051A JP 2019025051 A JP2019025051 A JP 2019025051A JP 2020131481 A JP2020131481 A JP 2020131481A
Authority
JP
Japan
Prior art keywords
strip
thickness
bending
layer
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019025051A
Other languages
Japanese (ja)
Inventor
将司 蛭田
Shoji Hiruta
将司 蛭田
克則 吉野
Katsunori Yoshino
克則 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019025051A priority Critical patent/JP2020131481A/en
Publication of JP2020131481A publication Critical patent/JP2020131481A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

To ensure a required thickness of a resin layer on a surface side of a bent part which is convex when a reinforced band material of a spiral tube band member is bent and formed.SOLUTION: In a coating step, a resin layer 30 is coated on a surface of a metal band plate 29X that serves as a reinforced band material 20 in a band member 3. By bending planned bending parts 25x, 26x, 27x of the coated band plate 29X, the reinforced band material 20 is formed into a predetermined sectional shape. In the coating step, thickness of resin layers 35a, 36b, 37b in convex surface parts 25xa, 26xb, 27xb of the planned bending parts 25x, 26x, 27x is formed to be thicker than thickness of resin layers 38a, 38b on flatly retained surface parts 28xa, 28xb on a same surface side as the convex surface parts of the band plate 29X.SELECTED DRAWING: Figure 5

Description

本発明は、螺旋管となる帯状部材における補強帯材を製造する方法に関し、特に老朽化した既設の埋設管の内周にライニングされて更生管となる螺旋管用の帯状部材における補強帯材の製造方法に関する。 The present invention relates to a method for manufacturing a reinforcing band material in a band-shaped member to be a spiral pipe, and particularly to manufacture a reinforcing band material in a band-shaped member for a spiral pipe to be a rehabilitated pipe lined on the inner circumference of an existing aging buried pipe. Regarding the method.

老朽化した下水道管等の既設埋設管の内周面に帯状部材を螺旋状にライニングして更生する方法は公知である(特許文献1等参照)。例えば特許文献1に記載の帯状部材は、ポリ塩化ビニル(PVC)などの合成樹脂製の主帯材と、その裏側部(螺旋管状に成形されたとき外周側を向く側部)に付設された補強帯材とを備えている。補強帯材は、鋼製の帯板を主材とし、その表面全体が高耐久化のために樹脂層で覆われている。該補強帯材が、例えば概略W字形状の所定断面形状に成形されている。 A method of spirally lining a band-shaped member on the inner peripheral surface of an existing buried pipe such as an aged sewer pipe to rehabilitate it is known (see Patent Document 1 and the like). For example, the strip-shaped member described in Patent Document 1 is attached to a main strip made of synthetic resin such as polyvinyl chloride (PVC) and a back side portion thereof (a side portion facing the outer peripheral side when molded into a spiral tubular shape). It is equipped with a reinforcing band material. The main material of the reinforcing strip is a steel strip, and the entire surface thereof is covered with a resin layer for high durability. The reinforcing strip is formed into, for example, a substantially W-shaped predetermined cross-sectional shape.

特開2009−23296号公報Japanese Unexamined Patent Publication No. 2009-23296

補強帯材の製造方法としては、例えば主材の鋼製帯板の表面全体(両側面及び両端面)に樹脂を共押出しよって被覆した後、ロールフォーミング等の曲げ成形によって所定の断面形状を付与する。前記曲げ成形時には、曲げ部の凸となる面側の樹脂層が伸ばされて薄肉になる。このため、所要の樹脂厚さを確保できないことが考えられる。対策として、補強帯材の表面全体の樹脂層の厚さを大きくした場合、樹脂層の材料費が嵩むうえに、補強帯材の厚さが全体的に増すためにロールフォーミングによる曲げ成形性が悪化するおそれがある。更には螺旋管に製管する際の施工性が悪化することも考えられる。
本発明は、かかる事情に鑑み、螺旋管用帯状部材の補強帯材を曲げ成形した際に曲げ部の凸となる面側における樹脂層の所要厚さを、樹脂材料費上昇、曲げ成形性悪化、製管施工性悪化などを招くことなく確保できるようにすることを目的とする。
As a method for manufacturing the reinforcing strip, for example, the entire surface (both sides and both ends) of the main steel strip is covered with resin by co-extrusion, and then a predetermined cross-sectional shape is given by bending molding such as roll forming. To do. During the bending molding, the resin layer on the convex surface side of the bent portion is stretched to become thin. Therefore, it is conceivable that the required resin thickness cannot be secured. As a countermeasure, if the thickness of the resin layer on the entire surface of the reinforcing strip is increased, the material cost of the resin layer will increase and the thickness of the reinforcing strip will increase as a whole, resulting in bending formability by roll forming. It may get worse. Further, it is conceivable that the workability when manufacturing a spiral pipe is deteriorated.
In view of such circumstances, the present invention determines the required thickness of the resin layer on the convex surface side of the bent portion when the reinforcing strip member of the spiral pipe strip-shaped member is bent-molded, which increases the resin material cost and deteriorates the bend-formability. The purpose is to ensure that the pipe-making workability is not deteriorated.

