JP2020130174A - Production method of plant whose weight is increased - Google Patents

Production method of plant whose weight is increased Download PDF

Info

Publication number
JP2020130174A
JP2020130174A JP2019219693A JP2019219693A JP2020130174A JP 2020130174 A JP2020130174 A JP 2020130174A JP 2019219693 A JP2019219693 A JP 2019219693A JP 2019219693 A JP2019219693 A JP 2019219693A JP 2020130174 A JP2020130174 A JP 2020130174A
Authority
JP
Japan
Prior art keywords
plant
gene
phytochrome
rice
phya
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019219693A
Other languages
Japanese (ja)
Other versions
JP7246726B2 (en
Inventor
政雄 岩本
Masao Iwamoto
政雄 岩本
誠 高野
Makoto Takano
誠 高野
弘美 鐘ヶ江
Hiromi Kanegae
弘美 鐘ヶ江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Publication of JP2020130174A publication Critical patent/JP2020130174A/en
Application granted granted Critical
Publication of JP7246726B2 publication Critical patent/JP7246726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a production method of a plant whose weight is increased.SOLUTION: A plant in which a function of phytochrome A gene is suppressed is cultured in at least 1.5 times of density of nutrient of density in a normal culture condition, for increasing weight of the plant relative to plant in which the function of phytochrome A is not suppressed.SELECTED DRAWING: None

Description

本発明は、重量が増大した植物の製造方法に関し、より詳しくは、フィトクロムA遺伝子の機能が抑制された植物を、高栄養条件下にて栽培することにより、当該機能が抑制されていない植物と比して重量が増大した植物を製造する方法に関する。 The present invention relates to a method for producing a plant having an increased weight. More specifically, a plant in which the function of the phytochrome A gene is suppressed is cultivated under high nutritional conditions to obtain a plant in which the function is not suppressed. It relates to a method of producing a plant having a relative weight increase.

国連が発表した「世界人口予測2017年改訂版」によると、世界で76億人いる人口は2030年までに86億人に達し、その後もさらに増加すると予測され、増加した人口を賄う農作物等の確保が急務となっている。さらに、地球温暖化対策としてバイオ燃料が注目されており、食料としてのみならず、その原料としての農作物の需要も、急速に拡大している。 According to the "World Population Forecast 2017 Revised Edition" released by the United Nations, the world's population of 7.6 billion is projected to reach 8.6 billion by 2030, and it is predicted that it will increase further thereafter, such as agricultural products that cover the increased population. There is an urgent need to secure it. Furthermore, biofuels are attracting attention as a measure against global warming, and the demand for agricultural products as raw materials as well as food is rapidly expanding.

しかし、耕作可能な農地は限られていることから、単位面積又は植物一個体あたりの収量(重量)を増加させることが必要になる。このようなニーズに対応するために、農作物の生産性をより高めることのできる技術の開発が期待される。 However, since the farmland that can be cultivated is limited, it is necessary to increase the unit area or the yield (weight) per plant. In order to meet such needs, it is expected to develop technology that can further increase the productivity of agricultural products.

Takano M.ら、The Plant Cell、2001年、13巻、521〜534ページTakano M. Et al., The Plant Cell, 2001, Vol. 13, pp. 521-534 Takano M.ら、The Plant Cell、2005年、17巻、3311〜3325ページTakano M. Et al., The Plant Cell, 2005, Vol. 17, pp. 3311-325 Gururani MA.ら、Biotechnol Adv.、2015年1−2月、33巻、1号、53−63ページGurani MA. Et al., Biotechnol Adv. , January-February 2015, Vol. 33, No. 1, pp. 53-63 長谷あきら等監修、植物の光センシング−光情報の受容とシグナル伝達(細胞工学別冊−植物細胞工学シリーズ)、「1−1 フィトクロム研究のたどってきた道」、秀潤社、2001年10月1日発行、37ページSupervised by Akira Hase, etc., Photosensing of plants-Reception and signal transduction of optical information (cell engineering separate volume-Plant cell engineering series), "1-1 Path of Phytochrome Research", Shujunsha, October 1, 2001 Published daily, page 37

本発明は、前記課題に鑑みてなされたものであり、単位面積又は植物一個体あたりの収量の増加を可能とする、重量が増大した植物の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a plant having an increased weight, which enables an increase in a unit area or a yield per individual plant.

本発明者らは、前記目的を達成すべく鋭意研究を重ね、phyAを欠損したイネ(phyA欠損イネ)を、水耕液を用いて異なる栄養条件下で栽培した結果、高栄養条件では、phyA欠損イネの重量がその親品種よりも有意に増加することを明らかにした。一方、低栄養条件(前記高栄養条件と比して、各栄養素(窒素、リン及びカリウム等)の濃度が0.4倍となる条件)では親品種と比して顕著な変化が認められないことも見出した。 The present inventors have conducted intensive studies to achieve the above object, and as a result of cultivating phyA-deficient rice (phyA-deficient rice) using a hydroponic solution under different nutritional conditions, phyA under high nutritional conditions. It was revealed that the weight of deficient rice was significantly increased compared to its parent variety. On the other hand, under undernutrition conditions (conditions in which the concentration of each nutrient (nitrogen, phosphorus, potassium, etc.) is 0.4 times that of the above-mentioned high nutritional conditions), no significant change is observed as compared with the parent varieties. I also found that.

フィトクロム(phy)は植物の主要な光受容体で、植物における多くの生理現象で重要な役割を果たすことが知られている。イネは異なる役割を担っている3個のphy(phyA、phyB、phyC)を有し、各phyをコードする遺伝子の欠損変異体(非遺伝子組換え体)が単離されている。しかしながら、通常の栽培条件下で育てたphyA欠損イネは親品種と比較して表現形質に違いが見られないことが報告されており(非特許文献1〜4)、前述の高栄養条件下におけるphyA欠損イネの重量増大は、従前の知見から予期できない驚くべき効果であった。 Phytochrome (phy) is a major photoreceptor in plants and is known to play an important role in many physiological phenomena in plants. Rice has three phy (phyA, phyB, phyC) that play different roles, and a defective mutant (non-genetical recombination) of a gene encoding each phy has been isolated. However, it has been reported that phyA-deficient rice grown under normal cultivation conditions does not show any difference in expression traits as compared with the parent varieties (Non-Patent Documents 1 to 4), and under the above-mentioned high nutritional conditions. The weight increase of phyA-deficient rice was a surprising and unexpected effect from previous findings.

本発明者らはさらに、phyA欠損イネ及びその親品種を、野外の水田にて、疎植(株間30cm)又は密植(株間15cm、疎植と比べて2倍高い密度)にて育てることによって、1個体あたりの栄養条件(施肥量)を変化させ、疎植のイネは密植のイネに比べて栄養素が2倍となるようにした。なお、通常の水田栽培において、株間は一般的に15〜20cmであるため、疎植のイネは通常の栽培条件と比して栄養素が1.5〜2倍となる。 The present inventors further grow phyA-deficient rice plants and their parent varieties in open-field paddy fields by sparse planting (inter-strain 30 cm) or dense planting (inter-strain 15 cm, twice as high density as sparse planting). The nutritional conditions (fertilization amount) per individual were changed so that the nutrients of sparsely planted rice were doubled compared to those of densely planted rice. In normal paddy field cultivation, the distance between the plants is generally 15 to 20 cm, so that the nutrients of sparsely planted rice are 1.5 to 2 times that of the normal cultivation conditions.

その結果、疎植ではphyA欠損イネは親品種と比べて全植物体及び籾の乾燥重量が共に有意に増加することが明らかになった。一方、密植(通常の栽培条件)では、親品種と比べて全植物体及び籾の乾燥重量ともに変化が認められなかった。 As a result, it was clarified that in sparse planting, the dry weight of all plants and paddy was significantly increased in phyA-deficient rice as compared with the parent cultivar. On the other hand, in dense planting (normal cultivation conditions), no change was observed in the dry weight of all plants and paddy as compared with the parent varieties.

また、栽植密度を統一した上で、施肥量を通常の2倍として水田栽培を行なった結果、前記同様に、その高栄養条件下では、phyA欠損イネは親品種と比べて収量が増加することも確認できた。 In addition, as a result of cultivating paddy fields with the amount of fertilizer applied twice as much as usual after unifying the planting density, the yield of phyA-deficient rice is increased as compared with the parent varieties under the high nutritional conditions as described above. Was also confirmed.

本発明は、上記知見に基づくものであり、より詳しくは、以下を提供するものである。
<1> 重量が増大した植物の製造方法であって、フィトクロムA遺伝子の機能が抑制された植物を、通常の栽培条件における栄養素の濃度と比して少なくとも1.5倍高い濃度にて栽培する、方法。
<2> 前記栄養素は、窒素、リン酸及びカリウムである、<1>に記載の方法。
The present invention is based on the above findings, and more specifically, provides the following.
<1> A method for producing a plant with increased weight, in which a plant in which the function of the phytochrome A gene is suppressed is cultivated at a concentration at least 1.5 times higher than the concentration of nutrients under normal cultivation conditions. ,Method.
<2> The method according to <1>, wherein the nutrients are nitrogen, phosphoric acid and potassium.

なお、フィトクロムA遺伝子の機能が抑制された植物を、高栄養条件(通常の栽培条件における栄養素の濃度と比して少なくとも1.5倍高い濃度)にて栽培することによって、当該機能が抑制されていない植物と比して、重量が増大する理由は必ずしも定かではないが、本発明者らは以下のように推察する。 By cultivating a plant in which the function of the phytochrome A gene is suppressed under high nutritional conditions (at least 1.5 times higher than the concentration of nutrients under normal cultivation conditions), the function is suppressed. Although it is not always clear why the weight is increased as compared with the non-plants, the present inventors speculate as follows.

すなわち、本発明者らが、phyA欠損イネ及びその親品種にて、吸収される栄養素量を比較したところ、高栄養条件において、phyA欠損イネにおける多くの栄養素の吸収能が、親品種と比較して大きく促進することが明らかになった。このことから、高栄養条件下における当該栄養素吸収能の向上に伴い、植物重量の増大が生じたものと推察する。 That is, when the present inventors compared the amount of nutrients absorbed in phyA-deficient rice and its parent cultivar, the absorption capacity of many nutrients in phyA-deficient rice under high nutritional conditions was compared with that of the parent cultivar. It became clear that it greatly promoted. From this, it is presumed that the plant weight increased with the improvement of the nutrient absorption capacity under high nutritional conditions.

本発明によれば、重量が増大した植物を製造することが可能となり、ひいては、単位面積又は植物一個体あたりの収量の増加が可能となる。さらに、上述のとおり、本発明において用いられるフィトクロムA遺伝子の機能が抑制された植物は、栄養素(肥料)の吸収能が高いため、残存肥料が少なく、環境負荷が低減される。 According to the present invention, it is possible to produce a plant with an increased weight, and thus it is possible to increase the yield per unit area or individual plant. Further, as described above, the plant in which the function of the phytochrome A gene used in the present invention is suppressed has a high absorption capacity of nutrients (fertilizers), so that the residual fertilizer is small and the environmental load is reduced.

また、農作物においては、栽培環境適性や味覚、抵抗性等の特性の異なるさまざまな品種が存在し、生産者は目的に合った特性を有する品種を選択して栽培している。本発明によれば、このような品種において、ゲノム編集等によってフィトクロムA遺伝子の機能が抑制することにより、各品種の有する特性を変化させることなく、重量を増大、ひいては生産性を向上させることが可能となる。 In addition, there are various varieties of agricultural products having different characteristics such as suitability for cultivation environment, taste, and resistance, and producers select and cultivate varieties having characteristics suitable for the purpose. According to the present invention, in such varieties, by suppressing the function of the phytochrome A gene by genome editing or the like, the weight can be increased and the productivity can be improved without changing the characteristics of each cultivar. It will be possible.

phyA欠損イネ(系統 A♯1)及びその親品種の水耕栽培において、新しい高栄養水耕液又は低栄養水耕液に交換してから、4、24、48時間目までに吸収された乾燥重量(DW)当たりの各種栄養素の吸収量を測定した結果を示す、グラフである。In hydroponics of phyA-deficient rice (line A # 1) and its parent varieties, drying absorbed by 4, 24, and 48 hours after replacement with a new high-nutrient hydroponic solution or low-nutrition hydroponic solution. It is a graph which shows the result of having measured the absorption amount of various nutrients per weight (DW).

後述の実施例に示すとおり、本発明者らは、phyAを欠損したイネを、高栄養条件で栽培することによって、その親品種よりも有意に増加することを明らかにした。一方、通常の栽培条件及び低栄養条件下での栽培では、親品種と比して顕著な変化が認められないことも見出している。 As shown in Examples described later, the present inventors have shown that phyA-deficient rice is significantly increased by cultivating it under high nutritional conditions as compared with its parent cultivar. On the other hand, it has also been found that no significant changes are observed in the cultivation under normal cultivation conditions and undernutrition conditions as compared with the parent varieties.

したがって、本発明は、フィトクロムA遺伝子の機能が抑制された植物を、通常の栽培条件における栄養素の濃度と比して少なくとも1.5倍高い濃度にて栽培する、重量が増大した植物の製造方法を、提供する。 Therefore, the present invention is a method for producing a heavier plant in which a plant in which the function of the phytochrome A gene is suppressed is cultivated at a concentration at least 1.5 times higher than the concentration of nutrients under normal cultivation conditions. I will provide a.

(植物)
本発明において重量増大の対象となる「植物」は、フィトクロムA遺伝子の機能が抑制されれば、特に制限はなく、例えば、単子葉植物(例えば、イネ、トウモロコシ、ソルガム、コムギ等のイネ科植物)及び双子葉植物(例えば、トマト、ジャガイモ等のナス科植物)を含む被子植物、裸子植物、コケ植物、シダ植物、草本植物、並びに木本植物が挙げられる。さらに、これら植物の遺伝子組み換え体やゲノム編集体(例えば、除草剤耐性作物、害虫耐性作物、病害耐性作物、食味向上作物、保存性向上作物、収量向上作物)であっても良い。
(plant)
The "plant" to be weight-increased in the present invention is not particularly limited as long as the function of the phytochrome A gene is suppressed, and is, for example, a monocotic plant (for example, a gramineous plant such as rice, corn, sorghum, wheat). ) And angiosperms including dicotyledonous plants (eg, grasses such as tomatoes and potatoes), angiosperms, moss plants, fern plants, herbaceous plants, and woody plants. Further, it may be a genetically modified organism or a genome editor of these plants (for example, herbicide-tolerant crop, pest-tolerant crop, disease-tolerant crop, taste-enhancing crop, preservation-enhancing crop, yield-improving crop).

本発明によって増大する「重量」は、植物体全体の重量であってもよく、その一部分の重量であってもよい。一部分としては、特に制限はないが、種子、果実、茎、葉、根、塊茎、花等が挙げられる。また、重量は、乾燥重量であってもよく、新鮮重量(生重量)であってもよい。本発明において、「重量が増大した」とは、フィトクロムA遺伝子の機能が抑制されていない植物と比較して、前述の植物体全体又は少なくとも一部分の重量が有意に増大していることが意味する。 The "weight" increased by the present invention may be the weight of the whole plant or a part thereof. A part thereof is not particularly limited, and examples thereof include seeds, fruits, stems, leaves, roots, tubers, and flowers. Further, the weight may be a dry weight or a fresh weight (raw weight). In the present invention, "weight increase" means that the weight of the whole plant or at least a part thereof is significantly increased as compared with the plant in which the function of the phytochrome A gene is not suppressed. ..

(フィトクロムA遺伝子)
本発明において「フィトクロムA遺伝子」とは、光受容タンパク質の1種であるフィトクロムA(phyA)をコードする遺伝子であり、例えば、下記表に示すアミノ酸配列を含むタンパク質をコードする遺伝子(下記表に示すヌクレオチド配列を含むタンパク質をコードする遺伝子が挙げられる。なお、表1において「遺伝子数」は、各植物種が有するフィトクロムA遺伝子の遺伝子数(パラロガス遺伝子の数)を示す。
(Phytochrome A gene)
In the present invention, the "phytochrome A gene" is a gene encoding phytochrome A (phyA), which is one of the photoreceptive proteins, and is, for example, a gene encoding a protein containing the amino acid sequence shown in the table below (see the table below). Examples thereof include genes encoding proteins containing the nucleotide sequences shown. In Table 1, "number of genes" indicates the number of phytochrome A genes (number of paralogus genes) possessed by each plant species.

また、自然界においてもヌクレオチド配列が変異することは起こり得ることである。そして、それに伴いコードするアミノ酸も変化し得る。したがって、本発明のフィトクロムA遺伝子には、その機能が抑制されることによって、植物の重量を増大する活性を有するタンパク質をコードする限り、表1に記載のうちのいずれかに記載のアミノ酸配列において1又は複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列からなるタンパク質をコードする遺伝子も含まれる。ここで「複数」とは、通常500アミノ酸以内、好ましくは400アミノ酸以内、より好ましくは300アミノ酸以内、さらに好ましくは200アミノ酸以内、より好ましくは150アミノ酸以内、さらに好ましくは100アミノ酸以内、より好ましくは50アミノ酸以内(例えば、40アミノ酸以内、30アミノ酸以内、20アミノ酸以内)、さらに好ましくは10アミノ酸以内、特に好ましくは数個のアミノ酸以内(例えば、5アミノ酸以内、4アミノ酸以内、3アミノ酸以内、2アミノ酸以内)である。 In addition, it is possible that the nucleotide sequence is mutated in nature. And the amino acid encoded by it can be changed accordingly. Therefore, as long as the phytochrome A gene of the present invention encodes a protein having an activity of increasing the weight of a plant by suppressing its function, in the amino acid sequence shown in any of the ones shown in Table 1. Also included are genes encoding proteins consisting of amino acid sequences in which one or more amino acids have been substituted, deleted, added, and / or inserted. Here, the term "plurality" usually means 500 amino acids or less, preferably 400 amino acids or less, more preferably 300 amino acids or less, still more preferably 200 amino acids or less, more preferably 150 amino acids or less, still more preferably 100 amino acids or less, and more preferably. Within 50 amino acids (eg, within 40 amino acids, within 30 amino acids, within 20 amino acids), more preferably within 10 amino acids, particularly preferably within a few amino acids (eg, within 5 amino acids, within 4 amino acids, within 3 amino acids, 2 Within amino acids).

さらに、現在の技術水準においては、当業者であれば、特定の遺伝子のヌクレオチド配列情報を利用して、同種若しくは他の植物から、その相同遺伝子を同定することが可能である。相同遺伝子を同定するための方法としては、例えば、ハイブリダイゼーション技術(Southern,E.M.,J.Mol.Biol.,98:503,1975)やポリメラーゼ連鎖反応(PCR)技術(Saiki,R.K.,et al.Science,230:1350−1354,1985、Saiki,R.K.et al.Science,239:487−491,1988)が挙げられる。相同遺伝子を同定するためには、通常、ストリンジェントな条件下でハイブリダイゼーション反応を行なう。ストリンジェントなハイブリダイゼーションの条件としては、6M 尿素、0.4% SDS、0.5xSSCの条件又はこれと同等のストリンジェンシーのハイブリダイゼーション条件を例示できる。よりストリンジェンシーの高い条件、例えば、6M 尿素、0.4%SDS、0.1xSSCの条件を用いれば、より相同性の高い遺伝子の単離を期待することができる。本発明のフィトクロムA遺伝子には、その機能が抑制されることによって、植物の重量を増大する活性を有するタンパク質をコードする限り、表1に記載のうちのいずれかに記載のヌクレオチド配列からなるDNAとストリンジェントな条件でハイブリダイズするDNAを含む遺伝子が含まれる。 Further, at the present state of the art, those skilled in the art can use the nucleotide sequence information of a specific gene to identify the homologous gene from the same species or other plants. Methods for identifying homologous genes include, for example, hybridization techniques (Southern, EM, J. Mol. Biol., 98: 503, 1975) and polymerase chain reaction (PCR) techniques (Saiki, R. et al.). K., et al. Science, 230: 1350-1354, 1985, Saiki, RK et al. Science, 239: 487-491, 1988). To identify homologous genes, hybridization reactions are usually performed under stringent conditions. As the stringent hybridization conditions, 6M urea, 0.4% SDS, 0.5xSSC conditions or equivalent stringency hybridization conditions can be exemplified. Higher stringency conditions, such as 6M urea, 0.4% SDS, 0.1xSSC, can be used to expect the isolation of genes with higher homology. The phytochrome A gene of the present invention contains a DNA consisting of the nucleotide sequence shown in any of the ones shown in Table 1 as long as it encodes a protein having an activity of increasing the weight of a plant by suppressing its function. Contains genes containing DNA that hybridize with and stringent conditions.