前記課題を解決するため、本発明は、 螺旋管となるべき帯状部材における合成樹脂製の主帯材に付設される所定断面形状の補強帯材を製造する方法であって、
金属製の帯板の表面に樹脂層を被覆する被覆工程と、
前記被覆後の帯板の曲げ予定部を曲げることによって前記補強帯材を成形する曲げ成形工程と、を含み、
前記被覆工程において、前記曲げ予定部の凸となる面部分における前記樹脂層の厚さを、前記帯板の前記凸となる面部分と同じ面側の平坦に保持される面部分における前記樹脂層の厚さより大きくすることを特徴とする。
前記曲げ成形工程によって、前記凸となる面部分上の樹脂層が幅方向に伸ばされ厚さが小さくなる。該凸となる面部分上の樹脂層は被覆工程において厚肉に形成されているから、曲げ成形によって厚さが小さくなっても、所要厚さが確保される。前記凸となる面部分以外の部分の樹脂層は薄肉にすることで、樹脂材料費の上昇等が抑えられる。
前記凸となる面部分における前記樹脂層の厚さが、前記平坦に保持される面部分における前記樹脂層の厚さの1.1倍〜2倍であることが好ましい。
In order to solve the above problems, the present invention is a method for manufacturing a reinforcing strip having a predetermined cross-sectional shape to be attached to a main strip made of synthetic resin in a strip member to be a spiral tube.
A coating process that coats the surface of a metal strip with a resin layer,
Including a bending forming step of forming the reinforcing strip material by bending a bending portion of the strip after coating.
In the coating step, the thickness of the resin layer on the convex surface portion of the planned bending portion is held flat on the same surface side as the convex surface portion of the strip. It is characterized by making it larger than the thickness of.
By the bending molding step, the resin layer on the convex surface portion is stretched in the width direction and the thickness is reduced. Since the resin layer on the convex surface portion is formed thick in the coating step, the required thickness is secured even if the thickness is reduced by bending molding. By thinning the resin layer in the portion other than the convex surface portion, an increase in resin material cost and the like can be suppressed.
The thickness of the resin layer in the convex surface portion is preferably 1.1 to 2 times the thickness of the resin layer in the surface portion held flat.

本発明によれば、螺旋管用帯状部材の補強帯材を曲げ成形した際に曲げ部の凸となる面側における樹脂層の所要厚さを確保できる。かつ樹脂材料費上昇、曲げ成形性悪化、製管施工性悪化などを回避できる。 According to the present invention, it is possible to secure the required thickness of the resin layer on the surface side where the bent portion becomes convex when the reinforcing strip material of the spiral pipe strip-shaped member is bent and molded. Moreover, it is possible to avoid an increase in resin material cost, deterioration in bending moldability, deterioration in pipe making workability, and the like.

図1は、本発明の一実施形態に係る帯状部材の断面図である。FIG. 1 is a cross-sectional view of a strip-shaped member according to an embodiment of the present invention. 図2は、前記帯状部材から製管されて既設管の内周にライニングされた更生管(螺旋管)の一部分の断面図である。FIG. 2 is a cross-sectional view of a part of a rehabilitation pipe (spiral pipe) made from the strip-shaped member and lined on the inner circumference of the existing pipe. 図3は、前記帯状部材における補強帯材の製造装置の概略構成を示す斜視図である。FIG. 3 is a perspective view showing a schematic configuration of an apparatus for manufacturing a reinforcing strip material in the strip-shaped member. 図4は、前記製造装置における押出成形金型を、図3のIV−IV線に沿って示す断面図である。FIG. 4 is a cross-sectional view showing an extrusion mold in the manufacturing apparatus along the line IV-IV of FIG. 図5(a)は、前記補強帯材における帯板を図3のVa−Va線に沿って示す断面図である。図5(b)は、樹脂被覆後及び曲げ成形前の帯板を図3のVb−Vb線に沿って示す断面図である。FIG. 5A is a cross-sectional view showing a strip of the reinforcing strip along the Va-Va line of FIG. FIG. 5B is a cross-sectional view showing a strip after resin coating and before bending and forming along the Vb-Vb line of FIG. 図6は、図3のVI−VI線に沿う、前記補強帯材の断面図である。FIG. 6 is a cross-sectional view of the reinforcing strip along the VI-VI line of FIG. 図7は、前記補強帯材における幅方向の中央部より図6の紙面左側の3つの曲げ部をそれぞれ拡大して示す断面図である。FIG. 7 is a cross-sectional view showing each of the three bent portions on the left side of the paper surface of FIG. 6 enlarged from the central portion in the width direction of the reinforcing strip. 図8は、本発明の他の実施形態に係る補強帯材の断面図である。FIG. 8 is a cross-sectional view of the reinforcing strip according to another embodiment of the present invention.