同定された相同遺伝子がコードするタンパク質は、通常、前記特定の遺伝子がコードするそれと高い相同性(高い類似性)、好ましくは高い同一性を有する。ここで「高い」とは、少なくとも60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上(例えば、96%以上、97%以上、98%以上、99%以上)のことである。フィトクロムA遺伝子には、その機能が抑制されることによって、植物の重量を増大する活性を有するタンパク質をコードする限り、表1に記載のうちのいずれかに記載のアミノ酸配列と60%以上の相同性(類似性)又は同一性を有するアミノ酸配列をコードする遺伝子が含まれる。 The protein encoded by the identified homologous gene usually has high homology (high similarity), preferably high identity to that encoded by the particular gene. Here, "high" means at least 60% or more, preferably 70% or more, more preferably 80% or more, still more preferably 85% or more, more preferably 90% or more, still more preferably 95% or more (for example, 96). % Or more, 97% or more, 98% or more, 99% or more). The phytochrome A gene has 60% or more homology with the amino acid sequence described in any of the table 1 as long as it encodes a protein having an activity of increasing the weight of a plant by suppressing its function. Contains genes encoding amino acid sequences of sex (similarity) or identity.

配列の相同性は、BLASTのプログラム(Altschul et al.J.Mol.Biol.,215:403−410,1990)を利用して決定することができる。該プログラムは、Karlin及びAltschulによるアルゴリズムBLAST(Proc.Natl.Acad.Sci.USA,87:2264−2268,1990,Proc.Natl.Acad.Sci.USA,90:5873−5877,1993)に基づいている。例えば、BLASTによってアミノ酸配列を解析する場合には、パラメーターは、例えばscore=50、wordlength=3とする。また、Gapped BLASTプログラムを用いて、アミノ酸配列を解析する場合は、Altschulら(Nucleic Acids Res.25:3389−3402,1997)に記載されているように行うことができる。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である。 Sequence homology can be determined using the BLAST program (Altschul et al. J. Mol. Biol., 215: 403-410, 1990). The program is based on the algorithm BLAST (Proc. Natl. Acad. Sci. USA, 87: 2264-2268, 1990, Proc. Natl. Acad. Sci. USA, 90: 5873-5877, 1993) by Karlin and Altschul. There is. For example, when analyzing the amino acid sequence by BLAST, the parameters are, for example, score = 50 and worldgth = 3. Further, when the amino acid sequence is analyzed by using the Gapped BLAST program, it can be performed as described in Altschul et al. (Nucleic Acids Res. 25: 3389-3402, 1997). When using BLAST and Gapped BLAST programs, the default parameters of each program are used. Specific methods of these analysis methods are known.

上述の本発明のフィトクロムA遺伝子がコードするタンパク質が、その機能が抑制されることによって、植物の重量を増大する活性を有するか否かは、例えば、後述の実施例に示すように、当該遺伝子の機能を抑制することにより、高栄養条件下で栽培した植物の重量が増大しているか否かを検定することにより判定することができる。 Whether or not the protein encoded by the phytochrome A gene of the present invention described above has an activity of increasing the weight of a plant by suppressing its function is determined, for example, as shown in Examples described later. It can be determined by testing whether or not the weight of the plant cultivated under high nutritional conditions is increased by suppressing the function of.

(フィトクロムA遺伝子の機能が抑制された植物)
本発明において、「フィトクロムA遺伝子の機能の抑制」には、該機能の完全な抑制(阻害)及び部分的な抑制の双方が含まれる。また、複数のフィトクロムA遺伝子(phyA1〜phyA5等のパラロガス遺伝子)を有する植物種も存在する(例えば、表1に示すコムギにおいて、AEA40430、AEA40439及びAEA40449にて示されるアミノ酸配列をコードする遺伝子は、各々phyA1遺伝子、phyA2遺伝子及びphyA3遺伝子である)。かかる植物種の場合、少なくとも1のフィトクロムA遺伝子(例えば、コムギにおいてphyA1遺伝子のみ)の機能が抑制されていればよいが、全てのフィトクロムA遺伝子(例えば、コムギにおいてはphyA1遺伝子、phyA2遺伝子及びphyA3遺伝子)の機能が抑制されていることが好ましい。また、フィトクロムA遺伝子の機能の抑制には、フィトクロムA遺伝子の発現抑制の他、フィトクロムA遺伝子がコードするタンパク質の活性の抑制が含まれる。そして、かかる抑制は、例えば、フィトクロムA遺伝子のコード領域、非コード領域、転写制御領域(プロモーター領域)等に変異を導入することによって行なうことができる。
(Plants in which the function of the phytochrome A gene is suppressed)
In the present invention, "suppression of the function of the phytochrome A gene" includes both complete suppression (inhibition) and partial suppression of the function. In addition, there are also plant species having a plurality of phytochrome A genes (paralogous genes such as phyA1 to phyA5) (for example, in the wheat shown in Table 1, the genes encoding the amino acid sequences shown by AEA40430, AEA40439 and AEA40449 are PhyA1 gene, phyA2 gene and phyA3 gene, respectively). In the case of such a plant species, it is sufficient that the function of at least one phytochrome A gene (for example, only the phyA1 gene in wheat) is suppressed, but all phytochrome A genes (for example, in wheat, the phyA1 gene, the phyA2 gene and the phyA3) need to be suppressed. It is preferable that the function of the gene) is suppressed. In addition, suppression of the function of the phytochrome A gene includes suppression of the expression of the phytochrome A gene and suppression of the activity of the protein encoded by the phytochrome A gene. Then, such suppression can be performed, for example, by introducing a mutation into a coding region, a non-coding region, a transcription control region (promoter region), or the like of the phytochrome A gene.

本発明において、フィトクロムA遺伝子に導入される変異としては、該遺伝子の機能を抑制する限り特に制限はなく、例えば、ヌクレオチドの置換、欠失、付加、及び/又は挿入が挙げられるが、ナンセンス変異、フレームシフト変異、ヌル変異が好ましい。また、フィトクロムA遺伝子に導入される変異の個数としても、該遺伝子の機能を抑制する限り特に制限はなく、1個でもよく、また複数個(例えば、2個、3個以下、5個以下、10個以下、20個以下、30個以下、40個以下、50個以下)でもよい。 In the present invention, the mutation introduced into the phytochrome A gene is not particularly limited as long as the function of the gene is suppressed, and examples thereof include nucleotide substitution, deletion, addition, and / or insertion, but a nonsense mutation. , Frame shift mutations, null mutations are preferred. The number of mutations introduced into the phytochrome A gene is not particularly limited as long as the function of the gene is suppressed, and may be one, or a plurality (for example, two, three or less, five or less, etc.). 10 or less, 20 or less, 30 or less, 40 or less, 50 or less) may be used.

また、フィトクロムA遺伝子に導入される変異としては、当該遺伝子がコードするタンパク質のアミノ酸配列全部を失わせる必要はなく、その一部が失われるか変化するように当該遺伝子内に導入されてもよい。 Further, as a mutation introduced into the phytochrome A gene, it is not necessary to lose the entire amino acid sequence of the protein encoded by the gene, and the mutation may be introduced into the gene so that a part thereof is lost or changed. ..

なお、遺伝子の変異により発現するタンパク質の一部が欠失する場合、通常、全体の20%以上が欠失していればよく、好ましくは30%以上、より好ましくは40%以上、さらに好ましくは50%以上、より好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上(例えば、85%以上、90%以上、95%以上)欠失していればよい。 When a part of the protein expressed by a gene mutation is deleted, it is usually sufficient that 20% or more of the whole is deleted, preferably 30% or more, more preferably 40% or more, and further preferably. The deletion may be 50% or more, more preferably 60% or more, more preferably 70% or more, still more preferably 80% or more (for example, 85% or more, 90% or more, 95% or more).

また、このような一部を欠失させるような変異において、フィトクロムA遺伝子がコードするタンパク質の活性を奏する上で重要であると想定される領域又は部位を欠失させるような変異が挙げられる。かかる領域は、例えば、上記表1に示すGenBankアクセッション番号にて特定される各配列において、それら領域等の情報が「Region」及び「Site」として示されているので、当業者であれば把握することができる。それら領域等の中で、フィトクロムA遺伝子がコードするタンパク質の活性を奏する上で重要な、光受容を行なう発色団が結合する領域であることから、GAFドメインにおいて、その全部又は一部が欠失するような変異が導入されることが好ましい。なお、例えば、イネフィトクロムA(XP_015630340に記載のアミノ酸配列からなる)において、GAFドメインは220〜412位のアミノ酸からなる領域である。 In addition, in such a mutation that deletes a part, there is a mutation that deletes a region or a site that is considered to be important for exerting the activity of the protein encoded by the phytochrome A gene. Such regions can be grasped by those skilled in the art because, for example, in each sequence specified by the GenBank accession number shown in Table 1 above, information such as those regions is shown as "Region" and "Site". can do. Among these regions, all or part of them are deleted in the GAF domain because they are regions to which the photoreceptive chromophore, which is important for the activity of the protein encoded by the phytochrome A gene, binds. It is preferable that such a mutation is introduced. In addition, for example, in rice phytochrome A (consisting of the amino acid sequence described in XP_015630340), the GAF domain is a region consisting of amino acids at positions 220 to 412.