以下、本発明の実施形態を図面にしたがって説明する。
図1は、本実施形態に係る帯状部材3を示したものである。帯状部材3は、一定断面形状を有して、図1の紙面と直交する方向へ長尺状に延びている。
図2に示すように、帯状部材3は、老朽化した既設の埋設管1の更生に用いられる。更生対象の埋設管1は例えば下水道管である。なお、埋設管1は、下水道管に限られず、上水道管、農業用水管、水力発電用導水管、ガス管等であってもよい。帯状部材3が、埋設管1の内周に沿って螺旋状にライニングされることによって更生管2(螺旋管)となる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a strip-shaped member 3 according to the present embodiment. The strip-shaped member 3 has a constant cross-sectional shape and extends in a long shape in a direction orthogonal to the paper surface of FIG.
As shown in FIG. 2, the strip-shaped member 3 is used for rehabilitation of an aging existing buried pipe 1. The buried pipe 1 to be rehabilitated is, for example, a sewer pipe. The buried pipe 1 is not limited to a sewer pipe, and may be a water pipe, an agricultural water pipe, a hydroelectric power guiding pipe, a gas pipe, or the like. The strip-shaped member 3 is spirally lined along the inner circumference of the buried pipe 1 to form a rehabilitation pipe 2 (spiral pipe).

図1に示すように、帯状部材3は、主帯材10と、補強帯材20を含む。主帯材10の材質は、ポリ塩化ビニル等の合成樹脂である。主帯材10は、前記合成樹脂の押出成形によって一定断面に形成されている。
図2に示すように、帯状部材3からなる螺旋管状の更生管2においては、螺旋状に巻回された主帯材10の両側縁の一周違いに隣接する嵌合部13,14どうしが凹凸嵌合されている。
As shown in FIG. 1, the band-shaped member 3 includes a main band member 10 and a reinforcing band member 20. The material of the main band material 10 is a synthetic resin such as polyvinyl chloride. The main strip 10 is formed into a constant cross section by extrusion molding of the synthetic resin.
As shown in FIG. 2, in the spiral tubular rehabilitation tube 2 made of the strip-shaped member 3, the fitting portions 13 and 14 adjacent to each other on both side edges of the spirally wound main strip 10 are uneven. It is fitted.

図1に示すように、主帯材10の裏側部(螺旋管2に製管されたとき外周側(図2の上側)を向く側部)に補強帯材20が付設されている。補強帯材20は、所定の断面形状に形成され、主帯材10と平行に図1の紙面直交方向へ延びている。 As shown in FIG. 1, a reinforcing strip 20 is attached to the back side portion of the main strip 10 (the side facing the outer peripheral side (upper side in FIG. 2) when the spiral pipe 2 is manufactured). The reinforcing strip 20 is formed in a predetermined cross-sectional shape and extends parallel to the main strip 10 in the direction orthogonal to the paper surface of FIG.

図6に示すように、例えば補強帯材20は、天板部21と、一対の側板部22と、一対の底板部23と、一対の斜板部24を有している。一対の底板部23が主帯材10の裏側面にそれぞれ宛がわれている。これら底板部23の互いに反対側を向く端部からそれぞれ斜板部24が斜め外側へ向けて突出されている。各斜板部24の端部が、主帯材10の係止部15,16に係止されている。一対の底板部23の互いに向き合う端部から裏側へ側板部22がそれぞれ立ち上がっている。一対の側板部22の裏側への突出端部どうし間に天板部21が架け渡されている。 As shown in FIG. 6, for example, the reinforcing strip 20 has a top plate portion 21, a pair of side plate portions 22, a pair of bottom plate portions 23, and a pair of swash plate portions 24. A pair of bottom plate portions 23 are addressed to the back side surfaces of the main strip member 10, respectively. The swash plate portions 24 project diagonally outward from the ends of the bottom plate portions 23 facing opposite sides. The ends of the swash plate portions 24 are locked to the locking portions 15 and 16 of the main band member 10. Side plate portions 22 stand up from the end portions of the pair of bottom plate portions 23 facing each other to the back side. The top plate portion 21 is bridged between the protruding ends of the pair of side plate portions 22 toward the back side.

天板部21と各側板部22との間には、裏側(図6において上方)から見て山折りにほぼ90°曲げられた山折り曲げ部25が形成されている。
側板部22と底板部23の間には、裏側から見て谷折りにほぼ90°曲げられた谷折り曲げ部26が形成されている。
底板部23と斜板部24との間には、裏側から見て谷折りに90°より小さい角度曲げられた谷折り曲げ部27が形成されている。
補強帯材20における前記曲げ部25,26,27を除く部分は、平坦部28となっている。
Between the top plate portion 21 and each side plate portion 22, a mountain fold portion 25 bent by approximately 90 ° in a mountain fold when viewed from the back side (upper in FIG. 6) is formed.
Between the side plate portion 22 and the bottom plate portion 23, a valley fold portion 26 bent by approximately 90 ° in a valley fold when viewed from the back side is formed.
Between the bottom plate portion 23 and the swash plate portion 24, a valley fold portion 27 that is bent at an angle smaller than 90 ° is formed in a valley fold when viewed from the back side.
The portion of the reinforcing strip 20 excluding the bent portions 25, 26, and 27 is a flat portion 28.

図6に示すように、補強帯材20は、主材である帯板29と、樹脂層30を含む。帯板29は、スチール(金属)によって構成されている。帯板29の厚さは、好ましくは0.5mm〜2mm程度、より好ましくは0.8mm〜1.6mm程度である。図7に示すように、各曲げ部25,26,27における帯板29の肉厚中心(図7の一点鎖線)の曲率半径R25,R26,R27は、それぞれ最小でも1mm程度が好ましい。 As shown in FIG. 6, the reinforcing strip 20 includes a strip 29 as a main material and a resin layer 30. The strip 29 is made of steel (metal). The thickness of the strip 29 is preferably about 0.5 mm to 2 mm, more preferably about 0.8 mm to 1.6 mm. As shown in FIG. 7, the radii of curvature R 25 , R 26 , and R 27 of the thickness center of the strip 29 (the alternate long and short dash line in FIG. 7) at each of the bent portions 25 , 26 , and 27 are preferably at least about 1 mm, respectively. ..