フィトクロムA遺伝子への変異の導入は、当業者であれば公知の変異導入方法により達成することができる。かかる公知の方法としては、ゲノム編集法、物理的変異導入法、化学的変異剤を用いる方法、トランスポゾン等をゲノムDNAに導入する方法が挙げられるが、これらに限定はされない。 Introduction of a mutation into the phytochrome A gene can be achieved by a mutation introduction method known to those skilled in the art. Examples of such known methods include, but are not limited to, a genome editing method, a physical mutagenesis method, a method using a chemical mutagen, and a method of introducing a transposon or the like into genomic DNA.

ゲノム編集法は、部位特異的なヌクレアーゼ(例えば、ジンクフィンガーヌクレアーゼ(ZFN)、転写活性化様エフェクターヌクレアーゼ(TALEN)、CRISPR−Cas9等のDNA二本鎖切断酵素)を利用して、標的遺伝子を改変する方法である。例えば、ZFNs(米国特許6265196号、8524500号、7888121号、欧州特許1720995号)、TALENs(米国特許8470973号、米国特許8586363号)、ヌクレアーゼドメインが融合されたPPR(pentatricopeptiderepeat)(Nakamura et al.,Plant Cell Physiol 53:1171−1179(2012))等の融合タンパク質や、CRISPR−Cas9(米国特許8697359号、国際公開2013/176772号)、CRISPR−Cpf1(Zetsche B.et al.,Cell,163(3):759−71,(2015))やTarget−AID(K.Nishida et al.,Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems, Science,DOI:10.1126/science.aaf8729,(2016))等のガイドRNAとタンパク質の複合体を用いる方法が挙げられる。 Genome editing methods utilize site-specific nucleases (eg, zinc finger nucleases (ZFNs), transcriptional activation-like effector nucleases (TALENs), DNA double-strand break enzymes such as CRISPR-Cas9) to target genes. This is a method of modification. For example, ZFNs (US Patent No. 6265196, 8524500, 7888121, European Patent No. 1720995), TALENs (US Patent No. 8470973, US Patent No. 8586363), PPR (pentatric protein protein) (Nakamura et al.) In which a nuclease domain is fused. Fusion proteins such as Plant Cell Physiol 53: 1171-1179 (2012), CRISPR-Cas9 (US Pat. No. 8,695,359, International Publication No. 2013/176772), CRISPR-Cpf1 (Zetsche B. et al., Cell, 163) 3): 759-71, (2015)) and Target-AID (K. Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate advanced CRISPR. ), Etc., a method using a complex of a guide RNA and a protein can be mentioned.

物理的変異導入法としては、例えば、重イオンビーム(HIB)照射、速中性子線照射、ガンマ線照射、紫外線照射が挙げられる(Hayashiら、Cyclotrons and Their Applications、2007年、第18回国際会議、237〜239ページ、及び、Kazamaら、Plant Biotechnology、2008年、25巻、113〜117ページ参照のこと)。 Examples of the physical mutation introduction method include heavy ion beam (HIB) irradiation, fast neutron beam irradiation, gamma ray irradiation, and ultraviolet irradiation (Hayashi et al., Cyclotrons and Their Applications, 2007, 18th International Conference, 237). See pages 239 and Kazama et al., Plant Biotechnology, 2008, Vol. 25, pp. 113-117).

化学的変異剤を用いる方法としては、例えば、化学変異剤によって種子等を処理する方法(Zwar及びChandler、Planta、1995年、197巻、39〜48ページ等 参照)が挙げられる。化学変異剤としては特に制限はないが、エチルメタンスルホート(EMS)、N−エチル−N−ニトロソウレア(ENU)、N−メチル−N−ニトロソウレア(MNU)、アジ化ナトリウム、亜硫酸水素ナトリウム、ヒドリキシルアミン、N−メチル−N’−ニトロ−N−ニトログアニジン(MNNG)、N−メチル−N’−ニトロソグアニジン(NTG)、O−メチルヒドロキシルアミン、亜硝酸、蟻酸及びヌクレオチド類似体が挙げられる。 Examples of the method using a chemical mutant include a method of treating seeds and the like with a chemical mutant (see Zwar and Chandler, Planta, 1995, Vol. 197, pp. 39-48, etc.). The chemical mutant is not particularly limited, but is ethylmethanesulfoto (EMS), N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU), sodium azide, sodium hydrogen sulfite. , Hydricylamine, N-methyl-N'-nitro-N-nitroguanidine (MNNG), N-methyl-N'-nitrosoguanidine (NTG), O-methylhydroxylamine, nitrite, formic acid and nucleotide analogs Can be mentioned.

トランスポゾン等をゲノムDNAに導入する方法としては、例えば、TOS17等のトランスポゾン、T−DNA等を植物のゲノムDNAに挿入する方法が挙げられる(Kumarら、Trends Plant Sci.、2001年、6巻、3号、127〜134ページ、及び、Tamaraら、Trends in Plant Science、1999年、4巻、3号、90〜96ページ 参照)。 As a method for introducing a transposon or the like into the genomic DNA, for example, transposons such as T OS 17, and a method of the T-DNA or the like is inserted into the genomic DNA of a plant (Kumar et al., Trends Plant Sci., 2001 year, 6 Vol. 3, No. 3, pp. 127-134, and Tamara et al., Trends in Plant Science, 1999, Vol. 4, No. 3, pp. 90-96).

以上の方法により変異が導入された植物については、公知の方法により、フィトクロムA遺伝子に変異が導入されていることを確認することができる。かかる公知の方法としては、例えば、DNAシークエンス法(次世代シークエンシング法等)、PCR法、マイクロアレイを用いた解析法、サザンブロット法、ノーザンブロット法が挙げられる。かかる方法によれば、フィトクロムA遺伝子に変異が導入されているか否かを、変異導入前後の当該遺伝子の配列又は長さを比較することによって判断することができる。また、ノーザンブロット法、RT−PCR法、ウェスタンブロット法、ELISA法、マイクロアレイによる解析法等を利用することにより、転写制御領域等に変異が導入された植物において、フィトクロムA遺伝子の転写産物又は翻訳産物の発現量の低下が認められれば、該植物はフィトクロムA遺伝子に変異が導入された植物であると確認することもできる。 For plants into which the mutation has been introduced by the above method, it can be confirmed that the mutation has been introduced into the phytochrome A gene by a known method. Examples of such known methods include DNA sequencing methods (next-generation sequencing methods and the like), PCR methods, analysis methods using microarrays, Southern blotting methods, and Northern blotting methods. According to such a method, whether or not a mutation has been introduced into the phytochrome A gene can be determined by comparing the sequence or length of the gene before and after the introduction of the mutation. In addition, by using Northern blotting, RT-PCR, Western blotting, ELISA, microarray analysis, etc., transcripts or translations of the phytochrome A gene in plants in which mutations have been introduced into the transcription control region, etc. If a decrease in the expression level of the product is observed, it can be confirmed that the plant is a plant in which a mutation has been introduced into the phytochrome A gene.

また、フィトクロムA遺伝子に変異が導入されていることを確認する他の方法として、TILLING(標的誘導型ゲノム特定位傷害、Targeting Induced Local Lesions IN Genomes)が挙げられる(Sladeら、Transgenic Res.、2005年、14巻、109〜115ページ、及び、Comaiら、Plant J.、2004年、37巻、778〜786ページ 参照)。特に、前述の重イオンビーム照射や化学的変異剤等を用いて植物ゲノム中に非選択的変異を導入した場合には、フィトクロムA遺伝子又はその一部をPCRで増幅した後に、該増幅産物に変異を有する個体を、前記TILLING等により選抜することができる。この場合にも、フィトクロムA遺伝子のヌル変異体を有する植物を得ることができる。 In addition, as another method for confirming that a mutation has been introduced into the phytochrome A gene, TILLING (Targeting Induced Local Lesions IN Genomes) can be mentioned (Srade et al., Transgenic Res., 2005). Year, Volume 14, pp. 109-115, and Comai et al., Plant J., 2004, Volume 37, pp. 778-786). In particular, when a non-selective mutation is introduced into the plant genome using the above-mentioned heavy ion beam irradiation or a chemical mutagen, the phytochrome A gene or a part thereof is amplified by PCR and then added to the amplification product. Individuals with mutations can be selected by the TILLING or the like. In this case as well, a plant having a null mutant of the phytochrome A gene can be obtained.

また、上述の方法により変異が導入された植物と野生型の植物とを交配させ、戻し交配を行うことにより、フィトクロムA遺伝子以外の遺伝子に導入された変異を除去することもできる。 In addition, mutations introduced into genes other than the phytochrome A gene can be removed by crossing a plant into which a mutation has been introduced by the above method with a wild-type plant and performing backcrossing.

フィトクロムA遺伝子に変異を導入することにより当該遺伝子の機能が抑制された植物が、フィトクロムA遺伝子のヘテロ接合体(heterozygote)である場合がある。そのような場合、例えば、当該ヘテロ接合体とコントロール植物とを交配して得られるF1植物体同士を交配してF2植物体を得ることにより、当該F2植物体から当該変異が導入されたフィトクロムA遺伝子を有するホモ接合体(homozygote)を選抜することができる。またフィトクロムA遺伝子の機能が完全に抑制されるという観点から、ホモ接合体であることが好ましい。この場合、「当該変異が導入されたフィトクロムA遺伝子を有するホモ接合体である植物」には、互いに同一である変異を有するフィトクロムA対立遺伝子(allele)を2つ有する植物だけでなく、第1の変異を有し活性が抑制されたタンパク質をコードする第1のフィトクロムA対立遺伝子と、第2の変異を有し活性が抑制されたタンパク質をコードする第2のフィトクロムA対立遺伝子とを有する植物が含まれる。 A plant in which the function of the gene is suppressed by introducing a mutation into the phytochrome A gene may be a heterozygote of the phytochrome A gene. In such a case, for example, by crossing F1 plants obtained by crossing the heterozygotes with a control plant to obtain F2 plants, phytochrome A into which the mutation is introduced from the F2 plants is obtained. Homozygotes carrying the gene can be selected. Further, from the viewpoint that the function of the phytochrome A gene is completely suppressed, a homozygote is preferable. In this case, the "plant that is a homozygous conjugate having the phytochrome A gene into which the mutation has been introduced" includes not only a plant having two phytochrome A alleles having mutations that are identical to each other, but also a first plant. A plant having a first phytochrome A allele encoding a protein having a mutation and suppressed activity and a second phytochrome A allele encoding a protein having a second mutation and suppressed activity. Is included.