図6に示すように、帯板29の表面全体(両側面29a,29b及び両端面29e)が樹脂層30によって被覆されている。樹脂層30は、伸び率20%以上の樹脂によって構成されている。かかる樹脂としては、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)が挙げられる。特にPPからなる樹脂層30には、オレフィン系熱可塑性エラストマーが添加されていることが好ましい。これによって、伸び率を変えることができる。
樹脂層30が、変性ポリエチレン、変性ポリプロピレンなどの接着性の変性ポリオレフィンを含んでいてもよい。変性ポリオレフィンとしては、例えば三井化学株式会社製アドマー(登録商標)が挙げられる。
As shown in FIG. 6, the entire surface of the strip 29 (both side surfaces 29a, 29b and both end surfaces 29e) is covered with the resin layer 30. The resin layer 30 is made of a resin having an elongation rate of 20% or more. Examples of such a resin include linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and polypropylene (PP). In particular, it is preferable that an olefin-based thermoplastic elastomer is added to the resin layer 30 made of PP. Thereby, the growth rate can be changed.
The resin layer 30 may contain an adhesive modified polyolefin such as modified polyethylene or modified polypropylene. Examples of the modified polyolefin include Admer (registered trademark) manufactured by Mitsui Chemicals, Inc.

図6に示すように、樹脂層30は、外側層部31と内側層部32を含む。外側層部31は、帯板29における裏側を向く外側面29aに被さっている。内側層部32は、帯板29における主帯材10側を向く内側面29bに被さっている。
詳しくは、図7に示すように、外側層部31は、平坦部28における外側面29aに被さる外側平坦層部分38aと、山折り曲げ部25の凸面部分25aに被さる山折り凸面層部分35aと、谷折り曲げ部26,27の凹面部分26a,27aにそれぞれ被さる谷折り凹面層部分36a,37aを含む。
As shown in FIG. 6, the resin layer 30 includes an outer layer portion 31 and an inner layer portion 32. The outer layer portion 31 covers the outer surface 29a of the strip 29 facing the back side. The inner layer portion 32 covers the inner side surface 29b of the strip 29 facing the main strip 10 side.
Specifically, as shown in FIG. 7, the outer layer portion 31 includes an outer flat layer portion 38a that covers the outer surface 29a of the flat portion 28, and a mountain fold convex layer portion 35a that covers the convex portion 25a of the mountain fold portion 25. Includes valley-folded concave layer portions 36a, 37a that cover the concave-faced portions 26a, 27a of the valley-folded portions 26, 27, respectively.

内側層部32は、平坦部28における内側面29bに被さる内側平坦層部分38bと、山折り曲げ部25の凹面部分25bに被さる山折り凹面層部分35bと、谷折り曲げ部26,27の凸面部分26b,27bにそれぞれ被さる谷折り凸面層部分36b,37bを含む。 The inner layer portion 32 includes an inner flat layer portion 38b that covers the inner side surface 29b of the flat portion 28, a mountain fold concave layer portion 35b that covers the concave portion 25b of the mountain fold portion 25, and a convex portion 26b of the valley fold portions 26 and 27. , 27b include valley fold convex layer portions 36b and 37b, respectively.

外側層部31の厚さは、内側層部32の厚さより大きい。好ましくは、外側層部31の所要厚さは、傷しろの確保と腐食防止機能のために1.0mm〜1.5mm程度である。外側層部31における平坦層部分38a及び凹面層部分36a,37aはもちろんのこと、凸面層部分35aにおいても、前記所要厚さが満たされている。
内側層部32の所要厚さは、腐食防止機能を考慮すると、好ましくは0.5mm程度以上、外側層部31の厚さ以下である。内側層部32における平坦層部分38b及び凹面層部分35bはもちろんのこと、凸面層部分36b,37bにおいても、前記所要厚さが満たされている。
The thickness of the outer layer portion 31 is larger than the thickness of the inner layer portion 32. Preferably, the required thickness of the outer layer portion 31 is about 1.0 mm to 1.5 mm in order to secure a scratch margin and prevent corrosion. The required thickness is satisfied not only in the flat layer portion 38a and the concave layer portions 36a and 37a in the outer layer portion 31 but also in the convex layer portion 35a.
The required thickness of the inner layer portion 32 is preferably about 0.5 mm or more and less than or equal to the thickness of the outer layer portion 31 in consideration of the corrosion prevention function. The required thickness is satisfied not only in the flat layer portion 38b and the concave layer portion 35b in the inner layer portion 32 but also in the convex layer portions 36b and 37b.