本発明において、フィトクロムA遺伝子の機能を抑制する方法として、上述の変異導入の他、フィトクロムA遺伝子の転写産物と相補的なdsRNA(二重鎖RNA、例えばsiRNA)をコードするDNAを用いる方法、フィトクロムA遺伝子の転写産物と相補的なアンチセンスRNAをコードするDNA(アンチセンスDNA)を用いる方法、フィトクロムA遺伝子の転写産物を特異的に開裂するリボザイム活性を有するRNAをコードするDNA用いる方法(リボザイム法)といった、フィトクロムA遺伝子の転写産物を標的とする方法も挙げられる。 In the present invention, as a method for suppressing the function of the phytochrome A gene, in addition to the above-mentioned mutagenesis, a method using a DNA encoding dsRNA (double-stranded RNA, for example, siRNA) complementary to the transcript of the phytochrome A gene, A method using a DNA encoding an antisense RNA complementary to a transcript of the phytochrome A gene (antisense DNA), a method using a DNA encoding an RNA having a ribozyme activity that specifically cleaves the transcript of the phytochrome A gene ( A method of targeting a transcript of the phytochrome A gene, such as the ribozyme method), can also be mentioned.

本発明において、フィトクロムA遺伝子機能の抑制は、上述の方法等に応じ、種々の植物体、種子又は植物細胞に対して行うことができる。植物細胞には、植物由来の培養細胞の他、植物体中の細胞も含まれる。さらに、種々の形態の植物由来の細胞、例えば、懸濁培養細胞、プロトプラスト、葉の切片、カルス、未熟胚、花粉等が含まれる。 In the present invention, suppression of phytochrome A gene function can be performed on various plants, seeds or plant cells according to the above-mentioned methods and the like. Plant cells include cultured cells derived from plants as well as cells in plant bodies. In addition, various forms of plant-derived cells such as suspension-cultured cells, protoplasts, leaf sections, callus, immature embryos, pollen and the like are included.

また、本発明において、上述の、部位特異的ヌクレアーゼ、融合タンパク質又はガイドRNAとタンパク質の複合体をコードするDNA、トランスポゾンをコードするDNA、二重鎖RNAをコードするDNA、アンチセンスRNAをコードするDNA、リボザイム活性を有するRNAをコードするDNA等を、ベクターに挿入した形態にて植物の細胞に導入してもよい。 Further, in the present invention, the above-mentioned site-specific nuclease, fusion protein or DNA encoding a guide RNA and protein complex, transposon-encoding DNA, double-stranded RNA-encoding DNA, and antisense RNA are encoded. DNA, DNA encoding RNA having ribozyme activity, or the like may be introduced into plant cells in the form of being inserted into a vector.

フィトクロムA遺伝子の機能を抑制するための前記DNAが挿入されるベクターとしては、植物細胞内で挿入遺伝子を発現させることが可能なものであれば特に制限はないが、前記DNAを恒常的又は誘導的に発現させるためのプロモーターを含有しうる。恒常的に発現させるためのプロモーターとしては、例えば、カリフラワーモザイクウイルスの35Sプロモーター、イネのアクチンプロモーター、トウモロコシのユビキチンプロモーター等が挙げられる。また、誘導的に発現させるためのプロモーターとしては、例えば、糸状菌・細菌・ウイルスの感染や侵入、低温、高温、乾燥、紫外線の照射、特定の化合物の散布等の外因によって発現することが知られているプロモーター等が挙げられる。さらに、本発明にかかるDNAとしてsiRNA等の短いRNAをコードするDNAを発現させるためのプロモーターとしては、polIII系のプロモーターが好適に用いられる。 The vector into which the DNA for suppressing the function of the phytochrome A gene is inserted is not particularly limited as long as the inserted gene can be expressed in plant cells, but the DNA is constitutively or induced. May contain a promoter for expression. Examples of the promoter for constitutive expression include the 35S promoter of cauliflower mosaic virus, the actin promoter of rice, and the ubiquitin promoter of maize. In addition, as a promoter for inducible expression, it is known that it is expressed by external factors such as infection or invasion of filamentous fungi, bacteria, and viruses, low temperature, high temperature, drying, irradiation with ultraviolet rays, and spraying of a specific compound. Examples include promoters that have been used. Further, as a promoter for expressing a DNA encoding a short RNA such as siRNA as the DNA according to the present invention, a polIII-based promoter is preferably used.

植物細胞へ前記DNA又は該DNAが挿入されたベクター等を導入する方法としては、例えば、パーティクルガン法、アグロバクテリウムを介する方法(アグロバクテリウム法)、ポリエチレングリコール法、電気穿孔法(エレクトロポーレーション)等、当業者に公知の種々の方法を用いることができる。 Examples of a method for introducing the DNA or a vector into which the DNA is inserted into a plant cell include a particle gun method, an Agrobacterium-mediated method (Agrobacterium method), a polyethylene glycol method, and an electroporation method. Various methods known to those skilled in the art such as ration) can be used.

なお、DNAの形態をとらずとも、上述の、部位特異的ヌクレアーゼ、融合タンパク質、トランスポゾンは、タンパク質として、上述の、ガイドRNA、二重鎖RNA、アンチセンスRNA、リボザイム活性を有するRNAは、RNAとして、植物細胞に導入しても、変異を導入することはできる。 Even if it does not take the form of DNA, the above-mentioned site-specific nuclease, fusion protein, and transposon can be used as proteins, and the above-mentioned guide RNA, double-stranded RNA, antisense RNA, and RNA having ribozyme activity can be used as RNA. As a result, mutations can be introduced even when introduced into plant cells.

また、上述の方法等により遺伝子の機能が人為的に抑制された植物細胞から植物体を再生することにより、重量が増大した植物を得ることができる。 In addition, a plant with an increased weight can be obtained by regenerating a plant from a plant cell in which the function of a gene is artificially suppressed by the above-mentioned method or the like.

例えば、イネにおいて、形質転換植物体を作出する手法については、ポリエチレングリコールによりプロトプラストへ遺伝子導入し、植物体を再生させる方法(Datta,S.K.In Gene Transfer To Plants(Potrykus I and Spangenberg Eds.)pp66−74,1995)、電気パルスによりプロトプラストへ遺伝子導入し、植物体を再生させる方法(Toki et al.Plant Physiol.100,1503−1507,1992)、パーティクルガン法により細胞へ遺伝子を直接導入し、植物体を再生させる方法(Christou et al.Bio/technology,9:957−962,1991)及びアグロバクテリウムを介して遺伝子を導入し、植物体を再生させる方法(Hiei et al.Plant J.6:271−282,1994)など、いくつかの技術が既に確立し、本願発明の技術分野において広く用いられている。 For example, in rice, a method for producing a transformed plant is a method in which a gene is introduced into a protoplast with polyethylene glycol to regenerate the plant (Datta, SK In Gene Transfer To Plants (Potrykus I and Spangenberg Eds). ) Pp66-74, 1995), a method of introducing a gene into a protoplast by an electric pulse to regenerate a plant (Toki et al. Plant Physiol. 100, 1503-1507, 1992), and a method of directly introducing a gene into a cell by a particle gun method. Then, a method for regenerating a plant (Christou et al. Bio / technology, 9: 957-962, 1991) and a method for regenerating a plant by introducing a gene via agrobacterium (Hiei et al. Plant J). .6: 271-282, 1994), some techniques have already been established and are widely used in the technical field of the present invention.

また、その他の植物であっても、Tabeiら(田部井豊 編、「形質転換プロトコール[植物編]」、株式会社化学同人、2012年9月20日出版)に記載に方法を用い、形質転換及び植物体への再生を行なうことができる。 In addition, even for other plants, transformation and transformation using the method described in Tabei et al. (Edited by Yutaka Tabei, "Transformation Protocol [Plant Edition]", Kagaku-Dojin Co., Ltd., published on September 20, 2012) It can be regenerated into plants.

また、上述の方法等により、一旦、フィトクロムA遺伝子の機能が抑制されている植物体が得られれば、該植物体から有性生殖又は無性生殖により子孫を得ることが可能である。さらに、該植物体やその子孫あるいはクローンから繁殖材料(例えば、種子、切穂、株、カルス、プロトプラスト等)を得て、それらを基に該植物体を量産することも可能である。したがって本発明には、前記重量が増大した植物の子孫及びクローン、並びに、それらの繁殖材料が含まれる。 Further, once a plant in which the function of the phytochrome A gene is suppressed is obtained by the above-mentioned method or the like, it is possible to obtain offspring from the plant by sexual reproduction or asexual reproduction. Further, it is also possible to obtain breeding materials (for example, seeds, cutting ears, strains, callus, protoplasts, etc.) from the plant, its descendants or clones, and mass-produce the plant based on them. Therefore, the present invention includes offspring and clones of the increased weight of the plant, as well as their reproductive materials.

以上、本発明に係る「フィトクロムA遺伝子の機能が抑制された植物」の好適な態様について説明したが、当該植物は、上述の人為的な変異導入等によるものに限定されるものではなく、自然変異によってフィトクロムA遺伝子の機能が抑制された植物も含まれる。 The preferred embodiment of the "plant in which the function of the phytochrome A gene is suppressed" according to the present invention has been described above, but the plant is not limited to the above-mentioned artificial mutagenesis and the like, and is natural. Plants in which the function of the phytochrome A gene is suppressed by mutation are also included.