補強帯材20は、次のようにして作製される。
<鋼製帯板29X>
図3に示すように、帯板29となるべき鋼製帯板29X(ブランク)をロール状の帯板巻回体41から繰り出す。図5(a)に示すように、この段階の帯板29Xの断面は平坦である。帯板29Xには、山折り曲げ部25となるべき山折り曲げ予定部25x、及び谷折り曲げ部25,26,27となるべき谷折り曲げ予定部26x,27xが設定されている。帯板29Xにおける曲げ予定部25x,26x,27xを除く部分は、平坦部28となるべき非曲げ予定部28xである。非曲げ予定部28xは、平坦面に保持される外側平坦面部分28xa及び内側平坦面部分28xbを含む。
The reinforcing strip 20 is produced as follows.
<Steel strip 29X>
As shown in FIG. 3, the steel strip 29X (blank) to be the strip 29 is fed out from the roll-shaped strip winding body 41. As shown in FIG. 5A, the cross section of the strip 29X at this stage is flat. The strip 29X is set with a mountain bending portion 25x that should be a mountain bending portion 25 and a valley bending planned portion 26x, 27x that should be a valley bending portion 25, 26, 27. The portion of the strip 29X excluding the planned bending portions 25x, 26x, and 27x is the non-scheduled bending portion 28x that should be the flat portion 28. The non-bending plan portion 28x includes an outer flat surface portion 28xa and an inner flat surface portion 28xb held on the flat surface.

<被覆工程>
図3に示すように、前記帯板29Xが、補強帯材製造装置40の共押出機からなる被覆処理部42に導入される。被覆処理部42においては樹脂層30の原料樹脂30xが供給され、共押出成形によって帯板29Xの表面29b,29a,29e全体に樹脂層30が被覆される(図5(b))。
帯板29Xの外側面29aには、外側層部31が被覆される。内側面29bには、内側層部32が被覆される。
<Coating process>
As shown in FIG. 3, the strip 29X is introduced into a coating treatment section 42 made of a coextruder of the reinforcing strip manufacturing apparatus 40. The raw material resin 30x of the resin layer 30 is supplied to the coating treatment section 42, and the resin layer 30 is coated on the entire surfaces 29b, 29a, 29e of the strip 29X by coextrusion molding (FIG. 5B).
The outer layer portion 31 is coated on the outer surface 29a of the strip 29X. The inner side surface 29b is covered with the inner layer portion 32.

図4に示すように、被覆処理部42の押出成形金型43における外側層部31用の型面43aには、山折り凸面層部分35aに対応する箇所に凹部45が形成されている。押出成形金型43における内側層部32用の型面43bには、谷折り凸面層部分36b,37bに対応する箇所にそれぞれ凹部46,47が形成されている。 As shown in FIG. 4, a recess 45 is formed in a portion corresponding to the mountain fold convex layer portion 35a on the mold surface 43a for the outer layer portion 31 of the extrusion molding die 43 of the coating treatment portion 42. The mold surface 43b for the inner layer portion 32 of the extrusion mold 43 is formed with recesses 46 and 47 at locations corresponding to the valley fold convex surface layer portions 36b and 37b, respectively.

これによって、図5(b)に示すように、被帯板29Xの曲げ予定部25x,26x,27xにおける凸となる面部分25xa,26xb,27xbの樹脂層30の厚さが、前記凸となる面部分25xa,26xb,27xbと同じ面29a,29b側の平坦に保持される面部分28xa,28xbにおける樹脂層30の厚さより大きくなる。すなわち、山折り曲げ予定部25xにおける凸面層部分35aの厚さが、外側平坦面部分28xaにおける平坦層部分38aの厚さより大きくなり、ひいては外側層部31の前記所要厚さより大きくなる。谷折り曲げ予定部26x,27xにおける凸面層部分36b,37bの厚さが、内側平坦面部分28xbにおける平坦層部分38bの厚さより大きくなり、ひいては内側層部32の前記所要厚さより大きくなる。
樹脂層30の全体を厚くするのではなく、後記曲げ成形により薄くなる凸面層部分35a,36b,37bだけを部分的に厚くすることによって、樹脂層30の樹脂材料費の上昇を抑えることができる。
被覆工程時における凸面層部分35a,36b,37bの厚さは、同一面側の平坦層部分38a,38bの厚さの1.1倍〜2倍程度が好ましく、1.5倍程度がより好ましい。例えば、平坦層部分38bの厚さが0.5mmの場合、被覆工程時における凸面層部分36b,37bの厚さは0.75mm程度が好適である。
As a result, as shown in FIG. 5B, the thickness of the resin layer 30 of the convex surface portions 25xa, 26xb, 27xb at the planned bending portions 25x, 26x, 27x of the stripped plate 29X becomes convex. It is larger than the thickness of the resin layer 30 in the surface portions 28xa and 28xb held flat on the same surfaces 29a and 29b as the surface portions 25xa, 26xb and 27xb. That is, the thickness of the convex layer portion 35a in the mountain bending planned portion 25x is larger than the thickness of the flat layer portion 38a in the outer flat surface portion 28x, and by extension, the thickness of the outer layer portion 31 is larger than the required thickness. The thickness of the convex layer portions 36b and 37b at the planned valley bending portions 26x and 27x is larger than the thickness of the flat layer portion 38b at the inner flat surface portion 28xb, and thus is larger than the required thickness of the inner layer portion 32.
It is possible to suppress an increase in the resin material cost of the resin layer 30 by partially thickening only the convex layer portions 35a, 36b, 37b which are thinned by bending molding, instead of thickening the entire resin layer 30. ..
The thickness of the convex layer portions 35a, 36b, 37b during the coating step is preferably about 1.1 to 2 times, more preferably about 1.5 times, the thickness of the flat layer portions 38a, 38b on the same surface side. .. For example, when the thickness of the flat layer portion 38b is 0.5 mm, the thickness of the convex layer portions 36b and 37b at the time of the coating step is preferably about 0.75 mm.