また、農作物は、栽培環境適性や味覚、抵抗性等の特性の異なるさまざまな品種が存在し、生産者は目的に合った特性を有する品種を選択して栽培している。そのため、このような既存の品種において、上述の方法等により、フィトクロムA遺伝子の機能を抑制すれば、各品種の有する特性を変化させることなく重量を増大(生産性を向上)させることができる。 In addition, there are various varieties of agricultural products having different characteristics such as suitability for cultivation environment, taste, and resistance, and the producer selects and cultivates varieties having characteristics suitable for the purpose. Therefore, in such an existing variety, if the function of the phytochrome A gene is suppressed by the above-mentioned method or the like, the weight can be increased (productivity is improved) without changing the characteristics of each variety.

(植物の栽培方法)
後述の実施例に示すとおり、本発明の製造方法において、上述のフィトクロムA遺伝子の機能が抑制された植物を、通常の栽培条件における栄養素の濃度と比して少なくとも1.5倍高い濃度にて栽培することによって、重量が増大した植物を得ることができる。
(Plant cultivation method)
As shown in Examples described later, in the production method of the present invention, the above-mentioned plant in which the function of the phytochrome A gene is suppressed is at a concentration at least 1.5 times higher than the concentration of nutrients under normal cultivation conditions. By cultivating, a plant with increased weight can be obtained.

本発明に係る「栄養素」は、植物の生長に関与する栄養素であればよく、必須栄養素であってもよく、有用栄養素であってもよい。必須栄養素としては、例えば、多量一次要素(窒素、リン、カリウム、炭素、水素、酸素)、多量二次要素(マグネシウム、カルシウム、硫黄)、微量要素(ホウ素、塩素、マンガン、鉄、亜鉛、銅、モリブデン、ニッケル)が挙げられる。これらの中で、本発明に係る栄養素として、窒素、リン及びカリウムが好ましく、窒素、リン、カリウム及びマグネシウムがより好ましい。 The "nutrient" according to the present invention may be any nutrient involved in plant growth, may be an essential nutrient, or may be a useful nutrient. Essential nutrients include, for example, a large amount of primary elements (nitrogen, phosphorus, potassium, carbon, hydrogen, oxygen), a large amount of secondary elements (magnesium, calcium, sulfur), and trace elements (boron, chlorine, manganese, iron, zinc, copper). , Molybdenum, nickel). Among these, nitrogen, phosphorus and potassium are preferable, and nitrogen, phosphorus, potassium and magnesium are more preferable as the nutrients according to the present invention.

また、前述の栄養素の通常の栽培条件における濃度は、当業者であれば、各植物品種に対し、土壌特性に基づき設定された標準施肥量(例えば、日本農林水産省が示す施肥基準)として理解することができる。より具体的には、表2に示す施肥量が、各植物種における通常の栽培条件における栄養素の濃度として挙げられる。 In addition, the concentration of the above-mentioned nutrients under normal cultivation conditions can be understood by those skilled in the art as a standard fertilizer application amount set based on soil characteristics for each plant variety (for example, fertilizer application standard indicated by the Ministry of Agriculture, Forestry and Fisheries of Japan). can do. More specifically, the amount of fertilizer applied shown in Table 2 is given as the concentration of nutrients under normal cultivation conditions in each plant species.

なお、表2において、イネは粘質土にて栽培した場合の施肥基準を示す(但し、コシヒカリ等を、粘質の泥炭・黒泥土にて栽培する場合の、五酸化二リンの施肥基準は、表2に記載の8kg/10aの代わりに10kg/10aとなる)。 In Table 2, the fertilization standard for rice cultivated in viscous soil is shown (however, the fertilization standard for diphosphorus pentoxide when cultivating Koshihikari etc. in viscous peat / sapric soil is shown. , 10 kg / 10a instead of 8 kg / 10a shown in Table 2).

本発明において、上述のフィトクロムA遺伝子の機能が抑制された植物を、前述の通常の栽培条件における栄養素の濃度と比して少なくとも1.5倍高い濃度にて栽培すればよいが、1.7倍高い濃度での栽培が好ましく、2倍高い濃度での栽培がより好ましく、2.5倍高い濃度での栽培がさらに好ましく、3倍高い濃度での栽培がより好ましく、3.5倍高い濃度での栽培がさらに好ましく、4倍高い濃度での栽培がより好ましい。また、栄養素量は、土壌又は水等への添加量を調整することのみならず、例えば、後述の実施例2に示すとおり、栽培間隔を調整することによっても、通常の栽培条件よりも少なくとも1.5倍高い濃度とすることができる。 In the present invention, the above-mentioned plant in which the function of the phytochrome A gene is suppressed may be cultivated at a concentration at least 1.5 times higher than the concentration of nutrients under the above-mentioned normal cultivation conditions, but 1.7. Cultivation at twice as high concentration is preferable, cultivation at twice as high concentration is more preferable, cultivation at 2.5 times higher concentration is more preferable, cultivation at three times higher concentration is more preferable, and cultivation at 3.5 times higher concentration is more preferable. Cultivation at a concentration four times higher is more preferable. In addition, the amount of nutrients can be at least 1 more than the normal cultivation conditions by adjusting the cultivation interval as shown in Example 2 described later, as well as adjusting the amount added to the soil or water. The concentration can be increased by 5 times.

本発明の製造方法における栽培期間としても特に制限はなく、種子からの栽培であってもよく、苗(実生苗、幼苗等)からの栽培であってもよい。栽培の期間としても特に制限はなく、例えば、幼苗期、生育期、繁茂期、成熟期、開花期及び結実期から選択される少なくとも1の期間を含むものであってもよい。また、栽培の終期としても特に制限はなく、例えば、幼苗期、生育期、繁茂期、成熟期、開花期、結実期迄が挙げられる。 The cultivation period in the production method of the present invention is not particularly limited, and may be cultivated from seeds or seedlings (seedlings, seedlings, etc.). The cultivation period is not particularly limited, and may include, for example, at least one period selected from the seedling period, the growing period, the overgrowth period, the maturity period, the flowering period, and the fruiting period. Further, the final stage of cultivation is not particularly limited, and examples thereof include a seedling stage, a growing stage, a prosperous stage, a maturity stage, a flowering stage, and a fruiting stage.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、本実施例は、以下に示す材料及び方法を用いて行なった。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples. In addition, this example was carried out using the materials and methods shown below.

(イネ)
phyAを欠損したイネ(phyA欠損イネ)及びその親品種である日本晴を、以下の実験に供した。phyA欠損イネは、旧農業生物資源研究所で作製されたレトロトランスポゾンTos17による突然変異体集団(ミュータントパネル)より選抜されたイネである(非特許文献1及び2 参照)。後述の実施例1及び4においては、phyA欠損イネ 系統A♯1を用い、実施例2においては、系統A♯1とは独立した系統であるphyA欠損イネ 系統A#2を用いた。実施例3においては前記A♯1とA♯2の2系統を用いた。
(Rice)
PhyA-deficient rice (phyA-deficient rice) and its parent variety, Nihonbare, were subjected to the following experiments. The phyA-deficient rice is a rice selected from a mutant population (mutant panel) produced by the retrotransposon Tos17 produced by the former Agricultural and Biological Resources Research Institute (see Non-Patent Documents 1 and 2). In Examples 1 and 4 described later, phyA-deficient rice line A # 1 was used, and in Example 2, phyA-deficient rice line A # 2, which is a line independent of line A # 1, was used. In Example 3, the two systems A # 1 and A # 2 were used.

(水耕栽培)
330mLの下記高栄養又は低栄養の水耕液あたり、6本のイネを用い、水耕栽培を実施した。水耕液は2日ごとに新しい液に交換し、イネは5葉期になるまで(おおよそ3週間)育てた。水耕液は、以下のとおりに、各種ストック液を混合して調製した。
(Hydroponic cultivation)
Hydroponics was carried out using 6 rice plants per 330 mL of the following high-nutrition or low-nutrition hydroponic solution. The hydroponic solution was replaced with a new solution every two days, and the rice was grown until the five-leaf stage (approximately three weeks). The hydroponic solution was prepared by mixing various stock solutions as follows.

ストック液(I〜V液)
I液(500mLストック)
KNO(硝酸カリウム、MW=101.1) 101.1g(2M)
NHPO(りん酸二水素アンモニウム、MW=115.03) 57.5g(1M)
II液(200mLストック)
MgSO−7HO(硫酸マグネシウム七水和物、MW=246.48) 49.3g(1M)
III液(100mLストック)
CaCl−2HO(塩化カルシウム二水和物、MW=147.01) 73.5g(5M)
IV液(200mLストック)
BO(ホウ酸、MW=61.83) 0.572g(46.26mM)
MnSO−5HO(硫酸マンガン(II)五水和物、MW=241.08) 0.307g(6.37mM)
CuSO−5HO(硫酸銅(II)五水和物、MW=249.7) 0.012g(0.24mM)
ZnSO−7HO(硫酸亜鉛(II)七水和物、MW=287.56) 0.156g(2.71mM)
MoO(モリブデン酸カリウム、MW=238.13) 0.023g(0.48mM)
V液(100mLストック)
EDTA−Na−Fe(II)−HO(Fe−EDTA、MW=385.06) 0.193g(50mM)。
Stock liquid (I to V liquid)
Liquid I (500 mL stock)
KNO 3 (potassium nitrate, MW = 101.1) 101.1g (2M)
NH 4 H 2 PO 4 (Ammonium dihydrogen phosphate, MW = 115.03) 57.5 g (1 M)
Liquid II (200 mL stock)
MgSO 4 -7H 2 O (magnesium sulfate heptahydrate, MW = 246.48) 49.3g (1M )
Solution III (100 mL stock)
CaCl 2 -2H 2 O (calcium chloride dihydrate, MW = 147.01) 73.5g (5M )
IV solution (200 mL stock)
H 3 BO 3 (boric acid, MW = 61.83) 0.572 g (46.26 mM)
MnSO 4 -5H 2 O (Manganese (II) sulfate pentahydrate, MW = 241.08) 0.307g (6.37mM )
CuSO 4 -5H 2 O (copper (II) sulfate pentahydrate, MW = 249.7) 0.012g (0.24mM )
ZnSO 4 -7H 2 O (zinc (II) sulfate heptahydrate, MW = 287.56) 0.156g (2.71mM )
K 2 MoO 4 (potassium molybdate, MW = 238.13) 0.023 g (0.48 mM)
Liquid V (100 mL stock)
EDTA-Na-Fe (II) -H 2 O (Fe-EDTA, MW = 385.06) 0.193 g (50 mM).

高栄養の水耕液は、I液 500μL、II液 500μL、III液 100μL、IV液 500μL及びV液 250μLを、超純水(Mili−Q)にて1Lになるよう希釈し、調製した。一方、低栄養の水耕液は、高栄養の水耕液を超純水(Mili−Q)で2.5倍希釈して調製した。 The highly nutritious hydroponic solution was prepared by diluting 500 μL of solution I, 500 μL of solution II, 100 μL of solution III, 500 μL of solution IV and 250 μL of solution V with ultrapure water (Mili-Q) to 1 L. On the other hand, the low-nutrition hydroponic solution was prepared by diluting the high-nutrition hydroponic solution with ultrapure water (Mili-Q) 2.5 times.

水耕栽培において、イネはグロースキャビネット(サンヨー社製。製品番号:MLR−350)内で16時間明期/8時間暗期の光条件下で育てた。光源は、植物栽培用蛍光灯のビオルックス−A(NEC社製)を使用し、温度は28度設定、湿度設定なしで栽培した。 In hydroponics, rice was grown in a growth cabinet (manufactured by Sanyo Co., Ltd., product number: MLR-350) under light conditions of 16 hours light period / 8 hours dark period. The light source used was Biolux-A (manufactured by NEC), a fluorescent lamp for plant cultivation, and the temperature was set to 28 degrees and the cultivation was performed without setting the humidity.

(水田栽培)
後述の実施例2においては、2005年5月中旬にイネ幼植物(4から5葉期のイネ)を水田に移植した。肥料(基肥、穂肥)は通常の施肥量で実施した。具体的には、表2に示す日本晴の普通作物栽培基準に基づく施肥量にて栽培を行なった。イネ幼植物は30センチ(疎植)又は15センチ(密植)の間隔で水田に移植した。
(Paddy cultivation)
In Example 2 described later, rice seedlings (rice in the 4th to 5th leaf stage) were transplanted to paddy fields in the middle of May 2005. Fertilizers (basic fertilizer, spike fertilizer) were applied at normal fertilizer amounts. Specifically, the crops were cultivated at the amount of fertilizer applied based on the standard for cultivating ordinary crops of Nihonbare shown in Table 2. Rice seedlings were transplanted to paddy fields at intervals of 30 cm (sparse planting) or 15 cm (dense planting).

また、後述の実施例3においては、2019年5月中旬にイネ幼植物(4から5葉期のイネ)を、15cmの間隔で2区画の水田に移植した。そして、水田圃場2区画あるうちの1区画は通常の栄養条件(表2に示す日本晴の普通作物栽培基準に基づく施肥量)にて、もう1区画は高栄養条件(前記通常の栄養条件と比べて2倍の施肥量)にて栽培を行なった。 Further, in Example 3 described later, rice seedlings (rice in the 4th to 5th leaf stage) were transplanted to 2 plots of paddy fields at intervals of 15 cm in the middle of May 2019. One of the two paddy fields is under normal nutritional conditions (the amount of fertilizer applied based on the Nihonbare ordinary crop cultivation standards shown in Table 2), and the other is under high nutritional conditions (compared to the above-mentioned normal nutritional conditions). It was cultivated with twice the amount of fertilizer applied.

(栄養素量の測定)
新しい水耕液交換後4、24、48時間後にサンプリングした水耕液を13AI 0.2μm クロマトディスク(ジーエルサイエンス社製)でろ過処理し、各栄養素含量をイオンクロマトグラフ(ダイオネックス社製)を用いて測定した。
(Measurement of nutrient content)
The hydroponic solution sampled 4, 24, and 48 hours after the replacement of the new hydroponic solution was filtered with a 13AI 0.2 μm chromatodisc (manufactured by GL Sciences), and each nutrient content was subjected to an ion chromatograph (manufactured by Dionex). Measured using.

(実施例1)
上述のとおり、水耕液を用い、低栄養条件又は高栄養条件(低栄養条件と比べて栄養素が2.5倍濃い)にて、phyA欠損イネ及び親品種を栽培した。そして、得られた各幼苗を、地上部と根に分けて乾燥重量を測定した。得られた結果を表3に示す。
(Example 1)
As described above, phyA-deficient rice plants and parent varieties were cultivated under undernutrition conditions or high nutritional conditions (nutrients were 2.5 times higher than those under undernutrition conditions) using hydroponic solution. Then, each of the obtained seedlings was divided into an above-ground part and a root, and the dry weight was measured. The results obtained are shown in Table 3.

表3において、「A#1」及び「WT」は各々phyA欠損イネ(系統 A#1)及び親品種のデータを示す。データは平均値±標準誤差(SE)にて示す(n=5)。また、スチューデントt−検定によって親品種での値と比べて顕著に異なった、phyA欠損イネにおける値にはアスタリスクを付している(*P<0.05)。 In Table 3, “A # 1” and “WT” indicate data of phyA-deficient rice (line A # 1) and parent varieties, respectively. The data are shown as mean ± standard error (SE) (n = 5). In addition, the values in phyA-deficient rice, which were significantly different from the values in the parent variety by the Student's t-test, are marked with an asterisk (* P <0.05).

表3に示した結果から明らかなように、低栄養条件ではphyA欠損イネと親品種とで顕著な変化は認められなかった。その一方で、高栄養条件では、phyA欠損イネの重量は、親品種のそれよりも有意に増加することが明らかになった。 As is clear from the results shown in Table 3, no significant change was observed between the phyA-deficient rice plant and the parent variety under undernutrition conditions. On the other hand, under high nutritional conditions, the weight of phyA-deficient rice was found to be significantly higher than that of the parent varieties.

(実施例2)
上述のとおり、水田において、疎植(株間:30cm、高栄養条件)又は密植(株間:15cm、通常の栄養条件)にてphyA欠損イネ及び親品種を籾が成熟するまで栽培した。そして、得られた全植物体及び籾の乾燥重量を測定した。得られた結果を表4に示す。
(Example 2)
As described above, in paddy fields, phyA-deficient rice plants and parent varieties were cultivated by sparse planting (inter-strain: 30 cm, high nutritional conditions) or dense planting (inter-strains: 15 cm, normal nutritional conditions) until the paddy matured. Then, the dry weights of all the obtained plants and paddy were measured. The results obtained are shown in Table 4.

なお、通常の水田栽培において、株間は一般的には15〜20cmである(株式会社クボタのWebサイト内、http://www.tanbo−kubota.co.jp/foods/watching/15_2.html 参照)。そのため、前記疎植のイネは通常の栽培条件と比して栄養素が1.5〜2倍となる。 In normal paddy field cultivation, the distance between the strains is generally 15 to 20 cm (see http://www.tanbo-kubota.co.jp/foods/watching/15_2.html on the website of Kubota Co., Ltd.). ). Therefore, the sparsely planted rice has 1.5 to 2 times more nutrients than the normal cultivation conditions.

表4において、「A#2」及び「WT」は各々phyA欠損イネ(系統 A#2)及び親品種のデータを示す。データは平均値±標準誤差(SE)にて示す(全植物体重量はn=20、籾重量はn=16)。また、スチューデントt−検定によって親品種での値と比べて有意に異なった、phyA欠損イネにおける値にはアスタリスクを付している(*P<0.05;**P<0.01)。 In Table 4, "A # 2" and "WT" indicate data of phyA-deficient rice (line A # 2) and parent varieties, respectively. Data are shown by mean ± standard error (SE) (total plant weight n = 20, paddy weight n = 16). In addition, the values in phyA-deficient rice, which were significantly different from the values in the parent cultivar by the Student's t-test, are marked with an asterisk (* P <0.05; ** P <0.01).

表4に示した結果から明らかなように、疎植ではphyA欠損イネは親品種と比べて全植物体及び籾の乾燥重量がともに1.1倍増加することが明らかになった。一方、密植(通常の栄養条件下)では、親品種と比べて全植物体及び籾の乾燥重量ともに変化が認められなかった。 As is clear from the results shown in Table 4, it was clarified that in sparse planting, the dry weight of all plants and paddy increased 1.1 times in both phyA-deficient rice as compared with the parent cultivar. On the other hand, in dense planting (under normal nutritional conditions), no change was observed in the dry weight of all plants and paddy as compared with the parent varieties.

(実施例3)
上述のとおり、水田において、通常の栄養条件下又は高栄養条件(施肥量2倍)にてphyA欠損イネ(2系統)及び親品種を籾が成熟するまで栽培した。そして、得られたイネの穂及び地上部(穂以外の部分)の乾燥重量を測定した。得られた結果を表5に示す。
(Example 3)
As described above, in paddy fields, phyA-deficient rice plants (2 lines) and parent varieties were cultivated under normal nutritional conditions or high nutritional conditions (double the amount of fertilizer applied) until the paddy matured. Then, the dry weights of the obtained rice ears and the above-ground part (the part other than the ears) were measured. The results obtained are shown in Table 5.

表5において、「A♯1」及び「A♯2」はphyA欠損イネの独立した2系統の各データを示し、「WT」は親品種のデータを示す。データは平均値±標準誤差(SE)にて示す(高栄養条件下での栽培:n=15、通常の栄養条件下での栽培:n=16)。また、スチューデントt−検定によって親品種での値と比べて有意に異なった、phyA欠損イネにおける値にはアスタリスクを付している(***P<0.001)。 In Table 5, "A # 1" and "A # 2" indicate the data of two independent lines of phyA-deficient rice, and "WT" indicates the data of the parent variety. Data are shown by mean ± standard error (SE) (cultivation under high nutritional conditions: n = 15, cultivation under normal nutritional conditions: n = 16). In addition, the values in phyA-deficient rice, which were significantly different from the values in the parent cultivar by the Student's t-test, are marked with an asterisk (*** P <0.001).

表5に示した結果から明らかなように、phyA欠損イネの2系統においては共に、高栄養条件下での栽培にて、親品種と比して収量における顕著な増加が認められた。 As is clear from the results shown in Table 5, in both of the two lines of phyA-deficient rice, a remarkable increase in yield was observed as compared with the parent cultivar when cultivated under high nutritional conditions.