また、前記押出成形金型43における各凹部45,46,47の幅は、対応する凸面部分25a,26b,27bの周長と実質同じ大きさになるよう設定されている。これによって、凸面層部分35a,36b,37bの幅が、対応する凸面部分25a,26b,27bの周長と同程度になる。例えば凸面部分26bの設定曲率半径が3.7mmの場合、3.7×2π×(1/4)=約5.8mmの幅の凸面層部分36bが形成される。 Further, the widths of the recesses 45, 46, 47 in the extrusion mold 43 are set to be substantially the same as the peripheral lengths of the corresponding convex portions 25a, 26b, 27b. As a result, the width of the convex layer portions 35a, 36b, 37b becomes about the same as the peripheral length of the corresponding convex surface portions 25a, 26b, 27b. For example, when the set radius of curvature of the convex surface portion 26b is 3.7 mm, the convex surface layer portion 36b having a width of 3.7 × 2π × (1/4) = about 5.8 mm is formed.

<曲げ成形工程>
図3に示すように、続いて、曲げ成形部44において、帯板29Xを折り曲げ加工することによって、所定形状の補強帯材20(図6)を成形する。好ましくは、曲げ成形部44は、多段(複数段)の成形ロールを含むロールフォーミング機によって構成されている。各段の成形ロールによって帯板29Xの曲げ予定部25x,26x,27xが少しずつ曲げられ、前記所定形状が付与されていく。多段のロールフォーミングによって徐々に変形されることにより座屈を防止できる。
凸面層部分35a,36b,37bだけが厚肉になり、凸面層部分35a,36b,37bを除く樹脂層30の大半部分は厚肉化されていないから、曲げ成形性が悪化するのを防止できる。
<Bending molding process>
As shown in FIG. 3, subsequently, in the bending forming portion 44, the strip plate 29X is bent to form the reinforcing strip 20 (FIG. 6) having a predetermined shape. Preferably, the bending forming section 44 is configured by a roll forming machine including a multi-stage (plural) forming roll. The planned bending portions 25x, 26x, 27x of the strip 29X are gradually bent by the forming roll of each stage, and the predetermined shape is given. Buckling can be prevented by gradually deforming by multi-stage roll forming.
Since only the convex layer portions 35a, 36b and 37b are thickened and most of the resin layer 30 except for the convex layer portions 35a, 36b and 37b is not thickened, it is possible to prevent the bending formability from deteriorating. ..

曲げ成形に伴って、凸面部分25a,26b,27b上の凸面層部分35a,36b,37bが幅方向に伸ばされ厚さが小さくなる。一方、これら凸面層部分35a,36b,37bは被覆工程において厚肉に形成されているから、曲げ成形によって厚さが小さくなっても、所要厚さを確保することができる。好ましくは、被覆工程時の厚さ設定によって、山折り凸面層部分35aは、最終的に外側平坦層部分38aと同等の厚さになり、谷折り凸面層部分36b,37bは、最終的に内側平坦層部分38bと同等の厚さになる。
例えば、被覆工程時における平坦層部分38bの厚さが0.5mm、凸面層部分36b,37bの厚さが0.75mmであった場合、曲げ成形によって、平坦層部分38bの厚さは0.5mmのまま保持される一方、凸面層部分36b,37bの厚さは0.75mmから0.5mm程度まで薄くなる。
これによって、樹脂層30の全体の厚さを必要最低限の大きさにできる。
Along with the bending molding, the convex layer portions 35a, 36b, 37b on the convex portions 25a, 26b, 27b are stretched in the width direction to reduce the thickness. On the other hand, since these convex layer portions 35a, 36b, 37b are formed to be thick in the coating step, the required thickness can be secured even if the thickness is reduced by bending molding. Preferably, depending on the thickness setting during the coating process, the mountain fold convex layer portion 35a finally has the same thickness as the outer flat layer portion 38a, and the valley fold convex layer portions 36b and 37b finally become inner. The thickness is equivalent to that of the flat layer portion 38b.
For example, when the thickness of the flat layer portion 38b at the time of the coating step is 0.5 mm and the thickness of the convex layer portions 36b and 37b is 0.75 mm, the thickness of the flat layer portion 38b becomes 0. While the thickness of the convex layer portions 36b and 37b is maintained at 5 mm, the thickness of the convex layer portions 36b and 37b is reduced from 0.75 mm to about 0.5 mm.
As a result, the overall thickness of the resin layer 30 can be made the minimum necessary size.