(実施例4)
実施例1〜3に示すとおり、高栄養条件にてphyA欠損イネを栽培した結果、その重量は親品種と比して増大した。このことから、phyA欠損イネの栄養素の吸収能力が、高栄養条件下において促進することが予想される。
(Example 4)
As shown in Examples 1 to 3, as a result of cultivating phyA-deficient rice under high nutritional conditions, its weight increased as compared with the parent variety. From this, it is expected that the nutrient absorption capacity of phyA-deficient rice is promoted under high nutritional conditions.

そこで、栄養素吸収能力について調べるために、上述のとおり、水耕栽培を行い、新しい高栄養水耕液又は低栄養水耕液に交換してから、4、24、48時間目にサンプリングした水耕液の各栄養素含量を測定し、残存量から吸収された乾燥重量(DW)当たりの各種栄養素の吸収量を算出した。そして、各種栄養素の吸収量について親品種及びphyA欠損イネの間で比較した。得られた結果を図1に示す。 Therefore, in order to investigate the nutrient absorption capacity, as described above, hydroponics was carried out, and after exchanging with a new high-nutrition hydroponic solution or low-nutrition hydroponic solution, hydroponics sampled at 4, 24, and 48 hours. The content of each nutrient in the liquid was measured, and the amount of various nutrients absorbed per absorbed dry weight (DW) was calculated from the residual amount. Then, the absorption amounts of various nutrients were compared between the parent varieties and phyA-deficient rice. The obtained results are shown in FIG.

図1において、「A/WT_Low」は、低栄養水耕液交換後における、親品種の各種栄養素の吸収量に対する、phyA欠損イネのそれの比率を示し、「A/WT_High」は、高栄養水耕液交換後における、親品種の各種栄養素の吸収量に対する、phyA欠損イネのそれの比率を示す。アンモニウムイオン(NH )及び硝酸イオン(NO )における「ND」は、24時間目以降に親品種及び/又はphyA欠損イネが吸収し尽くしてしまったために栄養素吸収量比が算出できなかったことを示す。一方、硫酸イオン(SO 2−)及びカルシウムイオン(Ca2+)の4時間目における「ND」は、吸収量よりも植物体内から外への排出量の方が多いために栄養素吸収量比が算出できなかったことを示す。なお、イネにおける栄養素吸収が促進される時間は各栄養素ごとに異なり、窒素成分のアンモニウムイオン(NH )及び硝酸イオン(NO )は4時間目で吸収が盛んになるのに対し、他の栄養素は24時間目以降に吸収が促進する。 In FIG. 1, "A / WT_Low" indicates the ratio of phyA-deficient rice to the amount of absorption of various nutrients of the parent cultivar after exchanging the low-nutrition hydroponic solution, and "A / WT_High" is high-nutrition water. The ratio of phyA-deficient rice to the amount of absorption of various nutrients of the parent cultivar after exchanging the tillage solution is shown. Ammonium ion (NH 4 +) and nitrate ion (NO 3 -) "ND" in the not be calculated nutrient absorption ratio to parental cultivars and / or phyA deficient rice had exhausted absorbed after 24 hours Show that. On the other hand, "ND" in the fourth hour of the sulfate ion (SO 4 2-) and calcium ions (Ca 2+) are nutrient absorption ratio because there are more emissions out of the plants than the absorption quantity Indicates that it could not be calculated. The time nutrient absorption in rice is promoted different for each nutrient, nitrogen component of the ammonium ion (NH 4 +) and nitrate ion (NO 3 -) whereas the absorption at 4 hours become popular, Absorption of other nutrients is promoted after the 24th hour.

図1に示した結果から明らかなように、低栄養条件下では、phyA欠損イネ及び親品種において、各種栄養素の吸収量の顕著な差が認められなかった。一方、高栄養条件下では、phyA欠損イネにおける各種栄養素の吸収量は概して、親品種のそれと比して増大していることが明らかになった。この結果から、実施例1〜3において見出された高栄養条件下におけるphyA欠損イネの重量増大は、各種栄養素の吸収能の増大に依ることが示唆される。 As is clear from the results shown in FIG. 1, no significant difference in the absorption amount of various nutrients was observed between the phyA-deficient rice and the parent cultivar under undernutrition conditions. On the other hand, under high nutritional conditions, it was revealed that the absorption amount of various nutrients in phyA-deficient rice was generally increased as compared with that of the parent varieties. From this result, it is suggested that the weight increase of phyA-deficient rice found in Examples 1 to 3 under high nutritional conditions is due to the increase in absorption capacity of various nutrients.

以上説明したように、本発明によれば、重量が増大した植物を製造することが可能となり、ひいては、単位面積又は植物一個体あたりの収量の増加が可能となる。また、本発明において用いられるフィトクロムA遺伝子の機能が抑制された植物は、栄養素(肥料)の吸収能が高いため、残存肥料が少なく、環境負荷が低減される。したがって、本発明は、農業分野において有用である。 As described above, according to the present invention, it is possible to produce a plant having an increased weight, and by extension, it is possible to increase the unit area or the yield per plant. In addition, the plant in which the function of the phytochrome A gene used in the present invention is suppressed has a high absorption capacity of nutrients (fertilizers), so that the residual fertilizer is small and the environmental load is reduced. Therefore, the present invention is useful in the agricultural field.

Claims (2)

重量が増大した植物の製造方法であって、
フィトクロムA遺伝子の機能が抑制された植物を、通常の栽培条件における栄養素の濃度と比して少なくとも1.5倍高い濃度にて栽培する、方法。
It is a method of producing plants with increased weight.
A method in which a plant in which the function of the phytochrome A gene is suppressed is cultivated at a concentration at least 1.5 times higher than the concentration of nutrients under normal cultivation conditions.
前記栄養素は、窒素、リン酸及びカリウムである、請求項1に記載の方法。 The method of claim 1, wherein the nutrients are nitrogen, phosphoric acid and potassium.
JP2019219693A 2019-02-19 2019-12-04 Method for producing plants with increased weight Active JP7246726B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019027742 2019-02-19
JP2019027742 2019-02-19

Publications (2)

Publication Number Publication Date
JP2020130174A true JP2020130174A (en) 2020-08-31
JP7246726B2 JP7246726B2 (en) 2023-03-28

Family

ID=72276840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019219693A Active JP7246726B2 (en) 2019-02-19 2019-12-04 Method for producing plants with increased weight

Country Status (1)

Country Link
JP (1) JP7246726B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020935A1 (en) * 2001-09-03 2003-03-13 National Institute Of Agrobiological Sciences Control of plant flowering time by regulating the expression of phytochrome c
JP2004520822A (en) * 2000-12-06 2004-07-15 シンジェンタ リミテッド Recombinant plant that mimics the activity of an HP-1 mutant from tomato
JP2007145614A (en) * 2005-11-24 2007-06-14 Sumika Takeda Engei Kk High-concentration liquid fertilizer composition
JP2010233509A (en) * 2009-03-31 2010-10-21 National Institute Of Agrobiological Sciences Method for raising and harvesting rice plant at low cost in short period, using blue led, and selection of system suitable for the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520822A (en) * 2000-12-06 2004-07-15 シンジェンタ リミテッド Recombinant plant that mimics the activity of an HP-1 mutant from tomato
WO2003020935A1 (en) * 2001-09-03 2003-03-13 National Institute Of Agrobiological Sciences Control of plant flowering time by regulating the expression of phytochrome c
JP2007145614A (en) * 2005-11-24 2007-06-14 Sumika Takeda Engei Kk High-concentration liquid fertilizer composition
JP2010233509A (en) * 2009-03-31 2010-10-21 National Institute Of Agrobiological Sciences Method for raising and harvesting rice plant at low cost in short period, using blue led, and selection of system suitable for the method

Also Published As

Publication number Publication date
JP7246726B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
Kieu et al. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes
JP6375398B2 (en) ALS inhibitor herbicide resistant beta-bulgaris mutant
US20210180080A1 (en) Use of als mutant protein and the gene thereof in plant breeding based on gene editing technology
Selvaraj et al. Development and field performance of nitrogen use efficient rice lines for Africa
He et al. Meeting demands for increased cereal production in China
WO2019024534A1 (en) Rice als mutant protein for conferring herbicide resistance to plants, and use thereof
CN102776201B (en) Application of OsELF 3 gene in controlling heading stage of paddy rice
Zhao et al. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying
WO2017177765A1 (en) Applications of als mutant type gene in resisting against herbicides
CN108368515A (en) Drought tolerant corn
Abe et al. Gene overexpression resources in cereals for functional genomics and discovery of useful genes
CN105294847A (en) Stress tolerance-related protein of plants and encoding gene and application of stress tolerance-related protein
Kouhen et al. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants
US20220106577A1 (en) Modified plants containing combination of apyrase genes and method for making modified plants with combination of apyrase genes
Lata et al. Engineering cereal crops for enhanced abiotic stress tolerance
CN115851824B (en) Method for reducing height of semen ginkgo waxy plants, improving yield and shortening growth period, SD1 gene core promoter and application
CN108285926B (en) Method for identifying and improving germination waterlogging tolerance of rice seeds
CN105802931A (en) CRK4 protein and application of coded gene thereof in regulating and controlling growth of plant stems and leaves
JP7246726B2 (en) Method for producing plants with increased weight
Ali et al. An assessment on CRISPR Cas as a novel asset in mitigating drought stress
NL2027897B1 (en) Use of gmaap protein and gmaap gene in breeding soybeans
JP6874956B2 (en) Genes that control cesium absorption and cesium low-absorption plants
CN102942623B (en) AtTAR2 protein and application of AtTAR2 protein coding genes to regulation of plant lateral root growth
Tao et al. Enhanced photosynthetic efficiency for increased carbon assimilation and woody biomass production in hybrid poplar INRA 717-1B4
CN110964735B (en) Application of rice gene OsHXK9 in regulation and control of seed dormancy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230308

R150 Certificate of patent or registration of utility model

Ref document number: 7246726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150