このようにして、補強帯材20が作成される。補強帯材20によれば、樹脂層30によって鋼製の帯板19を保護でき、帯板29の腐食や損傷を防止できる。特に、曲げ成形により薄くなる凸面層部分35a,36b,37bの必要最低限の厚さを確保することによって、凸面部分25a,26b,27bの腐食や損傷を確実に防止することができる。
該補強帯材20を樹脂製の主帯材10に嵌め合わせることによって、帯状部材3が形成される。補強帯材20によって帯状部材3の強度を高めることができる。
該帯状部材3を既設管1の内周にライニングして更生管2を形成する。樹脂層30の厚さが全体的に必要最低限の大きさに抑えられているから、例えば製管機の駆動ローラの幅が制限を受けることがなく、帯状部材3の重量が増すこともなく、製管施工性を良好にできる。
樹脂層30によって補強帯材20の耐食性を高められているから、更生管2の耐久性を向上させることができる。補強帯材20によって更生管2に自立性を付与することで、既設管1と更生管2の間に裏込め材を注入しなくても済む。
In this way, the reinforcing strip 20 is created. According to the reinforcing strip 20, the resin layer 30 can protect the steel strip 19, and prevent corrosion and damage of the strip 29. In particular, by ensuring the minimum necessary thickness of the convex layer portions 35a, 36b, 37b that are thinned by bending molding, corrosion and damage of the convex surface portions 25a, 26b, 27b can be reliably prevented.
The strip-shaped member 3 is formed by fitting the reinforcing strip 20 to the resin main strip 10. The strength of the strip-shaped member 3 can be increased by the reinforcing strip 20.
The strip-shaped member 3 is lined on the inner circumference of the existing pipe 1 to form the rehabilitation pipe 2. Since the thickness of the resin layer 30 is suppressed to the minimum necessary size as a whole, for example, the width of the drive roller of the pipe making machine is not limited, and the weight of the strip-shaped member 3 does not increase. , Pipe making workability can be improved.
Since the corrosion resistance of the reinforcing strip 20 is enhanced by the resin layer 30, the durability of the rehabilitation pipe 2 can be improved. By imparting independence to the rehabilitation pipe 2 by the reinforcing strip material 20, it is not necessary to inject a backfill material between the existing pipe 1 and the rehabilitation pipe 2.

本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
例えば、凸面層部分35a,36b,37bの厚さを、対応する曲げ部25,26,27の曲率に応じて調整してもよい。すなわち曲率が大きいほど厚さを大きくしてもよい。
凹面層部分35b,36a,37aについては曲げ成形時の幅方向への圧縮による増厚を考慮して、被覆工程時には凹面層部分35bは平坦層部分38bより薄くしてもよく、凹面層部分36a,37aは平坦層部分38aより薄くしてもよい。凹面層部分35b,36a,37aの厚さを、対応する曲げ部25,26,27の曲率が大きいほど薄くしてもよい。
樹脂層30が、複数の樹脂膜を積層した複層構造になっていてもよい。帯板29と接する樹脂膜には接着性を付与してもよい。
主帯材10及び補強帯材20の断面形状は実施形態のものに限られず種々の断面形状を適用できる。例えば、図8に示すように、補強帯材20BがW字状の断面形状であってもよい。補強帯材20Bにおいても、被覆工程において曲げ予定部の凸となる面部分における樹脂層(凸面層部分39a)の厚さを平坦に保持される面部分における樹脂層(平坦層部分39b)の厚さより大きくしておくことで、曲げ成形後の曲げ部20bの凸面部分における樹脂層(凸面層部分39a)の所要厚さを確保できる。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the thickness of the convex layer portions 35a, 36b, 37b may be adjusted according to the curvature of the corresponding bending portions 25, 26, 27. That is, the larger the curvature, the larger the thickness may be.
Regarding the concave layer portions 35b, 36a, 37a, the concave layer portion 35b may be thinner than the flat layer portion 38b during the coating process in consideration of the thickening due to compression in the width direction during bending molding, and the concave layer portion 36a , 37a may be thinner than the flat layer portion 38a. The thickness of the concave layer portions 35b, 36a, 37a may be reduced as the curvature of the corresponding bent portions 25, 26, 27 increases.
The resin layer 30 may have a multi-layer structure in which a plurality of resin films are laminated. Adhesiveness may be imparted to the resin film in contact with the strip 29.
The cross-sectional shapes of the main band member 10 and the reinforcing band member 20 are not limited to those of the embodiment, and various cross-sectional shapes can be applied. For example, as shown in FIG. 8, the reinforcing strip 20B may have a W-shaped cross section. Also in the reinforcing strip 20B, the thickness of the resin layer (flat layer portion 39b) in the surface portion where the thickness of the resin layer (convex layer portion 39a) in the convex surface portion of the planned bending portion in the coating process is kept flat. By making it larger than that, the required thickness of the resin layer (convex layer portion 39a) in the convex portion of the bent portion 20b after bending and molding can be secured.

本発明は、例えば下水道管などの埋設管の更生に適用できる。 The present invention can be applied to rehabilitation of buried pipes such as sewer pipes.

1 既設埋設管
2 更生管(螺旋管)
3 帯状部材
10 主帯材
20 補強帯材
20B 補強帯材
25 山折り曲げ部(曲げ部)
25x 山折り曲げ予定部(曲げ予定部)
25xa 凸となる面部分
26 谷折り曲げ部(曲げ部)
26x 谷折り曲げ予定部(曲げ予定部)
26xb 凸となる面部分
27 谷折り曲げ部(曲げ部)
27x 谷折り曲げ予定部(曲げ予定部)
27xb 凸となる面部分
28 平坦部
28x 非曲げ予定部
28xa,28xb 平坦面部分(平坦に保持される面部分)
29X 曲げ加工前の帯板
30 樹脂層
35a 山折り凸面層部分(凸となる面部分における樹脂層)
36b,37b 谷折り凸面層部分(凸となる面部分における樹脂層)
38a,38b 平坦層部分(平坦に保持される面部分における樹脂層)
1 Existing buried pipe 2 Rehabilitation pipe (spiral pipe)
3 Band-shaped member 10 Main band 20 Reinforcing band 20B Reinforcing band 25 Mountain bending part (bending part)
25x mountain bending planned part (bending planned part)
25xa Convex surface part 26 Valley bending part (bending part)
26x Valley Bending Scheduled Part (Bending Scheduled Part)
26xb Convex surface portion 27 Valley bending part (bending part)
27x Valley Bending Scheduled Part (Bending Scheduled Part)
27xb Convex surface portion 28 Flat portion 28x Non-bending planned portion 28xa, 28xb Flat surface portion (surface portion held flat)
29X Strip plate before bending 30 Resin layer 35a Mountain fold convex layer portion (resin layer in the convex surface portion)
36b, 37b Valley fold convex surface layer portion (resin layer in the convex surface portion)
38a, 38b Flat layer portion (resin layer in the surface portion held flat)

Claims (2)

螺旋管となるべき帯状部材における合成樹脂製の主帯材に付設される所定断面形状の補強帯材を製造する方法であって、
金属製の帯板の表面に樹脂層を被覆する被覆工程と、
前記被覆後の帯板の曲げ予定部を曲げることによって前記補強帯材を成形する曲げ成形工程と、を含み、
前記被覆工程において、前記曲げ予定部の凸となる面部分における前記樹脂層の厚さを、前記帯板の前記凸となる面部分と同じ面側の平坦に保持される面部分における前記樹脂層の厚さより大きくすることを特徴とする帯状部材の補強帯材製造方法。
It is a method of manufacturing a reinforcing band material having a predetermined cross-sectional shape attached to a main band material made of synthetic resin in a band-shaped member to be a spiral tube.
A coating process that coats the surface of a metal strip with a resin layer,
Including a bending forming step of forming the reinforcing strip material by bending a bending portion of the strip after coating.
In the coating step, the thickness of the resin layer on the convex surface portion of the planned bending portion is held flat on the same surface side as the convex surface portion of the strip. A method for manufacturing a reinforcing strip material for a strip-shaped member, which is characterized in that the thickness is larger than the thickness of.
前記凸となる面部分における前記樹脂層の厚さが、前記平坦に保持される面部分における前記樹脂層の厚さの1.1倍〜2倍であることを特徴とする請求項1に記載の補強帯材製造方法。 The first aspect of the present invention, wherein the thickness of the resin layer on the convex surface portion is 1.1 to 2 times the thickness of the resin layer on the surface portion held flat. Reinforcing strip manufacturing method.
JP2019025051A 2019-02-15 2019-02-15 Method for manufacturing reinforced band material of spiral tube band member Pending JP2020131481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019025051A JP2020131481A (en) 2019-02-15 2019-02-15 Method for manufacturing reinforced band material of spiral tube band member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019025051A JP2020131481A (en) 2019-02-15 2019-02-15 Method for manufacturing reinforced band material of spiral tube band member

Publications (1)

Publication Number Publication Date
JP2020131481A true JP2020131481A (en) 2020-08-31

Family

ID=72261844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025051A Pending JP2020131481A (en) 2019-02-15 2019-02-15 Method for manufacturing reinforced band material of spiral tube band member

Country Status (1)

Country Link
JP (1) JP2020131481A (en)

Similar Documents

Publication Publication Date Title
US5601893A (en) Flexible metal pipes with a shrinkable polymer sheath, a process for their fabrication, and their utilization as flexible tubular conduits
KR20050062437A (en) Pressure-resistance composite pipe
JP2017219150A (en) Duplex tube
KR20090045034A (en) Metal-resin composite pipes
JP2019126935A (en) Belt-like member
JP2020131481A (en) Method for manufacturing reinforced band material of spiral tube band member
JPH0658158B2 (en) Pressure resistant spiral corrugated tube
CN100567787C (en) Plastic conduit
JP2009133474A (en) Metal-resin composite pipe
KR930001668B1 (en) Spiral pipe
JP2017219149A (en) Duplex tube
US6729355B2 (en) Reinforced flexible hose
JP7044579B2 (en) A method for manufacturing a band-shaped member and a reinforcing band material for the band-shaped member.
JP4870152B2 (en) Synthetic resin tube and manufacturing method thereof
US20040129330A1 (en) Multilayer flexible hose
JP3228386B2 (en) Flexible fluid transport pipe
JP2008014326A (en) Synthetic resin made flexible tube
KR102036147B1 (en) Corrugated steel pipe with increased internal smoothness and method for manufacturing the same
CN101292108A (en) Shaped spiral wound pipe
JP7290252B2 (en) Pipe rehabilitation member
JP7048329B2 (en) Band-shaped member
JP4246838B2 (en) Helical tube forming method and existing pipe rehabilitation method
JPS62104735A (en) Manufacture of synthetic resin helical tube
CN214947032U (en) Polyethylene PE composite structure wall pipe for buried pipe
JP4171991B2 (en) Culvert tube